
The Journal of Computing
Sciences in Colleges

Papers of the 18th Annual CCSC
Mid-South Conference

April 17-18, 2020
Lyon College
Batesville, AR

Baochuan Lu, Editor David Naugler, Regional Editor
Southwest Baptist University Southeast Missouri State University

Volume 35, Number 9 April 2020

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2020 CCSC Mid-South Conference 8

Regional Committees — 2020 CCSC Mid-South Region 9

Reviewers — 2020 CCSC Mid-South Conference 10

Design of a Cyber Security Awareness Campaign to be
Implemented in a Quarantine Laboratory 11

Tanim Sardar, Luay A. Wahsheh, Arkansas Tech University

A Scalable, Hybrid Entity Resolution Process for Unstandardized
Entity References 19

Awaad Al Sarkhi, John R. Talburt, University of Arkansas at Little
Rock

Exploration of Factors Contributing to Academic Success in a
Data Analytics Program 30

Matt Brown, Arkansas Tech University

A Programming Workshop Course to Complement CS 1/2 37
Christopher A. Healy, Furman University

Why Teach Operating Systems? 44
James W. McGuffee, Christian Brothers University

Adding a Syntax Macro Facility to iGen 52
Larry Morell, Arkansas Tech University, Xin Wan, Microsoft Corpora-
tion

A New Face for Old Moses: An Exercise in Swift and C Interop-
erability 60

Robert England, Transylvania University

Resources for Building Knowledge Base Files for UseWith Named
Entity Resolution/Disambiguation Tools Such As TIMBER 69

Anthony D. Davis, Lyon College

3

A Unified Representation for Teaching Bottom-up and Top-down
Parsing 78

Larry Morell, David Middleton, Arkansas Tech University

Toward the Creation of a Personal Device Security Testbed to
Aid Student Learning Objectives 86

Charles Walter, Charles Fleming, University of Mississippi

Engaging Students with Computing for the Common Good
— Conference Panel 95

James W. McGuffee, Christian Brothers University, Anthony Davis,
Lyon College, Mark Goadrich, Hendrix College

Abstract Syntax BNF Is Not Ambiguous/Inadequate
— Nifty Assignment 97

Cong-Cong Xing, Nicholls State University, Jun Huang, Chongqing
Univ. of Posts and Telecommunications

Increasing Cyber Security Awareness by Creating a Case Study
and Video Project — Nifty Assignment 99

Luay A. Wahsheh, Arkansas Tech University

The State of Machine Learning — Conference Tutorial 102
Dan Brandon, Christian Brothers University

Cyber Security Hands-On Learning Using Steganography
— Conference Tutorial 104

Luay A. Wahsheh, Arkansas Tech University

Introduction to Jetstream - A Research and Education Cloud
— Conference Tutorial 106

Sanjana Sudarshan, Jeremy Fischer, Indiana University

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:
Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

5

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7

Welcome to the 2020 CCSC Mid-South Conference

On behalf of everyone at Lyon College, we would like to welcome you to
the 18th Annual CCSC Mid-South Conference. The Ozark Mountains are
especially welcoming this time of year and we hope you enjoy your time here.
It is an honor to host such a wonderful group of students, administrators,
researchers, faculty, and professionals from all over the region. Many people
have worked hard to put this conference together and to ensure that we continue
to have opportunities like this in which to share our research.

The steering committee has come together to offer an impressive agenda.
The conference program is made up of ten professional papers, four tutorials,
a nifty assignment, a panel, and a workshop. This year, the conference will
kick off with vendor presentations and the programming contest offering two
divisions: a beginning division for first year programmers and an open division.
The winners of both divisions will be announced during the Friday banquet,
which will be preceded by faculty and student poster sessions. Students also
have the opportunity to present papers and network with some of the top
researchers and vendors in the region.

We want to thank everyone who has devoted time to make this conference a
reality. Without dedicated individuals reviewing papers, updating the website,
making sure the bills are paid, etc. we would not have this opportunity to learn
and spend time in fellowship with our peers and students. It is our hope that
coming together to share our ideas, to share our research, and to spend some
time as a community will not only strengthen ourselves, but our industry and
region, as well.

Finally, we want to thank you for attending this conference and visiting
Lyon College. Please enjoy your time here and hopefully you can take some
time away from our digital world to experience the beautiful mountains, the
running streams, and fresh air that the Ozarks has to offer. Please consider
being part of the 2021 CCSC-MS Conference as an attendee or as a committee
member. It takes passionate people coming together with a common purpose
to provide these opportunities. Feel free to contact either of us or anyone on
the steering committee to see how you can contribute to future conferences.

Anthony Davis
Lyon College

CCSC-MS Site Chair

Dave Sonnier
Lyon College

CCSC-MS Conference Chair

8

2020 CCSC Mid-South Conference Steering Committee

David Sonnier, Conference Chair .Lyon College, AR
Tony Davis, Site Chair .Lyon College, AR
Larry Morell, Papers Chair Arkansas Tech University, AR
David Middleton, Panels/Workshops/Tutorials ChairArkansas Tech
University, AR
Cong-Cong Xing, Nifty Assignments ChairNicolls State University, LA
Kriangsiri ‘Top’ Malasari, Student Programming Contest Co-Chair University
of Memphis, TN
Brent Yorgey, Student Programming Contest Co-Chair Hendricks College, AR
Matt Brown, Student Papers Chair Arkansas Tech University, AR
Mark Goadrich, Registrar .Hendrix College, AR
Gabriel Ferrer, Past Conference ChairHendrix College, AR

Regional Board — 2020 CCSC Mid-South Region

David Naugler, Regional Editor Southeast Missouri State University, MO
Mark Goadrich, Regional Registrar . Hendrix College, AR
Nan Harrell, Regional Treasurer Arkansas Tech University, AR
Brian McLaughlan, Regional Treasurer . . University of Arkansas–Fort Smith,
AR
David Hoelzeman, Regional WebmasterArkansas Tech University, AR
David Naugler, CCSC National Board Representative Southeast Missouri
State University, MO

9

Reviewers — 2020 CCSC Mid-South Conference

Brandon, DanChristian Brothers University, Memphis, TN
Brown, Matt . Arkansas Tech University, Russellville, AR
Davis, AnthonyLyon College, Lyon College, Batesville, AR
Ferrer, Gabriel .Hendrix College, Conway, AR
Goadrich, Mark .Hendrix College, Conway, AR
Malasri, Kriangsiri .University of Memphis, Memphis, TN
Massengale, Rick . North Arkansas College, Harrison, AR
Middleton, David Arkansas Tech University, Russellville, AR
McGuffee, JamesChristian Brothers University, Memphis, TN
Morell, Larry . Arkansas Tech University, Russellville, AR
Renwick, Janet University of Arkansas - Fort Smith, Fort Smith, AR
Sonnier, David .Lyon College, Batesville, AR
Xing, Cong-Cong . Nicholls State University, LA

10

Design of a Cyber Security Awareness
Campaign to be Implemented in a

Quarantine Laboratory∗

Tanim Sardar and Luay A. Wahsheh
Department of Computer and Information Science

Arkansas Tech University
Russellville, Arkansas 72801
{tsardar, lwahsheh}@atu.edu

Abstract

Humans are still the weakest link in the cyber security chain. Cyber
criminals are working faster than users can defend themselves. In this
research work, we investigate effective counter-measures to help users
stay secure and not be vulnerable to cyber threats. We have designed
a training program that introduces university students to several types
of cyber attacks. The program is not designed to target one specific
major and classification, but rather a variety of majors and classifica-
tions. The program includes presentations and hands-on exercises that
attract the participant’s attention. In order to assess whether the par-
ticipants retained the presented material, we use a game dubbed “Name
that Attack” where the participants are given a scenario and they have
to name what type of common cyber attack it is. In addition, on the
next day following the training, the participants would be sent a phishing
attack via e-mail to see if they would fall victims to this type of attack.
By going through the training, we anticipate that the participants will
increase their awareness about cyber attacks and be less susceptible to
cyber crime.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

11

1 Introduction

1.1 Background

As the number of Internet users and Internet connected devices rise, so does
the number of cyber crimes committed. Cyber security is currently one of the
fastest growing fields in computing. The cyber security training market was
valued at $240 million in 2016 [10]. This is after an increase of 55% from 2014-
2015. Companies are starting to realize the value of cyber security training for
their employees and are starting to invest not only into software protections,
but also training which would function as a “human firewall” and “the last line
of defense” [10]. But even with the rise of the interest in cyber security, users
with limited computing background have no awareness of how unsafe their
online habits are. Our training program intends to raise user awareness in a
way that the user is engaged throughout the training.

1.2 Related Research

There are many programs that companies use to train their employees about
cyber security practices. There are also many programs that high schools and
colleges use at an early age in an effort to expose students to the topic sooner
than the workplace in hopes that they will adopt best practices earlier and carry
them on. Jin et al. [12] developed games that are targeted towards high school
students. The games focused on detecting threats and implementing ways to
stop them. One of the games they created was a simulation to detect phishing
attacks. The other game they created was a tower defense style game where the
player is adding defenses including firewalls, updates, and encryptions to defend
against threats including Distributed Denial-of-Service (DDoS), Trojans, and
sniffers.

Ford et al. [8] took a different approach to training. They used an of-
fline approach. The participants work on exercises that are related to real
cyber security concepts and real tasks a cyber security professional would do
including cryptography, stenography, reverse engineering, and forensics. The
exercises disguise the learning as fun little games that the participants are play-
ing. Pham et al. [15] developed a cyber range. A cyber range is a sandbox
environment with which students can interact and test out malicious software
(malware) and cyber attacks. They developed a system to automate the cre-
ation of virtual training requirements based on an instructor’s specifications.
This system allows an instructor to define the concepts he or she want to teach
and can be integrated into an awareness training program to demonstrate the
concepts that the participants are learning.

Research work is being done on how social media can be used as a tool for

12

increasing awareness. Ikhalia et al. [11] researched a phenomenon called Mass
Interpersonal Persuasion (MIP). They go off the concept that social media
users tend to trust the content that their connections on the media share more
than something upon which they randomly stumble. With this being the case,
the researchers detail how the phenomenon is used to spread malware, but also
detail how they hope to use it to promote cyber security awareness.

1.3 Training Method Selection

Our training program follows a presentation format rather than a course format
like Das et al. [5] developed. Their course uses debate as the primary method
to encourage learning and follows a course format. Our training program is
not mandatory.

Estes et al. [7] used a similar approach to encourage learning. They have
exercises in which the user takes part. They also cover common attacks that
a website may face. Our approach differs in the fact that we use knowledge
that the participant has and expand upon it. We use scenarios to which the
participants could relate. Also, we cover different vulnerabilities that we think
are more present and likely to impact our participants in the real world. This
is done in an effort to increase retention of knowledge gained from the training.

Cai and Arney [4] also have a course, but their course focuses on real world
attacks that were carried out on company technology that does not require di-
rect human interaction. Our program focuses on real world examples of attacks,
but relates them back to how these attacks would be used when attacking a
participant in the program. Our program has been designed to be portable. It
is not very resource or time intensive. The program has been designed to take
about fifty minutes, similar to a regular class session. Being portable makes
the program more versatile and adaptable. Instructors can just pull parts from
the material if they choose.

Brilingaitė et al. [3] created an expansive computer-based game that puts
participants into teams and tests their abilities to handle cyber incidents. Their
game is rather expansive with many different scenarios and factors that can be
logged and tested, which would take time to explain and deploy. Our game that
we employ is very low tech and does not require teaching the participants how
to play the game. This is designed so that the program can be administered
almost anywhere since it is not very resource intensive.

Muhirwe [14] looked at users in three categories: college users, home users,
and corporate users. With those categories, our program can be used in any
situational setting. Most of the content is designed to span across all categories,
but some are tailored for only one category: university students.

13

2 Program Elements

We have not implemented this training program yet because of challenges on
our campus. We have obtained Institutional Review Board (IRB) approval
from our university, but the IT Department did not give us permission to
conduct the training on campus due to reservations about subjecting the par-
ticipants to a cyber attack. Subjecting the participants to a cyber attack is a
main differentiating aspect of our training program. The university is in the
process of building a controlled environment for students to create malware or
carry out cyber attacks. This has been named the Quarantine Lab. The lab
is to be used for educational purposes only. The lab location exists, but the
equipment has not been setup for use by students yet. This lab is completely
separate from the university’s network, which is what allows us to safely in-
teract with malware and not worry about infecting the university’s network.
We intend to use this quarantine lab as the location for our training program.
This would be the only location on campus that we are allowed to subject
participants to an actual cyber attack.

2.1 Passwords

Passwords are the most valuable piece of information one may have. This is
what the criminals are after. In our program, information about passwords is
discussed with the participants. Facts include the most common passwords,
weak and strong passwords, how often passwords should be changed, and ad-
vantages and disadvantages of using passwords. Then, the presenter asks a
random participant questions about his or her password. For example, if the
presenter asks “What do you usually use for a password?” the participant may
say “Oh my dog’s name and my birth year”. At that point, the presenter starts
to do some social engineering with the participant. The presenter could ask
“Oh how many dogs do you have?”. The participant would answer and then
the presenter would ask another question trying to get more information. Af-
ter the presenter has gathered enough information about the password, he or
she will explain his or her logic for asking all the questions and move into the
explanation of how that was a social engineering attack. By demonstrating the
type of attack, we anticipate the participants retaining the knowledge since a
real world example is being demonstrated.

Conte de Leon et al. [6] introduced a more technical explanation of an at-
tack on a password. In their program, they created a tutorial that participants
go through and learn the hashing algorithms of a password and how to make
more secure passwords. We emphasize the same point without the technical
details. We also give participants advice on best practices for their passwords,
including not using the same password for every site, not using something easy

14

to guess, and changing them regularly.

2.2 Phishing

Before the training takes place, we set up a simple website that would collect
user data, but was disguised as another website. The presenter asks everyone
to use their smart phones and go to a specific link. The presenter tells the
participants that they have to create an account to access the information from
the website. When they are making the account, this is when their information
is being collected. In an effort not to steal much personal data, we require users
to input their first name, last name, and email address. After the participants
are done, then the presenter pulls up all of the participants information that
was just collected. The presenter then goes into how to spot a phishing scam,
what to do if you are being phished, and what to do after your information
was stolen. The reason we chose to actually collect data rather than show
mock user data is that it forms a more personal and real connection with the
participant, therefore increasing retention on the subject.

Ayyagari and Figueroa [2] studied the impacts of users allowing applets
to steal their information. They educate the users on what the permissions
do and what the applets do, then they collect user data in surveys. In our
approach, we collect the data without having the user install anything and
show them that an attack can come from any source. We also use surveys
as a self-assessment method and a supplement to the research. Meyers et al.
[13] discussed a method that details how cyber criminals use personal data to
create these highly personalized and targeted phishing emails. In our program,
we warn about the targeted and highly personalized phishing attacks, teach
how to spot them, and how to deal with and prevent such attacks.

2.3 Top Cyber Attacks

In this section of the training program, we inform participants of what a cyber
attack is, the most commonly used cyber attacks, how to recognize what kind
of an attack it is, and how to rectify the aftermath if an attack is success-
fully carried out on a participant. We start with a definition of cyber attack.
We then list the most common cyber attacks and give the participants some
information about such attacks, but in non-technical terms. We only cover
the most common types of attacks that would be relevant to our participants.
This keeps them engaged in the material, not overload them with information,
and increases retention of knowledge gained from the program. We describe
scenarios in which that attack has been used.

By providing the participants with scenarios instead of technical definitions,
they may retain more of the information and have a working knowledge of the

15

types of attacks. After the participants have a working knowledge of the types
of attacks, the presenter then asks if they want to play a game. The game
is titled “Name That Attack”. It is an interactive part of the training where
the objective is to correctly guess what type of previously discussed attack
happened. The participants are given a made-up or real scenario and they
have a set amount of time to read it and solve it.

Alrimawi et al. [1] have a similar approach. They give their participants
detailed scenarios of cyber incidents in an effort to find a common pattern.
Our approach differs in the target audience. They are targeting more technical
users than us. We give our participants the scenarios and focus more on why
it is important that they know what is happening rather than the technical
details of how it is happening.

Ghiglieri and Stopczynski [9] developed SecLab, an e-learning platform that
is designed to be customizable by an instructor in a classroom setting to be
gradable and to offer more in-depth technical knowledge. In their platform,
participants go through exercises that are then graded. In our training, our
game functions as the exercise. Their platform is designed to be more in-
depth and can showcase the execution of attacks; their platform is designed
for technical users and requires more of a classroom setting. The game portion
of our training provides a way of self assessment and can be played anywhere
without relying on a platform to be installed.

Weanquoi et al. [16] developed a similar game that addresses only phishing.
In their game, the user had to learn about phishing and put his or her skills
to the test. In our game, the user is presented with more than just a phishing
attack and has to figure out what attack is being used and what to do about
that attack.

3 Surveys

Before the program starts, we ask the participants to answer a short survey.
The survey asks personal questions about how secure they feel online. Then, at
the end of the program we administer the same survey with the same questions
and a few questions added about how they felt about the training program and
if they have any feedback for improving the program. We use surveys because
they are not only a good measurement tool, but also they enhance the program
and make the participants think about the material and relate it back to their
lives, thus increasing retention of the presented material.

By giving our participants surveys before and after the training program,
we can gauge the impact our program has made and identify any areas for
improving the program. The game also functions as a quiz since it is essentially
testing and reinforcing what the participants have just learned.

16

4 Conclusions and Future Work

In this research work, we have designed a training program that aims to raise
awareness about cyber security issues for university students, and to harden the
weakest link in the cyber security chain: the human. In the future, we plan to
test the program and measure the impact it has on our campus. We expect that
our research would show that the program is offering positive results and helps
reduce victims of cyber crime. We plan to implement this training program as a
part of mandatory orientation that freshmen students undergo. In addition, we
plan to make the training program more modular, which would help instructors
to adapt modules from the program and incorporate these modules into lesson
plans during class.

References

[1] Faeq Alrimawi, Liliana Pasquale, Deepak Mehta, and Bashar Nuseibeh. I’ve seen
this before: Sharing cyber-physical incident knowledge. In Proceedings of the
1st International Workshop on Security Awareness from Design to Deployment,
pages 33–40, 2018.

[2] Ramakrishna Ayyagari and Norilyz Figueroa. Is seeing believing? Training users
on information security: Evidence from java applets. Journal of Information
Systems Education, 28(2):115–121, 2017.

[3] Agnė Brilingaitė, Linas Bukauskas, Virgilijus Krinickij, and Eduardas Kutka.
Environment for cybersecurity tabletop exercises. In ECGBL 2017 11th Euro-
pean Conference on Game-Based Learning, pages 47–55, 2017.

[4] Yu Cai and Todd Arney. Cybersecurity should be taught top-down and case-
driven. In Proceedings of the 18th Annual Conference on Information Technology
Education, pages 103–108, 2017.

[5] Aparna Das, David Voorhees, Cynthia Choi, and Carl E. Landwehr. Cybersecu-
rity for future presidents: An interdisciplinary non-majors course. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Educa-
tion, pages 141–146, 2017.

[6] Daniel Conte de Leon, Ananth A. Jillepalli, Victor J. House, Jim Alves-Foss, and
Frederick T. Sheldon. Tutorials and laboratory for hands-on OS cybersecurity
instruction. Journal of Computing Sciences in Colleges, 34(1):242–254, 2018.

[7] Tanya Estes, James Finocchiaro, Jean Blair, Johnathan Robison, Justin Dalme,
Michael Emana, Luke Jenkins, and Edward Sobiesk. A capstone design project
for teaching cybersecurity to non-technical users. In Proceedings of the 17th
Annual Conference on Information Technology Education, pages 142–147, 2016.

[8] Vitaly Ford, Ambareen Siraj, Ada Haynes, and Eric Brown. Capture the flag un-
plugged: An offline cyber competition. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, pages 225–230, 2017.

17

[9] Marco Ghiglieri and Martin Stopczynski. SecLab: An innovative approach to
learn and understand current security and privacy issues. In Proceedings of
the 17th Annual Conference on Information Technology Education, pages 67–72,
2016.

[10] Nicole Henderson. Can frequent security training help thwart “as-a-service”
attacks? http://www.itprotoday.com/strategy/can-frequent-security-
training-help-thwart-service-attacks, 2017.

[11] Ehinome Ikhalia, Alan Serrano, and Johnnes Arreymbi. Deploying social net-
work security awareness through Mass Interpersonal Persuasion (MIP). In In-
ternational Conference on Cyber Warfare and Security, pages 668–674, 2018.

[12] Ge Jin, Manghui Tu, Tae-Hoon Kim, Justin Heffron, and Jonathan White. Game
based cybersecurity training for high school students. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, pages 68–73, 2018.

[13] Jared J. Meyers, Derek L. Hansen, Justin S. Giboney, and Dale C. Rowe. Train-
ing future cybersecurity professionals in spear phishing using SiEVE. In Proceed-
ings of the 19th Annual SIG Conference on Information Technology Education,
pages 135–140, 2018.

