
The Journal of Computing
Sciences in Colleges

Papers of the 25th Annual CCSC
Northeastern Conference

April 17-18, 2020
Ramapo College of New Jersey

Mahwah, NJ

Baochuan Lu, Editor Mihaela Sabin, Regional Editor
Southwest Baptist University UNH at Manchester

Volume 35, Number 8 April 2020

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 9

CCSC National Partners 11

Regional Committees — 2020 CCSC Northeastern Region 12

Reviewers — 2020 CCSC Northeastern Conference 13

An Overview of Data Analytics: Spreadsheet Modeling,
Visualization, and Supervised and Unsupervised Learning 15

Carolyn C. Matheus, Marist College

Teaching Database for Freshmen: A Two-Thread Model 33
Yang Wang, Margaret McCoey, Thomas Blum, La Salle University

Integrative Learning in CS1: Programming, Sustainability, and
Reflective Writing 44

Jeffrey A. Stone, Laura Cruz, Penn State University

Simple Agent Analyses for CS1 using British Square 55
Courtney Brown, Chris Alvin, Lori Alvin, John Harris, Furman Uni-
versity

Experiential Learning Framework for Smaller Computer Science
Programs 66

Zachary Kissel, Christopher Stuetzle, Merrimack College

Workforce and Career Readiness for Computing and Technology
Students 76

Jean Chu, Patricia Morreale, Kean University, Michael Press, Tech
Data Corporation

An Interdisciplinary Approach to Detecting Empathy Through
Emotional Analytics and Eye Tracking 87

Jami L. Cotler, Luis Villa, Dmitry Burshteyn, Zachary Bult, Siena
College, Garrison Grant, Let’s Chat About It, Michael Tanski, Anthony
Parente, Dumbstruck

3

Project-Based App Programming: Tools and Techniques for a
Successful Novice-Focused App Development Course 96

Michael Makutonin, St. Bonaventure University, Samuel Chen, SUNY
Upstate Medical University

Using Gamification to Encourage Student Success 106
Patricia Morreale, Nohelia Diplan, Kean University

Automatic Programming Assignment Assessment beyond
Black-box Testing 116

Karen H. Jin, University of New Hampshire at Manchester, Michel
Charpentier, University of New Hampshire at Durham

Oh the Robots that You can Choose: A Technical Review of
Mobile Robot Platforms 126

Benjamin T. Fine, Ramapo College of New Jersey, Jory Denny, Nate
Dix, Ashley Frazier, University of Richmond

Animated Hints Help Novices Complete More Levels
in an Educational Programming Game 136

Michael J. Lee, Joseph Chiou, New Jersey Institute of Technology

(Re)Engaging Novice Online Learners
in an Educational Programming Game 146

Michael J. Lee, New Jersey Institute of Technology

Dealing with Uncertainty: a PiecewiseGrid Agent
for Reconnaissance Blind Chess 156

Timothy Highley, Brendan Funk, Laureen Okin, La Salle University

Real-World Assignments at Scale to Reinforce the Importance of
Algorithms and Complexity 166

Jason Strahler, Matthew Mcquaigue, Alec Goncharow, David Burlin-
son, Kalpathi Subramanian, Erik Saule, UNC Charlotte, Jamie Payton,
Temple University

Activity Based Learning for Cloud Computing 176
Michalina Hendon, Loreen Powell, Bloomsburg University

Cohorting Incoming Students in a CS1 Course: Experiences and
Reflections from the First Year of Implementation 186

Adrienne Decker, University at Buffalo, Christopher Egert, Erin Cas-
cioli, Rochester Institute of Technology

4

Creation of a Virtual Machine for a Database Class 198
Christine F. Reilly, Skidmore College

Jupyter Notebooks versus a Textbook in a Big Data Course 208
Roland DePratti, Central Connecticut State University

Learning Assembly Language through Visual Simulation 221
Kamen Kanev, Shizuoka University, Mokhtar Aboelaze, York Univer-
sity, Reneta P. Barneva, SUNY Fredonia

Cooperative Learning in Computer Science: Jigsaw Activity 232
Anastasia Kurdia, Tulane University

Real-World Data, Interactive Games and Visualizations in Early
CS Courses Using BRIDGES — Conference Workshop 240

Kalpathi Subramanian, Erik Saule, The University of North Carolina at
Charlotte, Jamie Payton, Temple University

How to Create, Host, and Successfully Run a High School
Programming Contest — Conference Workshop 243

Eric Breimer, Daniel DiTursi, Robin Flatland, Ira Goldstein, Darren
Lim, James Matthews, Scott Vandenberg, Pauline White, Siena College

From Drawing to Coding: Teaching Programming
with Processing — Conference Tutorial 245

Mihaela Malita, Saint Anselm College, Ethel Schuster, Northern Essex
Community College

Tutorial on Open Educational Resources and Creative Commons
License — Conference Tutorial 247

Susan Imberman, College of Staten Island, Ann Fidder, City University
of New York

Using Subgoal Labeling in Teaching Introductory Programming
— Conference Tutorial 249

Adrienne Decker, University at Buffalo, Briana B. Morrison, University
of Nebraska Omaha, Lauren Margulieux, Georgia State University

Want your students to participate in Open Source? Join us in
LibreFoodPantry! — Lightning Talk 252

Karl R. Wurst, Worcester State University, Stoney Jackson, Heidi J.
C. Ellis, Western New England University, Darci Burdge, Lori Postner,
Nassau Community College

5

Bringing Industry into the University Experience
— Panel Discussion 254

Adrienne Decker, University at Buffalo, Peter DePasquale, New York
University, Rajendra K. Raj, Rochester Institute of Technology, Matt
Jadud, Applied Research in Acoustics

Strategies for Maximizing the Value of Industry Adjuncts:
The Tech-in-Residence Corps Model — Panel Discussion 256

Susan P. Imberman, City University of New York, Robert Domanski,
New York City Government, Shermane Austin, Medgar Evers College,
Ross Dakin, New Jersey Office of Innovation

Integrating Cloud Computing across Existing Computer and
Information Science Courses — Poster Abstract 259

Ruth Kurniawati, Westfield State University

The Low-Budget Experimental Computer Lab Boosts Students’
Research — Poster Abstract 261

David Pitts, Vladimir V. Riabov, Rivier University

Integrating Personalized Online Practice into an Introductory
Programming Course — Poster Abstract 264

Yana Kortsarts, Widener University, Kamil Akhuseyinoglu, Jordan Barria-
Pineda, Peter Brusilovsky, University of Pittsburg

Becoming Lifelong Learners: CS Learners’ Autonomy
— Poster Abstract 267

Ruiqi Shen, Joseph Chiou, Michael J. Lee, New Jersey Institute of Tech-
nology

Jupyter Notebooks in Education — Poster Abstract 268
Jeremiah W. Johnson, Karen H. Jin, University of New Hampshire

End-to-End Machine Learning Project Design for Undergraduate
Classrooms — Poster Abstract 270

Karen H. Jin, University of New Hampshire

Applying Three Machine Learning Algorithms to Three Breast
Cancer Diagnosis Datasets — Poster Abstract 272

Lilly Shelomyanov, Sofya Poger, Felician University

6

Differentiating Computer Science Courses in Undergraduate and
Graduate Level — Poster Abstract 275

Songmei Yu, Sofya Poger, Felician University

Capstone: Transitioning a Successful Undergraduate Research
Program to a Multi-Research Model — Poster Abstract 278

Michael Jonas, University of New Hampshire

What Makes Students’ Capstone Projects Successful?
— Poster Abstract 280

Vladimir V. Riabov, Rivier University

Assessment of Computer Science Courses in the Context of a
Global Knowledge Economy — Poster Abstract 283

Viktoria Popova, Sofya Poger, Felician University

LibreFoodPantry: Developing a Multi-Institutional, Faculty-Led,
Humanitarian Free and Open Source Software Community
— Poster Abstract 286

Karl R. Wurst, Worcester State University, Stoney Jackson, Heidi J.
C. Ellis, Western New England University, Darci Burdge, Lori Postner,
Nassau Community College

Student Reflections on Learning in HFOSS — Poster Abstract 288
Gregory W. Hislop, Drexel University, Heidi J. C. Ellis, Western New
England University, Becka Morgan, Western Oregon University

7

8

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:
Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

9

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

10

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

11

2020 CCSC Northeastern Conference Steering
Committee

Lawrence D’Antonio, Conference Chair Ramapo College of New Jersey
Ben Fine, Conference Chair . Ramapo College
Jim Teresco, Program Chair . Siena College
Ali Erkan, Papers Chair . Ithaca College
Yana Kortsarts, Papers Chair . Widener University
Susan Imberman, Lightning Talks Chair . . . The City University of New York
Joan DeBello, Panels Chair . St. John’s University
Bonnie MacKellar, Tutorials and Workshops Chair St. John’s University
Ting Liu, Tutorials and Workshops Chair .Siena College
Dan Rogers, Faculty Posters Chair The College at Brockport
Ingrid Russell, Speakers Chair . University of Hartford
Mike Gousie, Speakers ChairWheaton College (Massachusetts)
Karl Wurst, Student Unconference ChairWorcester State University
Darren Lim, Encore Chair . Siena College
Sandeep Mitra, Undergraduate Posters ChairThe College at Brockport
Alice Fischer, Undergraduate Posters Chair University of New Haven
Aparna Mahadev, Undergraduate Posters Chair . .Worcester State University
Stefan Christov, Undergraduate Posters Chair Quinnipiac University
Liberty Page, Undergraduate Posters Chair University of New Haven
Mark Hoffman, Registration Chair . Quinnipiac University
Rick Kline, Registration Chair . Pace University
Frank Ford, Programming Contest . Providence College
Del Hart, Programming Contest . SUNY Plattsburgh
Scott Frees, Career Fair Coordinator . Ramapo College
Kevin McCullen, Vendors Chair . SUNY Plattsburgh

Regional Board — 2020 CCSC Northeastern Region

Lawrence D’Antonio, Board Representative . . Ramapo College of New Jersey
Mihaela Sabin, Editor University of New Hampshire at Manchester
Mark Hoffman, Registrar . Quinnipiac University
Adrian Ionescu, Treasurer .Wagner College
Stoney Jackson, Webmaster Western New England University

12

Reviewers — 2020 CCSC Northeastern Conference

Chris Alvin . Furman University
Barbara Bracken .Wilkes University
William Campbell . UNC Pembroke (retired)
Kailash Chandra . Pittsburg State University
Stefan Christov . Quinnipiac University
Mary Courtney . Pace University
Lawrence D’Antonio . Ramapo College of New Jersey
Garrett Dancik .Eastern Connecticut State University
Elise Deitrick . Codio
Dan DiTursi .Siena College
Peter Drexel . Plymouth State University
Benjamin Fine .Ramapo College of New Jersey
Alice Fischer . University of New Haven
Robin Flatland . Siena College
Timothy Fossum . Rochester Institute of Technology
Seth Freeman .Capital Community College
Martin Gagne . Wheaton College
Alessio Gaspar . University of South Florida Polytechnic
Micheal Gousie .Wheaton College
Nadeem Hamid . Berry College
Scott Harrison . St. John Fisher College
Delbert Hart . SUNY Plattsburgh
Michalina Hendon . Bloomsburg University
Mark Hoffman .Quinnipiac University
Karen Jin . University of New Hampshire
William Joel . Graphics Research Group/WCSU
Erin Johnson .CodeCrew
Jeremiah Johnson . University of New Hampshire
Sotirios Kentros . Salem State University
Bo Kim . Southern New Hampshire University
Zach Kissel . Merrimack College
Bradley Kjell . Central Connecticut State University
Devorah Kletenik . City University of New York
Daniel Krutz .Rochester Institute of Technology
David Levine . St. Bonaventure University
Jingsai Liang .Westminster College
Yi Liu . University of Massachusetts Dartmouth
Mihaela Malita . Saint Anselm College

13

Kevin McCullen . SUNY Plattsburgh
Paul-Marie Moulema . Western New England University
Muath Obaidat . City University of New York
Pat Ormond . Utah Valley University
Greta Pangborn . Saint Micheal’s College
Sofya Poger . Felician University
Jennifer Polack .University of Mary Washington
Daniel Rogers .The College at Brockport
Nicholas Rosasco . Valparaiso University
Christopher Stuetzle . Merrimack College
Sheng Tan .Trinity University
Jim Teresco . Siena College
David Voorhees . Le Moyne College
Marc Waldman .Manhattan College
Songmei Yu .Felician University
Junxiu Zhou . Northern Kentucky University

14

An Overview of Data Analytics:
Spreadsheet Modeling, Visualization, and
Supervised and Unsupervised Learning∗

Carolyn C. Matheus
Computing Technology Department

Marist College
Poughkeepsie, NY 12601
Carolyn.Matheus@Marist.edu

Abstract

Data science and analytics have emerged as thriving fields. As busi-
nesses and individuals produce massive volumes of data as a byprod-
uct of online activity, a growing need exists for professionals trained
to capitalize on the potential of big data by understanding how to use
analytic techniques to generate valuable information from large collec-
tions of data. At the same time, online education is one of the fastest
growing segments of higher education. The number of students work-
ing online toward Master’s degree increases each year. The Association
to Advance Collegiate Schools of Business (AACSB) and the joint task
force of the Association for Computing Machinery (ACM) and Associ-
ation for Information Systems (AIS) have called for data analytics in
graduate curriculum. To meet these demands, this paper provides an
overview of a skills-based online graduate course in which students learn
statistical techniques for approaching big data. The hands-on curriculum
focuses on spreadsheet modeling, data visualization, rudiments of data
management and data analysis, and an introduction to data mining and
predictive modeling, combined with state-of-the-art software, real world
data sets, and the skills necessary to use the tools. This paper provides
an overview of the course goals and curriculum, data sets and software
tools used for visualization and analytics, and the online platform used
as the content management system for course delivery.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

15

1 Introduction

Data science and data analytics have emerged as thriving fields. As businesses,
governments, and individuals produce massive volumes of data as a byproduct
of online activity, there is a growing demand for professionals trained to capital-
ize on the potential of big data by understanding how to use analytic techniques
to generate value from large collections of data [4]. Important characteristics of
such people include creativity, curiosity, analytical abilities, statistical exper-
tise, and communication skills combined with knowledge of how to drill down
data to tell a meaningful story to stakeholders [6, 7]. At the same time, online
education is one of the fastest growing segments of higher education. An es-
timated 3.5 million students were working toward their degree online in 2016;
this number is expected to increase to 5 million by 2020. Business continues
to be the most popular major for undergraduates and graduates, accounting
for approximately 25% of enrollment in online degree programs [5].

The Association to Advance Collegiate Schools of Business (AACSB) in-
cluded data analytics in Business Standard 9 for curriculum content and Ac-
counting Standard A7 for Information Technology Skills and Knowledge for
Accounting Graduates [9]. Likewise, the joint task force of the Association for
Computing Machinery (ACM) and Association for Information Systems (AIS)
included data management and analytics as necessary components of graduate
degrees in Information Systems, including integrating and preparing data for
analytical use, applying analytics methods, and analyzing data using advanced
contemporary methods [8]. This paper provides an overview of the develop-
ment and delivery of this online graduate course titled Analytics. This course
introduces a range of data driven disciplines and technologies to help students
understand how analytics can be used to make better, faster business decisions.
Students in this course are exposed to spreadsheet modeling, data visualiza-
tion, data management and analysis, and an introduction to data mining and
predictive modeling. The course incorporates real world data sets and sce-
narios from different domains, and state of the art software coupled with the
skills necessary to use the tools. This paper provides an overview of the course
goals and curriculum, data sets and software tools used for visualization and
analytics, and the online platform used for content management and delivery.

2 Course Goals and Management

This course aims to change the way students think about data and its role in
business, gaining an understanding of how organizations use analytics to solve
problems and support decision making. Students become familiar with the con-
cepts of relational data manipulation and querying, dimensional analysis, and

16

database access. They learn to interpret and use quantitative and decision sup-
port techniques through the use of spreadsheet models, data visualization tech-
niques, and become familiar with data mining and predictive models through
the use of specialized software. Content is delivered online using the iLearn
content management system, which was adapted from the open-source Sakai
platform for learning management systems [2]. Through the iLearn interface,
students can access all course materials by utilizing a series of functional tools,
including: a video introduction by the instructor, a calendar of assignments
and due dates including an assignment submission site, an email system, an
online gradebook, a tool for interactive discussion forums, a tests and quizzes
tool, and a synchronous chat room. Additional functionality includes a tool for
podcasts; a polling tool for posting questions, anonymous voting, and gathering
results; a web-content tool for linking to internal resources or external websites;
a news tool for RSS feeds; and an optional tool that provides early alert and
detection of academically at-risk students. The learning modules landing page
guides students through the course content, which is largely based on an orga-
nized series of video tutorials, supporting lecture slides, and assigned readings.
Each module is delivered as its own dynamic web page. The mandatory content
is delivered asynchronously to allow students the flexibility to view content and
complete assignments on their own schedule. Tools for synchronous commu-
nication, including live chats and video communication, are available through
the course interface. This course adheres to institutional and Quality Matters
guidelines for online courses. Quality Matters includes metrics for ensuring
courses meet rigorous requirements and guidelines to ensure the highest level
of online instruction, including guidelines for developing learning objectives,
assessing and measuring goals, course technology, delivery of instructions ma-
terials, interaction with and support for learners, and accessibility and usability
[1].

3 Course Curriculum and Data Sets

The curriculum is delivered via an online platform as three distinctive learn-
ing modules. Module 1 teaches spreadsheet modeling using Microsoft Excel,
Module 2 teaches data visualization using Tableau, and Module 3 teaches su-
pervised and unsupervised learning utilizing Weka. Each Module includes a
series of video tutorials, lecture slides and videos, assignments, discussion ques-
tions, and interactive discussion forums with classmates and the professor. The
software platforms (i.e., Excel, Tableau, and Weka) were collaboratively cho-
sen by faculty and administration from Information Systems and Business, as
well as feedback from industry professionals, based on currently trending needs
for skillsets of graduates entering and exceling in the workforce. Two different

17

data sets were used across the three learning modules: a large open breast
cancer data set and a weather data set. The breast cancer data set includes
data points of attributes related to breast cancer such as age, menopause, tu-
mor size, details about nodules, and breast density. The weather data set
includes a variety of weather data points including temperature in Fahrenheit,
dew point, humidity, visibility, precipitation, and wind speed. The following
sections provide a detailed overview of how the data sets were incorporated
into the three learning modules.

3.1 Spreadsheet modeling
Using the large weather data set, students learn how to perform advanced
mathematical calculations including: sort, filter, and format data; create, in-
sert, and edit charts to graphically display results; conditional formatting and
advanced IF functions; create array and related formulas; create macros; and
generate pivot tables. Students are guided through a series of video tutorials
and lectures delivered through the course site that teach and demonstrate the
lessons. They then apply techniques for manipulating the data by answering
a series of assigned questions. Assignments include learning how to freeze lock
rows and columns, password protect files, create formulas, and calculate aver-
ages for columns which must be displayed in a designated cell, such as =AV-
ERAGE(C2:C6721). In one question, students are asked to add a new column
for Celsius temperature and generate a formula to convert temperatures in
Fahrenheit to Celsius; for example, =(C2-32)*5/9. In addition, students are
asked to generate a formula to calculate the difference in hours between April
4 at 16:00:00 and May 25 and 8:00:00. Students learn to visualize their results
by generating charts and graphs to display the data and learn to edit the axes
(see Figure 1).

Advanced spreadsheet tasks include conditional formatting, nested count-
ifs, and pivot tables. Conditional formatting instructions include: Use condi-
tional formatting for the column of DPf (Dew Point, Fahrenheit). If the value
is above 67°, denote with a green dot. If the value is between 33°and 67°, de-
note with a yellow dot. If the value is below 33°, denote with a red dot. Figure
2 presents a visual example that demonstrates select rows.

Students learn to create nested IF statements to denote data ranges by
adding a new column to the spreadsheet and creating an IF statement that
accounts for the following challenge: If the TmpF (Temperature in Fahrenheit)
is between 45°and 70°, then the value is comfortable; if the temperature is over
70°, then the value is too warm; if the temperature is lower than 45°, then the
value is too cold. The formula summarizes the data in a chart that provides a
live count of the ranges denoted. Figure 3 presents a visual example.

Students also learn to use pivot tables for extracting information from the
data. Pivot tables allow the ability to quickly extract this type of information

18

and present it in an easy to understand chart. Students are tasked with gen-
erating a pivot table to show the average TmpF and DPf by year (see Figure
4).

3.2 Visualization
Tableau is a software suite for data visualization [3]. Students receive free aca-
demic license for the course. In Tableau, students learn how to import data into
Tableau, edit metadata, blend and drill down data, create data subsets, sort
and group data, and set parameters for filtering and formatting data. Students
also learn how to evaluate and interpret their observations and draw conclusions
to summarize the meaning of data patters through interactive dashboards and
story features. Students can optionally join the course’s asynchronous open
discussion forum or synchronous live chat room to discuss questions with peers
and the professor. Using the weather data set, students address a series of
assignment challenges. Sample questions include:

• Use a filter to remove the data in 2008 and describe whether there is a
visual change in the shape of the data points for only the 2009 data, and
explain why.

• Create a set which contain all of the dates in January. Drag the set to
the column between Date and Time. Describe the result and explain why
the result looks like this.

• The Time column incorrectly contains a date of 1899/12/30. Find a
solution to fix this problem. Drag the Time dimension to a column and
TmpF to a row. Change the TmpF calculation to Average. Write a short
report that describes when it is coldest in a day and when it is warmest
in a day.

• Create a Night Time group from midnight to 6:00 am. Create a short
report explaining whether the Night Time group has the lowest temper-
ature.

At each step students are required to show their work as they critically eval-
uate their output. Students can show their work by uploading their progress to
Tableau server or produce a series of screenshots to embed in their assignments
to show their process. Figure 5 depicts an example of the Tableau interface
with data dimensions and measures as well as a bar chart demonstrating trends
in average TmpF and DpF data by quarter. Figure 6 presents the data using
a different visual style.