[14] Jackson Muhirwe. Towards a 3-D approach to cybersecurity awareness for col-
lege students. In Proceedings of the 17th Annual Conference on Information
Technology Education, pages 105–105, 2016.

[15] Cuong Pham, Dat Tang, Ken-Ichi Chinen, and Razvan Beuran. CyRIS: A cyber
range instantiation system for facilitating security training. In Proceedings of
the Seventh Symposium on Information and Communication Technology, pages
251–258, 2016.

[16] Patrickson Weanquoi, Jaris Johnson, and Jinghua Zhang. Using a game to teach
about phishing. In Proceedings of the 18th Annual Conference on Information
Technology Education, pages 75–75, 2017.

18

A Scalable, Hybrid Entity Resolution
Process for Unstandardized Entity

References∗

Awaad Al Sarkhi and John R. Talburt
Information Science Department

University of Arkansas at Little Rock
Little Rock, AR 72204

{aalsarkhi, jrtalburt}@ualr.edu

Abstract
Conventional entity resolution and record linking processes all require

a pre-process step to transform the entity references into a standard for-
mat with a highly granular, uniform metadata annotation. The ability to
avoid the standardization of entity references as a pre-process for entity
resolution and still obtain accurate data integration results could sub-
stantially accelerate many important data analytics processes including
machine learning scenarios [10, 13, 8]. Prior research has shown that
a hybrid entity resolution model comprising frequency-based blocking,
frequency-based stop word removal, and the scoring matrix can be an
effective method for unstandardized and heterogeneously standardized
entity references [2, 3, 1]. However, in order for this new process to have
practical application, it must be scalable. In the original research, the
OYSTER open source ER platform [7, 19] was modified to implement
frequency-based blocking and the scoring matrix with frequency-based
stop words in order to build a proof-of-concept (POC) system [3]. While
the modifications were sufficient to demonstrate the effectiveness of the
hybrid model for small reference sets, the POC system is not scalable to
large datasets. This paper updates the previous research by describing a
second implementation of the hybrid model that is scalable, the results of
validating the new process against the original process, and outlining an
approach for implementing the hybrid model on a distributed computing
platform.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

19

1 Introduction

Entity resolution (ER) is the process of determining whether two references to
real-world objects in an information system are referring to the same object,
or to different objects. References to the same entity are called equivalent
references [14]. The goal of ER is to link two references if and only if the
references are equivalent. For this reason, ER is sometimes referred to as
record linking [6].

The quality of the linking results of an ER process is measured by the
precision, recall, and F-measure of the links it makes between references. The
linking precision is the ratio of true positive links (links between equivalent
references) to the total number of links made. The linking recall is the ratio
of the true positive links to the total number of equivalent pairs (possible true
positive links). The F-measure is the harmonic mean of precision and recall.

ER logic is based on the Similarity Assumption which states “the more
similar two references are, the more likely they are equivalent, and the less
similar they are, the less likely they are equivalent [16]. Both deterministic and
probabilistic ER systems start by first assessing the similarity of corresponding
attributes in each reference such as the similarity of first names, last names,
street numbers, and dates-of-birth [19]. However, this approach assumes the
attribute values in both references have metadata tags to indicate their usage
(semantics), and all references are using the same metadata tagging scheme
[6].

The process to create a uniform set of metadata tags across multiple sources
is called data standardization. Traditional ER methods rely on having stan-
dardized input references to ensure only values of the same attribute are com-
pared [4]. However, when there are many disparate sources of data, the stan-
dardization process often requires a great deal of time and effort to harmonize
[5]. Even if each source has already been standardized by an external data
provider, different sources may have different standardization schemes. For
example, one source may have standardized the references to have separate
fields (metadata tags) for the street number and the street name whereas in
another source, the standardization scheme has the street number and street
name together in a single street address field.

1.1 Background

The Hybrid Model for the ER of unstandardized references developed in prior
research comprises three major components [3]. These are frequency-based
blocking, frequency-based stop words, and the scoring matrix. Both frequency-
based blocking and frequency-based stop words processes begin by preprocess-
ing the reference source. Each reference is treated as a character string. If the

20

reference has values delimiters, for example a comma-separated value format
or CSV files, then each delimiter character is replaced by a blank character.
Next, each reference is split into tokens separated by one or more blanks. Then
for each token, the non-word characters (non-alphanumeric) in the token are
replaced by the empty string, and all letters are changed to upper case. For
example, the reference “John,555-1234” would produce two tokens, “JOHN”
and “5551234” assuming the comma is a value delimiter. Finally, the extracted
tokens are sorted and counted to determine the frequency of each unique token
in the reference source.

1.2 Frequency-Based Blocking

Frequency-based blocking is a form of inverted index blocking where each ref-
erence is only indexed by its low frequency tokens [6]. Based on the frequency
distribution obtained from the preprocessing step, a blocking frequency thresh-
old is set. As a reference is processed in the ER step, it is only indexed by tokens
in the reference with a frequency at or below the threshold. Two references
in the source will only be compared if they share at least one low-frequency
token.

Using a frequency threshold for blocking helps to ensure against large blocks
(components) which reduce run-time performance. Depending upon the thresh-
old, it is possible some references might not be indexed if all of their tokens
are above the threshold. In that case, each will form a singleton cluster, and
not be linked to any other reference.

1.3 Frequency-Based Stop Words

Frequency-based stop words are tokens selected from the reference source based
on frequency, but for a different purpose than blocking tokens. Blocking tokens
are used to decide which references should be compared, whereas stop words are
removed and excluded from the comparison of the two references. Frequency-
based stop words are similar to natural language or text processing stop words,
except they do not come from a fixed table or list based on language usage
[12]. Even though entity references can be treated as documents, they are not
“narratives” in the literary sense so they rarely contain typical English language
stop words such as “a”, “an”, “and”, “but”, and “of”. For the Hybrid Model, stops
words are selected purely on the basis of their frequency. Given a fixed stop
word frequency threshold, any token with a frequency at or above the threshold
is treated as a stop word, and consequently, does not participate in the reference
similarity determination. Prior work has shown that the best results for the
Hybrid Model are obtained when the stop word frequency threshold is higher
than the blocking frequency threshold [2, 1].

21

Stop words can be considered a simple form of token weighting in which the
most frequently occurring words are given a weight of zero, i.e., are excluded
from a comparison in the matrix. All other tokens are given a weight of one.
Stop word represent a simplification of the term frequency, inverse document
frequency (if-IDF) technique often applied in document retrieval [17].

1.4 Scoring Matrix

After frequency-based blocking and frequency-based stop word removal, the
final similarity between two references, and ultimately the linking decision, is
done using the scoring matrix. When the scoring matrix processes a pair of
references, each reference is first transformed into a list of tokens (words), then
the stop word tokens are removed from the list. The remaining tokens from
the first reference are used to label the rows of the matrix, and the remaining
tokens from the second string label the columns of the matrix. The cell value
of the matrix is a normalized similarity measure, i.e., a value in the interval
[0,1], between the two tokens.

Several similarity functions such as Jaccard, Normalized Levenshtein Edit
Distance (nLED), and Jaro-Winkler can be used individually or in combination
to compute cell values [6]. Also, Boolean (True or False) comparators such
as nickname match or Soundex match can also be used if their agreement is
assigned a numeric value. For example, if two tokens are in agreement by
nickname, the agreement could be assigned a fixed similarity value such as
0.95 thus allowing nickname to operate in combination with other similarity
functions. In all of the research described here, only normalized Levenshtein
Edit Distance (nLED) function was used [11].

To illustrate the operation of the scoring matrix, consider the following two
references:
A045 , Smith , John , Apt 21 , 345 Oak St , Anytown , NY
B167 , Jon Smith , 345 Oak S t r e e t #21, Anytonw , NY

Furthermore, suppose the threshold for the comparator has been set to
0.80, and the list of stop words contains the token “NY.” The resulting token
matrix would then appear as shown in Figure 1. The process begins by finding
the largest similarity value in the matrix. This value is the initial value of a
total running value. After the largest similarity value is used to initialize the
total value, all of the values in the same row and column are removed (set to
zero). In the next iteration, the largest similarity value from the remaining
values in the matrix is identified and added to the overall total. Again, all of
the nLED values in the same row and column as the largest value are removed.
The process continues in subsequent iterations until all of the similarity values
have been removed from the matrix. In Figure 1, the cells with underlined and
bold font are the surviving tokens from this process.

22

The number of iterations will be equal to the number of tokens from the
reference generating the fewest tokens. After the last iteration, the running
total is divided by the number of iterations. If the calculated average value
is greater than or equal to a threshold value provided by the user, then the
comparator returns a “true” result and links the references. Otherwise, the
comparator returns a “false” result, and the references are not linked. At the
end of the algorithm, the final matrix score for a pair of references in Figure 1
is 0.83. Because 0.83 is above the 0.80 thresholds, the two references would be
linked.

Figure 1: Example References in a Scoring Matrix (zero similarity values omit-
ted)

2 Scalable Solution

2.1 The POC Implementation

The proof-of-concept (POC) implementation of the Hybrid Model was con-
structed by enhancing the OYSTER open source entity resolution system [15]
with two new modules, MatrixTokeninzer and MatrixComparator. The in-
dex hash function “MatrixTokenizer” implements frequency-based blocking and
“MatrixComparator” implements the scoring matrix with stop words. Both the
MatrixTokenizer and the MatrixComparator functions take as parameters a list
of exclusion tokens. In the case of the MatrixTokenizer, the list comprises the
tokens not to be indexed. For the MatrixComparator, it is the list of stop
words, i.e. the tokens to be excluded from the comparison of two references.
For simplicity in the POC implementation of the Hybrid Model, a preprocess-
ing program OR a preprocessor generated these parameter lists and inserted
them into the script used to setup an OYSTER run invoking these functions.

The following example (Example 1) is an excerpt from the setup (run) script
for OYSTER showing a typical configuration of the MatrixTokenizer and the
MatrixComparator for the POC implementation of the Hybrid Model.

23

<Ind i c e s >
<Index I d e n t="X1">

<Segment Item="Fu l l R e f "
Hash="Mat r i xToekn i z e r (1 , 'NC|SALEM| . . . | 2 7 1 03 ') " / >

</Index>
</ I n d i c e s >
<I d e n t i t y R u l e s >

<Rule I d e n t="R1">
<Term Item="Fu l l R e f "

S i m i l a r i t y="Matr ixComparator (0 . 7 8 , 'DR|RD|ST | . . . | 2 7 1 0 3 ') " / >
</Rule>

</ I d e n t i t y R u l e s >

In ordinary usage for standardized references, the <Indices> element of
the script would define several child <Index> elements each defining a multi-
segment match key. For example, one match key might be the concatenation
of the Soundex of the Student First Name with the string value of the Student
Last Name, and second match key might be the concatenation of the string
of value of the Student First Name with the 8-digit Student Date-of-Birth.
These match keys would support blocking for a set of rules comparing these
attributes. While the configuration will vary with type of reference data and
matching approach, this approach to blocking and entity resolution depends
upon having a uniform, standard layout for each reference.

Because the Hybrid Model does not assume any standardization, the entire
input reference (aside from the unique reference identifier) is defined as a single,
string value attribute (FullRef). The MatrixTokenizer parses the reference
string into individual tokens for indexing provided the token is not in the
exclusion list given as a parameter (shown as ‘NC|SALEM|... in this example).
The parameter string for the exclusion list is a pipe character (|) delimited list
of tokens.

What is not shown in this example is the entire extent of the list. For brevity
in this paper, the ellipsis shown in the string parameter indicates the list has
more tokens than shown here. In reality, this list may contain several hundred
or several thousand tokens depending upon the size of the reference set being
processed and type of reference data. Prior research has shown the blocking
frequency thresholds producing the best linking results in the Hybrid Model is
a relatively low value in the overall token frequency distribution. For example,
if the blocking frequency threshold is 10 then every token in the input dataset
with a frequency of 11 or higher will be excluded from the inverted index and
therefore, must be included in the MatrixTokenizer parameter list.

The same is true for the MatrixComparator shown in this same script ex-
cerpt. Even though the stop word frequency threshold giving the best linking
results is larger than the blocking frequency threshold, the stop word frequency
threshold is still low relative in the overall token frequency distribution. For
example, if the blocking frequency threshold is 10 the stop word frequency
threshold might be 15. This would mean that every token with a frequency of

24

16 or higher must be included in the MatrixComparator stop word list show
in this example as starting with the token “DR”. It also means the stop word
list is redundant to (is actually the tail of) the blocking exclusion list. In this
example, the script indicates pairs of references with a scoring matrix similarity
of 0.78 or higher should be linked.

While the POC implementation of the Hybrid Model as originally imple-
mented was effective in demonstrating the effectiveness of the model, it is not
scalable. As the reference datasets become larger, so do the parameter lists
that must the MatrixTokenizer and MatrixComparator must access. As some
point, most or all of the working memory will be consumed with the token
tables. It is also not time efficient to perform table lookup operations for every
input token for every reference.

2.2 The Scalable Implementation

The primary change in the scalable implementation of the Hybrid Model is
to add a second preprocessing step to remove the excluded blocking tokens
and stop words. While the first preprocess calculates the frequency of each
input token, the second preprocess creates reduced-token (“skinny”) references.
While there are several ways to do this; only one is described here.

The original POC and the scalable process both start with a process to
read and tokenize each input reference and create a token frequency table.
This table contains every token found along with its frequency. In the POC
the second process was to build the two parameter lists of tokens. However,
the scalable process takes the complementary approach. In the second process,
each input reference is read and tokenized, and is output as a re-built reference
comprising three parts, the reference identifier, the blocking tokens, and the
comparison tokens. Take as Example 2 the following input reference.
B123 , John E . Doe , 123 Main St , MyCity CA, 91560 , 510−555−6127

Assume that the tokens “JOHN”, “E”, “ST”, “MYCITY”, “CA”, “91560”,
“510”, and “555” have frequencies above the blocking frequency threshold, and
the tokens “ST”, “CA”, “91560”, and “510” have frequencies above the stop word
threshold and are removed. The resulting output reference from the scalable
process would be
B123 :DOE 123 MAIN 6127 :JOHN E DOE 123 MAIN MYCITY 555 6127

Furthermore, this reference would be compared to other references contain-
ing the tokens “DOE”, “123”, “MAIN”, and “6127”, because these are blocking
tokens. Note the three segments of the reduced-token output reference are
separated by the colon (:) character. The first segment is simply the unique
reference identifier (RefID) carried forward from the original reference. The

25

second segment comprises the tokens from the original reference with frequen-
cies at or below the blocking frequency threshold. The third segment comprises
only the tokens with frequencies at or below the stop word threshold.

<Ind i c e s >
<Index I d e n t="X1">

<Segment Item="Seg2" Hash="Mat r i xToekn i z e r (1 , ' ')" />
</Index>

</ I n d i c e s >
<I d e n t i t y R u l e s >

<Rule I d e n t="R1">
<Term Item="Seg3" S i m i l a r i t y="Matr ixComparator (0 . 7 8 , ' ')" />

</Rule>
</ I d e n t i t y R u l e s >

These reduced-token records can now be input directly in the Hybrid Model
without the need for token tables as was required in the POC process because
all of the excluded tokens have already been filtered. Suppose the second seg-
ment of the reduced-token record is identified as “Seg2” and the third segment
as “Seg3”, then the OYSTER configuration script for the scalable process would
be as shown here as Example 3.

In this script, the MatrixTokenizer function is directed to index references
by all tokens in the Seg2 attribute of the reduced-token record with no ex-
clusions (the parameter list is empty). Similarly, the MatrixComparator is
directed to compare all tokens between Seg3 of a pair of references with no
stop words (again the parameter list is empty). Pairs of references with a
scoring matrix similarity of 0.78 or higher should be linked.

Table 1 shows both the POC and Scalable implementations of the Hybrid
Model produce the same results. From a performance perspective, the run-time
for the Scalable implementation is somewhat less than the POC. However, the
most important result is observed for the 670K and 700K samples. The POC
process failed with an “out of memory” error while trying to load the token
exclusion list for the frequency-based blocking, whereas the Scalable process
ran without problems.

Table 1: The POC and Scalable Implementations

26

3 Conclusion and Future Work

Prior research has shown the Hybrid Model to be an effective method for en-
tity resolution of unstandardized references, an important step toward fully
automating the data curation process. The research presented here shows
that this model has a scalable implementation. One direction for future work
is translating the Hybrid Model into originally implemented was suitable in
demonstrating the effectiveness for the distributed (HDFS) computing envi-
ronment. The basic premise of frequency-based blocking and stop words is
ideal for Map/Reduce (M/R) programming because both are fundamentally
“word count” problems.

The high-level schematic of a M/R implementation of the Hybrid Mode is
shown in Figure 2. In the top flow of Figure 2, the process starts as a simple
word count. The references are mapped to nodes that parse them into tokens
and emit Token-RefID key-value pairs. These are reduced into token (key)
groups. If the size of the group (N) is greater than both the blocking frequency
threshold (β) or the stop word frequency (σ), the group is ignored. If the
N is greater than β the pairs of the group are reversed and written to File1.
Similarly, if N is greater than σ the pairs are reversed and written File2.

Figure 2: Schematic of Map/Reduce Implementation of Hybrid Model

In the middle flow of Figure 2, File 2 is sorted by RefID and in a reduce
process, the reduced-token version of the input is rebuilt using only non-stop
words. In the bottom flow of Figure 2, an iterative transitive closure process
[18, 9] creates the blocks of references sharing one or more of the blocking
tokens. The final step is a join between the two flows to create key-value pairs
where the key is the block identifier (BlkID) and the value is reduced-token
reference including the RefID. The final processing step is to map the block

27

groups to nodes running OYSTER. The OYSTER run script for processing
each block can also be simplified as shown here as Example 4 without indexing
because the references are already blocked. The link outputs of OYSTER can
simply be merged in a final reduce step to produce the final clusters for the
original input.
<I d e n t i t y R u l e s >

<Rule I d e n t="R1">
<Term Item="TokenSt r ing " S i m i l a r i t y="Matr ixComparator (0 . 7 8 , ' ')" />

</Rule>
</ I d e n t i t y R u l e s >

References

[1] Awaad Al-Sarkhi and John R Talburt. Estimating the parameters for linking
unstandardized references with the matrix comparator. Journal of Information
Technology Management, 10(4):12–26, 2018.

[2] Awaad Alsarkhi and John R Talburt. An analysis of the effect of stop words
on the performance of the matrix comparator for entity resolution. Journal of
Computing Sciences in Colleges, 34(7):64–71, 2019.

[3] Awaad Alsarkhi and John R Talburt. Optimizing inverted index blocking for the
matrix comparator in linking unstandardized references. In Proceedings of the
International Conference on Scientific Computing (CSC), pages 10–16, 2019.

[4] Éloi Bossé and Galina L Rogova. Information Quality in Information Fusion
and Decision Making. Springer, 2019.

[5] Ursin Brunner and Kurt Stockinger. Entity matching on unstructured data: an
active learning approach. In 2019 6th Swiss Conference on Data Science (SDS),
pages 97–102. IEEE, 2019.

[6] Peter Christen. Data matching: concepts and techniques for record linkage, entity
resolution, and duplicate detection. Springer Science & Business Media, 2012.

[7] Center for Advanced Research in Entity Resolution and Information Quality.
Oyster open source project. https://bitbucket.org/oysterer/oyster/ Ac-
cessed 2019.

[8] Anna Jurek-Loughrey and P Deepak. Semi-supervised and unsupervised ap-
proaches to record pairs classification in multi-source data linkage. Linking and
Mining Heterogeneous and Multi-view Data, page 55, 2018.

[9] Lars Kolb, Ziad Sehili, and Erhard Rahm. Iterative computation of connected
graph components with MapReduce. Datenbank-Spektrum, 14(2):107–117, 2014.

[10] Xinming Li, John R Talburt, Ting Li, and Xiangwen Liu. Scoring matrix com-
bined with machine learning for heterogeneously structured entity resolution.
Journal of Computing Sciences in Colleges, 34(7):38–45, 2019.

28

[11] Doaa Medhat, Ahmed Hassan, and Cherif Salama. A hybrid cross-language
name matching technique using novel modified levenshtein distance. In 2015
Tenth International Conference on Computer Engineering & Systems (ICCES),
pages 204–209. IEEE, 2015.

[12] George V Moustakides and Vassilios S Verykios. Optimal stopping: A record-
linkage approach. Journal of Data and Information Quality (JDIQ), 1(2):1–34,
2009.

[13] Kevin O’Hare, Anna Jurek-Loughrey, and Cassio de Campos. An unsupervised
blocking technique for more efficient record linkage. Data & Knowledge Engi-
neering, 122:181–195, 2019.

[14] John R Talburt. Entity resolution and information quality. Elsevier, 2011.

[15] John R Talburt and Yinle Zhou. A practical guide to entity resolution with
OYSTER. In Handbook of Data Quality, pages 235–270. Springer, 2013.