The final challenge is to pull together findings and presents a cohesive story
with the data. Students can push their charts and graphs from previous as-
signments into a dashboard and edit the layout to make a presentation with
the data. Students are expected to evaluate the data, provide a critical eval-
uation of the data trends, and present their findings in a way that is visually

19

appealing through charts, graphs, and a narrative that tells a story with the
data. Students are informed, This assignment is intended to bring it all to-
gether, to tell a story with the data. The narrative of the story is yours. Make
sure you provide a rationale and explanation of why you choose to present the
data you are presenting in a particular way. Figures 7 and 8 show examples of
dashboard stories created to visually showcase trends in the data and different
techniques for charts and graphs.

Students also participate in discussion forums where they virtually interact
with their peers. These graded forums are designed to help the students as they
progress through the content of the course. An example forum question for the
Tableau learning module is: Please see the attached trend line and discuss
with your classmates what this trend line means. The column is AVG(DPf)
and row is AVG(Tmp F). Please pay attention to R-square and P value, and
interpret the result. Figure 9 demonstrates the trend line referenced in the
discussion question. Responses must include a clear explanation of the trend
line, with examples, explanations, and interpretations of R-square and P values.
For example, the graph shows evidence of a strong positive linear relationship
between TmpF and DpF. That is, as temperature increases, dewpoint also
increases. There are numerous factors to look at when drawing this conclusion,
including p-value, R-squared, and additional factors of regression equations.
The output for the trend line model shows p < 0.05, indicating a high level of
certainty that the data are related and results are statistically significant. In
addition, an R-squared value of .89 indicates the trend line has a positive slope
with high statistical significance, suggesting a good fit of the trend line for this
relationship.

3.3 Supervised and unsupervised learning
Weka is an open source program with machine learning algorithms for data
mining [10]. Weka includes tools for data pre-processing, regression, associa-
tion rules, and visualization, as well as classification and clustering algorithms.
Using an open breast cancer data set, students learn how to normalize data,
run cross-validation and training/testing decisions trees, and visualize the re-
sults. Using the weather data set, students learn how to run and interpret
data mining clustering algorithms. Figure 10 provides an example of the Weka
interface for supervised learning using an open breast cancer data set. The fol-
lowing sections provide an overview and specific examples of questions, tasks,
and assignments students complete for supervised and unsupervised learning
tasks using Weka.
Supervised learning with decision trees. Students complete tasks related
to decision trees, which can be used for calculating probabilities and evaluating
conditions for predicting the likelihood of an outcome. Students use Weka to
evaluate a large open breast cancer data set. After viewing a series of video

20

tutorials, student run the data set with J48 decision trees using the cross
validation in Weka and interpret the difference in results compared to using
J48 by 66% as training and 34% as testing. They are then asked to answer
questions and provide documentation of their findings, including:
What is the difference between running cross validation and testing/training?
A model answer should incorporate aspects of the following explanation: Cross
validation, which is better suited for smaller data sets (e.g., less than 1000 data
points), holds out 10% of the data and uses 90% for training. Each data point
is tested one time and used for training 9 times. The results of these 10 runs
are then averaged, and then Weka runs the entire data set as a test against
this average. Put another way, 10-fold cross-validation processes the data by
dividing it into 10 folds. During each iteration, one-fold is held out during the
ten trials and the results are then averaged. The eleventh iteration is the final
step of the process whereby all of the data is used to obtain the actual classifier.
Another technique for building a classifier from a data set is training/testing.
The data can be split, where the larger percentage of data is used to train (e.g.,
66% used for training), while the rest of the data (e.g., 34%) is used to test and
refine the final classifier. This technique is better suited for larger data sets.
Provide a side by side comparison of instanced, attributes, number of leaves,
size of tree, and correct and incorrect classifications. Figure 11 presents an
example of this information, which is generated as output in Weka.
Provide a screenshot that visualizes your cross validation tree. Figure 12
presents an example of a visualized tree for this data.
Unsupervised learning with clustering algorithms. Students complete
tasks related to clustering algorithms, including Simple K-means, Farthest
First (FF), Hierarchical Clustering (HC), and Expectation Maximization (EM).
After completing required readings, watching a series of video tutorials, and
viewing a narrated tutorial with the professor working with the data set, stu-
dents complete related tasks and answer directed questions. For this assign-
ment, students use a revised weather data set that includes the aforementioned
weather data points as well as data related to public transportation stations
(e.g., daily weather conditions, type of transportation station, attributes re-
lated to the station such as whether it is an indoor or outdoor station, number
of passengers using the stations, usage on weekday versus weekend, distance
between stations, etc.). The goal is to use clustering algorithms to examine
the data and determine how weather conditions might predict the use of public
transportation stations. For example, students run the weather data using the
simple K-Means algorithm and answer questions such as:
How many clusters are formed from this data set, and how many instances
are there of each cluster? A model answer should reference the output, which
shows two clusters depicted as Cluster 0 and Cluster 1 (see Figure 13)

21

Briefly describe what the clusters mean and what they represent. A model
answer should include information about how the clusters were formulated.
For example, The K-Means algorithm calculates the centroids of the number
of clusters, and the individual distances measured from the centroids. The
algorithm assigns data points to one of the groups based on the distance be-
tween stations, number of passengers, time, and weather until a constant within
the clusters becomes clear. In the current example, two clusters are formed
(Cluster 0 represents busy stations, and Cluster 1 represents slower stations).
Students are also asked to evaluate the meaning and importance of standard
deviations (SD). For example: Why is the SD in busy stations larger than less
busy stations? Model answers should reference how a SD is calculated and what
it means regarding the current data set. For example, a higher SD indicates
the data points (i.e., number of passengers per station) are spread out over a
wider range of values. Busier station, represented as Cluster 0, have higher
utilization rates (e.g., number of passengers). Therefore, the SD is higher than
Cluster 1 because of the higher influx of passengers in busy stations compared
to less busy stations.
Discussion forums. In addition to completing assigned questions, students
participate in discussion forums where they read and view additional content
and answer questions posed to them, as well as virtually interacting with their
peers in the class. The forums are designed in a way to help students along as
they progress through the content of the course. Below are example discussion
forum questions students are challenged with:

• Besides Weka, there are a lot of data analysis and machine learning tools
on the market, for example, SPSS, SAS, KNIME, R, SPARK, HADOOP,
and SAP. In this discussion share with your classmates which tool(s) you
have used in your work or personal projects. If you have not used any
data analysis tools, please talk about the type data you have in your
work and which tool(s) may be useful for your future work.

• Please read the definition of association rule learning. Discuss whether
association rule is supervised or unsupervised learning. Also, think about
the data you used in your own work and whether there is any project or
research question you could use association rule for mining the answer.

• Using the resources provided (e.g., additional readings, slides, and sup-
plemental video lecture), as well as additional research you may choose
to conduct independently, please discuss the similarities and differences
between the following four algorithms: K-Means, Farthest First (FF),
Hierarchical Clustering (HC), and Expectation Maximization (EM). A
model answer must describe how the algorithms compute clusters and
what types of research and variables they are best suited for.

22

4 Discussion and Conclusion
Results of evaluations regarding student perceptions of the course’s effective-
ness have been positive across five semesters. On a scale of 1 - 5 (1 = strongly
agree, 5 = strongly disagree) students were asked to rate their perceptions of
the course, instructor, and additional demographic information. Specifically,
they were asked to rate their perception of the extent to which the instruc-
tor: meets the stated course objectives; releases content in a timely fashion;
effectively answers questions; is available to help students; uses instructional
materials to enhance learning; effectively presents course materials; provides
clear instructions (readings, discussions assignments) for navigating the course
site; overall is an effective teacher. Students were also asked about the number
of college credits they have taken to date; whether the course is being taken
as part of the major, a minor, or an elective; self-reported level of effort; self-
reported perception of work load; level of interest in the course content before
and after course completion; and perception of the effectiveness and complete-
ness of the syllabus. The overall course mean, aggregated across all items and
semesters, is 1.74.

References

[1] Quality Matters. 2018. Retrieved from https://www.qualitymatters.org/.

[2] Sakai Learning Management System. 2018. Retrieved from https://www.
sakaiproject.org/about.

[3] Tableau. 2019. Retrieved from https://www.tableau.com/.

[4] Penny R Clayton and Jeremy Clopton. Business curriculum redesign: Integrating
data analytics. Journal of Education for Business, 94(1):57–63, 2019.

[5] D Clinefelter and C Asianian. Online college students: Comprehensive data on
demands and preferences, 2016.

[6] Thomas Davenport and DJ Patil. Data scientist: The sexiest job of the 21st
century-harvard business review. Harvard Business Review, 2013.

[7] Seth Stephens-Davidowitz and Andrés Pabon. Everybody lies: Big data, new
data, and what the internet can tell us about who we really are. HarperCollins
New York, 2017.

[8] Heikki Topi, Helena Karsten, Sue A Brown, João Alvaro, Brian Donnellan, Jun
Shen, Bernard CY Tan, and Mark F Thouin. Msis 2016 global competency model
for graduate degree programs in information systems. Communications of the
Association for Information Systems, 40(18), 2017.

[9] MA Vasarhelyi, N Tschakert, J Kokina, and S Kozlowski. How business schools
can integrate data analytics into the accounting curriculum. The CPA Journal,
22(2):156–177, 2017.

23

F
igure

1:
C
lass

Schedule

24

F
igure

2:
C
onditionalForm

atting
E
xam

ple

25

F
igure

3:
C
lass

Schedule

26

Figure 4: Pivot Table

Figure 5: Bar Charts Showing Average TmpF and DpF by Quarter

27

Figure 6: Dot Chart Showing Weather Trends by Year

Figure 7: Tableau Storyline Showcasing Graphs Used for Visual Analysis of
Data

28

F
igure

8:
T
ableau

Interface
Show

casing
K
ey

W
eather

T
rends

29

F
igure

9:
C
lass

Schedule

30

F
igure

10:
W
eka

Interface
for

D
ata

P
reprocessing

and
Supervised

Learning

31

Figure 11: Chart of Decision Tree Output in Weka

Figure 12: Decision Tree Visualization in Weka

Figure 13: Cluster Output in Weka

32

Teaching Database for Freshmen: A
Two-Thread Model∗

Yang Wang, Margaret McCoey, Thomas Blum
Department of Mathematics and Computer Science

La Salle University
Philadelphia, PA 19141

{wang, mccoey, blum}@lasalle.edu

Abstract

We address the challenge of teaching a database course for fresh-
men CS/IT majors: namely their limited background, coupled with the
material’s mixture of language (e.g., SQL) and abstract theory (e.g., nor-
malization) – hard even for upperclassmen. In this paper, we propose
a new two-thread model: one thread of theory and another of practice
which are relatively independent and self-contained (compared to a typ-
ical “Lecture + Lab” design). To provide students extensive exercises on
SQL, the practice thread has labs that expose them to SQL statements
starting Week 1. When applicable, labs purposely anticipate related com-
ponents in the theory thread. Also we approach abstract concepts (e.g.,
normalization) using an example-based method that generalizes patterns
extracted from examples. We have applied this two-thread model with
our freshmen for the last few semesters, and their responses have been
very positive. We share some of this feedback as well as the learned
lessons with the hope to enlighten the teaching of database courses and
other freshmen courses in other institutions.

1 Introduction

It is formidable to teach introductory major courses since freshmen have a
limited knowledge base in their majors at the same time they are adjusting

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

33

to college life. In particular, teaching a database course 1 for CS/IT freshmen
combines low-level intricacies (e.g., SQL syntax) and high-level abstraction
(e.g., ER modeling and normalization), each of which is hard to learn on its
own. Nevertheless striking the right balance between theory and practice can
provide students with a broad overview of the field and expose them early to
real-life problem solving.