[16] John R Talburt and Yinle Zhou. Entity information life cycle for big data:
Master data management and information integration. Morgan Kaufmann, 2015.

[17] Na Wang, Pengyuan Wang, and Baowei Zhang. An improved TF-IDF weights
function based on information theory. In 2010 International Conference on Com-
puter and Communication Technologies in Agriculture Engineering, volume 3,
pages 439–441. IEEE, 2010.

[18] Bingyi Zhong and John Talburt. Using iterative computation of connected graph
components for post-entity resolution transitive closure. In 2018 International
Conference on Computational Science and Computational Intelligence (CSCI),
pages 164–168. IEEE, 2018.

[19] Y Zhou and JR Talburt. OYSTER: An open source entity resolution system
supporting identity information management. In ID360-The Global Forum on
Identity, Austin, volume 90, 2012.

29

Exploration of Factors Contributing to
Academic Success in a Data Analytics

Program∗

Matt Brown
College of Business

Arkansas Tech University
Russellville, AR 72801

hbrown11@atu.edu

Abstract

This paper examines potential indicators of student risk for failure to
complete a degree in data analytics. Records from 207 students from 2012
to 2019 were used in the study. Factors considered in the study include,
ACT exam composite score, high school grade point average, transfer
students, grade earned in a first mathematics course, grade earned in
a first data analytics course, first generation students, and income level
as classified by Pell Grant eligibility. Of these factors, only four factors
were found to be significant, ACT composite score, grade earned in a first
mathematics course, grade earned in a first data analytics course, and
income level. Further, data indicate that performance in a first college
mathematics course is the strongest indicator of a student’s likelihood to
succeed in a data analytics degree. Students in this study earning a C
or lower in a first course in mathematics had less than a 40% change of
completing a data analytics degree.

1 Introduction

Data analytics, data science, and related degrees are relatively new fields of
growing importance. Degree offerings in these fields are on the rise in uni-
versities [7]. At the same time universities and academic programs are facing

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

30

increasing pressures to improve student retention and academic success [12].
However, because the newness of data analytics related degrees, little research
has specifically focused on retention in these fields. Toward that goal, this re-
search seeks to gain insight on risk factors in the completion of a data analytics
degree. In particular, records from 207 students majoring in a data analytics
for at least one semester from 2012 to 2019 were analyzed for factors that may
lead to students failing to complete a business data analytics major.

Predicting student risk for failure to succeed early in academic careers pro-
vides a chance for intervention, such as tutoring or other retention programs.
Therefore, student risk of failure needs to be predicted from data typically
available in an academic environment. This research attempts to determine
factors contributing to academic success in a business data analytics program
using data readily available to university personnel.

2 Background

Data analytics, data science, business intelligence, big data, and other related
fields have become essential in business and academic communities [9]. As
a result, the demand for data analytics as a field of study and the number of
universities offering these degrees are steadily increasing [7]. Data analytics and
related programs are multidisciplinary and can be housed in computer science,
business, mathematics, or statistics departments [10]. While research regarding
student success in each of these larger general fields of study has been done,
factors related to student success specifically in the newer data analytics related
majors have not been as well studied. This research specifically considers
factors impacting student success in a business data analytics major.

Conclusions from related studies in the larger fields that relate to data ana-
lytics, computing, business, and mathematics are briefly summarized. Factors
in computer science and related majors that were shown to impact success
include negative student perceptions concerning the major, students feeling in-
adequately prepared curriculum, poor advising, poor math and problem solving
skills, poorly designed courses, teaching practices, and poor performance in a
first course in computing [2, 3, 4]. In the fields of mathematics and statistics,
similar factors with the addition of high school performance, were shown to be
factors impacting performance [14]. Further, in mathematics, factors that were
traditionally thought to be good indicators of student success, such as general
numeracy tests, were not always found to be good predictors of student success
[8]. In the field of business, grades earned in a principles of economics courses,
student sense of purpose, teaching quality and support, academic self- efficacy
and social integration were shown to be significantly impact student success
[11, 13].

31

The importance of student retention is the motivation for discovering factors
that impact student success. Early identification of students at risk can lead
to interventions to try and improve retention [6]. Therefore, the goal of this
study is to identify factors that can be used from readily available data for early
identification of students at risk for not completing a business data analytics
degree.

3 Details of the Study

The university considered in this study is a SREB 3, four-year state institu-
tion. The university has an annual enrollment of approximately 12,000 stu-
dents. The data analytics degree is a four-year Bachelor of Science in Busi-
ness Administration with a major in Business Data Analytics (BDA) from
an AACSB-accredited undergraduate business program. The data analytics
program includes courses in statistics, databases, predictive modeling, busi-
ness intelligence, and application development. The data analytics major is an
applied data science program, emphasizing tools such as spreadsheets, SQL,
Python, R, SAS, Hadoop, and other analytics, big data, data mining, and data
science technologies. Current enrollment in the BDA program is approximately
80 students. The study considers 206 BDA students from 2012 to 2019.

Three different dependent variables were used to quantify student success,
Grade Point Average (GPA) for students enrolled in the BDA program, hours
completed toward a BDA degree, and successful completion of a BDA degree.
The potential independent variables considered include, high school grade point
average, a variable indicating if the student transferred from a different insti-
tution, grade earned in their first mathematics class taken at this institution,
grade earned in their first data analytics course taken at this institution, a
variable indicating if the student is a first generation student, student income
level as classified by Pell grant eligibility (not low income, low income, low-
est income, see [1] for more details), and composite score on the ACT college
entrance examination. The first college mathematics course varied based on
student preparedness, for 39% of students it was college algebra, for 32% of
students it was quantitative business analysis, for 12% of students it was a
remedial mathematics course, for 8% of students it was calculus, the rest were
miscellaneous mathematics courses. The first course in data analytics for 95%
of the students was a course entitled, “Business Problem Solving”. The number
of students used for each model varied because of missing observations. Also,
only students who have either completed the BDA degree or were no longer
enrolled in the BDA program (without successful completion) were considered
when looking at successful completion of a BDA degree. For earned hours, only
students that did not successfully complete the BDA major were used to de-

32

termine what factors might impact how far into the program they progressed.
Students currently still working toward the BDA degree were left out of the
study, since their success is yet to be determined.

4 Results

4.1 Factors that Predict GPA

Next, earned hours for students enrolled in the BDA program that did not com-
plete the degree, was used as a dependent variable. Specifically, 120 hours are
required for the BDA degree, students who did not earn the 120 hours required
and were no longer enrolled in the BDA program were considered. The po-
tential independent variables considered again include, high school grade point
average, indicator of transfer student status, grade earned in first mathematics
course, grade earned in first business data analytics course, indicator of first
generation student status, income level, and ACT composite score. Multiple
regression with stepwise variable selection was again used to determine which
factors were most related to earned hours of unsuccessful BDA students. Only
two variables were selected as significant: first mathematics course grade and
ACT composite score. Together these factors had an R-squared of 0.40. The
single best predictor was again first earned grade in a mathematics course, with
a partial R-squared value of 0.29. Among students that did not complete the
BDA degree, as grades in the first mathematics course increased and scores on
the ACT increased the earned hours toward a BDA degree increased.

4.2 Factors that Predict Student Success in Competition a BDA
Degree

Finally, student success in completing a BDA degree was used as a dependent
variable. Only students who have either completed the BDA degree or were
no longer enrolled in the BDA program (without successful completion) were
considered when looking at successful completion of a BDA degree. Again, the
potential independent variables considered include, high school grade point
average, indicator of transfer student status, grade earned in first mathematics
course, grade earned in first business data analytics course, indicator of first
generation student status, income level, and ACT composite score. Only first
mathematics course grade was found to be a significant predictor of student
success in completion of a BDA degree. From the estimated odds ratio, for
every one letter grade increase in a first mathematics course students were 3.5
times more likely to complete a BDA degree. Further, as can be seen in Figure
1, a grade of a C or lower in a first mathematics course increases the probability
of failure to complete a BDA degree to more than 0.6.

33

Figure 1: Logistic regression model: probability of failure to complete a BDA
degree versus grade earned in a first mathematics course (with 95% confidence
limits)

5 Discussion

Of the variables considered in this study, factors that impact success of business
data analytics students were identified as grade earned in a first course in
mathematics, grade earned in a first data analytics course, income level as
identified by Pell grant status, and composite ACT score. Of these factors,
grade earned in a first mathematics course was the only factor found to be
significant in predicting all three measures of success. Performance in a first
mathematics course was also found to be the most significant of these factors in
all three models. In particular, students earning a C or lower in a first course
in mathematics have less than a 40% change of completing a data analytics
degree.

Due to the quantitative nature of data analytics, the importance of perfor-
mance in a first course in mathematics in predicting success in a BDA program
should come as no surprise. Further, university mathematics courses have long
been identified as a “gatekeeper” courses for overall student success [5]. How-
ever, the degree to which performance in a first mathematics course predicts

34

success, in particular in comparison to other factors typically tied to student
success, identifies it as a simple, but potentially good indicator of student risk
to complete a BDA degree. Since the majority of students take their first
mathematics course early in their academic careers, intervention to improve
retention based on this factor should be possible.

This study is not exhaustive in terms of which factors were considered
as predictors or in terms of a representation of all data analytics and data
science programs. The extent to which these results can be generalized to
other universities would need to be tested with more research. However, despite
these limitations, this research provides evidence of the efficacy of the readily
available student grades in a first course in mathematics as a predictor of
success in a data analytics program.

References

[1] Federal student aid. https://studentaid.ed.gov/sa/fafsa/ Accessed
December 11 2019.

[2] Theresa Beaubouef and John Mason. Why the high attrition rate for com-
puter science students: some thoughts and observations. ACM SIGCSE
Bulletin, 37(2):103–106, 2005.

[3] Maureen Biggers, Anne Brauer, and Tuba Yilmaz. Student perceptions
of computer science: a retention study comparing graduating seniors with
CS leavers. ACM SIGCSE Bulletin, 40(1):402–406, 2008.

[4] Matt Brown. CS0 as an indicator of student risk for failure to complete a
degree in computing. Journal of Computing Sciences in Colleges, 28(5):9–
16, 2013.

[5] Anthony S Bryk and Uri Treisman. Make math a gateway, not a gate-
keeper. Chronicle of Higher Education, 56(32):B19–B20, 2010.

[6] AT Chamillard. Using student performance predictions in a computer
science curriculum. ACM SIGCSE Bulletin, 38(3):260–264, 2006.

[7] Penny R Clayton and Jeremy Clopton. Business curriculum redesign:
Integrating data analytics. Journal of Education for Business, 94(1):57–
63, 2019.

[8] Alistair J Harvey. The merits of a general numeracy test as a predictor of
undergraduate statistics performance. Psychology Learning & Teaching,
8(2):16–22, 2009.

35

[9] Ismail Bile Hassan and Jigang Liu. Data science academic programs in
the US. Journal of Computing Sciences in Colleges, 34(7):56–63, 2019.

[10] Jessen Havill. Embracing the liberal arts in an interdisciplinary data ana-
lytics program. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pages 9–14, 2019.

[11] Rupert G Rhodd, Sandra M Schrouder, and Marcus T Allen. Does the
performance on principles of economics courses affect the overall academic
success of undergraduate business majors? International Review of Eco-
nomics Education, 8(1):48–63, 2009.

[12] Amy Rummel, Maeghen L. MacDonald, and Justin Cornelius. Drivers of
student retention: The need for service marketing. In Allied Academies In-
ternational Conference: Proceedings of the Academy of Marketing Studies
(AMS), volume 16, 2011.

[13] Lesley Willcoxson. Why do business students drop out? evidence from
first, second, and third year students. In Proceedings of the 23rd Australian
and New Zealand Academy of Management Conference, pages 1–19. Aus-
tralian and New Zealand Academy of Management (ANZAM), 2009.

[14] Darwish Abdulrahman Yousef. Determinants of the academic performance
of undergraduate students in statistics bachelor’s degree program. Quality
Assurance in Education, 2019.

36

A Programming Workshop Course to
Complement CS 1/2∗

Christopher A. Healy
Department of Computer Science

Furman University
Greenville, SC 29613
chris.healy@furman.edu

Abstract

This paper describes the implementation of a new laboratory-only
course called the Programming Workshop. Its purpose is to reinforce the
problem-solving skills learned in early programming courses such as CS 1.
Without the burden of lectures, exams, homework, and grades, students
take this class simply because they are motivated to learn. Because each
student’s needs are different, the course is self-directed. On the first day,
students individually confer with the instructor about their goals, and
the instructor draws up a suggested plan of activities. Students create a
portfolio of their work. Of the twenty students who have completed this
course in the last two years, the average student finished 19 programs,
likely more than they would have accomplished in a full-credit course.

1 Introduction

Like many colleges, ours offers the canonical courses CS 0, CS 1, and CS 2 [6]
at the beginning of the computer science curriculum. However, our experience
has shown that many students do not take these courses in consecutive terms,
and sometimes not even in consecutive years. Foundational programming skills
learned in CS 1 may be stale by the time the student enters CS 2. A student
may earn a mediocre grade in CS 1 and be apprehensive to continue in CS
2. Computer science majors in the bachelor-of-arts track sometimes wait until

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

37

their senior year to take CS 2, which could be their last programming course.
In addition, non-majors often do not have room in their schedule to take an-
other computing course after CS 1. Finally, since we teach Python in CS 1 and
Java in CS 2, some students desire additional experience in one of these lan-
guages. These considerations motivated our department to offer a new course,
Programming Workshop, as a means to complement the CS 0-1-2 sequence.

The Programming Workshop is a zero-credit laboratory course where stu-
dents can hone their programming skill, to become more proficient and confi-
dent in their abilities. It is analogous to a student taking a foreign language
spending several hours per week in a language laboratory to practice listening
and speaking. It is also analogous to a student learning a musical instrument
who must spend hours a week in practice. The philosophy of the Programming
Workshop is to provide students an environment where they can intensively
practice programming, and not be burdened with lectures, exams, and grades.
In order to learn, it is often necessary to experience many mistakes along the
way. Our goal is for the class to be an uninhibited environment where students
can feel free to learn from mistakes and know that their grade is not being
harmed by them.

2 Related Work

The Programming Workshop can be compared to other alternatives to tradi-
tional instruction. For example, Hodges [4] discusses a weekly flipped classroom
exercise, where students come to class ready to practice problem solving hav-
ing just watched a video lesson. Our workshop does not have its own formal
lessons because it is a review course, rather than an introduction to program-
ming. Conner and Lambert [2] use Git as a tool to help students ultimately
create a portfolio of programming work. We stress portfolios as well, but we
do not insist on a formal structure such as Git. Vanderhyde [8] discusses how
scaffolding a large assignment into manageable chunks allows students to ac-
complish each in a short period of time. Jonas [5] discusses how programming
students use class time to work in groups and discover solutions to problems
posed in class. The main difference with our workshop is that most of our
students work individually.

Online platforms such as Turing’s Craft [3] provide students with hundreds
of exercises that can be done outside of class with immediate feedback. These
problems are usually very short and are generally used during CS 1 because
the exercises are synchronized with the textbook. In our workshop, we aim to
give problems that take on the order of an hour to complete. Finally, some
colleges offer a specialized laboratory course to prepare students for program-
ming contests, for example [7]. We do not advertise our workshop as a contest

38

prep course, though some students could conceivably use it for that purpose.

3 Course Features

The pre-requisite of the Programming Workshop is CS 1, because the purpose
of the course is not to teach programming from scratch. Instead, students
should take this course to review CS 1, or to apply their CS 1 experience to a
new language. Students may repeat the course an unlimited number of times.
The course capacity is 12, to ensure that students receive individual attention
as needed from the instructor.

The course is scheduled differently from our other programming classes. A
typical course in our department is taught three times per week for 50 minutes,
plus a two-hour lab period once a week. Since the workshop is designed to com-
plement the existing curriculum, we scheduled it during a mid-day Tuesday-
Thursday time period when no other computer science course is offered, in
order to encourage as many people as possible to register. The class period is
75 minutes long, which is closer in duration to the two-hour lab period that
students are already accustomed to in other classes.

As befitting a course that does not carry credit, the workshop has no lec-
tures, no homework, no tests, and no grades. The grading is pass/fail. There-
fore, students come to this course by their motivation to learn, rather than
to receive a grade or improve their grade point average. Similarly, we sought
to remove the worry of possibly receiving a low grade when taking an extra
programming course. We could have created this as a one-credit course, but
we decided not to for a couple of reasons. First, we did not want students to
take the workshop in place of another course. Second, the college’s committee
that approves new courses informed us that a one-credit course would need
to be graded A-F. A further advantage to making the workshop a zero-credit
course is that students can easily add it to their schedule without incurring any
additional tuition fees. And the time commitment is minimal, just attending
the class three hours per week.

The Programming Workshop is an elective course, not applicable towards
the major. Although the instructor receives no teaching credit for offering the
course, it should be noted that preparing the course requires much less effort
than a typical course, as there are no lectures and practically nothing to grade.

4 Course Procedure

The course begins with a short in-class writing exercise. On the first day,
students describe their personal course goals. The instructor confers personally
with each student to clarify these goals and give direction on how to proceed.

39

The student decides on a language, and specifies which skills to strengthen. If
the student is undecided, then the instructor recommends a pre-defined battery
of laboratory exercises that begins with the basics and gradually increases in
difficulty.

At each class meeting, the instructor is in the room, always available to
discuss ideas, to answer questions, and to assist in testing programs. In order
to successfully complete the course, students must attend at least 75% of the
class meetings, demonstrate appreciable progress toward their goals outlined
at the beginning of the term, and compile an organized portfolio of their work.
On the last day of the course, students briefly showcase their favorite work,
and they submit their portfolio to the instructor for review. The portfolio
must include a table of contents indicating what work has been completed in
the term, and what work the student did not finish.

5 Course Content

The author wrote a set of 59 laboratory exercises to support this course, a
large enough assortment from which the students can choose. Each problem is
designed to be completed within one or two 75-minute class periods. Example
exercises include:

• Count how many times each letter of the alphabet appears in a text file.
• Compute the standard deviation of numbers listed in a text file.
• Input an integer and convert it into Roman numerals.
• Input an integer and determine its prime factorization, and whether it is
abundant, deficient, or perfect.

• Given a selection of nine letters, find the longest word(s) in the dictionary
that can be formed using letters from this selection.

• Score a bowling game.
• Write and use comparator classes to sort a list of basketball players.

Students are not expected to complete all of these exercises in one semester,
as they cover a wide range of difficulty.

The students are given a recommended order in which to attempt the 59
exercises. The content of these exercises is similar to all of CS 1 plus most of
CS 2. This recommended order of exercises differs from how programming is
introduced in CS 1. It begins with a thorough treatment of input and output.
The first exercise covers input, including interactive (stdin) input, file input,
tokenizing strings, and exceptions that could occur while reading input. As
one can see, these concepts are generally taught at different points during a
CS 1 course. In CS 1, interactive input is taught very early, and exception
handling much later. But for a review course, we felt it was important to think

40

of input holistically. Similarly, the output lab also covers multiple topics such
as formatted output and file output. Once students have completed these first
two exercises, they should be able to handle the I/O requirements of all of the
remaining exercises.

Beyond the provided exercises, advanced students are encouraged to seek
additional exercises from outside sources. One type of source is a book de-
signed to prepare students for technical programming interviews [1]. For some
students, past programming contest questions are another possible source of
problems to work on.

6 Results

The Programming Workshop was offered in 2017 and 2018. A total of 22
students enrolled. This enrollment figure was lower than we anticipated. A year
before the course was first offered, we administered a survey to all computer
science students. Of 53 students who completed the survey, 40 (75%) said that
they were willing to take the course. When we later asked students why they
did not take the course, the main objection was that it was not worth investing
three hours a week to receive no credit, even though the course would appear
on their transcript.

Of the 22 students who have taken the workshop, six were not computer
science majors (four mathematics majors and two art majors). Figure 1 shows
the number of students by each year of college. Evidently, most students take
the workshop rather late in their careers, when their minds are turning to jobs
and preparing for technical interviews or graduate school. Anecdotally, several
students told us they took their required programming courses early in their
college career, and now they want to refresh these skills to prepare for job inter-
views or advanced courses that require programming. Among the 22 students,
16 (73%) had already taken CS 2, even though the pre-requisite is only CS 1.
Figure 2 shows the number of students who selected each language. Python
and Java are the only languages formally taught in our regular curriculum.
Clearly, most students were using the workshop to review a language taught
in CS 1 or 2. It is interesting to note that six students selected a different
language to further diversify their repertoire.

Twenty of the 22 students successfully completed the course. The other
two students (a sophomore art student and a freshman CS student) withdrew
during the first few weeks of the term. We were pleased with the size of the
portfolios created by the students who finished the term. The average student
completed 19 programming exercises. It should be noted that a typical CS
1 or 2 course may require a student to complete fewer than ten programs.
Almost every student worked independently, since they worked on different

41

Figure 1: Number of workshop students by year in school.