In this work, we present our design of a freshmen database course. One
finds in the literature some work [4, 9] concerning curricular design for CS/IT
freshmen; however, none cover the subject of databases. On the other hand,
the literature on database pedagogy often focuses on a particular aspect of
the material. For instance, there are works on the use of visualization tools
(e.g., [1, 2]) to aid the understanding of SQL queries, as well as investiga-
tions into the degree of difficulty students encounter learning various types of
SQL statements [7]. Alternatively, some works expand on the database topic,
such as designing a set of labs to treat database security and auditing [12, 5]
or integrating newer technologies (e.g., Cloud-based database [3] and mobile
applications [6]). Distinct from the existing literature, we propose an overall
course design tailored to freshmen that reduces the barriers of SQL-syntax te-
diousness and database-concept abstractness. We propose a two-thread model:
one thread of practice and another of theory that are relatively independent yet
are presented to the students in an intertwined manner. The practice thread
provides an extensive, semester-long exposure to SQL language and database
management system. When applicable, we purposely seed the lab experiences
with ideas ahead of the related lectures. The practice thread thus illustrates,
anticipates, and motivates the theoretical concepts. Moreover, we pursue an
example-based approach in the theory thread allowing students to see the pat-
terns and generalize the concepts on their own.

The rest of this paper is organized as follows. Section 2 presents the back-
ground, major learning objectives and challenges of the class. In Section 3 we
present the detailed approach. In Section 4, we summarize the major principles
of the course design. Section 5 discusses the feedback of students and lessons
learned, and Section 6 concludes this paper.

2 Background, Objectives and Challenges of the Class

In contrast to most universities, we offer freshmen-level networking and
database courses. This curriculum is designed to expose freshmen to a wider
spectrum of core computer-science concepts including the binary number sys-

1A database course includes areas related to database theory, design, implementation,
and management. In the remainder of this paper references to the term database will assume
these listed areas.

34

tem, databases, algorithms, networking, and programming, so they might de-
termine their major and career path earlier. Furthermore, compared to other
subjects, database (or networking) is more closely tied to the students’ daily
lives (e.g., student course registration system). Consequently, it is easier to
motivate students to dive into the technologies behind those applications. In
addition, teaching database at freshmen level enables a smooth transition to
downstream courses such as Open-Source Application Development, and .NET
Programming. Another benefit to broadening the introductory sequence is the
scheduling of students who change majors, who pick up a CS/IT minor, or who
transfer from another institution.

This paper concentrates on our design for the database class. The major
objectives of this course are: (i) Present students with an overview of database
technologies and concepts; (ii) Prepare students to master skills in Entity Re-
lationship (ER) Modeling, normalization, and query languages; (iii) Prepare
students to acquire the ability to create transactional database solutions for
real-life problems.

Given the background of our students and the course curriculum, we face
multiple challenges in designing this course. First, as a freshmen course, bal-
ancing the depth, complexity, and interests in the topics covered requires care
– especially for students with little to no CS/IT background. The course de-
sign should avoid creating frustration in the freshmen transition period yet
still prepare them for downstream courses. Second, as a critical skill, mas-
tering the SQL language demands extensive and repeated exercises (especially
for freshmen). Yet in a traditional database class, SQL is introduced only af-
ter covering most of the basic database theories. Third, one must cultivate
careful examples to illustrate database concepts to students less practiced in
abstraction. Though database ideas appear to be straightforward (e.g., a table
for employees), the mathematical and logical foundations for databases (e.g.,
relational algebra, normalization) are known to be abstract and hard to com-
prehend. Lastly, given the breadth of database topics, scrutiny must be given
to selecting a subset of them that can: provide an overview of the field to
students; expose them to state-of-the-art technologies; and prepare them with
ability to model real-life scenarios.

3 Course Design

In this section, we present the detailed design of the database course.

3.1 The Two-Thread Model

We refer to our design philosophy as a “Two-Thread” Model: with theory and
practice threads. Note this method is distinct from a typical CS/IT “Lecture

35

Overview

Relational

Database

Models

Entity

Relationship

Model

Data

Redundancy

and Anomaly

Normalization

SQL

Table Creation

via GUI

Keys, and

Table JOIN

via SQL

Table Insert,

Delete, Update

via SQL

SQL Advanced

Features

SQL and RA

Theory Thread

Advanced

Topics

Two ER Labs

Practice Thread

Project

Table Creation

via SQL

Labs on

Advanced

Topics

Normalization

Lab

Figure 1: Two-Thread Model

36

+ Lab” where labs solidify the understanding of theories already presented in
the lecture [10, 11]. On one hand, our practice-thread labs are relatively inde-
pendent and contain a considerable amount of self-learning knowledge (mainly
on SQL). On the other hand, our labs often prepare the way for the related
theories.

Figure 1 depicts the major components of the two-thread model. The the-
ory thread covers topics including overview of database technologies, relational
database models, ER modeling, data redundancy and anomaly, normalization,
SQL, and advanced database topics in sequence. The practice thread covers
practices on table creation via GUI, table creation via SQL, keys and table
JOIN operations via SQL, ER modeling exercises, table insert, delete and up-
date via SQL, normalization lab, SQL advanced features, Relational Algebra
(RA) related SQL statements, and labs for advanced database topics in order.
The vertical lines in Fig. 1 show the connections between theory modules and
the related practice-thread exercises. A solid vertical line indicates that the
lab exercise is placed ahead of the related theory. Note that we introduce SQL
at an early stage to allow a semester-long extensive practices on SQL. The de-
tailed list of labs are shown in Table 1 which is further elaborated below along
with the discussion of related modules of the theory thread.

3.2 Modules

Overview: This module starts with a lab exercise (i.e., Lab 1 in Table 1) before
addressing abstract concepts. A SQL script was prepared to create a user and
database for each student in MySQL before the semester begins, and students
are guided to create tables via the GUI interface of PhpMyAdmin. After the
lab exercise, students are introduced to basic concepts and technologies in
database including the functions, history, and classification of databases.

Relational Database Model: Module 2 also starts with a lab (Lab 2
in Table 1) that instructs students to create tables using SQL statements –
the aforementioned early exposure to SQL. Also, students are led to consider
the relationships among the entities/tables. After the lab, important concepts
of relational database including table, dependency, keys (primary, composite,
foreign, candidate, super, and secondary), relationships (1:1, 1:M, and M:N),
integrity rules, and relational algebra (RA) are introduced to students. This
module ends with another exercise (i.e., Lab 3 in Table 1) that revisits the prior
lab with the re-consideration of primary key/foreign key and the introduction
the SQL statement for table JOIN (which helps in validating the referential
integrity).

ERModeling: This module introduces ER modeling with the emphasis on
how relationships (1:1, 1:M, and M:N), connectivity, cardinality, relationship
strength, and participation are embodied in ER modeling. The lecture part

37

T
able

1:
Labs

A
ssociated

w
ith

E
ach

M
odule

38

Table 2: A Motivation Example for Data Redundancy and Anomaly

SID FName LName PhNO DmNO DmLoc
089 Allen Aversion 404-123-3421 8 location 1
076 Curry Charles 404-334-7892, 11 location 2

707-676-7651
023 David Davenport 678-453-3214 8 location 1

Table 3: Intuitive Solution

SID FName LName PhNO1 PhNO2 DmNO DmLoc

covers both Chen’s and Crow’s foot notations. As opposed to using complex
data [8] in our example-based approach, we use simplified examples to ensure
the sole difficulty lies in the mapping of problem-to-model rather than the
problem’s inherent complexity. Two exercises (i.e., Labs 4 and 5 in Table 1)
are adopted in this module: the first uses Microsoft Visio and a real-life case
study; the second uses MySQL Workbench and takes ER modeling to table-
creation.

Data Redundancy and Anomaly: Module 4 starts with an exercise
(Lab 6 in Table 1) on SQL statements for insert, delete and update, followed
by failing attempts of such operations on tables with associated anomalies.
It prepares students for lectures on data redundancy and three types of data
anomalies. Again, we use an example-based approach to explain redundancy
and anomaly. The example shown in Table 2 records student data including ID
(SID), first and last names (FName and LName), phone numbers (PhNO), dor-
mitory number (DmNO) and location (DmLoc). By examining the redundancy
and anomalies in this example, the ultimate goal is to establish the connection
between data redundancy and anomalies as well as prepare students for the
concept of normalization.

Table 4: NF1

SID FName LName PhNO DmNO DmLoc
089 Allen Aversion 404-123-3421 8 location 1
076 Curry Charles 404-334-7892 11 location 2
076 Curry Charles 707-676-7651 11 location 2
023 David Davenport 678-453-3214 8 location 1

Normalization: Normalization is one of the most abstract concepts in
database design. With our freshmen, we avoid starting it from a conceptual

39

SID FName LName DmNO DmLoc

Table 5: NF2-Student

SID PhNO

Table 6: NF2-Phone

SID FName LName DmNO DmLoc

Table 7: NF3-Student

DmNO DmLoc

Table 8: NF3-Dorm

perspective. Instead, based on a table with anomalies, we guide them toward
a common-sense solution that removes the unnecessary dependencies. Gener-
alizing this process yields normalization. For instance, to explain NF1 to NF3,
we resume the discussion of Table 2, which fails to meet the NF1 requirements
due to the non-atomic value for phone numbers. From a practical perspective,
students are made to realize the issue it causes – the hardness in operations
(e.g., query) on phone numbers. One intuitive solution is to create two or more
attributes to record multiple phone numbers as shown in Table 3, which, how-
ever, creates scalability issues (e.g., a student with three phones) or null values
(i.e., a student with only one phone). Theoretically, this intuitive solution
fails to meet NF1 due to repeated groups (i.e., multiple attributes for phone
numbers). Further discussion leads to the solution in Table 4 (that meets NF1
rules)2. Continued discussion on the insert/delete/modify anomalies in Table
4 leads to Tables 5 and 6 (that meet NF2 demands) after “breaking” the table
to remove redundancy. Further pursuit in removing the redundancies in Table
5 results in Tables 7 and 8 (that meet NF3 requirements). Via this process of
applying the logic of normalization to an actual problematic table, students are
able to comprehend the concepts of NF1 to NF3, and generalize the method-
ology for normalization. This module ends with a lab where students need to
normalize a table from NF1 to NF3 (i.e., Lab 7 in Table 1).

SQL: Module 6 starts with a lab on advanced SQL features such as con-
straints. After the lab, we formally introduce SQL and cover features in-
cluding index, constraint, functions (including aggregation), views, advanced
SELECT statements and RA-related SQL statements (i.e., JOIN, UNION, IN-
TERSECT, MINUS). This modules ends with a lab on RA-related statements
connecting them with the RA operators covered previously.

Advanced Database Topics: Module 7 has some built-in flexibility de-
pending on student composition. It includes concurrency and deadlock, secu-
rity and privacy, and new advances such as NoSQL and Cloud technologies. For
concurrency/deadlock, students partake in a paper explanation and complete
an SQL lab (Lab 10) using a shared table to demonstrate the concepts. For
security/privacy, students watch videos that describe database security holes,

2The primary key of each table is underlined hereafter.