Figure 2: Number of workshop students by language selected by each.

42

problems or progressed at different speeds. Only once was it observed that
a pair of students worked problems in tandem during the course, where they
often compared approaches.

7 Conclusion

The Programming Workshop is a new zero-credit course designed for students
to review programming skills or learn a new programming language. It is self-
directed to meet the various needs of the students. It serves as a complement
to the traditional CS 0-1-2 sequence, and can be taken before, during, or after
CS 2. Students create their own course objectives, and they compile a portfolio
of their successful work. This course has been offered for two years. For the
students who were able to fit it in their course schedule, all showed significant
growth on par with taking a full-credit course.

References

[1] Adnan Aziz, Amit Prakash, and Tsung-Hsien Lee. Elements of Program-
ming Interviews. CreateSpace Independent Publishing, 2012.

[2] David Conner and Lynn Lambert. Integrating git into CS1/2. Journal of
Computing Sciences in Colleges, 35(3):112–121, 2019.

[3] Turing’s Craft. http://turingscraft.com.

[4] Mark Hodges. Flipping one day each week in a smaller CS1 course: An
experience report. Journal of Computing Sciences in Colleges, 34(7):20–27,
2019.

[5] Michael Jonas. Lessons learned from integrating POGIL into a CS1 course.
Journal of Computing Sciences in Colleges, 34(6), 2019.

[6] Joint Task Force on Computing Curricula 2013. Curriculum guidelines
for undergraduate programs in computer science. https://www.acm.org/
binaries/content/assets/education/cs2013_web_final.pdf.

[7] Stanford University Computer Science. CS 97SI: Introduction to program-
ming contests. https://web.stanford.edu/class/cs97si.

[8] James Vanderhyde. Scaffolding assignments: How much is enough? Journal
of Computing Sciences in Colleges, 34(3), 2019.

43

Why Teach Operating Systems?∗

James W. McGuffee
School of Sciences

Christian Brothers University
Memphis, TN 38104

jmcguff1@cbu.edu

Abstract

In the past four decades, there has been much written on how to
teach operating systems courses. This paper reviews and reflects on that
history. Additionally, this paper attempts to answer why we should be
teaching operating systems. The answer to why we should be teach-
ing operating systems should necessarily inform us on how we should
be teaching operating systems. This is a professional position and ad-
vocacy paper within the context of computer science education at the
undergraduate level.

1 Motivation and Scope

On Thursday, February 28, 2019, as part of ACM SIGCSE’s Technical Sympo-
sium, I attended a Birds of a Feather session on “Developing a Contemporary
and Innovative Operating Systems Course”. This session was led by Saverio
Perugini and was related to his work as a primary investigator of an NSF IUSE
funded project to support the development and widespread dissemination of a
contemporary operating systems course as part of an undergraduate computer
science curriculum [12]. Specifically, the Perugini led project is attempting to
develop a model operating systems curriculum that includes modules that cover
cybersecurity, mobile operating systems, the Internet of Things (IoT), concur-
rent programming, synchronization, cloud computing, and big data processing
[10]. The Birds of a Feather session was a chance for ACM SIGCSE members
interested in the teaching of operatings systems at the undergraduate level to

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

44

brainstorm and discuss what should be considered as essential components of a
modern operating systems course. One of the outcomes of this session was the
creation of a “Teaching Operating Systems Community of Practice” working
group that I enthusiastically joined [11].

As a result of joining this community of practice, I have been reviewing
professional articles and other sources related to the teaching of operating
systems. It has been fascinating to discover the rich history of what has been
proposed as essential to teach in an operating systems course. I have also
learned the various ways of how the operating systems course has been taught.
One interesting omission from all this work is a discussion of why we teach
operating systems.

My assumption is that most will feel that the answer to why we teach
operating systems is obvious. That the question itself is trivial and unnecessary.
I think both of those positions are short sighted. Before we can answer what
we should teach or how we should teach, we really need to answer why should
we teach this material. After a summary of the history of operating systems
education publications over the past 40+ years, I will attempt to give some
insight into and begin to answer the question of why we should be teaching
operating systems in higher education at the undergraduate level.

2 The History of How

In the opening section of a booklet intended as commentary on the sixth edition
of the UNIX operating system source code, J. Lions describes three main ap-
proaches to the teaching of operating systems [7]. The first approach described
is the general principles approach where fundamental principles are expounded
and illustrated by references to various modern operating systems. Lions ar-
gues that undergraduate students lack the maturity to take full advantage of
this approach. The second approach described is the building block approach
that has students build a simple operating system from scratch. Lions dis-
misses this approach by deriding the systems as toy operating systems lacking
in complexity to be of any practical use,

The third approach to teaching operating systems as described by J. Lions
is the case study approach. The case study approach advocates devoting most
of the course to the study of one operating system. This approach was first
advocated in the 1968 ACM curriculum guidelines. Lions argues that this is
the best approach but was unrealistic for most schools in 1968 but, by 1976,
things had changed and UNIX was then an ideal operating system for the case
study approach to teaching operating systems at the undergraduate level [7].

In 1978, Joel Gyllenskog described two different ways to teach an operat-
ing systems class. In the classical principles class, students are introduced to

45

concepts of operating systems without actually having to work on an actual
computer system. The topics covered in a principles class included: multipro-
gramming, critical sections, deadlocks, storage management policies, memory
mapping, file directories, handling interrupts, real time clock, memory protec-
tion, privileged instructions, communication with I/O devices, and re-entrant
code [3].

The other approach to teaching operating systems as described by Gyllen-
skog is known as the pragmatic approach. In the pragmatic approach the same
general topics are generally covered as in the principles class but the topics are
taught within the context of designing and constructing an operating system.
While acknowledging that the scope of the topics within a pragmatic frame-
work would be limited, Gyllenskog defined four necessary components that were
necessary implementations. The operating system must be multiprogrammed,
provide virtual I/O, include a consistent file structure, and protect each pro-
gram from all other programs [3].

In 1989, Su Yun-Lin described what had been learned from teaching oper-
ating systems from the previous decade. Yun-Lin described three ways to teach
operating systems. Though J. Lions work is not referenced directly, two of the
ways described are nearly identical to the first and third approaches referenced
by J. Lions. These two approaches are a general principles approach and a
case study of one system approach. It is Yun-Lin’s description of an histori-
cal development approach that is unique. This approach is to teach operating
systems by covering the historical development of the four generations of oper-
ating systems. While liking this approach, Yun-Lin cautions that history is not
always straightforward and that anomalous examples exist for each generation.
Ominously, Yun-Lin concludes the paper with a brief warning that new gen-
erations of computers are requiring even more sophisticated operating systems
and that an additional challenge to teachers of operating systems classes is the
need to consider the emerging influence of computer networks and distributed
systems [16].

Allen Downey describes yet another approach to teaching the operating sys-
tems class. Instead of implementing operating systems components or modify-
ing existing components of an existing operating system, students in Downey’s
class conducted a series of experiments that measured the performance of sys-
tem services and attempted to infer implementation information from the re-
sults. Downey also advocated that this approach to teaching operating systems
allowed students to develop skills in hypothesis testing, analyzing data, and
writing [2].

Some operating system educators advocate for the importance of using
one programming language over another when teaching the operating systems
class. Sattar et. al. advocated for the use of operating systems assignments

46

in Java. They stated that they gave students a set of Java programming
assignments that required simulation of the behavior of process management,
process synchronization, memory management, and storage management [13].
Robert Sheehan argued for the use of the dynamic programming language
Ruby to be used in operating systems courses. His primary stated reason for
using Ruby was the ease with which Ruby provides access to UNIX commands
and system calls. From reading his paper the actual reason seems to be that
Sheehan just really likes Ruby and wanted to include the Ruby programming
language in as many classes as possible [14].

Other operating system educators advocate for the importance of one op-
erating system platform over another when teaching the operating systems
course. In 2005, Nieh and Vaill argued that having students modify the kernel
was of utmost importance and thus argued for a Linux based system using
virtual platforms [8]. Just seven years later, Andrus and Nieh argued that the
computing landscape was shifting towards mobile devices and advocated for
kernel level experience using the Android operating system [1].

The Computer Science Curricula 2013: Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science is the most current undergrad-
uate computer science curricular recommendations from the ACM. Under the
section for operating systems, the guidelines recommend a minimum of four
core Tier1 hours in operating systems overview and principles. The guidelines
also recommend eleven core Tier2 hours in the areas of concurrency, schedul-
ing dispatch, memory management, and security protection. The guidelines
also describe six elective areas that include virtual machines, device manage-
ment, file systems, real time embedded systems, fault tolerance, and system
performance evaluation. The guidelines also make a strong point that the
knowledge area of operating systems is structured to be complementary to
four other knowledge areas. These areas are systems fundamentals, informa-
tion assurance security, networking communication, and parallel distributed
computing. This acknowledgement of overlap mirrors the concerns raised by
Su Yun-Lin nearly a quarter of a century earlier and is consistent with the cur-
riculum guidelines recommending knowledge areas and not any specific course
[9].

Finally, I would like to conclude this abbreviated review of operating sys-
tems education history with a look at two papers that sought to examine the
teaching of the operating systems course from a distinctly pedagogical view-
point. In 2003, Hill et. al. wrote an extraordinary paper on the gamification
of various operating systems concepts. Their stated purpose was to reach stu-
dents that had different learning styles. They described two specific games for
the operating systems class: a modification of the popular Hasbro Battleship
game called BattleThreads and a process state transition game [5]. In 2014,

47

Webb and Taylor, described their work in creating a pre- and post-course con-
cept inventory that they used to explore students’ misconceptions of operating
concepts with an attempt to discover how various approaches to teaching the
operating systems class affected learning [15].

3 Reasons Why

I have organized my reasons on why we should be teaching operating systems
at the undergraduate level into three broad categories. These categories are
(1) for students to have a deep and clear understanding of the operations
of computers and computer systems, (2) expectations from future employers
regarding what a student should learn in a computer science degree program,
and (3) the sheer joy of learning something that is complex.

3.1 Computers Are Not Magic

For many students the operating systems class is the first time they are ex-
posed to the concept and reality of how hardware and software work together.
Engineering doesn’t just happen and the operating systems class is ideally sit-
uated to illustrate that point. For example, teaching students what happens
from the time the power is physically turned on until a user sees the graphical
user interface is often quite revelatory. Having students explore this concept in
depth helps them gain a deep and rich understanding of the material. As infor-
matics professor Juraj Hromkovic has pointed out “teaching computer science
is a chance to introduce engineering as a highly creative, constructive activity
to our educational system” [6].

The implications for how we teach based on this reason is that it may
not matter which specific system we teach but it would be important that
students have the ability to thoroughly investigate a system. The approach
of using an open source operating system that could be modified would seem
ideal. However, the approach of teaching by experimental design as advocated
by Downey would also seem to satisfy this justification for teaching operating
systems [2].

3.2 Workforce Expectations Of A Computer Science Graduate

The reality is that most of our computer science graduates will not be working
for a company that builds and designs operating systems. If our graduates
pursue careers in software development they will be coding applications that
run on an operating system. This is where knowledge gained from an oper-
ating systems class is critical. In order to optimize the performance of their

48

applications, it is critical that they have a robust understanding of the under-
lying systems upon which the applications will be running. How the operating
system will affect the execution of application software is critically important.
Software companies are also often concerned with their software being able to
run on multiple platforms. Students should be at the very least be able to write
and execute software on the following operating systems platforms: Android,
iOS, Linux, and Windows.

Being able to understand the limitations of software may be just as equally
important. The idea of understanding what algorithms cannot do is fully ex-
plored by David Harel in his book Computers Ltd. What They Really Can’t
Do [4]. I believe this idea can be extended more pragmatically to what is real-
istically possible given the constraints of an operating system. The implication
for how we teach based on this criteria is that we need to cover the major
operating systems that exist and give students hands on exposure to as many
different systems as possible. If this is not possible in the single operating
systems class, then an undergraduate degree program can seek to include this
learning outcome in other places throughout the curriculum.

3.3 Joy Of Learning

The last position that I wish to strongly advocate as a reason to why we
should teach operating systems is that learning about operating systems is a
lot of fun. As educators, I think that we sometimes get so busy with all the
work we need to do that we forget how incredibly joyous it is to learn about
systems and develop a deep understanding of a complex subject. We can all too
easily overlook the thrill of programming an operating system for the very first
time. It’s been more than 30 years, but I still remember making source code
corrections to Andrew Tannenbaum’s MINIX system and being able to test
and observe how the operating system actually changed on an IBM PC clone.
It was that spark of joy that kept me going to actually learn and continue to
learn about computer operating systems.

My big advice for operating systems teachers is to be enthusiastic. It can
be very daunting for students encountering this material for the first time.
It can be very challenging for our students to understand the importance of
all they are learning until after the class is over. If somehow we can convince
our students the importance of the material via our enthusiasm, I think we will
have taken a very important step in helping our students become the computer
scientists they wish to be.

49

References

[1] Jeremy Andrus and Jason Nieh. Teaching operating systems using An-
droid. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE ’12, pages 613–618, New York, NY, USA,
2012. ACM.

[2] Allen B. Downey. Teaching experimental design in an operating systems
class. In Proceedings of the 30th ACM Technical Symposium on Computer
Science Education, SIGCSE ’99, pages 316–320, New York, NY, USA, 199.
ACM.

[3] Joel Gyllenskog. Teaching operating systems design. SIGCSE Bulletin,
10(2):44–46, 1978.

[4] David Harel. Computers Ltd. What They Really Can’t Do. Oxford Uni-
versity Press, New York, NY, USA, 2000.

[5] John M. D. Hill, Clark K. Ray, Jean R. S. Blair, and Curtis A. Carver Jr.
Puzzles and games: Addressing different learning styles in teaching oper-
ating systems concepts. In Proceedings of the 34th ACM Technical Sympo-
sium on Computer Science Education, SIGCSE ’03, pages 182–186, New
York, NY, USA, 2003. ACM.

[6] Juraj Hromkovic. Homo informaticus - why computer science fundamen-
tals are an unavoidable part of human culture and how to teach them.
Olympiads in Informatics, 10:99–109, 2016.

[7] J. Lions. A Commentary on the Sixth Edition UNIX Operating System.
self published, 1977.

[8] Jason Nieh and Chris Vaill. Experiences teaching operating systems using
virtual platforms and Linux. In Proceedings of the 36th ACM Technical
Symposium on Computer Science Education, SIGCSE ’05, pages 520–524,
New York, NY, USA, 2005. ACM.

[9] Joint Task Force on Computing Curricula: Association for Computing
Machinery (ACM) and IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. ACM, New York, NY, USA, 2013.

[10] Saverio Perugini. Developing a contemporary operating systems course.
https://sites.google.com/a/udayton.edu/operatingsystems/.

50

[11] Saverio Perugini. Teaching operating systems community of prac-
tice. https://saverioperugini.github.io/Teaching-Operating-
Systems-Community-of-Practice/.

[12] Saverio Perugini and David J. Wright. Developing a contemporary operat-
ing systems course. Journal of Computing Sciences in Colleges, 34(1):155–
156, 2018.

[13] Abdul Sattar, Lee Mondshein, and Torben Lorenzen. An operating sys-
tems course with projects in Java. ACM Inroads, 1(2):24–26, 2010.

[14] Robert J. Sheehan. Teaching operating systems with Ruby. In Proceedings
of the 12th ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’07, pages 38–42, New York, NY, USA, 2007.
ACM.

[15] Kevin C. Webb and Cynthia Taylor. Developing a pre- and post-course
concept inventory to gauge operating systems learning. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 103–108, New York, NY, USA, 2014. ACM.

[16] Su Yun-Lin. On teaching operating systems. SIGCSE Bulletin, 21(3):11–
14, 1989.

51

Adding a Syntax Macro Facility to iGen∗

Larry Morell1 and Xin Wan2

1Computer and Information Science
Arkansas Tech University
Russellville, AR 72801

lmorell@atu.edu
2Microsoft Corporation
Redmond, WA 98052
wan.xin@microsoft.com

Abstract

iGen is a system for specifying and building programming language
interpreters. iGen has been enhanced to include a macro facility that en-
ables the underlying grammar to be extended by the programmer when
the new construct can be defined in terms of existing constructs. We
call this a syntax macro facility because the macros are defined via new
grammar rules, which are implemented by the iGen parser. Each macro
declares a new syntax rule and gives its meaning in terms of code in the
programming language. iGen implements macro definitions by extend-
ing the parser to recognize the new construct. When an iGen parser
encounters the new syntax it transforms the parse tree of new construct
into a tree that corresponds to the semantics given in the macro.

1 Introduction

iGen is a system for implementing programming language interpreters. The
principal goal of iGen is to redesign the structure of interpreters to ease the
effort needed to extend a programming language. In a traditional implemen-
tation of an interpreter adding rules to the programming language requires
changing code in several modules, including the scanner, parser and evaluator.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

52

In contrast, an iGen interpreter stores all information related to each grammar
rule in a corresponding class. This makes it easier to extend and contract the
language as needed in a manner consistent with recommendations by Parnas
[8]. For this reason iGen is described as being extensible [7].

An interpreter created with iGen begins by loading its grammar rules found
in each of the grammar rule classes. Adding new grammar rules therefore
requires defining one or more classes for the new rules and adding them to the
list of classes to be loaded. Extending the interpreter is therefore limited to
those who know the structure of iGen and its implementation language, Java.

A macro facility is described here that enables an iGen -implemented inter-
preter to be extended without having to know its internal structure. We call
these macros syntax macros to distinguish them from the macros found, for
instance, in the C preprocessor or in Lisp. After describing the background nec-
essary to understand iGen and the limitations of conventional macros, syntax
macros are defined and discussed. The paper concludes by noting limitations
and possible applications of syntax macros in university courses.

2 Overview of iGen

iGen assists with the construction of interpreters. iGen reads a specification of
the programming language and writes a collection of classes that implements
an interpreter for the language. The input file specifies a language’s syntax via
BNF rules and the semantics of each construct via Java code. Details of this
process are found in [7] and is summarized below.

Each grammar rule is translated into a Java class. That class includes four
elements: (a) the grammar rule, (b) the parser for parsing the grammar rule,
(c) a method for building an abstract syntax tree (AST) from the parsed right-
hand side of the grammar rule, and (d) a method for evaluating the AST. iGen
supplies a recursive-descent parser that the language implementer can use or
replace.

For example from the rule <exp> ::= <term> + <exp> iGen generates a
Java class called ExpAddOp:

public class ExpAddOp extends ELSEInstruction {
private static String rule = "<Exp> ::= <Term> <AddOp> <Exp>";
private static SyntaxRule syntaxRule =

new SyntaxRule(GRAMMAR, rule);
public static void initialize() {

GRAMMAR.addRule(syntaxRule,
new ExpAddOp(),new enericParser(syntaxRule.lhs()));

}
public ExpAddOp(){ }

53

public Instruction createInstruction(InstructionList rhs) {
// Code supplied in the input file

}
public Value eval(EnvironmentVal env) {

// Code supplied in the input file
}

}

All the grammar classes inherit from an Instruction class that corresponds
to the language being interpreted, in this case a small language called ELSE.
Note that the grammar rule is supplied by a string; addRule compiles the
supplied rule and inserts it along with the required parser into a trie that holds
the entire grammar and directs the recursive-descent parser. The parser creates
an instruction for each member of the right-hand side of a rule and passes the
completed instruction list to createInstruction, which, in this case, stores a
reference to it as il, the instruction list that stores the references to the children
of the AST rooted here. The code found in eval interprets the resulting AST,
using the environment env to look up values of variables. Every generated class
has a similar structure, simplifying the specification of these classes in the input
file. iGen builds the parser by calling initialize for each grammar rule of the
language. It then reads the input file and parses it using the parser supplied
for the start symbol of the grammar. The resulting AST is then interpreted
using the evaluation routine associated with the start symbol. Details can be
found in [7].

3 Textual Macros

Textual macros [1] have a long history of enabling text-to-text transformations.
A textual macro generally has two parts: a pattern to be matched and a
transformation to be performed on the matched text. For example, in the
C preprocessor the pattern to be matched in the macro define PROD(x,y)
x*y is PROD(x,y) and the transformation is x*y. Thus, when the processor
encounters SUM(a+b,c+d) it expands it to a+b*c+d.

Note two things in this example. First, the invocation of a C preprocessor
macro has a fixed syntax of MACRONAME(p1,p2,...); without this the pre-
processor cannot discover a macro invocation. Second, this macro, despite
appearances, does not produce code that multiplies x and y. The programmer
must insert parentheses to reflect that both x and y should be computed before
the multiplication. This is because the preprocessor knows only the syntax of
its own macro language and nothing of the syntax of the underlying language
(in this case C). Additionally, nothing prevents the user from writing macros
that generate nonsense, and that will not be discovered until parse time, at

54

which point the error message may be given in terms of the expanded text and
not the original macro.