40

and then complete a lab (Lab 11) demonstrating intrusion into the system.
The lab also includes a discussion of ethical issues involving access to personal
information. In addition, we cover the basic concepts of NoSQL and that is
followed by a lab based on mongoDB (Lab 12). For Cloud technologies, the
concepts are explained along with a lab based on Amazon EC2 (Lab 13).

3.3 Project
The project is another vital component of our design, where students are asked
to apply major skills (e.g., ER modeling, normalization, and SQL) to create and
implement a solution to a real-life problem (in a DBMS other than MySQL).
This design allows students to apply discrete skills that they learned in an inte-
grated manner, to become familiar with the life cycle of database development,
and to obtain exposure to a secondary DBMS (of their own choice).

4 Design Principles
In this section, we summarize the major design principles of this course.

First, given the background of freshmen and the diverse topics in database,
we carefully select a subset of topics that present the big picture of the field.
The covered topics are fundamental, and just-enough to prepare students for
downstream classes and self-learning.

Second, we adopt an innovative two-thread approach toward the theory
and practice of databases. We place labs ahead of the related lectures (when
possible) to seed students with hands-on experience. It makes use of SQL’s
straightforwardness by arranging self-learning SQL labs from the start. Upon
reaching the actual SQL lectures, students already have extensive SQL expe-
rience.

Third, with freshmen in mind, we avoid frustration by making the course
design “practical, relevant and simple”. Within the theory thread, we proceed
by generalizing abstract concepts from simplified examples and/or utilizing labs
to prepare students in advance. Within the lab thread, we incorporate another
strategy: we allow solutions that violate the best-practices of database design
in earlier labs while gradually guiding students to meet common standards.

Lastly, a vital component of our design is a term project that allows students
to apply all the discrete skills in an integrated manner. This project also
exposes students to the life cycle of database design and prepares them to
model and implement a database solution to a real life scenario.

5 Feedback and Lessons
Over multiple semesters of teaching this class using above design, the aver-
aged evaluations for this course rated it as 92.5% (=4.629/5) in terms of the

41

overall value that it has contributed to learning. Over 58% of the surveyed stu-
dents considered this course as “very valuable” (i.e., the highest rating). Some
representative feedback on various aspects of this class include:

1. “This course gives me confidence in the computer database area, and also
better understanding in the computer programming field.”

2. “Learned a lot about database management: normalization, SQL etc.”
3. “Fun to take, very engaged, a good foundation for database management.”
4. “... I can develop a database not only on paper; but on a computer.”
5. “Easy to understand, very useful.”

In addition, we share some lessons in our trials and errors that led to the
final design above. First, we note that the idea of placing the lab ahead of
lecture is a result of various trials. In classes such as networking, we arrange
the lab exercise after a lecture having students to the concepts (e.g., the subnet-
masking lab after the subnet-masking lecture). With databases, however, we
found that the straightforwardness of basic SQL allows students to pick up
new statements on their own. Hence we could incorporate SQL-related labs
from the semester start, and/or place labs ahead of the lectures. Second,
for abstract concepts (e.g., normalization), we experimented with two teaching
methods: 1) teaching the concepts (e.g., NF1, NF2, NF3) followed by exercises;
and 2) generalizing concepts from examples. The latter approach led to better
learning outcomes as reflected in Assignments and Tests. The difference could
be partially attributed to the students’ background (i.e., freshmen). Third, the
project originally optional (as bonus) was later made mandatory as we observed
(in both surveys and in learning outcomes) that students who completed the
project obtained more confidence and satisfaction upon applying all the learned
skills to create their own database solutions.

6 Conclusion and Future Work

In this paper, we present our design for a freshmen database class. Though
we have modules on recent advances, the key to our design lies more than the
novelty of topics: we select a subset of topics that covers the essential aspects
of the field for freshmen; we adopt a two-thread model that provides students
with a semester-long exposure to SQL; to supplement students with hands-on
experiences, we also occasionally place the lab practices ahead of the respective
theory lectures. Our teaching in past few semesters with this design has led to
satisfactory feedback from students. We are closely monitoring the students’
performance in downstream classes to ensure that this course provides solid
preparations.

42

References

[1] Maurizio Cembalo, Alfredo De Santis, and Umberto Ferraro Petrillo. Savi: A
new system for advanced sql visualization. In Proceedings of the 2011 Conference
on Information Technology Education, SIGITE ’11, pages 165–170, 2011.

[2] Ryan Hardt and Esther Gutzmer. Database query analyzer (dbqa): A data-
oriented sql clause visualization tool. In Proceedings of the 18th Annual Confer-
ence on Information Technology Education, SIGITE ’17, pages 147–152, 2017.

[3] Edward P. Holden, Jai W. Kang, Geoffrey R. Anderson, and Dianne P. Bills.
Databases in the cloud: A status report. In Proceedings of the 2011 Conference
on Information Technology Education, SIGITE ’11, pages 171–176, 2011.

[4] Päivi Kinnunen, Maija Marttila-Kontio, and Erkki Pesonen. Getting to know
computer science freshmen. In Proceedings of the 13th Koli Calling International
Conference on Computing Education Research, Koli Calling ’13, pages 59–66,
2013.

[5] Lei Li, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao. Developing
hands-on labware for emerging database security. In Proceedings of the 17th
Annual Conference on Information Technology Education, SIGITE ’16, pages
60–64, 2016.

[6] Qusay H. Mahmoud, Shaun Zanin, and Thanh Ngo. Integrating mobile storage
into database systems courses. In Proceedings of the 13th Annual Conference on
Information Technology Education, SIGITE ’12, pages 165–170, 2012.

[7] Toni Taipalus and Piia Perälä. What to expect and what to focus on in sql query
teaching. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE ’19, pages 198–203, 2019.

[8] Paul J. Wagner, Elizabeth Shoop, and John V. Carlis. Using scientific data to
teach a database systems course. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’03, pages 224–228, 2003.

[9] Yang Wang, Thomas Blum, and Margaret McCoey. Teaching a networking class
for freshmen: Course design and lessons learned. In Proceedings of the 15th
Annual Conference on Information Technology Education, SIGITE ’14, pages
9–14, 2014.

[10] Yang Wang, Thomas Blum, and Margaret McCoey. Teaching network admin-
istration in the era of virtualization: A layered approach. In Proceedings of
the 18th Annual Conference on Information Technology Education, SIGITE ’17,
pages 97–102, 2017.

[11] Yang Wang, Margaret McCoey, and Heng Zou. Developing an undergraduate
course curriculum on information security. In Proceedings of the 19th Annual
SIG Conference on Information Technology Education, SIGITE ’18, pages 66–
71, 2018.

[12] Li Yang. Teaching database security and auditing. In Proceedings of the 40th
ACM Technical Symposium on Computer Science Education, SIGCSE ’09, pages
241–245, 2009.

43

Integrative Learning in CS1:
Programming, Sustainability, and

Reflective Writing∗

Jeffrey A. Stone1, Laura Cruz2
1Information Sciences and Technology

Penn State University
Center Valley, PA 18034

stonej@psu.edu
2Schreyer Institute for Teaching Excellence

Penn State University
State College, PA 16802

lxc601@psu.edu

Abstract

Computer Science and related disciplines produce artifacts which
touch virtually every aspect of modern life, yet assignments in CS1-
level courses are often limited in social engagement. Programming as-
signments focused on sustainability concepts offer an opportunity for
demonstrating the applicability and social relevance of computing. This
article reports on a year-long, integrative learning study which uses
sustainability-themed programming projects in introductory program-
ming courses. The results of this mixed-methods study suggest that
while students perceive the course and its programming assignments as
beneficial in their understanding and appreciation of sustainability con-
cepts, students were limited in their ability to transfer the knowledge
obtained into both personal and community contexts.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

44

1 Introduction

Computer Science (CS) and related disciplines produce artifacts which touch
virtually every aspect of modern life, yet assignments in introductory program-
ming courses are often narrow in scope and limited in social engagement. Most
introductory, CS1-style courses focus on building core programming skills, of-
ten drawing on established problem sets from related disciplines. An alterna-
tive method is to construct projects and course content which involve socially
relevant contexts. Sustainability is one context that is both universally ap-
plicable and offers a "real world" environment for demonstrating the impact
of computing. Sustainability entails informed decision-making about the envi-
ronmental and societal impacts of alternative choices, for both individuals and
organizations. Sustainability is a critical element of professional responsibility
as well as personal behavior. Professional organizations such as the ACM and
IEEE codify expectations of sustainability in their codes of ethics [6] and in
computing curricula guidelines [14].

Sustainability has great potential for demonstrating the wider applicabil-
ity of computing. By constructing programming assignments themed around
sustainability concepts, introductory students have the opportunity to see how
computing can be used to address a set of multidisciplinary, socially relevant
problems. "Computing for the social good" has been seen as a way to both
engage introductory students and to increase the diversity in CS student en-
rollments [15]. Providing a multidisciplinary context to computing assignments
has also been shown to increase success and recruitment rates for women and
underserved populations [7, 12]. By providing students with basic information
on critical environmental topics, sustainability-themed projects allow students
to draw integrative connections between sustainability, the practice of pro-
gramming, and their own communities, lives, and behaviors.

This article describes a year-long integrative learning approach to educate
introductory students about the social relevance of programming. This study
was intended to provide increased student engagement, to educate introduc-
tory computing students about sustainability, and to encourage students to
integrate sustainability into daily practices and decisions. The study uses a
mixed-methods approach to assess the impact of a series of sustainability-
focused programming projects on students’ perceptions, practices, and behav-
iors. The goals of this study were to be accomplished with only minor revisions
to the existing course.

45

2 Literature Review

2.1 Sustainability in CS Education

Despite the recognition of sustainability as an important element of both curric-
ula and practice, the CS Education literature has few examples of pedagogical
approaches which integrate sustainability. Abernethy and Treu [1] described
efforts in both the introductory and upper division courses to build students’
awareness of the role of computing in sustainability, including discussions of
carbon footprints, power consumption, and e-waste. Erkan, Pfaff, Hamilton,
and Rogers [5] used a set of sustainability-themed projects for a Data Struc-
tures course to educate students about both data structures and algorithms
(theory) and how those tools can be used to answer important sustainability
questions (application). Cai [4] and Hamilton [8] described a series of efforts to
integrate so-called “green computing” content into the curriculum, as a course,
a module, and as a source of senior design projects. Recognized barriers to
integrating sustainability concepts include concerns over faculty knowledge,
accessible resources, and competing curricular priorities [4, 13].

2.2 Integrative Learning

The use of sustainability-themed projects in introductory programming courses
is about integrative learning. Integrative learning is learning that allows stu-
dents to see cross-disciplinary connections for their knowledge and to make
more educated judgments and decisions (i.e. is interdisciplinary) [9, 10]. More
than just synthesizing related knowledge and perspectives from multiple disci-
plines, integrative learning also involves knowledge and perspectives obtained
through cultures, subcultures, and life experience [11]. The integration of sus-
tainability into computing curricula allows for interdisciplinary considerations
of computing use and application to be explored, providing a fertile platform
for integrative learning.

2.3 Reflective Writing

One method for assessing integrative learning outcomes is asking students to
critically assess their learning experiences. Reflective writing provides an op-
portunity for students to build metacognitive skills, i.e. self-awareness and
understanding of their own learning processes [17]. Reflective writing therefore
provides opportunities for building critical thinking and information synthesis
skills [3, 19]. For university students, reflective writing offers a significant step
towards transforming academic knowledge into informed action.