In Lisp-like languages, a macro definition includes the name of the macro,
a parameter list, an optional documentation string, and a body of Lisp expres-
sions that defines the new form to be represented by the macro. It is invoked in
the same manner as every other Lisp function, namely with Cambridge prefix
notation ((function param ...)). Macro invocations therefore appear to be
native Lisp[4].

The following defines a macro that increments a value by 2:

(defmacro plusPlus2 (num) (setq num (+ num 2)))

The pattern is given by plusPlus2 (num) which is transformed into (setq num
(+ num 2))). When evaluating the expression (plusPlus2 x), the interpreter
identifies a macro expression by its first argument, returning the expansion of
the macro call as a new Lisp form (setq x (+ x 2))), which is then evaluated
in place of the original form.

It should be noted that requiring the macro to be expressed in Cambridge
notation means the that macro is not actually extending the syntax of the
language which continues to use Cambridge notation.

4 Syntax Macros in iGen

It seems useful to explore how macros can be used to extend the syntax of a
programming language. This paper calls such macros syntax macros following
earlier suggestions by both Cheatham [2] and Leavenworth [5], who formulated
macros that specify syntax-directed transformation on syntax trees, rather than
on phrases of text. This imbues the macros with knowledge of the syntax of the
programming language, which is a deficiency of textual macros. Their formu-
lations, however. required specialized syntax for the preprocessor to recognize
a macro invocation. This limitation is removed here.

The syntax macro scheme described here extends the syntax of a language
and the meaning of that syntax by code written in the language. iGen uses
the macro to modify the existing parser and evaluator. Thus, recognition of a
macro invocation is done by the iGen-generated parser as part of its normal
parsing action and evaluation of the resulting parse tree is accomplished by the
normal operation of the evaluator.

A macro definition in iGen has the following format:

#MACRO_RULE
// New grammar rule for the language
#MACRO_BODY
// The meaning of the grammar rule in existing language syntax

55

#MACRO_RESULT
// The result (if any) to be returned after executing the body
#MACRO_END

Macros are available from the point of their introduction to the end of
the program. The pattern for discovering a macro is given by the macro rule
which is used to enhance the parser. This, of course, requires the language
extender to know the syntax of the language, which is not unreasonable. The
transformation is given by the macro body and the macro result. The macro
processing ensures the code for the macro body is executed and, if present, the
code for the return result. This allows an iGen syntax macro to function like
a either a procedure or a function.

When iGen encounters a macro definition, it builds an instance of a class
called Macro that stores the components processed from the definition. The
grammar rule is stored as a string. The macro body and macro result code are
stored as syntax trees.

The following macro definition increments a variable and returns the incre-
mented result:

#MACRO_RULE
<Factor> ::= ++ <id>
#MACRO_BODY
<Statement>
$id1 := $id1 + 1
#MACRO_RESULT
<Factor>
$id1
#MACRO_END

When iGen encounters this macro definition it extracts the grammar rule, the
macro body and the macro result and passes them to a constructor for Macro.
The constructor adds the rule to the programming language’s grammar (via
GRAMMAR.addRule(...)), parses the macro body as a <Statement> and stores
the resulting syntax tree. It then parses the macro result using <Factor> as
the goal to produce produce another syntax tree. These are called skeleton
trees because they contain one or more placeholders in lieu of a fully developed
tree. In this example, $id1 acts as a placeholder in each tree, indicating where
a parsed <id> is to be placed when a ++ <id> is parsed. The elements of
the right-hand side of the grammar rule are numbered starting at 0, so $id1
references the second element of the right-hand side, namely <id>.

Portions of a macro that can be inferred may be omitted. For example, to
add a “halve” statement into the language so that halve n translates to n :=
n/2, the indication that the body is a single <Statement> can be omitted, as
well as the macro result, which defaults to the the result of a <Statement>:

56

MACRO_RULE
<Statement> ::= halve <id>
#MACRO_BODY
$id1 := $id1 / 2
#MACRO_END

Parameters to macros may be macro invocations. Given the macro

#MACRO_RULE
<Factor> ::= double <Expression>
#MACRO_BODY
<Expression>
2 * $Term1
#MACRO_END

the invocation x := double double 3*4 yields 48. Similarly, macros may invoke
other macros in their macro body or macro result sections. Thus a macro for
quadruple may be written as

#MACRO_RULE
<Factor> ::= quadruple <Expression>
#MACRO_BODY
<Expression>
double double $Term1
#MACRO_END

Finally, macros can be created to support infix notations such as

#MACRO_RULE
<Print> ::= print <Expression> and <Expression>
#MACRO_BODY
<StatementList>
print $Expression1
print $Expression3
#MACRO_END

This enables two expressions to be printed via print a+5 and b-10.

5 Discussion

We have described a means of implementing syntax macros for extending the
syntax of a programming language. The meaning of the extension is given by
writing code in the programming language being interpreted. This enables a
user of the language to extend its structure and not just the language imple-
menter. The implementation is made possible by the fact that iGen builds its
parser by loading grammar rules dynamically.

57

Previous approaches to macros used fixed syntax for the macro invocation
to make it easier to identify a macro invocation. This is similar to using the
fixed syntax of functions and procedures in programming languages as an ap-
proximation to language extension. For example, writing insert (elem, n,
lst) to mean “insert element elem at position n in list lst”, we have simulated
extending the language to have a new construct: insert(). But when reading
the new syntax, does n represent a position or a value? Is the insert before,
after or at position n? Of course one can embed comments within the parame-
ter list to remind the reader of the meaning, but that requires extra discipline
on the programmer’s part. Using a syntax macro one may extend the syntax
by adding a rule such as <stmt> ::= insert <exp> into <factor> after
position <no> to the grammar. This may not be particularly useful for pro-
fessional programmers, but it is quite helpful for students learning to write
algorithms (and programs). This observation motivated an elementary form of
syntax extension in the algorithm language Genesis[6], which allows functions
and procedures names to be written in infix, with parenthesized parameters
interspersed among id’s.

There are limitations to the current system. Syntax macros can only in-
troduce new syntax that can be described in terms of existing syntax. Macros
cannot be recursive. Currently an macro invocation can produce a variable that
clashes with existing variables. Adding a facility for conditional expansion of
macros would be useful. Precedence in grammars makes it difficult to envision
how a macro facility could be designed to enable new levels of precedence to
be inserted into a language. More work is needed in these areas.

6 Conclusion and applications

The iGen interpreter generator has been extended with syntax macros. Such
macros allow a programmer to extend the syntax of an iGen-implemented
language without having to know how to modify the underlying scanner, parser,
evaluator or data structures of the interpreter.

Several potential advantages accrue from this work. In an introductory
course an instructor can replace arcane function calls with more palatable syn-
tax tailored to the project at hand, easing the transition from algorithms to
programs. For a course in programming languages, students can extend a lan-
guage with new constructs, thereby reinforcing their knowledge of grammars
and semantics. Students in a compiling course can be challenged with discover-
ing the strengths and weaknesses of syntax macros by implementing a minimal
language using iGen and then comparing the relative difficulty of extending
their language using syntax macros versus modifying the interpreter. The im-
plementation of the syntax macro facility in iGen can be used to reinforce

58

good software engineering concepts involving design and reuse as discussed
in [7]. Last, the iGen macro facility could be used in a computational the-
ory course to extend a minimal language using macros, as discussed in [3] to
investigate language hierarchies.

References

[1] Robert Adams. Take command: The M4 macro package. Linux J.,
2002(96):6, April 2002.

[2] T. E. Cheatham. The introduction of definitional facilities into higher level
programming languages. In Proceedings of the November 7-10, 1966, Fall
Joint Computer Conference, AFIPS ’66 (Fall), page 623–637, New York,
NY, USA, 1966. Association for Computing Machinery.

[3] Martin Davis and Elaine Weyuker. Computability, Complexity, and Lan-
guages: Fundamentals of Theoretical Computer Science. Academic Press,
San Diego, California, 1983.

[4] D. Kevin Layer and Chris Richardson. Lisp systems in the 1990s. Commun.
ACM, 34(9):48–57, September 1991.

[5] B. M. Leavenworth. Syntax macros and extended translation. Commun.
ACM, 9(11):790–793, November 1966.

[6] Larry Morell. Algorithms in Genesis. In Proceedings of the 2nd Annual
Conference on Mid-South College Computing, MSCCC ’04, page 5–16, Lit-
tle Rock, Arkansas, USA, 2004. Mid-South College Computing Conference.

[7] Larry Morell. Design of an extensible interpreter using information hiding.
J. Comput. Sci. Coll., 26(5):130–136, May 2011.

[8] David Parnas. Designing software for ease of extension and contraction. In
Proceedings of the 3rd International Conference on Software Engineering,
ICSE ’78, page 264–277. IEEE Press, 1978.

59

A New Face for Old Moses: An Exercise
in Swift and C Interoperability∗

Robert England
Computer Science Program
Transylvania University
Lexington, KY 40508

rengland@transy.edu

Abstract

This paper describes the author’s continuing experiences and revela-
tions related to the development of an iPad app in Swift to provide a
graphical interface for an existing C software package, the Moses Oper-
ating System environment simulator.

1 Introduction: Overview of Moses System

Moses is an acronym for Microcomputer Operating System Environment Sim-
ulator. It is a software system developed by the author for use in teaching the
primary concepts of Operating Systems through programming in upper level
Computer Science courses. The Moses system and its features are described ex-
tensively in earlier papers [5, 2, 4, 3]. A key characteristic of the Moses system
is that it is written entirely in the C programming language. While C affords
students who work on Moses projects the opportunity to delve deeply into low
level systems programming, directly manipulating values and addresses as bits
and bytes, it is not particularly conducive to a user friendly interface.

The Moses software package given to students who will work on Moses
projects consists of two major components. The first component implements
Moses hardware simulation. Students working on Moses projects write a small
kernel program to run on this simulated hardware platform. The simulated

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

60

hardware includes five general purpose registers and a program status word
(PSW) that consists of a program counter, a timer, and a variety of individual
bit flags. As would be the case in a real system, the program counter holds
the address of the next instruction to execute, the timer can be used by the
kernel to implement preemptive timeslice-based scheduling, and flag settings
can be checked by the kernel to discover what sorts of interrupts and system
calls occur. A special flag bit can also be set to have the processor execute in
user mode or supervisor mode.

The other major component of the Moses package is a collection of simu-
lated user processes. Each of these processes is specifically designed to be run
by a Moses kernel simulator. The user process simulator package only per-
forms activities, generates simulated interrupts, and makes system calls that a
correctly implemented Moses kernel can handle. Thus, the Moses project that
a student writes is a kernel simulator that is sandwiched in between the Moses
simulated hardware below, and the collection of simulated user processes above
[8].

The interface development project presented in this paper has thus far been
implemented for Moses Project 1. In Project 1, students write a kernel that im-
plements user process management, including process scheduling. To this end,
a student’s kernel must implement and maintain a simple round-robin process
scheduling queue data structure, context switching among user processes, and
a process table data structure. Each process table entry corresponds to one
user process, and it includes save areas for general register values, the program
counter value, the timer value, and several other process specific accounting
details such as the process name and its current state.

In addition to implementing process scheduling, a Moses Project 1 kernel
must also recognize and handle a variety of simulated interrupts and system
calls, such as timer interrupts and user process requests for output.

Current State of the Moses Interface

As of this writing, the most recent stable release of Moses is still strictly a
console application, as shown in Figure1. Any input or output communication
whatsoever between a running Moses system and a user / student developer
appears as plain text in a console window. A student’s kernel project must
print all of its own debugging info about current hardware status — such as
the general register values and the various fields of the PSW — and current
process status, such as the process name. While running Moses as a console
application is not necessarily a problem in itself (students don’t complain,
much), the technical details of retrieving and formatting the wealth of pertinent
hardware and user process data values for screen display eats up precious time
in a one semester class, and thus it hampers development of more advanced
kernel functionality.

61

Figure 1: The Moses console interface

2 Project Goal: Build a Better Interface

The goal of the upgrade currently under development is to provide a modern,
intuitive GUI dashboard for automatically displaying the hardware and user
process details for a running Moses system. This would be an invaluable tool for
students to use as they test and debug their Moses kernel projects, freeing them
to focus less on the tedious formatting of output and more on the functionality
germane to the domain of Operating Systems services. However, the Moses
simulator components and student-written kernel are all entirely written in C,
which is not good for developing GUIs.

Thus, a wholly new approach to an interface for the Moses system is now
in the works: Using Swift, the language of Apple iOS apps, the author is
developing an iPad app that serves as a GUI dashboard shell on top of the

62

Moses C code.
To fully understand the nature of the undertaking of designing and imple-

menting a dual-language software system, especially when the languages are
so very different, we must first consider the development philosophies of the
languages involved.

The C Programming Language

As higher level languages go, C is very low level [7]. It is completely comfort-
able with direct manipulation of data as bits and bytes. It considers numeric
addresses of memory locations as just another data type, and it has no prob-
lems with the access and use of these addresses in code. For this reason, from
a more modern higher level language perspective, C is not considered “safe”. It
allows code to go on search and destroy missions throughout memory, either
accidentally or maliciously, as long as the requisite addresses are known.

The Swift Programming Language

Swift is still a quite new language [6]. It was introduced in 2014 by Apple as
a modern alternative to the older Objective-C language for use in the devel-
opment of apps for Apple devices. As such a new language, Swift embodies a
great many of the solid design principles and paradigms of good development
practice that have emerged over the years. For example, Swift culture is fully
aware and supportive of the Model-View-Controller design pattern for software
development. Relevant to the endeavor described in this paper, Swift also in-
sists on use of its somewhat abstract layer of protection against raw data and
memory address manipulation. In that sense, the designers of Swift worked
hard to ensure that Swift would be a “safe” language.

Swift software development philosophy, generally speaking, seems to prefer
that a programmer not be aware that bits and bytes and memory addresses
actually exist. For example, even though Swift does in fact support a data type
for pointer-to- integer, UnsafeMutablePointer (notice the implicit rebuke in
the name!), this type is actually a structure rather than a C-style fundamental
data type, and the actual hexadecimal pointer value itself is a field within
this structure, hidden from direct access by Swift code. According to the Swift
paradigm, all functionality should be accomplished through a much higher level
of abstraction with respect to the actual computer hardware.

However, Swift’s insistence that development be safely bounded within its
high level syntax and use its extensive and elaborate set of available prepack-
aged frameworks make it a fantastic language for its intended purpose: The
rapid development of GUI based applications. Swift is fully at home and com-
fortable with interface-centric apps for GUI mobile devices such as iPhones and

63

iPads [1].

3 Worlds Collide: Swift and C, Together

Arising from the very different coding philosophies and indeed, even different
levels of abstraction with respect to hardware, the author has encountered
several challenges in accomplishing interoperability between the two languages
Swift and C in a single Moses software system.

Data Communication Concerns

The first major issue, at no surprise to the author, was how to pass data
between the two languages. Swift is strongly typed, and mixing and matching
data values of different types is strictly disallowed. In sharp contrast, C views
the types that appear in variable definitions to be little more than indications
of the number of bytes that these variables should occupy in memory.

After several frustrating trial and error experiments to communicate data
back and forth between Swift and C, the following (somewhat hacky) protocol
was established: Moses C defines two different arrays of bytes: one to hold
values that are to be viewed as numbers, and another one to hold values that
represent textual data (i.e., letters and words). The Moses C code passes the
locations of these two arrays to Swift whenever an update to the GUI dashboard
on the iPad is desired. This communication connection of Moses code to Swift
code is accomplished via exactly one function call from a C function in Moses
to one Swift function on the Swift side. These two functions, one on the C side
and one on the Swift side, handle all of the communication between the two
subsystems.

On arrival in the Swift communication function, the data in the two arrays
from C is immediately copied into two different arrays on the Swift side. Having
all of this data sent from Moses stored locally in arrays that are native to the
Swift code and declared with Swift syntax makes it easier to pick through the
data and convert pieces of it to the data types expected by the various view
controllers on the Swift side. In the MVC vernacular, the pair of copied data
arrays sent from Moses C to Swift forms the entire base of data used as the
Model on the Swift side.

The very first of the number array elements indicates one of several different
types of updates for the iPad dashboard display, based on the type of event
that has just occurred and been recognized by a kernel program in the Moses
C code. On the Swift side, when such a call from Moses C is received, the
Cocoa Frameworks “Notification Center” is used to broadcast throughout the
Swift side that a particular type of event has occurred back on the C side.
Any component part of the Swift side that has preregistered its interest in a

64

particular type of event receives this notification sent out by the Notification
Center, and then it digs through the number array and text array for the data
it needs to update its part of the dashboard display.

For example, suppose an event occurs that involves a change to the simu-
lated timer on the Moses C side. Then when the Moses communication function
calls the Swift communication function, the timer view controller (and possibly
others) on the Swift side would be notified that this event had occurred, and
then the timer view controller would look through the Model data arrays for
the values it needs to update its part of the dashboard display.

CPU Control Concerns

A less expected snag that had to be dealt with was the transfer of CPU control
back and forth between the C code and the Swift code. The original plan was
for the C side Moses kernel program to occasionally call a printf-like function
in Swift whenever the iPad dashboard needed to be updated because of some
event. This approach would have been as simple as printing to the console, and
it would have left the specifications for the development of Moses C kernel code
that students write for a project assignment largely unchanged. Unfortunately,
while the idea is quite simple and the test implementation was straightforward,
it just doesn’t work.

The C side wants to run to completion, and Swift can’t hang on to CPU
control on its own after the iPad display has been updated — not even to
wait for a simple “Continue” button touch on the dashboard. The Swift view
controllers immediately return CPU control to the iOS runtime, which in turn
immediately returns to the C side. On the Swift / GUI side, a multicolor
pinwheel spins, waiting for a GUI touch event that it never receives, as the
Moses C code runs all of its user processes to completion behind the scenes.

The “Alert” facility provided by Swift through its standard iOS framework
seemed to offer some hope for stopping control on the Swift side before return-
ing to C. However, the designers of Alerts locked down almost all aspects of
the appearance and behavior of an Alert within an app, so there was no way
to map this behavior to a simple, unobtrusive “Continue” button in the corner
of the iPad screen. Any Alert used must appear smack in the middle of the
screen, with the screen behind the Alert view grayed out. This obstruction of
the hardware status and current process status completely defeated the pur-
pose of the dashboard app, and the hopes for using Alerts to solve the CPU
control problem were scrapped.

The solution to this maddening problem, for now, is that a Moses kernel
must be partitioned into separate functions itself, with each function invoked
in sequence from the Swift side. At the end of each of these function calls, the
dashboard is updated. In other words, the entire interaction model between

65

the C side and the Swift side of the Moses system had to be inverted from the
original plan. This Swift- calls-C approach is more invasive into the existing
Moses C code than the author had hoped would be necessary, but at least it
does work well.

The once single-function main program on the Moses C kernel side, in order
to facilitate the necessary control over the back-and-forth execution path with
Swift, presently consists of four separate functions, each corresponding to a
primary stage in the execution cycle of the kernel:

• Stage 0 initializes the Moses system. The C function that implements
this stage is only called once at the beginning of a Moses session.

• Stage 1 restores the hardware context of the next user process that will
get CPU control, as selected by the scheduler.

• Stage 2 passes CPU control to the user process whose context was re-
stored in Stage 1. On return from this user process, Stage 2 code saves
the context of the process for its next CPU burst.

• Stage 3 determines what sort of interrupt or system call event led to the
return from the process that just returned CPU control, and then Stage
3 calls the appropriate handler for the interrupt or system call.

Rather than calling these stage function directly (and thus itself having to
keep up with where the C kernel currently is in its execution cycle), the Swift
side calls the single function callToMosesC — a single entry point into the C
code from the Swift side — leaving the responsibility of keeping up with the
current stage to the C side. By design, this function is tiny and simple:

static FNPTR nextMainStage = main_stage_00;
void callToMosesC (void) {

nextMainStage();
allHdwrUpdate();

}

When callToMosesC is called by Swift, the nextMainStage function passes
control to the next kernel stage to be executed, whose address is held in the
static, function address variable nextMainStage. Each stage function is respon-
sible for updating this global nextMainStage variable to the address of the next
stage function just before it exits, with Stage 3 updating nextMainStage to the
address of Stage 1’s function, thus repeating the kernel cycle indefinitely until
all user processes have terminated. The allHdwrUpdate function initiates the
sequence of function calls that updates each of the views of the dashboard. For
each dashboard view update, the two communication arrays are filled with the
appropriate hardware status data on the C side, and then the C side calls back
Swift to allow the Swift side to access the communication arrays and update
the corresponding view.

66

F
igure

2:
T
he

M
oses

iP
ad

dashboard
interface,on

an
iP
ad

sim
ulator

67

4 Future Work

The iPad Moses status dashboard itself is now complete and working to a level
satisfactory to the author, but it has yet to be used in an Operating Systems
course. The students will have final say on the quality and usefulness of the
new interface, of course. The main goal of this project remaining for the author
is to find a way to connect the Moses O/S code to the Swift iOS interface so
that students’ Moses C kernel code does not have to be custom designed and
written to enable communication with the Swift interface.

5 Conclusion

The original plan was to combine two major Moses subsystems, each written
in a different language, into an integrated whole. The low level, systems pro-
gramming subsystem would all be in C; the colorful candy shell iPad interface
would be written in Swift. Each language would contribute what it does best
to the goals of the whole system. The mixed language system as it stands now
does work, but not without some compromises to the original plan and design.

References

[1] Joe Conway and Aaron Hillegass. iOS Programming: The Big Nerd Ranch Guide.
Addison-Wesley Professional, 2012.

[2] Robert England. Teaching principles of shared resource management with the
Moses2 microcomputer operating system environment. Journal of Computing
Sciences in Colleges, 21(5):46–52, 2006.

[3] Robert England. The PNTFS file system in the Moses2 operating system en-
vironment simulator. The Journal of Computing Sciences in Colleges, page 97,
2010.

[4] Robert E England. The virtual machine and user process model used in Moses2:
a microcomputer operating system environment simulator. Journal of Computing
Sciences in Colleges, 17(2):301–309, 2001.

[5] Robert E England. Teaching concepts of virtual memory with the Moses2 mi-
crocomputer operating system environment simulator. Journal of Computing
Sciences in Colleges, 20(6):84–91, 2005.

[6] Matthew Mathias and John Gallagher. Swift Programming: The Big Nerd Ranch
Guide. Pearson Technology Group, 2016.

[7] Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. The C programming
language. Prentice Hall Englewood Cliffs, 1988.

[8] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. Operating system con-
cepts. John Wiley & Sons, 2005.

68

Resources for Building Knowledge Base
Files for Use With Named Entity

Resolution/Disambiguation Tools Such
As TIMBER∗

Anthony D. Davis
Computer Science Department

Lyon College
Batesville, AR 72501
anthony.davis@lyon.edu

Abstract

TIMBER is a tool designed to assist scholars in Digital Humanities
tag texts for entities such as persons and places. This article briefly
demonstrates how TIMBER can assist such scholars by creating simpli-
fied knowledge base files compared to other industry Named Entity Res-
olution/Disambiguation tools. Specifically, this article provides a look
at three different sources of information that a scholar may have readily
available for such a task: 1) a General Index for a Multi-Volume Set; 2)
Book Indices found in the domain, and; 3) Domain Specific Dictionaries.
With information found in any of these three resources, scholars have all
that they need to create a knowledge base for TIMBER and the ability to
have a computer automatically tag persons and places in their corpora.

Introduction

Often humanities scholars desire to analyze people and places in their domain of
texts. Many of these domains are made up of a large corpora of texts. Without
the aid of digital humanities tools, scholars are left with manually reading

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

69

and analyzing these texts looking for connections and drawing conclusions.
Fortunately, machine learning techniques such as TIMBER (Tensor Induced
Multilingual knowledge Base for Entity Resolution) provide an accurate and
efficient method for tagging persons and places in a large corpora [5]. While this
may seem daunting to those without a computer science background, TIMBER
is designed to use a simple knowledge base for named entity resolution and
disambiguation. In fact, one may use an index or a collection of indexes to
create their own domain specific knowledge base. This article provides three
different methods of converting an index into a knowledge base suitable for use
with TIMBER.

What is TIMBER?

TIMBER is the product of the dissertation titled, Combing Texts: A Quest to
Increase the Timeliness and Accuracy of Geotagging Multilingual Toponyms
and Tagging Persons in Large Corpora Using Tensors for Disambiguation [6].
This dissertation demonstrates how one can use simple knowledge bases to
accurately tag domain specific persons and places in raw text. Using a comma
delimited file of entities and connections, TIMBER tokenizes every word in
the raw text files, connects each entity token based on co-occurrence – or how
close each entity token is to each other in the text – and creates a rank-3 tensor
of connections. These connections are used alongside a bayesian approach for
disambiguation of entities with more than one possible entry in the knowledge
base file. Figure 1 shows a visual depiction of this process. Raw text files are
converted to tokenized word objects. On the left, each entry in the knowledge
base file is converted to an authority token object. If the tokenized word object
matches an authority token object, then it is considered a match. When there
are multiple possible authority token matches for the same text token, the
tensor on the bottom center is used to determine which entity has the highest
likelihood of being the correct match.

In the named entity resolution/disambiguation field, the most common
standard of measurement is known as an F-Score. For instance, one will find
examples below where the F-Scores obtained from the TIMBER tests are com-
pared to other named entity resolution tools. This provides an objective mea-
surement of the accuracy between various tools in the field. Typically, they are
provided in one of two formats: 1) as a percentage score, or; 2) as a floating
point number that can be converted to an percentage score. The F-Score is
determined by a set of equations based on how each entity token was assigned.
The final equation utilizes the two other equations known as Precision and
Recall. In these equations, the value “tp” is the number of true positives found
when tagging the text, “fp” is the number of false positives tagged in the text,

70

and “fn” is the number of false negatives tagged in the text. The equations for
all three are as follows [8]:

Figure 1: TIMBER Matching Entities in Raw Text with the Knowledge Base

What Is a Knowledge Base?

There are many different types of knowledge bases in named entity resolution.
A knowledge base essentially functions as the brain of the process; the known
entities of the domain for which one is looking. In Named Entity Resolution one
typically finds very large knowledge bases used for Named Entity Disambigua-

71

tion. For instance, a typical knowledge base uses Wikipedia, DBpedia entries
and/or Linked Open Data formats such as Resource Description Framework
(RDF) using the SPARQL query language [4]. While these knowledge bases
are excellent for many projects, they may not offer the best information for
domain specific texts for two reasons: 1) the large knowledge bases are heav-
ily contemporary, and; 2) RDF knowledge bases are very technical in their
formatting and usage.

For the first drawback, most Named Entity Resolution programs are inter-
ested in tagging persons and places in the contemporary world. Again, DBpe-
dia and others are a great resource for this. However, one runs into issues when
dealing with non- contemporary texts. As an example, a group of researchers
considered using some typical state-of-the-art Named Entity Resolution/ Dis-
ambiguation tools on “entities in the 17th century depositions obtained during
the 1641 Irish Rebellion” [8]. The researchers wanted to test current tools and
knowledge bases on a very specific domain, the 1641 Irish Rebellion. To do this,
they used GERBIL, which combines multiple Named Entity Resolution/Dis-
ambiguation tools into one annotator [2]. The best results from all of the tools
tested presented an F-Score of around 60. The authors’ conclusion was pretty
blunt: Based on this corpus and the results obtained from the General Entity
Annotator Benchmarking Framework [GERBIL] we observe that the accuracy
of existing Entity Linking systems is limited when applied to content like these
depositions. This is due to a number of issues ranging from problems with
existing state-of-the-art systems to poor representation of historic entities in
modern knowledge bases [8].

The second drawback is the sheer complexity of most popular knowledge
bases, such as RDF. TIMBER is designed to aid digital humanities professionals
in tagging their specific corpora. Most scholars in digital humanities may not
have experience in coding, XML tagging, etc. Therefore, a specification like
RDF may be more than they would need or desire to learn for their domain
of texts. For instance, here is an example of an RDF entry for person 8 in the
digital reference portal for Syriac literature, culture, and history known as the
Syriac Reference Portal:

As one can see, creating a knowledge base in RDF requires knowledge of
XML and the syntax of RDF. While this is an exceptional format for a knowl-
edge base, it may not be necessary for many domain specific projects in digital
humanities. If the project has technical staff, expertise, and time, then RDF
would be an excellent choice. However, TIMBER is designed to offer an alter-
native to scholars looking to tag their corpora using a simple knowledge base
created from a comma delimited flat file. Since many scholars – regardless of
their technical skill – are familiar with spreadsheet formats such as Libre Office
Calc or Microsoft Excel, it is safe to assume that more scholars could create a

72

Figure 2: Example of an RDF entry from the Syriac Reference Portal [3]

knowledge base in this fashion than using RDF, etc.

Resources for a Knowledge Base

What are some ways that a scholar can build a knowledge base from scratch?
There are typically three very good resources for most historical domains: 1)
a General Index for a multi-volume set of texts; 2) indices found in books,
and; 3) a domain specific dictionary. Each resource provides opportunities and
challenges, but most domains can start with one – or a combination – of these
resources for seeding their knowledge base.

Option One: General Index for a Multi-Volume Set

One of the greatest sources of information when starting your knowledge base
is the use of a General Index for a multi-volume set. Typically, an index for
a multi- volume set will contain a wide variety of useful information. For in-
stance, the General Index in the Ante-Nicene writings contains an alphabetical
index of People and Places found in each of the ten volumes of the set. Further-
more, each entry in the index contains the following information: 1) volume

73

number(s) where the named entity appears; 2) page number(s) where the entity
appears, and; 3) many connected entities mentioned in conjunction with the
listed entity [1]. A General Index provides concise information on each entity
and a clear view of the various connections. Although creating the knowledge
base is still a manual process, this option provides the quickest route of the
three options described in this article for seeding your initial knowledge base.

Option Two: Book Index

Notwithstanding the fact that a single book index is not as useful as the multi-
volume set with connected entities, the typical index found in any book still
contains a wealth of information that one can use to build or supplement a
domain specific knowledge base. In order to make the connections, the user
has two options: 1) the user may read the book and determine a connection
either through co-occurrence or entity interaction manually, or; 2) the user may
determine the co-occurence programmatically based on two entities occurring
on the same page or other delimiter. Obviously, the most efficient method is
number two whereby the user places the entity into the knowledge base and
makes a connection between two entities based on both occurring on the same
page. The benefits with this case are that one can quickly and programmati-
cally produce a knowledge base with connections for use with TIMBER. The
challenge is that the granularity of the connections are based on the two oc-
curing on the same page. What if one entity was the last word on page 22 and
the other entity is the first word on page 23? In this case, there would be no
connection – assuming that was the only case of the two occurring in the book.

Option Three: Dictionaries

The third scenario for building or supplementing your knowledge base is a
domain specific dictionary. This option usually provides the most granular in-
formation and has a wealth of information for determining connections. Each
entry has specific information on each entity and one can determine numerous
connections for each based on the entries. One can even supplement the con-
nection with more information such as gender, marital status, parents, children,
etc. The benefits with this method are that there is a wealth of detailed infor-
mation. This information can increase the number of connections one can use
for seeding the knowledge base as well as provide information for other types of
analysis. The downside to this approach is that this method takes more time to
determine connections through the manual process. One dictionary entry may
be multiple paragraphs long and contain a lot of entity connections. Therefore,
a scholar may get bogged down with too many connections. An example for
early Christian texts would be Easton’s Illustrated Bible Dictionary [7]. As

74

with the Ante-Nicene Fathers mentioned above, this book is out of copyright
so this is a further benefit to using it for your knowledge base.

Scenario Demonstration

Table 1:
The F-Score of Volume One of the Ante-Nicene Fathers Using TIMBER

As one saw earlier, Munnelly, et al compared many state-of-the-art tools
on their domain specific texts. Named The best tool provided an F-Score
of around 0.60. Using TIMBER, our research is able to demonstrate that a
simple knowledge base is able to produce an F-Score of around 0.95, as seen
in Table 1, on Volume One of the Ante-Nicene texts containing 645,579 tokens
[5]. These results were obtained by creating a simple comma delimited file
out of entries found in a General Index of the ten volume set Ante-Nicene
Fathers: The Writings of the Fathers down to A.D. 325 [4]. This corresponds
with option one mentioned above. A General Index seems to be one of the
better resources to use when building a domain specific knowledge base due
to the concise nature of the entries and the concise mentions of various entity
connections.

After creating the knowledge base from the General Index, TIMBER gen-
erates tokens of each entity from which to compare each token in the raw text.
In Figure 3, one sees two examples of entities found in the General Index, their
placement into a simple comma delimited file, and a graphic depiction of the
knowledge base converted into objects. This method, again, using option one
above, provides an efficient and easy way for a scholar of early Christian texts
to tag persons and places. However, one can use the same method on their
own respective domains to tag entities in any raw text.

75

Figure 3: Depiction of the Comma Delimited Knowledge Base Turned Into
Objects

76

Conclusion

Given that most domains in the humanities have numerous sources of index
information, the ability to use machine learning to tag a corpus is within reach
for anyone with proficiency in creating spreadsheets. One does not have to
use technical formats such as RDF to create their knowledge base and each
domain can find at least one of the three examples provided above to create
their knowledge base for use with TIMBER. If one can find a General Index
for a multi-volume set, book indices for reference works in their domain, or a
dictionary for their domain, then one has all that they need to use machine
learning techniques on their texts.

References

[1] Christian classics ethereal library. https://ccel.org/fathers Accessed:
27-May-2018.

[2] GERBIL — Agile Knowledge Engineering and Semantic Web (AKSW).
http://aksw.org/Projects/GERBIL.html Accessed: 20-Jun-2019.

[3] RDF repository for all syriaca.org data. This repository is based on the de-
velopment branch of https://github.com/srophe/srophe-app-data and
should be considered beta. : srophe/srophe-data-rdf. Syriaca.org: The Syr-
iac Reference Portal, 2019.

[4] Marcelo Arenas and Jorge Pérez. Querying semantic web data with
SPARQL. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 305–316, 2011.

[5] Anthony D. Davis. TIMBER - tensor induced multilingual knowledge
base entity resolution. https://github.com/davisgis/TIMBER Accessed
November 24, 2019.

[6] Anthony D Davis. Combing Texts: A Quest to Increase the Timeliness
and Accuracy of Geotagging Multilingual Toponyms and Tagging Persons
in Large Corpora Using Tensors for Disambiguation. PhD thesis, University
of Arkansas at Little Rock, 2019.

[7] Matthew George Easton. Illustrated Bible Dictionary, and Treasury of Bib-
lical History, Biography, Geography, Doctrine, and Literature. T. Nelson,
1894.

[8] Gary Munnelly and Séamus Lawless. Investigating entity linking in early
english legal documents. In Proceedings of the 18th ACM/IEEE on Joint
Conference on Digital Libraries, pages 59–68, 2018.

77

A Unified Representation for Teaching
Bottom-up and Top-down Parsing∗

Larry Morell and David Middleton
Computer and Information Science

Arkansas Tech University
Russellville, AR 72801

{lmorell,dmiddleton}@atu.edu

Abstract

A trie-based model for context-free grammars is described that sup-
ports teaching both LL(1) and LR(1) parsing. In the model, grammar
rules and parse states are embedded in a trie graph, which is modified
version of a characteristic finite state machine (CFSM) used in the design
of LR(1) parsers.

1 Introduction

Courses on compiling typically discuss top-down and bottom-up parsing. On
the surface these approaches appear to have much in common. Each is grammar-
based, matching the stream of input tokens against the language’s constructs.
Each stores the progress of parsing on a stack. Each can be implemented via
hand- or table-driven techniques. Unfortunately, the differences that lurk just
below the surface can incline a student to conclude that they have little in
common. The stack for a top-down parser captures the parse tree that is being
built from the top down, requiring the parser to choose which rule to expand
when matching the next input token. For example, the stack for a bottom-up
parser consists of parse states which record progress through multiple rules,
thereby delaying the decision as to which rule has been parsed. Additionally,
table-based representations of top-down and bottom-up differ significantly in

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

78

structure and content and, especially in the case of bottom-up, are not easily
invertible to recover the original grammar.

These differences are exacerbated by the fact that a student can begin
constructing a parser using a top-down strategy only to discover it fails and
therefore a bottom-up strategy must be followed, perhaps requiring a portion
of the grammar to be rewritten, data structures to be redone and a different
parsing algorithm to be implemented. This paper presents a way of teaching
parsing by via a unified method for representing a grammar for both bottom-up
and top-down parsing.

An approach for modelling grammars via a trie graph is first described and
then applied to both LL and LR grammars. An algorithm is then presented
for parsing using trie graphs.

2 Modeling Parsing

Presented here is a model that allows LR and LL grammars to be processed
via a single parser. The representation is called a trie graph because it shares
aspects from both tries and graphs. Each node in the graph denotes a parser
state that represents the degree to which a rule or a collection of rules has
been parsed. Arcs between states direct the parser’s next action, based on
the current input symbol. The parser stores active states on a stack, which is
called the parser status. Thus, given the parser status and the current input,
the parser advances to the next state based upon the action dictated in the
current state, modifying the parser stack appropriately. The following table
illustrates the notations used in a trie graph.

To minimize the complexity of the trie graph both the shift and advance-
ment arcs may be labeled with a set of terminals to minimize the number of
states. Both LL(1) and LR(1) grammars can be represented using only these
three forms of arcs, as discussed below.

79

2.1 Representing LL(1) Grammars via Trie Graphs

Consider the rules:

Figure 1: Stmt Trie

Figure 1 shows a portion of the trie graph that comes from these rules,
where nodes represent parse states and filled circles indicate the end of a rule
where a reduction can occur. The numbered nodes are the roots of tries that
represent the rules. Parsing for a <Stmt> begins at node 1 where the decision
is made for choosing to parse using either rule 1, 2, or 3. If the input is print,
then the next state consists of the single item [<Stmt> ::= . <Print>], since
print is only in the first set of <Print>. The period in the item indicates that
a <Print> must be parsed next. To do so, parsing progresses to the trie for
<Print> located at rule 4. There the print is consumed, and the parse state
is advanced to [<Print> ::= print . <Exp>]. Parsing continues at the trie
for <Exp> (shown in Figure 3). After parsing an <Exp>, the reduction arc
for Exp is taken to the state [<Print> ::= print <Exp> .]. Since a <Print>
has been recognized, a reduction takes place As in a CFSM, reducing entails
backing up to the state that triggered parsing <Print>. Control therefore
returns to the state that contains [<Stmt> ::= .<Print>]. From there the

80

Print reduction arc is followed, advancing to the state that contains [<Stmt>
::= <Print> .]. Another reduction occurs there, and control returns to the
state that triggered a parse for <Stmt> (not shown).

To extend this trie graph for <Cond>, <Stmt>, and <Exp>, a subgraph
is created for each rule and is linked into the existing graph with a dashed
arrow, for each member of the first set of the right-hand side of the rule(s).
For example, if first(Exp) = {id, (, no } then each instance of <Exp> in any
trie is linked to the trie summarized in Figure 2. The three arcs direct the
parser to the state appropriate for the current input. In an LL(1) grammar
any (input, state) combination can select at most one successor state. In terms
of a trie graph this means that no node will have two solid arcs labeled with
the same input. Instead, the target states must be merged.

Figure 2: Exp Trie

Any common prefix for two rules with the same left-hand side will overlap
in the trie graph. For example, if the following rules are added to the grammar

then the trie graph for <If> is enhanced to include:

An LL(1) table-driven parser does not accommodate common prefixes; trie
graphs handle them nicely.

81

2.2 Representing LR(1) Grammars via Trie Graphs

In an LR(1) grammar a state represents the degree to which one or more rules
have been parsed. A canonical LR(1) state has two parts: the core and the
closure. The core consists of the rules that need to be parsed and the position
within those rules that indicate what may be parsed next. The closure consists
of rules which may be parsed next from the positions indicated in the core.
Items in LR states are stratified into separate states in the trie graph, linked
by one of the three arc types mentioned earlier.

Figure 3 shows part of the trie graph for the grammar below when the input
is id.

E ::= E + T | T
T ::= T * F | F
F ::= id | (E)

Figure 3: Trie Graph for Recursive Expressions

The twelve nodes in the figure 3 are labeled with items. Each item is a rule
marked with a dot to indicate how much of the rule has been parsed already
by the time a parser arrives at that state. A state with more than one item
indicates multiple rules may be parsed. If the dot in every item precedes token
t, then there is a shift arc for token t from this state. If a non-terminal N is to
be parsed, then the state includes an advancement (dashed) arc to the trie for
N, labeled with the one or more terminals that are in first(N). Additionally,
there is a reduction arc for N from this state. A sequence of dashed arcs labeled
with t must terminate in a state where t is consumed.

82

Consider parsing a*b using the trie graph in Figure 3. Starting in state 1,
the parser advances to node 2 and then state 3, without consuming a. The id
a is then consumed, moving to node 4, where a reduction to F occurs. The
parser unwinds to node 2, where it can advance across an F, taking it to node
7. There a reduction to T occurs and the parser unwinds to node 2 again.
The parser must now decide between advancing across the T to state 8 or
returning T to state 1. Since the next input is a *, the parser should advance
to state 8, consume the *, and move to state 10. The parser again parses b as
an F (in the same manner as it did for parsing a), and then moves to state
12, advancing the F. Reducing to a T, the parser unwinds to state 2. Again, it
must decide whether to advance with the T or return it to state 1. Since there
is no incoming *, the parser returns the T to state 1. Advancing the T leads
to state 5, where an E is recognized and returned to state 1. Since there a +
sign is not upcoming, parsing completes having recognized a*b as an E.