In CS Education, reflective writing has been used to build student en-
gagement [2], as a mechanism for formative and summative course feedback

46

[17], and as a means of building metacognitive skills in students [19], among
others. This study uses reflective writing to assess integrative learning out-
comes, specifically the impact of sustainability-themed programming projects
on student perceptions, practices, and behaviors. Reflective writing provides
an outlet for students to convey the movement from simple knowledge acqui-
sition to applications both programming-related (e.g. write a simple program)
and in a broader context (e.g. recognizing community applications).

3 Methodology

The research study was carried out in two course sections over two semesters
(2018-2019). One of the sections was a CS1-style introductory Java course for
Information Sciences and Technology (IST) majors while the other course was
a CS1-style introductory C++ course for Engineering majors. All research
procedures were approved by the Penn State Office of Research Protections.

3.1 Sustainability-Themed Assignments

The pedagogical approach used in this study is a modified form of the approach
found in [18]. A series of eight (8) programming projects were used, each of
which was focused on a specific sustainability topic. The projects were struc-
tured to provide a sustainability context for the assessment of programming
skills, though an expected secondary benefit was also the acquisition of knowl-
edge about specific sustainability problems and concepts. See Table 1 for a list
of topics. The projects themselves - including project directions and sustain-
ability resources - are available at https://sites.psu.edu/sustainabilitycis/.

Each set of project directions employed a similar structure. Each project
was focused on one of the 17 UN goals for sustainable development. The di-
rections began with a brief description of the specific UN goal, followed by a
brief (1-2 paragraph) introduction to the sustainability topic. This brief intro-
duction included a short, pre-existing YouTube video on the topic. Following
the introduction, the specific programming problem was introduced along with
test cases. These integrative projects allow students to see the applicability
of computing in the context of a diverse, engaging, and socially relevant prob-
lem domain, while still focusing on the traditional, programming skill-focused
learning outcomes of these CS1-style courses.

3.2 Survey

A custom post-test survey was delivered to each course section during the last
week of the semester. The survey included questions on students’ perceptions
of the impact the sustainability-themed programming assignments had on their

47

Table 1: Project Topics and Skills

Project Topic Skills Assessed
Wind Power Basic I/O, Arithmetic
Good Health If Statements
Air Pollution Cascading If
Water Catchment Systems While loops
Trees and Carbon For loops
Sustainable Planting Functions/Methods
Sustainable Greenspace Arrays
Ocean Acidification File I/O, Arrays, Structs/Classes

sustainability knowledge and practices. The survey was delivered electronically
through Qualtrics and responses were analyzed using SPSS.

3.3 Reflective Writing Assignments

At the conclusion of each project, each student was required to complete a
reflective writing assignment of approximately 200-500 words. These follow-up
writing assignments were low stakes exercises, taken together worth far less
to the final grade (5%) than the programming assignments themselves (35%).
The combination of programming assignment and post-reflection represents the
integrative learning activities for this study.

These reflective writing assignments provided directions on the meaning of
reflection, as well as formatting expectations and a series of 4-5 prompts for
students to address. The instructor-provided prompts focused on the sustain-
ability topic referenced in the programming project, and included assignment-
specific questions related to these three dimensions:

• What did you learn about the sustainability topic? (Content Knowledge)
• How could the topic be integrated in your own community, and how could

you begin that process? (Applications)
• How did you integrate sustainability into your life during this project,

and did the project encourage you to consider new ways to integrate
sustainability into your daily life? (Practices)

The student reflections for each of the eight projects were de-identified and
their content analyzed by a team of five independent, external raters using
a modified version of the framework analysis method [16]. Each paper was
rated using a custom rubric which rated the submission on the aforementioned
three dimensions – Content Knowledge, Applications, and Practices – using a

48

four-level scale for each (4=Comprehensive, 3=Satisfactory, 2=Limited, 1=In-
complete).

4 Results

A total of 16 students (80.00%, N=20) participated in the research study,
though not all respondents chose to participate in all data collection steps. A
total of 120 reflective writing submissions were collected from the participants.

4.1 Survey Results

A total of 14 students (87.50%, n=16) completed the post-test survey. Re-
spondents were primarily male (92.86%, n=14), in the 18-30-year-old range
(100.00%), and White/Caucasian (92.86%). A majority of respondents re-
ported being second-year students (71.43%, n=14). In order to assess the
perceived impact of the course and its assignments, participants were asked to
rate their level of agreement with a series of statements using a five-level Likert-
style scale (1=Strongly Agree, 2=Agree, 3=Neutral, 4=Disagree, 5=Strongly
Disagree).

Most respondents reported that the course and its assignments positively
impacted their understanding of sustainability. A majority of respondents
agreed/strongly agreed with the statement, Because of this course, I have
a greater understanding of the basic ideas and concepts behind sustainability
(85.71%, n=14). A slightly smaller majority of respondents agreed/strongly
agreed with the statement, Assignments and activities for this course enhanced
my understanding of sustainability (64.29%, n=14).

Respondents also responded the course helped them see the applica-
tions of sustainability in their own community. A majority of respondents
agreed/strongly agreed with the statement, Because of this course, I can see
the potential application(s) of sustainability practices in my own community
(57.14%, n=14). A majority of respondents also agreed/strongly agreed with
the statement, Assignments and activities for this course helped me to see
the potential application(s) of sustainability practices in my own community
(64.29%, n=14).

Recognition of the wider applicability of programming was also perceived to
be impacted by the course. A majority of respondents agreed/strongly agreed
with the statement, Because of this course, I understand the applicability of
programming to solve complex social problems (64.29%, n=14). A majority of
respondents also agreed/strongly agreed with the statement, Assignments and
activities for this course helped me to see the applicability of programming to
solve complex social problems (71.43%, n=14).

49

Participants were asked to describe three ways in which their behaviors or
actions regarding the environment and/or sustainability were altered by the
course. Five responses (41.67%, n=12) indicated the course content had no
impact on their sustainability-related behaviors or actions. Of the remaining
seven responses, most referenced an increased attention to water use and/or
the use of water catchment systems (41.67%, n=12), an increased desire to be
involved in personal planting/gardening (33.33%), and an increased attention
to electricity use, such as turning off unused lights (33.33%). The following
response is an example:

. . . This course has taught me to better understand my role in terms of
sustainability throughout my daily life...I am using my utility bills to better
understand my energy and water usage and have a goal each month to lower
my usage. I now look for better ways to involve my time within the community
to volunteer for "clean up" events as the season changes.

4.2 Reflective Writing Ratings

The 120 reflective writing submissions resulted in 433 sets of ratings among
the five raters (276 for the C++ course, 167 for the Java course). Preliminary
analysis led to the removal of 14 outlier ratings. Descriptive statistics for the
419 remaining sets of ratings are provided in Table 2.

Table 2: Descriptive Statistics for Reflections

Rating Dimension N Mean Median SD
Content Knowledge 419 3.60 4.00 0.58
Applications 419 3.04 3.00 0.79
Practices 417 2.83 3.00 0.88
Total Score (Mean) 380 3.14 3.25 0.45

Participating students were, on average, rated as satisfactory or higher in
each dimension, with the highest ratings for the Content Knowledge dimen-
sion (the acquisition of sustainability knowledge) and lowest for the Practices
dimension (application of that knowledge towards personal behaviors). Exam-
ination of the boxplot (Fig. 1) shows that Applications had much more vari-
ability in scores than the other dimensions. The Practices dimension shows the
lowest mean scores, with 75% of the Practices scores at or below satisfactory.

Independent Samples t-Test analyses detected significant differences be-
tween the two courses along each of the three dimensions - Content Knowledge
(t = -2.365, df=350, p < 0.05), Applications (t = -2.337, df=372, p < 0.05),
and Practices (t = -3.942, df=375, p < 0.01) - as well as for total mean score
(t = -4.882, df=310, p < 0.01). In all dimensions, ratings for the C++ course

50

Figure 1: Boxplot of Reflective Ratings

(Engineering majors) were significantly lower than for the Java course (IST
majors). The smallest difference between semesters was found in the Con-
tent Knowledge dimension (0.14) with the largest difference in the Practices
dimension (0.33). See Table 3.

Table 3: Reflection Rating Means by Course

Rating Dimension C++ Course (Mean) Java Course (Mean)
Content Knowledge 3.55 3.69
Applications 2.97 3.15
Practices 2.71 3.04
Total Score (Mean) 3.06 3.28

5 Discussion

The results suggest students perceived that the course and its programming
assignments aided their understanding of sustainability, potential applica-
tions of sustainability in their community, and the applicability of program-
ming to complex social problems. However, reported changes in students’
sustainability-related behavior (i.e. personal applications of sustainability)
were relatively light, as indicated by both the open-ended survey comments
and the Practices ratings for the reflective writing assignments.

The significant differences between courses in all three dimensions – Con-
tent Knowledge, Applications, and Practices – was somewhat surprising. It
seems reasonable to expect that Engineering students would have a greater
familiarity and comfort level with sustainability information than computing

51

majors, especially since the C++ course used in this study is intended for
second-year Engineering students. However, in all cases, the Engineering stu-
dents were rated at a lower level than their computing student counterparts. It
may be that prior knowledge was a differentiator; future research will attempt
to uncover the impact of prior (pre-course) knowledge on the desired outcomes.

The overall decline in mean ratings for the Applications and Practices di-
mensions, as compared to the Content Knowledge dimension, may suggest a
difficulty in moving from a single application of the sustainability concept (e.g.
write a program to compute the power output of a wind turbine) to larger, com-
munity applications and personal practices (e.g. how could wind power benefit
my community?) Students may be struggling to move from lower-order think-
ing (i.e. memorization) towards higher order integration and application skills.
Future research will examine the potential barriers for introductory students to
translate program-contextual knowledge into larger, integrative applications.

6 Conclusion

The purpose of this article was to describe year-long integrative learning ap-
proach to educate introductory computing students about the social relevance
of programming. Sustainability-themed programming assignments were used
to engage and enlighten students about a topic of universal importance, pro-
viding a means for students to see the greater applicability of computing and
programming in general. Through both surveys and reflective writing assign-
ments, the authors hoped to uncover if students were able to integrate the
information obtained from programming projects into a greater context, i.e.
potential community applications and changes in personal practices. The sur-
vey results suggest that students perceive the programming assignments and
the course as beneficial in their understanding and appreciation for sustain-
ability concepts and applications, though the reflective writing results indicate
that students were not as able to transfer knowledge obtained into recogni-
tion of wider applications and changes in personal practices. More research
is needed to determine how best to help introductory computing students to
better integrate the contextual knowledge they acquire.

7 Acknowledgements

The authors would like to thank the Penn State Schreyer Institute for Teaching
Excellence for their support of this research. The authors would also like to
thank Dr. Michael Murphy, Research Associate, Penn State Schreyer Institute
for Teaching Excellence, for his invaluable contributions to this project, as well

52

as Mrs. Kathleen Morgan, Penn State Lehigh Valley, for her assistance with
data collection.

References

[1] Ken Abernethy and Kevin Treu. Integrating sustainability across the
computer science curriculum. Journal of Computing Sciences in Colleges,
30(2):220–228, 2014.

[2] Anne G Applin. A learner-centered approach to teaching ethics in com-
puting. In ACM SIGCSE Bulletin, volume 38, pages 530–534. ACM, 2006.

[3] Veronica A Burrows, Barry McNeill, Norma F Hubele, and Lynn Bellamy.
Statistical evidence for enhanced learning of content through reflective
journal writing. Journal of Engineering Education, 90(4):661–667, 2001.

[4] Yu Cai. Integrating sustainability into undergraduate computing educa-
tion. In Proceedings of the 41st ACM technical symposium on Computer
science education, pages 524–528. ACM, 2010.

[5] Ali Erkan, Tom Pfaff, Jason Hamilton, and Michael Rogers. Sustainability
themed problem solving in data structures and algorithms. In Proceedings
of the 43rd ACM technical symposium on Computer Science Education,
pages 9–14. ACM, 2012.

[6] Association for Computing Machinery. ACM Code of Ethics and Profes-
sional Conduct. 2018. https://www.acm.org/code-of-ethics.

[7] Mark Guzdial. Exploring hypotheses about media computation. In Pro-
ceedings of the ninth annual international ACM conference on Interna-
tional computing education research, pages 19–26. ACM, 2013.

[8] Margaret Hamilton. Learning and teaching computing sustainability. In
Proceedings of the 2015 ACM Conference on Innovation and Technology
in Computer Science Education, pages 338–338. ACM, 2015.

[9] Mary Taylor Huber and Pat Hutchings. Integrative learning: Mapping
the terrain. the academy in transition. Association of American Colleges
and Universities, 2004.

[10] Mary Taylor Huber, Pat Hutchings, and Richard Gale. Integrative learning
for liberal education. Peer Review, 7(3/4), 2005.

[11] Julie Thompson Klein. Integrative learning and interdisciplinary studies.
Peer Review, 7(4):8–10, 2005.

53

[12] Jane L Lehr. Liberal studies in engineering programs–creating space for
emergent & individualized pathways to success for women in computing
disciplines. age, 26:1, 2015.

[13] Samuel Mann, Logan Muller, Janet Davis, Claudia Roda, and Alison
Young. Computing and sustainability: evaluating resources for educators.
ACM SIGCSE Bulletin, 41(4):144–155, 2010.

[14] ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer
Science Curricula 2013. ACM Press and IEEE Computer Society Press,
2013.

[15] Cyndi Rader, Doug Hakkarinen, Barbara M Moskal, and Keith Hellman.
Exploring the appeal of socially relevant computing: are students inter-
ested in socially relevant problems? In Proceedings of the 42nd ACM tech-
nical symposium on Computer science education, pages 423–428. ACM,
2011.

[16] Jane Ritchie, Jane Lewis, Carol McNaughton Nicholls, Rachel Ormston,
et al. Qualitative research practice: A guide for social science students
and researchers. sage, 2013.

[17] Jeffrey A Stone. Using reflective blogs for pedagogical feedback in cs1. In
Proceedings of the 43rd ACM technical symposium on Computer Science
Education, pages 259–264. ACM, 2012.

[18] Jeffrey A Stone. A sustainability theme for introductory programming
courses. International Journal of Modern Education and Computer Sci-
ence, 11(2):1, 2019.

[19] Kate Whalen and Antonio Paez. Development of a new framework to
guide, assess, and evaluate student reflections in a university sustainability
course. Teaching & Learning Inquiry, 7(1):55–77, 2019.

54

plain

Simple Agent Analyses for CS1 using
British Square∗

Courtney Brown1, Chris Alvin2, Lori Alvin1, John Harris1
1Mathematics Department

2Computer Science Department
Furman University
Greenville, SC 29613

{courtney.brown, calvin†, lori.alvin, john.harris}@furman.edu

Abstract

Digitization of board games has resulted in renewed interest in de-
signing and implementing intelligent agents to play synergistically with
a player or as an antagonist. In this paper, we consider the game British
Square, a simple board game played on a 5×5 grid. We formally analyze
the British Square in a 3×3 setting en route to proposing several agents
for play on arbitrarily sized boards. Using a sequence of simulations, we
compare the utility of these agents against one another as well as address
questions of fairness in the game. We wish to re-introduce the commu-
nity to board game analysis as a means of inspiring students to explore
casual games with simple AI strategies.

1 Introduction

Over the past few years, there has been a resurgence in the playing of board
games among families, friends, and in gathering spaces (combination board
game bakeries, bars, etc.). This surge of interest has also been seen in the dig-
itization of such games. Currently, there are more than 300 games tagged with
the moniker "Board Game" on the digital gaming distribution site, Steam [6].

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

†Corresponding author

55

Many types of games exist in digital form: classic games (Risk, Monopoly,
etc.), abstract strategy games, and even campaign-based dungeon crawlers
(Gloomhaven). An important feature of digitized board games is the ability
to play as a single player. In these cases, there needs to be a game mode in
which other players are controlled by agents.

In this paper, we consider the game British Square [4], a piece placement
game played on a 5 × 5 grid. This game is of particular interest because it
was published in 1978 and does not currently possess a digital version. In
Section 2, we introduce the rules of British Square and discuss questions of
interest related to game outcome (win, loss, or draw). In Section 3 we prove
several interesting results on a 3 × 3 board en route to considering the 5 × 5
board and the possibility of an agent player. In Section 4 we describe our simple
AI strategies, and we evaluate those strategies in Section 5.

2 The Game: British Square

British Square is a two-player game that is played on a 5× 5 grid (25 squares).
Players take turns placing pieces onto squares (or cells) in the grid following a
set of simple rules:

(i) Each square can hold at most
one piece.

(ii) A player cannot place a piece
in a square that shares an edge
with a square containing an op-
ponent’s piece. We refer to this
rule as the adjacency rule.

Figure 1: A partially played 5 × 5
British Square board.

The large As and Bs indicate squares that contain player A’s and player B’s
pieces, respectively. The small As and Bs with strikethroughs indicate spaces
that are not available to player A and Player B, respectively (because of the
adjacency rule). For example in the partially played board in Figure 1, player
B cannot play in square (0, 3) since it shares an edge with the (1, 3) square
that already contains an A.

Play continues until neither player is able to place any additional pieces,
and the player with the most pieces on the board is the winner. In terms of
gameplay, there is one more rule that is of consequence for our analysis:
(iii) The initial move by player A cannot be in the center square.

56

3 Formal Analysis of the 3× 3 Board

In order to gain insight about a problem, it is often helpful (for researchers and
students alike) to examine smaller cases first. In this section we give a formal
analysis of the game when played on a 3× 3 board. Many of these results are
appropriate for study and analysis by students.

We will label the cells of the 3 ×
3 grid 1 through 9 from top-left to
bottom-right as shown in Figure 2.
We will also refer to the first player
as player A and the second player as
player B.

1 2 3
4 5 6
7 8 9

Figure 2: Labeling of the 3× 3 board.

We will refer to their game pieces as A and B, respectively. We also define a
complete board to be a board with assigned player pieces such that there are
no more legal moves available for either player.

Lemma 3.1 Given a complete 3×3 board, if player A has a piece in the center
position 5, then (i) player B has pieces in exactly two corner cells and no other
cells; (ii) player A occupies exactly two corner cells; (iii) player A wins.

Suppose we have a complete board with an A piece in the center cell. We
know due to the adjacency rule that player B cannot occupy any of the even
numbered cells. Hence all pieces labeled B must be in the corner cells.

Assume for the moment that player B occupies all four corner cells in the
complete board. By the adjacency rule, the only cell that could contain A is
the center cell. However, because A plays first and cannot play in the center
square on the first move, this cannot occur. Hence a complete board cannot
have B pieces in all four corners.

Next assume player B occupies exactly three corner cells in the complete
board; without loss of generality we can assume those positions are 1, 3, and
7. This means that no even cells can contain A pieces, and so the first A piece
must have been placed in the remaining corner cell 9. Further, as player A is
the first player, after player B has played in exactly two corner cells, one corner
cell would still be open and accessible to player A on the third turn. Hence
it is not possible for B pieces to occupy exactly three corner cells when an A
piece is in the central cell. Therefore we conclude that player B can control at
most two corner cells on such a board.

Finally suppose exactly one corner cell on the complete board contains a
B piece. There is no configuration of pieces such that player A can block off
player B after only one of B’s moves. Regardless of A’s first two moves, there
will always be at least one additional corner for player B to choose on their
second move. We conclude that player B must have pieces on exactly two corner
cells and no other cells.

57

We know exactly two corner cells contain B pieces and no other cells contain
B pieces. Without loss of generality, we may assume that the B pieces are either
in cells 1 and 7 or they are in cells 1 and 9. Player A will control cells 3, 6,
and 9 in the former case, while in the latter case they will control cells 3 and
7. In both cases, A occupies exactly two corner cells. Further, A wins in both
cases.

We now know that player A will win if they control the center square. As we
will see in Theorem 3.4, if player A knows what to do, player A can always win.
Before we see why this is true, we make a few more interesting observations.

Lemma 3.2 On the 3×3 board, (i) player A can win even if player B controls
the center cell; (ii) the center cell does not need to be occupied for there to be
a winner; (iii) it is possible for player B to win; (iv) it is possible for the game
to end in a tie.

The completed boards in Figure 3 through Figure 6 show that each of these
statements is true. The subscripts in each case indicate on which turn the piece
was played. For instance, A2 means that this was the piece played on player
A’s second turn.

B2 A2

B1

A1 A3

Figure 3: Player A wins even though
B is in the center.

A1 A2

B2 A3

B1 A4

Figure 4: There is a winner (A) even
though the center is unoccupied.

B2 A2

B4 B1

B3 A1

Figure 5: Player B wins this game.

B1 A1

B2 A2

B3 A3

Figure 6: The game ends in a tie.
We now prove a critical result about ownership of a middle space in a 3 × 3
game.

Lemma 3.3 If the center cell is occupied on a 3×3 game board, then the game
cannot end in a tie.

Suppose we have a completed game board. We know by Lemma 3.1 that
if player A’s piece is in the center, then Player A wins (not a tie). Therefore,
we consider the case where player B controls the center cell. This means that
there are no player A pieces in any of the even numbered cells. That is, A’s
can only appear in the corners. Consider now the possibilities for what could
have been player A’s first two moves.

58

If player A’s first two moves were in opposite corners (say 1 and 9), then
the completed board could not have B pieces on any of cells 1, 2, 4, 6, 8, or 9.
That is, the only places for B are 3, 5, and 7. Since it would be impossible for
player B to claim all of 3, 5, and 7 before player A could make a third move,
and since we are assuming that there is a B in the center square, it must be
that player B owns the center square and exactly one of 3 or 7. This leaves the
other of 3 or 7 to be available for player A, which gives A three squares while
B has only two. Player A wins in this case.

Suppose now that player A’s first two moves were in adjacent corners (say
1 and 7). If cell 6 is occupied (by B since A cannot be there), then cells 3
and 9 must also be occupied by player B; therefore B wins. If cell 6 is not
occupied, then player A occupies one of 3 or 9, and player B occupies the other
— meaning that A wins. In all cases there is a winner, and so a tie is not
possible if the center cell is occupied.

Theorem 3.4 Player A always has a winning strategy on a 3× 3 board.

We show that for any state of the board at any point in the game, player
A always has a choice that will lead to an eventual win. To start the game, A
should choose to claim a corner, say cell 1. The only cells player B can choose
are cells 3, 5, 6, 7, 8, and 9. Due to symmetry, we only need to consider cases
where B chooses 5, 7, 8, or 9.