2.3 Parsing using a Trie Graph
This section demonstrates how to parse both LL(1) and LR(1) grammars via
a recursive algorithm directed by a trie graph. The arcs emanating from each
node select the next transition to be performed by the parser. Parsing using a
trie graph is guided by three observations. First, a shift arc is taken when its
label matches the next input. Second, when reducing a rule for non-terminal
N, an empty parse tree for N is returned and populated as the parser unwinds.
Third, after a reduction to N, the parser backs up until it can successfully
advance N in a state.
Tree pa r s e (Symbol sym , S ta t e s) {

Tree t r e e , component
i f t h e r e i s a s o l i d a r c w i th l a b e l sym from s to s ' then

t r e e = pa r s e (readSym () , s ') / / get the p o r t i o n o f t r e e a f t e r sym
I n s e r t sym as f i r s t c h i l d o f t r e e under the r oo t
r e t u r n t r e e

e l s i f t h e r e i s a dashed a r c w i th l a b e l sym from s to s ' then
component = pa r s e (sym , s ') // get the t r e e anchored at Symbol sym
N = non−t e rm i n a l a t the r oo t o f component
i f N cannot be advanced i n S ta t e s

r e t u r n component
e l s e

t r e e = pa r s e (readSym () , t) // where s ==> t f o r N
I n s e r t component as f i r s t c h i l d o f t r e e under the r oo t
r e t u r n t r e e

e l s i f S t a t e s has a s i n g l e r educe i tem [A −> alpha .] then
r e t u r n a t r e e w i th A at the r oo t and no c h i l d r e n

The parser proceeds top-down and left-to-right through the grammar, as
directed via the trie graph. The recursion of the first and second if-block drives
the parsing downward and laterally across the grammar until a rule for a non-
terminal N is completely parsed. The calls to readSym() move the parser
through the input. As the recursion unwinds, the parse tree for N is built,
and then the lateral movement again ensues via the first or second if-block.

83

Determining whether N can be advanced involves seeing if the next input can
follow N in each state as the recursion unwinds.

This algorithm handles shift/reduce conflicts by favoring a shift; it does not
handle reduce/reduce conflicts. We agree with the GNU.org comment [1] that
such conflicts “usually indicates a serious error in the grammar” and should
be fixed. Context for a reduce, if needed, can be passed forward as a third
parameter to parse. This helps students to understand how lookaheads are
used to resolve conflicts and makes an excellent student enhancement to the
algorithm.

3 Related Approaches and Discussion
In his first book on data structures [7], Wirth uses syntax diagrams as a means
of representing a grammar via a graph to support top-down parsing. Slivnik
describes a system called LLLR that can switch between LL and LR parsing
by modifying underlying LL(1) tables. He indicates that previous approaches
to mixing top-down and bottom-up are not popular “because of the confusing
order in which semantic actions are triggered” [5]. To achieve this his principal
parser is LL; when an LL conflict is encountered a small LR parser is invoked.
Morell uses tries to implement a parser generator that supports LL(1) but not
LR(1) parsing [2]. Each non-terminal has a corresponding trie, which is build
as the grammar rules are read. Parsing is conducted via a recursive algorithm
that traverses the collection of tries top down.

Trie graphs enhance the characteristic finite state machine (CFSM) used in
LR parsing. The principal differences involve the representation and processing
of states. CSFM states have two components: the core and the closure. The
core consists of items which specify a goal for the parser when it reaches this
state. The closure consists of items which can be used to progress through one
or more of the core items. In trie graphs the closure collections are stratified
into separate states and the resulting states are connected using three different
links to represent advancing, shifting and reducing. The associated parsing
algorithm is reduced to performing the appropriate action given the current
state and input. Since the parser proceeds from the bottom up, it mimics the
behavior of a recursive-ascent parser [3, 6].

Trie graphs elucidate the relation between top-down and bottom-up tech-
niques by developing a trie-based model to represent LL(1) and LR(1) gram-
mars. Such a model helps students better understand parsing before mastering
complications introduced by traditional presentations of LL and LR tables. Ad-
ditionally, trie graphs maintain a property the makes recursive-descent parsers
popular: a grammar directly maps to its trie graph and vice versa. It is not
easy to make such a mapping in table-driven approach, especially with LR
tables.

84

A thorough coverage of parsing requires significant time and is generally
only possible in a course on compiling. Using trie graphs reduces the amount of
time needed to demonstrate top-down and bottom-up parsing, enabling parsing
to be covered in other courses such as data structures, algorithms, programming
languages, software development, or theory of computation.

4 Conclusion
Trie graphs provide a uniform model for teaching both LL(1) and LR(1) gram-
mars. A grammar readily maps to a trie graph which can be used to direct
parsing. Additionally, trie graphs address one of the most common problems
of LL(1) parsing, namely, eliminating common prefixes. They help demystify
parsing.

A trie graph model provides a basis for discuss issues related to processing
grammars such as computing first sets, follow sets, and derives [4]. Trie graphs
provide a convenient model for discussing the need for these concepts and how
they are used to resolve conflicts. For example, it is customary for overlapping
first sets to be discussed when an LL(1) table is built. Such a conflict will be
discovered earlier when producing a trie graph. Similarly, the need for follow
sets arises in the algorithm for trie graphs when processing a reduction.

Trie graphs are an initial model for a grammar without committing to par-
ticular data structures and algorithms for parsing. This allows an instructor to
cover parsing early and explore possible implementations, including traditional
LL(1) and LR(1) table-driven approaches. Seeing the tables as implementa-
tions of tries may help explain their meaning.

References

[1] GNU Bison - the yacc-compatible parser generator. http://www.gnu.org/
software/bison/manual/ Retrieved 23 Nov, 2019.

[2] Larry Morell. Design of an extensible interpreter using information hiding. Jour-
nal of Computing Sciences in Colleges, 26(5):130–136, 2011.

[3] Larry Morell and David Middleton. Recursive-ascent parsing. Journal of Com-
puting Sciences in Colleges, 18(6):186–201, 2003.

[4] Larry Morell and David Middleton. Using information flow to analyze grammars.
The Journal of Computing Sciences in Colleges, page 21, 2010.

[5] Boštjan Slivnik. Lllr parsing. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pages 1698–1699, 2013.

[6] Wikipedia. Recursive ascent parser. https://en.wikipedia.org/wiki/
Recursive_descent_parser Retrieved 7 Nov. 2019.

[7] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice Hall PTR,
USA, 1978.

85

Toward the Creation of a Personal
Device Security Testbed to Aid Student

Learning Objectives∗

Charles Walter and Charles Fleming
Computer and Information Sciences

University of Mississippi
University, MS, 38677

{cwwalter,fleming}@olemiss.edu

Abstract

In this paper, we propose the creation of a testbed that will allow
instructors to effectively teach security of personal devices, including
wearables and smart home computing devices. To enable the construc-
tion of this testbed, we explore low cost, commercial-off-the-shelf devices
that allow students to examine the security of a large variety of devices,
each separated in an RF-free environment. We then show the feasibility
of this method with a small-scale experiment.

1 Introduction

Personal devices, like wearables, have exploded in popularity in recent years. In
2018, 17.2 million wearables were shipped [19], making them some of the most
common personal computing devices available in the world. It is predicted
that, by 2021, 928.8 million wearables will be active around the world [4].
While some research has been done into the security of wearables [6][24], much
of the work has been slowed by the sheer number of different wearables and
the lack of consistency across the devices.

Personal devices, while individually different, do share some standard fea-
tures. Most communicate through either Wi-Fi, Bluetooth, Zigbee, or Z-Wave,

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

86

with most of these communicating in the 2.4GHz range. The devices almost
always include a debug port left open, allowing for attackers with physical
access to get debug information and, potentially, push their own firmware [6].
Additionally, users are likely to not worry about the security of specific devices,
often assuming the security is taken care of by the device manufacturer. Even
when the manufacturer does focus on security in some way, there are often is-
sues with over-privilege that are inherent in personal devices, especially those
on a home wireless personal area network (WPAN) [13]. While there have been
some recent attempts to secure these devices, such as [10], these methods are
not in widespread use.

In this paper, we discuss the issues with performing security analyses on per-
sonal devices, such as wearables, home automation devices, and smart speakers.
These issues are wide-ranging, from the startup cost to a lack of understanding
of how prevalent security holes are across devices. These issues make it difficult
both for the researcher to discover new security issues and experiment with po-
tential security fixes, as well as teachers that wish to make their students aware
of the security issues of their own devices. We show a proof-of-concept testbed
that allows users to perform security analysis on a wide variety of wearable de-
vices, featuring existing tools capable of attacking Bluetooth communication,
the primary communication mechanism used by wearables.

2 Background

The security of wearable devices has been extensively studied, both from the
vulnerability and defense perspective, though only on a limited number of
devices and with limited attack vectors. A good survey of this work can be
found in [18].

One of the earliest testbeds for home computing devices was the “Ubiq-
uitous Home”, which was focused on how smart home devices improved life,
rather than their security [25]. A similar testbed was proposed in [12] for more
general types of mobile devices, but again, primarily with a human-centric fo-
cus, through volunteer end user evaluation. Crowdlab [11] had a similar design,
utilizing volunteer end users, but gave researchers control of low-level wireless
state. The DRIVE testbed [19] was built with more of a networking focus, but
was specifically for vehicular area networks and devices, rather than wearables
or home automation devices. A similar testbed for automotive security was
proposed in [14].

One of the first security-centric testbeds for wireless networks was intro-
duced in [16], however the authors were interested in ad-hoc local area network
security. A testbed for wearable medical devices was described in [9], but this
testbed was designed to measure the energy use of adaptive security defenses,

87

rather than serve as a general testbed for device security. A more general In-
ternet of Things (IOT) testbed was developed in [8]. This test bed included
some limited security testing features, but was built for the Web of Things
applications, and only tested basic authentication protocols.

Two very comprehensive testbeds for wearable security are proposed by Si-
boni et al. in [21] and [20]. While some of the functionality of these testbeds
overlaps with our work, they are primarily designed to provide comprehen-
sive testing of new devices, rather than the development of new attacks or for
educational exercises. Pass-IoT [7] is an IoT testbed designed specifically to
test lightweight encryption algorithms. In [23] the authors propose another
IoT testbed which primarily captures wireless data from the devices. While
not strictly a testbed, IoTScanner [22] similarly passively captures IoT trans-
missions, though in a mobile manner that allows for scanning of any space of
interest.

A slightly different approach to the problem is to provide “meta-testbeds”
that are amalgamations of smaller testbeds. This approach is taken in [15],
the IoTbed system. A similar approach is taken in [24], with respect to self-
adaptive systems.

3 Project Goals

The project described and explained in this paper is to create a method for
teaching and research of personal use devices, such as wearables and home
automation. Because of the rapid increase in market share these devices have
enjoyed recently, and are likely to continue to enjoy, there is increased need to
be able to examine possible security vulnerabilities and to teach the methods
of security analysis of these devices to students just beginning their careers
as computer scientists. Currently, the only method of examining a personal
use device is to purchase it and all hardware providing possible methods of
attacking it. Just attacking a single Bluetooth device can get expensive quickly
and become impossible to use to teach a course.

In order to attack the device, one must purchase the device and attempt
to attack it. If it uses a simple pairing method, one may be able to attack the
device with a form of Man-in-the-Middle attack. This works well for devices
that have low security methods, but becomes more difficult when there is ei-
ther a unique method of connection (similar to the Apple Watch, which uses an
image on the screen to generate a key), devices that pair using Out-Of-Band
pairing (where a secondary form of communication is used to establish keys), or
devices that require user input and confirmation (which may not be possible if
not all devices have the same capabilities). To attack these devices, researchers
must turn to eavesdropping attacks to get access to the data communication.

88

Currently, the best method to eavesdrop on a device communicating with Blue-
tooth is using an Ubertooth One [5], a device costing around $115 as of this
writing. Unfortunately, even with an Ubertooth, there is no guarantee that all
packets will be intercepted or that a pairing packet (containing keys) will be
intercepted, allowing for decryption.

Even if an attack vector is identified with one device, there is no way to
test against a large number of other devices quickly and cheaply. Without a
centralized testbed, accessible by both students and researchers, breaking into
personal use device security work is difficult.

We propose the creation of a testbed designed to allow instructors and
researchers access to a range of personal use devices and the methods to attack
them. The instructors and researchers may either purchase the components
themselves or, when complete, connect to our centralized personal use device
testbed remotely to examine the security of personal use devices. In this paper,
we focus on the creation of this testbed and the descriptions of the attacks that
are enabled. With a fully realized testbed, instructors will become capable
of demos and labs focused on the security of personal use devices, including
eavesdropping, man-in-the-middle attacks, and analysis of data collected.

4 Methodology

Our design for a testbed has two primary setups for device security: one relies
on a large number of devices separated into individual commercially-available
Faraday cages containing a base station and its associated personal use device.
The architecture of this can be seen in Figure 1 If possible, the base station,
connected to the internet, will provide the packets that it is receiving to a
central server. These devices will be set up for researchers and students to
choose the specific devices they wish to have access to through a web portal.
These devices will have their base stations set up as a pass-through to a single
external base station, using a Man-in-the-Middle style attack, to simulate a
normal user environment. The researcher or student can then examine all
the communication flowing from the devices they have chosen to the central
base station. With the Man-in-the-Middle pass-through setup, students and
researchers can also modify the packets to examine how the devices react to
crafted packets, allowing them to act as if they have physical access to the
device.

Additionally, we will have a group of devices designed to simulate accurate
user environments, all connected to a single user device. The architecture for
this can be seen in Figure 2. These devices will be sequestered within a single
Faraday cage and, within the cage, devices to eavesdrop on the communication
and, if possible, transmit specific data from a secondary device. The device to

89

Figure 1: Proposed Testbed Architecture for Separated Devices

Figure 2: Proposed Testbed Architecture for Simulated User Environments

90

eavesdrop on the communication will be attached to a computer sending data
back to a central server for researchers and students to perform additional
analysis on the communication of those devices. The single user device within
the cage will be controllable externally, allowing users to simulate having the
devices themselves and making requests for data or sending data to the devices.

5 Results

Currently, the proof-of-concept testbed is designed primarily to attack devices
owned by the attacker, though this restriction will not be present in the full
testbed. To attack the communication, we have both an Ubertooth One [5],
a device designed to eavesdrop on Bluetooth communication (both Bluetooth
Classic and BLE), and a HackRF One [2], a Software Defined Radio (SDR)
designed to monitor RF communication from 1MHz to 6GHz (well within the
communication range of personal use devices, usually using either 900MHz
or 2.4GHz) as well as transmit signals within that range. Both of these de-
vices are connected to an internet-connected device running Ubuntu, allowing
a server to be run for external connections and analysis. Using these devices,
our testbed is capable of eavesdropping on Bluetooth communication and, with
enough HackRFs, capable of recording and replaying all communication within
the range or frequencies used by personal use devices, allowing a user to ana-
lyze the communication, eavesdrop on Bluetooth packets, and replay recorded
communication or specifically crafted signals.

One advantage of using the HackRF One is that it allows some measure of
understanding to be gained of the communication methods used by personal
use devices that may choose to use a proprietary communication method. With
the communication range pre-defined and available for view through the FCC,
it is trivial to detect a signal being sent from the device and to perform basic
analysis to discover the data being sent. From there, the data can be analyzed
to determine if it is encrypted or unencrypted as well as if replay attacks are
possible against the device.

We also use existing Bluetooth Classic and BLE Man-in-the-Middle attacks,
specifically GATTack.io [17] and BTLEjuice [1] for BLE and btproxy [3] for
Bluetooth Classic attacks. While these attack tools are best used by devices
that use JustWorks pairing, they allow the recording of the communication
as well as the ability to modify or block communication, as desired. Impor-
tantly, while there are an increasingly large number of devices moving away
from using JustWorks as their default pairing method, there remain a signif-
icant number, including headphones and devices prioritizing user simplicity
over security. While these attacks do not and will not work on all wearables
or personal use devices, they provide additional understanding of the pairing
security of personal use devices using Bluetooth.

91

Figure 3: Example captures from HackRF One (Left) and Ubertooth (Right)

With the HackRF One, we have shown a proof-of-concept for a replay
attack by recording communication between a user’s car key fob and their car
and successfully replayed the communication to cause the car to lock (Figure
3). With the Ubertooth One, we have, with permission, eavesdropped on RF
communication, both the communication in and around our campus and to
specific devices (Figure 3).

6 Conclusions

The difficulty of both teaching and researching the security of personal use
devices, including wearables and home automation technology, cannot be over-
come by every instructor or researcher. The cost alone is a major factor in
the ability of researchers to examine the area. We propose to solve this with a
testbed consisting of real personal use devices that can be attacked with exist-
ing attack devices, allowing remote code execution and tests to be run by both
researchers and students. We show that, through the creation of a small-scale
proof of concept testbed, this method is reasonable moving forward, providing
instructors the ability to show existing vulnerabilities and the effectiveness of
existing strategies at combating attackers and researcher the ability to both
explore potential vulnerabilities of specific devices and test discovered vulner-
abilities against a wide range of personal use devices.

Moving forward, we will continue to develop the testbed as well as a robust
method of external connection before releasing the full testbed to the public.
We will create lesson plans for instructors who wish to incorporate personal use
device security into their curriculums, allowing students a better understanding
of the security of the devices they are likely to use daily. Finally, we will
continue looking into methods of incorporating new devices into the testbed
that may not be attackable with traditional eavesdropping, MitM, or replay
attacks, including physical attack methods such as connection to active debug
ports and power analyses.

92

References

[1] BtleJuice Bluetooth Smart (LE) man-in-the-middle framework. https://
github.com/DigitalSecurity/btlejuice, February 2020.

[2] HackRF One. https://greatscottgadgets.com/hackrf/one/, February 2020.

[3] Man in the middle analysis tool for Bluetooth. https://github.com/conorpp/
btproxy, February 2020.

[4] Number of connected wearable devices worldwide by region from 2015 to
2022.. https://www.statista.com/statistics/490231/wearable-devices-
worldwide-by-region/., February 2020.

[5] Ubertooth One. https://greatscottgadgets.com/ubertoothone/, February
2020.

[6] Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and security
in internet of things and wearable devices. IEEE Transactions on Multi-Scale
Computing Systems, 1(2):99–109, 2015.

[7] Ştefan-Ciprian Arseni, Maria Miţoi, and Alexandru Vulpe. Pass-IoT: A platform
for studying security, privacy and trust in IoT. In 2016 International Conference
on Communications (COMM), pages 261–266. IEEE, 2016.

[8] Laura Belli, Simone Cirani, Luca Davoli, Andrea Gorrieri, Mirko Mancin, Marco
Picone, and Gianluigi Ferrari. Design and deployment of an IoT application-
oriented testbed. Computer, 48(9):32–40, 2015.

[9] Yared Berhanu, Habtamu Abie, and Mohamed Hamdi. A testbed for adaptive
security for IoT in eHealth. In Proceedings of the International Workshop on
Adaptive Security, pages 1–8, 2013.

[10] Christopher Champion, Ilesanmi Olade, Constantinos Papangelis, Haining
Liang, and Charles Fleming. The smart2 speaker blocker: An open-source pri-
vacy filter for connected home speakers. arXiv preprint arXiv:1901.04879, 2019.

[11] Eduardo Cuervo, Peter Gilbert, Bi Wu, and Landon P Cox. CrowdLab: An
architecture for volunteer mobile testbeds. In 2011 Third International Con-
ference on Communication Systems and Networks (COMSNETS 2011), pages
1–10. IEEE, 2011.

[12] MP Ponce de Leon, Mats Eriksson, Sasitharan Balasubramaniam, and William
Donnelly. Creating a distributed mobile networking testbed environment-
through the living labs approach. In 2nd International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communi-
ties, 2006. TRIDENTCOM 2006., pages 5–pp. IEEE, 2006.

[13] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis of emerg-
ing smart home applications. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 636–654. IEEE, 2016.

[14] Daniel S Fowler, Madeline Cheah, Siraj Ahmed Shaikh, and Jeremy Bryans.
Towards a testbed for automotive cybersecurity. In 2017 IEEE International

93

Conference on Software Testing, Verification and Validation (ICST), pages 540–
541. IEEE, 2017.

[15] Md Mahmud Hossain, Shahid Al Noor, Yasser Karim, and Ragib Hasan. IoTbed:
A generic architecture for testbed as a service for Internet of things-based sys-
tems. In ICIOT, pages 42–49, 2017.

[16] Fei Hu, Amish Rughoonundon, and Laura Celentano. Towards a realistic testbed
for wireless network reliability and security performance studies. International
Journal of Security and Networks, 3(1):63, 2008.

[17] Sławomir Jasek. Gattacking Bluetooth smart devices. In Black hat USA confer-
ence, 2016.

[18] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kaddoum, and
Nasir Ghani. Demystifying IoT security: an exhaustive survey on IoT vulner-
abilities and a first empirical look on internet-scale IoT exploitations. IEEE
Communications Surveys & Tutorials, 21(3):2702–2733, 2019.

[19] S Perez. IDC: Apple led wearable market in 2018, with 46.2 M of the total 172.2
M devices shipped, 2019.

[20] Shachar Siboni, Vinay Sachidananda, Yair Meidan, Michael Bohadana, Yael
Mathov, Suhas Bhairav, Asaf Shabtai, and Yuval Elovici. Security testbed for
Internet-of-Things devices. IEEE Transactions on Reliability, 68(1):23–44, 2018.

[21] Shachar Siboni, Asaf Shabtai, Nils O Tippenhauer, Jemin Lee, and Yuval Elovici.
Advanced security testbed framework for wearable IoT devices. ACM Transac-
tions on Internet Technology (TOIT), 16(4):1–25, 2016.

[22] Sandra Siby, Rajib Ranjan Maiti, and Nils Ole Tippenhauer. Iotscanner: De-
tecting privacy threats in IoT neighborhoods. In Proceedings of the 3rd ACM
International Workshop on IoT Privacy, Trust, and Security, pages 23–30, 2017.

[23] Ali Tekeoglu and Ali Şaman Tosun. A testbed for security and privacy analysis
of IoT devices. In 2016 IEEE 13th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS), pages 343–348. IEEE, 2016.

[24] Charles Walter and Rose Gamble. Crossing the adaptation boundaries of dis-
tinct testbeds. In 2019 IEEE 4th International Workshops on Foundations and
Applications of Self* Systems (FAS* W), pages 36–39. IEEE, 2019.

[25] Tatsuya Yamazaki. Ubiquitous home: real-life testbed for home context-aware
service. In First International Conference on Testbeds and Research Infrastruc-
tures for the DEvelopment of NeTworks and COMmunities, pages 54–59. IEEE,
2005.

94

Engaging Students with Computing
for the Common Good∗

Conference Panel

James W. McGuffee1, Anthony Davis2, Mark Goadrich3

1Christian Brothers University
Memphis, TN 38104

jmcguff1@cbu.edu
2Lyon College

Batesville, AR 72501
Anthony.Davis@lyon.edu

3Hendrix College
Conway, AR 72032
goadrich@hendrix.edu

1 Memphis’ Fourth Bluff Project

The Fourth Bluff Project is a partnership between several public entities in the
City of Memphis. This project began in 2019 and includes three significant
public spaces along the riverfront in downtown Memphis (the historic Cossitt
Library, Memphis Park, and Mississippi River Park). The project’s goal is
to revitalize and transform these public spaces over the next three years with
a variety of events, activities, prototypes, enhanced connectivity, signage, and
public art, with the hope of redefining the public’s expectations of public parks
and libraries, and foster socio-economic connections across boundaries in a
culturally and environmentally sensitive way.

All computer science majors at Christian Brothers University (CBU) must
complete a year long software development project. In cooperation with CBU’s
Autozone Center for Community Engagement, one of our current computer
science seniors is working on a software project in support of the Fourth Bluff
Project. Additionally, there have been preliminary discussions between CBU
and the Memphis Public Library to expand on the types of projects that might
be accomplished in the next academic year.

∗Copyright is held by the author/owner.

95

2 Vesuvian Institute Near Stabiae

Founded by the Restoring Ancient Stabiae Foundation in 2007, the Vesuvian
Institute is a multi-functional academic and residential hospitality complex
situated overlooking the Bay of Naples and centrally located to the most famous
ancient Roman sites in the world. Our focus is to support and broaden the
study of the cultural, historic and artistic patrimony of our southern Italian
region and partner with researchers and institutions from all over the world.
The Vesuvian Institute is an ideal location for study and tourism in the Bay
of Naples.

In the summer of 2020, a group of faculty and students from Lyon College
will participate in an immersive Vesuvian Institute experience. These students
will include computer science majors who will be working with data to support
the scientific discovery happening at Stabiae.

3 Non-Profit Web Systems Partnerships

Many non-profit organizations have workflow processes currently tracked with
paper and pencil, due to small budgets, limited time, or lack of technical ex-
pertise. In 2016, 2018, and 2019, I taught an upper-level course for computer
science majors and minors which covered Databases and Web Systems, and
included a large term project with a local community partner, such as the
United Way of Central Arkansas, Salvation Army, Child Care Aware, and the
Conway Human Development Center. Through this course, students learned
the course material and created database systems in the context of assisting a
community in need.

My students worked in teams of six, meeting with their local organiza-
tion four times over the semester, first gaining an understanding of the needed
system, and then returning multiple times with work-in-progress updates, cul-
minating in a final presentation for the partner of their prototype application.
This partnership allowed the students to grasp an understanding of complex
issues in service to others and to help the organizations use databases and
programming to make the organization more efficient. Students applied their
classroom knowledge to create a practical system for a community partner, and
in the process, learned about how the partner effects change in the world.

96

Abstract Syntax BNF Is Not
Ambiguous/Inadequate∗

Nifty Assignment

Cong-Cong Xing1, Jun Huang2

1 Department of Mathematics and Computer Science
Nicholls State University
Thibodaux, LA 70310

cong-cong.xing@nicholls.edu
2School of Computer Science

Chongqing Univ. of Posts and Telecommunications
Chongqing, China 400065

xiaoniuadmin@gmail.com

Motivation Abstract syntax BNF is commonly used in the teaching of
theory classes in computer science. One of the confusing points associated
with abstract syntax BNF is that many students think that an abstract syntax
BNF is ambiguous or inadequate to deliver unequivocal language constructs,
and needs to be “fixed” into a concrete syntax BNF in order to be useful. While
this viewpoint is prevalent, it is not the only way to perceive this problem.
The purpose of this nifty assignment is to offer an alternative viewpoint on
this issue.

Overview We typically say that a grammar G is ambiguous or inadequate
if a string in L(G) has more than one parse tree. For any character string,
which is supposedly derived from a given BNF grammar, there are two types
of information embedded in this string: (1) the textual symbols which consti-
tute the string itself and (2) the order in which the string is constructed by
those textual symbols. Unfortunately, due to the way strings are represented
normally (all characters are written on a single line with fonts of the same style
and same size), the order is invisible or lost. However, this loss of information
is not caused by the abstract syntax itself, rather, it is caused by the way
strings are represented. More precisely, the abstract syntax BNF itself spec-
ifies (in an abstract level) the order to build strings by its production rules,

∗Copyright is held by the author/owner.

97

and we concretely follow this order step by step to build strings out of the
abstract grammar. But the footprint of following this order is lost in the final
result due to the way strings are normally represented. In other words, had
we used a different way to represent the derived strings, the order would have
been revealed. One of such ways is the tree representation in which a string
is written as a 2-dimensional figure instead of a linear sequence of symbols.
Another way is to write a string as a linear sequence of symbols using fonts of
different sizes, which is what we introduce in this nifty assignment. We sug-
gest that students use the following simple abstract syntax BNF M := C|MOM,
C:= 0|1|2|...|9, O := +|- to derive some strings in both traditional way
(e.g., 3-4+5) and “different font-size” way (e.g., 3-4+5 and 3-4+5) to realize the
intrinsic order that comes with the abstract syntax BNF, and to see how this
order gets lost (thus causing the ambiguity issue) in the normal representation
of strings, but is preserved (thus nullifying ambiguity issue) if strings are rep-
resented by fonts of various sizes. More examples can be given in the handouts
to students. We stress the following two points.

• The ambiguity or inadequateness issue of abstract syntax BNF is rooted
in the way strings are (normally) represented. This issue does not stem
from the abstract syntax BNF itself. Abstract syntax BNF has the order
information inherently embedded in its production rules and in the se-
quence in which these rules are applied. This order could be shown if we
choose to represent the resulted strings as a tree or in a font-sized style.

• The font-sized mechanism is equivalent to the tree mechanism.
Classroom observations and possible gains: This assignment was

given as homework for a senior-level theory course in computer science. The
feedback was mixed – some students appreciated that the font-sized way helped
them see the underlying order that is otherwise invisible or lost, but some were
still confused. Possible gains from this assignment include

• A clearer and deeper understanding about the nature of the abstract
syntax BNF.

• A true comprehension of the “ambiguity or inadequateness issue” associ-
ated with the abstract syntax BNF.

We hope that this assignment can be found useful by colleagues.

98

Increasing Cyber Security Awareness by
Creating a Case Study and Video Project∗

Nifty Assignment

Luay A. Wahsheh
Department of Computer and Information Science

Arkansas Tech University
Russellville, Arkansas 72801

lwahsheh@atu.edu

Abstract

Writing case studies in undergraduate and graduate courses in cyber
security is a great way to learn class material. In this assignment, a stu-
dent creates a case study and video about a cyber security incident. The
idea is to engage the audience and make them curious about the content
of the case study and video, thus increasing cyber security awareness.
In developing a case study, the student picks an interesting scenario or
story that provides an example of a cyber security incident. It can be a
real cyber security incident or one that the student envisions. Once the
student picks a case, he or she locates reliable sources to provide more
information about it, writes a case study, and presents the case study
to his or her classmates and instructor in the forms of a short paper (1
page) and video (1 minute). The video is an illustration of the student’s
case study and should use the same title and scenario. The student will
combine text, images, and sound to tell the audience about his or her
case study. The student should be present in the video illustrating his
or her case study.

1 Deliverables

There are eight milestones throughout the course to help students build their
case study and video.

∗Copyright is held by the author/owner.

99

• Milestone 1 – Video: Download, Install, and Learn Video Software.

Students pick, install, and learn a video editing software. There is no
deliverable to their instructor for this step. It is a reminder to have the
software installed in order to continue with the rest of the project.

• Milestone 2 – Case Study / Video Summary or Abstract.

Students provide a short description of their topic. They explain how
the topic is connected to their course on cyber security.

• Milestone 3 – Case Study / Video Title and Preliminary List of Refer-
ences.

Student provide the title of their case study and a preliminary list of
recent references.

• Milestone 4 – Case Study Outline and Video Storyboard.

Students develop an outline of their case which shows at a high level
what they are going to cover. They should introduce the case in the
beginning by describing the situation, problem, or story. They provide
more details and may have some aspects of research to prove their points.
Then, they discuss lessons learned from the case. Students create a sto-
ryboard for their video. This is a plan for their video and is similar to
creating an outline. They put together a description of their video in a
paragraph or it could be a list of images/scenes if that works better than
a paragraph.

• Milestone 5 – Collect Picture, Movies, and Multimedia Content for Video.

Students collect media, pictures, and other content for their video. They
combine text, images, and sound to tell the audience about their case.
They should be present in the video (live record themselves) illustrating
their case study. There is no deliverable to their instructor for this step.
It is a reminder to the students to get their material organized.

• Milestone 6 – Case Study Paper First Draft and Video First Version.

Students submit their case study first draft and video first version. When
they have finished their first draft and video first version, students are
encouraged to assume that they would spend only a couple of hours of
revision to produce their final paper and video.

100

• Milestone 7 – Critique and Collect Feedback.

Students critique and grade one of their classmate’s case study paper
first draft and video first version. Students collect feedback on their case
study and video from their classmates’ critique.

• Milestone 8 – Case Study Final Paper and Video Final Version.

Students submit their case study final paper and video final version.

2 Tools

In order to provide a consistent format for all the case studies, it is required
that students use a conference template to deliver their case study work, which
contains information about formatting the case studies. An IEEE conference
template is provided to the students by the instructor.

Students could use any video editing software to create their video. The
video must be in a common format to be played on a standard Windows per-
sonal computer (e.g., Windows Media, Flash, or Quicktime). Students could
use their smartphone to create a high quality video using a free product called
Videolicious (https://videolicious.com/). Other tools include Microsoft
Windows Live Photo Gallery and Movie Maker and Microsoft PowerPoint (if
they feel comfortable with its multimedia features). Macintosh users can use
iMovie for Mac (https://www.apple.com/imovie/) or a similar multimedia
package designed especially for the Mac platform.

Students could use OpenShot (https://www.openshot.org/), a very sim-
ple, easy-to-use, and free program. Adobe Creative Cloud applications, which
include Premiere and Premiere Rush could be used by students. Premiere is
the full-blown video editing software and Rush is the more basic program that
includes mobile app versions. Another option is Lightworks, which is avail-
able to download for free (the Pro version is not free of charge). Additional
tools include Wondershare Filmora9, VideoScribe, Clideo, Davinci Resolve,
and PhotoStage.

3 Conclusion

In this assignment, students create a case study and video about a cyber se-
curity incident. This assignment is well received by students in undergraduate
and graduate courses in cyber security. Students like that this assignment is
engaging, hands-on, and creative. This assignment could be easily modified by
instructors to be used in undergraduate and graduate courses, no matter the
field of study.

101

The State of Machine Learning∗

Conference Tutorial

Dan Brandon
MIS, School of Business

Christian Brothers University
Memphis, TN 38104

dbrandon@cbu.edu

The field of Artificial Intelligence (AI) is certainly the buzz today, and we
are deluged by TV and print ads from vendors offering AI hardware, software,
and consulting services. This is rightly so as AI has achieved a high degree of
success in recent years for addressing may problems in a variety of disciplines
including: business, robotics, medicine, sports, and general use as self-driving
vehicles.

The more appropriate term here is Machine Learning (ML) which is the
scientific study of algorithms and statistical models that computer systems
use to progressively improve their performance on a specific task. A machine
learning system is trained rather than explicitly programed. Machine learning
algorithms build a mathematical model from sample data, known as “training
data”, in order to make predictions or decisions without being programmed. In
its application across business problems, machine learning is often referred to
as “predictive analytics”.

A popular is conception is that machine learning only employees neural
network algorithms. However the field of machine learning is very broad and
includes many methods and algorithms. In addition, many problems can be
addressed by several different algorithms.

ML can be divided into supervised vs unsupervised approaches. In su-
pervised learning, the data one feeds to the algorithm includes a “label” (the
answer or desired output variable). Supervised is further divided into regres-
sion where the output is a real value, and classification where the output is a
category. Examples of supervised methods include:

Linear regression (MLR)
Logistic regression and other specialized regressions Naive Bayes

∗Copyright is held by the author/owner.

102

Multivariate Analysis of Variance (MANOVA) Linear discriminant anal-
ysis
Nearest neighbors
Support vector machines (SVM)
Trees and forests
Neural networks when used in a supervised manner

Unsupervised learning is the training of a machine using information that is
neither classified nor labeled and allowing the algorithm to act without guid-
ance to group unsorted information according to similarities, patterns, and
differences. In business and medical applications, unsupervised learning is of-
ten called “data mining”. Examples of unsupervised methods include:

K-mean clustering and K-nearest neighbor clustering Hierarchical cluster
analysis
Visualization and dimensionality reduction
Principal component analysis (PCA)
Kernel methods and Support Vector Machines (SVM)
Canonical Correlation (CC)
Conjoint analysis
Factor Analysis (FA)
Multidimensional Scaling
Structure Equation Modeling (SEM)
Affinity (Market Basket) Analysis
Neural networks when used in an unsupervised manner

A key issue in ML is which algorithms work best for which problems. Key
questions are: does the problem need a supervised or unsupervised approach,
is this a perceptual or numerical problem, does the output require a regression
or classification, and how much training data is available. This tutorial will
provide some ML history, describe ML approaches and algorithms, and address
those key questions involving the selection of ML algorithms. The tutorial will
also discuss the resources needed and available for teaching ML in colleges.

Presenter Background

Dr. Dan Brandon is a Professor of Management Information Systems at Chris-
tian Brothers University in Memphis TN where he teaches courses in MIS,
programming, database, data analytics, statistics, and project management.
He has authored two books and numerous journal articles and conference pro-
ceedings including some for CCSC. He has designed and developed modern
IT systems for a number of organizations and was formerly the Director of
Information Systems at the NASA Stennis Space Center.

103

Cyber Security Hands-On Learning
Using Steganography∗

Conference Tutorial

Luay A. Wahsheh
Department of Computer and Information Science

Arkansas Tech University
Russellville, Arkansas 72801

lwahsheh@atu.edu

Abstract

One method that provides more security in computer systems is the use of
hidden messages. The hidden messages can be plaintext, ciphertext, or image.
This tutorial will give an overview of steganography, which is a technique to
hide messages within data. We will install Quick Stego and WinHIP. Then, we
will have hands-on exercises that use these tools to hide secret messages.

Description

Steganography is hiding messages within data. This technique makes secret
messages (which could be malware) appear invisible to entities. Although
steganography algorithms use different formats including image, audio, and
video, we focus on hiding messages within images. The image would be the
carrier that holds the hidden message and the original content of the image.
The hidden messages are embedded in a way that does not significantly change
the properties of the original image. Steganography software tools (e.g., Win-
Hip, EzStego, and OpenPuff) allow embedding hidden messages in an image
and then extract that information.

Both steganography and cryptography are concerned with preventing unau-
thorized access to information. One advantage of steganography over cryptog-
raphy is that a secret message that is generated by using steganography does

∗Copyright is held by the author/owner.

104

not attract attention to itself because no encryption is used. When steganogra-
phy is combined with cryptography, the security of data increases; in this situa-
tion, steganography is used to hide a ciphertext, and if the use of steganography
was discovered, then cryptography is used to encrypt the plaintext.

The original image is the one in which the secret message is embedded.
The payload is the secret message that will be embedded in the original image.
The stego image is the final image that resulted from embedding the payload
in the original image. Figure 1 shows an example of an original image, payload,
and stego image. We used WinHip steganography software tool to produce the
stego image. The human naked eye cannot detect the difference between the
original image and the stego image.

Figure 1: An Original Image, Payload, and Stego Image

105

Introduction to Jetstream - A Research
and Education Cloud ∗

Conference Tutorial

Sanjana Sudarshan and Jeremy Fischer
Research Technologies
Indiana University

Bloomington, IN 47401
{ssudarsh, jeremy}@iu.edu

Abstract

Jetstream is the first production cloud funded by the National Science Foun-
dation (NSF) for conducting general-purpose science and engineering research
as well as an easy-to-use platform for education activities. Unlike many high-
performance computing systems, Jetstream uses the interactive Atmosphere
graphical user interface developed as part of the iPlant (now CyVerse) project
and focuses on interactive use on uniprocessor or multiprocessor. This in-
terface provides for a lower barrier of entry for use by educators, students,
practicing scientists, and engineers. A key part of Jetstream’s mission is to
extend the reach of the NSF’s eXtreme Digital (XD) program to a commu-
nity of users who have not previously utilized NSF XD program resources,
including those communities and institutions that traditionally lack significant
cyberinfrastructure resources. One manner in which Jetstream eases this ac-
cess is via virtual desktops facilitating use in education and research at small
colleges and universities, including Historically Black Colleges and Universities
(HBCUs), Minority Serving Institutions (MSIs), Tribal colleges, and higher
education institutions in states designated by the NSF as eligible for funding
via the Established Program to Stimulate Competitive Research (EPSCoR).

While cloud resources won’t replace traditional HPC environments for large
research projects, there are many smaller research and education projects that
would benefit from the highly customizable, highly configurable, programmable

∗Copyright is held by the author/owner.

106

cyberinfrastructure afforded by cloud computing environments such as Jet-
stream. Jetstream is a Infrastructure-as-a-Service platform comprised of two
geographically isolated clusters, each supporting hundreds of virtual machines
and data volumes. The two cloud systems are integrated via a user-friendly
web application that provides a user interface for common cloud computing
operations, authentication to XSEDE via Globus, and an expressive set of web
service APIs.

Jetstream enables on-demand access to interactive, user-configurable com-
puting and analysis capability. It also seeks to democratize access to cloud
capabilities and promote sharable, reproducible research. This event will de-
scribe Jetstream in greater detail, as well as how its unique combination of
hardware, software, and user engagement support the "long tail of science."
This tutorial will describe Jetstream in greater detail, as well as how its unique
combination of hardware, software, and user engagement support the "long tail
of science." Attendees will get a greater understanding of how Jetstream may
enhance their education or research efforts via a hands-on approach to using
Jetstream via the Atmosphere interface.

Tutorial Description

This tutorial requires two to three hours.

• Prerequisites: Basic Linux command line knowledge a plus (but not re-
quired)

• Required: Laptop, modern web browser (Chrome, Firefox, Safari)

• Targeting: Educators, Researchers, Campus Champions/ACI-Ref Facili-
tators, Campus research computing support staff

This tutorial will first give an overview of Jetstream and various aspects of
the system. Then we will take attendees through the basics of using Jetstream
via the Atmosphere web interface. This will include a guided walk-through
of the interface itself, the features provided, the image catalog, launching and
using virtual machines on Jetstream, using volume-based storage, and best
practices.

We are targeting users of every experience level. Atmosphere is well-suited
to both HPC novices and advanced users. This tutorial is generally aimed at
those unfamiliar with cloud computing and generally doing computation on
laptops or departmental server resources. While we will not cover advanced
topics in this particular tutorial, we will touch on the available advanced ca-
pabilities during the initial overview.

107

Tutorial Program

This is a sample tutorial program. Time required for this tutorial is approxi-
mately 3 hours.

• What is Jetstream?

• Q & A and what brief hands-on overview

• Getting started with Jetstream, including VM launching

• Break

• Accessing your VM, creating and using volumes

• Customizing and saving images, DOIs

• Cleaning up

• Final Q & A

108