Case 1. If player B initially chooses cell 5, then player A should choose to
play on cell 9. This will leave exactly two valid cells for player B: 3 and 7. No
matter which choice player B makes, player A will choose the other corner cell
and win as shown in Figure 7.

A1 B2

B1

A3 A2

Figure 7: Case 1 final board game
state.

A1 A3 A4

A2

B1 B2

Figure 8: Case 2 final board game
state.

Case 2. If player B initially chooses cell 7, then player A should choose to
play the second move on cell 6. The only remaining move for player B will be to
select cell 8. Player A will eventually win (see Figure 8 for a complete board).

Case 3. If player B initially chooses to place a piece on cell 8, then player A
should choose to play on cell 6. The only remaining move for player B will be
to select cell 7. The complete board in this situation is similar to the complete
board in Figure 8, but with pieces B1 and B2 switched; once again player A
will win.

Case 4. If player B initially chooses cell 9, then player A should choose the
center cell. By Lemma 3.1, player A will win.

59

4 Intelligent Strategies

In order to create agent-player functionality, it is important to consider what
strategies students consider while playing the game. In this section we describe
some possible strategies.

In each of the strategies we describe, the agent makes a choice depending
on the current state of the board. That is, the agent does not consider past or
future board states when making a decision. It is also true in each strategy that
the agent considers all possible allowable moves at a given point. If a strategy
identifies multiple possible best moves, a uniform random choice will be made.
Each of our intelligent strategies view each open space on the board as the
center of a 3× 3 board consistent with Theorem 3.4. Our heuristic for winning
a game on a board larger than 3× 3 is for a player to win as many local 3× 3
sub-boards as possible. We will use Figure 1 as an example when describing
these strategies, and we will assume that it is player B’s turn to place a piece.
We use the term adjacent to refer to squares that share an edge.

The Best Open strategy selects an open space with the greatest number of
open adjacent spaces around it, independent of whether either player can play
on the surrounding squares. For instance, in Figure 1 the best open strategy
would assess space (0, 2) as having 3 open squares surrounding it, and it would
say that space (0, 4) would have two open spaces surrounding it. In this case,
the best open strategy would select space (1, 1) since it is the only space with
4 open spaces surrounding it. This is a weak, greedy strategy since it does
not account for player interaction in its choices; however, it does prioritize
non-border spaces.

The Disruptor strategy chooses a space that will disallow the maximum
number of spaces for an opposing player (thus being disruptive). For example,
for B in Figure 1, space (4, 2) is disruptive to A because by playing there, B
removes the possibility that A could play in the two spaces (4, 1) and (4, 2).
We will describe this situation by saying that the space (4, 2) is disruptive to
A with rank 2. In Figure 1, both (0, 1) and (1, 0) are disruptive to A with
rank 4, and so the disruptor strategy would choose randomly between these
two spaces. Early in a game, the disruptor strategy tends to choose spaces
in open areas on the board and may continue to do so by playing diagonally
to itself (creating a self-checkerboard pattern). As the game progresses, this
strategy moves toward ownership of spaces diagonal to the opponent creating
a checkerboard-style parity.

Our last strategy uses the same approach as the disruptor, but prioritizes
spaces that are diagonal to an opponent; we refer to it as a Diagonal Disruptor.
For B in Figure 1, if given the choice between (2, 0) and (1, 1) each with rank
3, B would choose (2, 0) since it is diagonal to one space with A. This strategy
results in close play and long-term checkerboard parity.

60

Figure 9: Player A win-ratios of center space taken first versus not.

5 Simulations

In this section we discuss several questions about the game of British Square
and provide some empirical evidence. In much of what follows, we examine the
questions for larger (and differently sized) boards as well. In all reported sim-
ulations, we executed a matrix-based Java solution 100000 times to minimize
variance.
Question 1. Does the center position give the first player “too much” of an
advantage if permitted to play there on the opening move?

To address this question we ran two simulations reported in Figure 9 with
increasing odd length boards (even boards do not have a center space). In
each simulation, both pairs of players chose their moves randomly; however, in
the second simulation, player A will always take the center square on the first
move. As shown in Figure 9, we confirm that the first player will always win
the game on a 3× 3 board and observe that as the size of the board increases,
the center space becomes inconsequential.

Figure 10: Random player A win ra-
tios.

Figure 11: Best Open player A win ra-
tios.

Question 2. Which agent performed the best?
Figure 10 depicts the win ratios of a first player making random choices and

the second player using an agent method. For two random players, Figure 10
affirms the results of Figure 9 in that two random players will tend toward

61

Figure 12: Win ratios of Disruptor first
player.

Figure 13: Win ratios of Diagonal Dis-
ruptor first player.

winning half the games as the board size increases. We also conclude from
Figure 10 that the Disruptor agents are superior to the Best Open agent. In
head-to-head competition, Best Open is weak compared to disruption as shown
in Figure 11 and limits to 50% of wins against a self-Best Open opponent. What
is interesting when comparing agents is that the Disruptor finds general success
against all other agent types including against a Diagonal Disruptor (Figure 13)
as well as a self-Disruptor match (Figure 12).

Generally, we conclude British Square is most interesting as a family game
with a 5×5 board compared to other sizes since any of our strategies, including
a random strategy, has an opportunity to win.

Table 1: Sample non-square board results (100000 iterations): Random vs. Ran-
dom.

3×4 4×5 5×6 4×6 5×8 2×4 3×9 1×10 27×39
Win Ratio 0.565 0.558 0.566 0.525 0.553 0.173 0.561 0.608 0.512
Tie Ratio 0.266 0.235 0.178 0.267 0.165 0.804 0.191 0.120 0.033

Avg. A Win
Differential 1.696 2.090 2.366 2.313 2.6375 2.635 2.313 1.698 10.304

Avg. B Win
Differential 1.223 1.618 1.913 1.874 2.159 2.0 1.873 1.308 9.690

Question 3. Does the first player have an advantage?
We first consider non-square boards. From Question 1, with increasing sized

square boards, we know that the center position becomes less significant. How-
ever, with smaller boards, there is much variability. Therefore, we consider
smaller, non-square boards since this type of board lacks a center position.
Using random play for both agents, Table 1 indicates that the first player (A)
generally has the advantage over the second player (B) when considering win
ratio.
Question 4. How many more squares does the winner control compared to the
loser?

62

Figure 14: Differences between average maximum win differentials.

To examine this question, we introduce the average win differential: the
difference between the number of spaces owned by the winner compared to
the loser. In a fair game, we expect the differential between A and B to be
roughly equivalent. We will see that when A wins, the average win differential
is statistically significantly in favor of A.

We also consider average win differential on square boards. Figure 14 shows
a select subset of agent competitions within a meaningful range. Those games
not depicted in Figure 14 such as a Random first player and any other agent
resulted in significant long-term wins for the second player. For example, the
average win differential between Random and Disruptor on a 30 × 30 board
is 144.352, a considerable amount considering 900 available spaces in total. A
more reasonable match between Random and Best Open in Figure 14 shows a
gradual trend toward more significant wins for the Best Open player.

We make several observations about Figure 14. For more fair matches such
as Best Open vs. Best Open and Disruptor vs. Disruptor, we see positive dif-
ferences and thus conclude that the first player maintains an advantage even
as the board size increases. The particular competitions with Disruptor and
Diagonal Disruptor are of interest. We conclude that the Disruptor agent is
superior with increasing board sizes noting the upward trend when Disruptor
is first against the Diagonal Disruptor and the downward trend when the order
is switched. However, we again see evidence of first player advantage because
the average win differential is more significant when the Disruptor is the first
player compared to being second (e.g., a difference of 6.034 vs. -3.116 on a

63

30×30 board) and the corresponding, respective monotonically increasing and
decreasing sequences.

6 Related Works

Bezáková, Heliotis, and Strout [2, 3, 5] motivate the use of board games in
the CS1 and CS2 classrooms to provide context for introductory computing
concepts. The authors discuss several board-based games in the classroom and
propose four criteria to selecting a game [2], including simple rules, non-violent,
and gender neutral. We agree with the stated criteria, but argue that a “well-
ranked game” (popular game) is not necessary. In the case of British Square,
we have a game with simple rules that provides a fruitful environment for
exploration and assessment with simulations as well as mathematical analysis.
While games provide great motivation for CS1 and CS2, we argue that rigor and
formalism should be instilled in students who plan to study computer science
beyond CS2. That is, proof can motivate algorithm development and analysis
(and vice versa). In fact, these same games can simultaneously motivate formal
analysis by considering, for example, the size of a search space.

In [1], Alvin proposed an activity for CS1 students to analyze the game
Guess Who? and develop an optimal decision procedure. Guess Who? is a
game for children that is easily modeled whereas British Square is intended for
an older audience with a larger search space. Guess Who? is not a traditional
board-based game compared to British Square, but the author’s approach to
developing a winning strategy is related to our work. Our work does not at-
tempt to elicit a machine learning-based algorithm, but instead focuses on
strategy development through search and static board analysis.

7 Discussion and Conclusions

British Square is a game in which a player identifies which board spaces are pos-
sible, evaluates the fitness of taking a space, and potentially performs a search
considering future piece placements. Thus, British Square naturally motivates
concepts such as data structures, search algorithms, and eliciting simple fitness
functions. In particular, a CS1 student with limited programming experience
can implement a two-dimensional grid, a simple agent, and an interactive text-
based interface. Such a domain allows for students to continue to explore and
improve game strategies thus providing a fertile ground to explore for begin-
ners and more advanced programmers. For example, a student can easily vary
the playfield to be smaller, larger, non-square, non-rectangular, and more. A
student might also implement more complex agents taking into account the

64

entire board state or if a student is bold, implement a minimax algorithm for
deep play and analysis.

On a 3 × 3 board we have rigorously shown that the first player may al-
ways win. Using our formal analyses of the smaller board, we proposed agent
techniques for bot-play of the game on any size board that might be easily
implemented and explored in a CS1 or CS2 classroom. We then performed a
sequence of simulations in which agents would compete against one another.
These simulations indicate that a 5 × 5 board is ideal family fun (using any
strategy), but also that the Disruptor approach seems to be the most effective
of the proposed strategies.

References

[1] Chris Alvin. Student generation of an optimal decision procedure using
guess who? In The Journal of Computing Sciences in Colleges, volume
34(5), pages 26–34, 2019.

[2] Ivona Bezáková, James E. Heliotis, and Sean Strout. Board game strategies
in introductory computer science. In SIGCSE, pages 17–22, 2013.

[3] Ivona Bezáková, James E. Heliotis, and Sean Strout. On the efficacy of
board game strategy development as a first-year CS project. In SIGCSE,
pages 283–288, 2014.

[4] Gabriel Games. British square, 1978.

[5] James E. Heliotis, Ivona Bezáková, and Sean Strout. Programming board
game strategies in CS2. In IEEE Frontiers in Education Conference, pages
4–5, 2013.

[6] Valve Corporation. http://store.steampowered.com/ Accessed Nov-18-
2019.

65

Experiential Learning Framework for
Smaller Computer Science Programs∗

Zachary Kissel1, Christopher Stuetzle1

1Department of Computer Science
Merrimack College

North Andover, MA 01845
{kisselz, stuetzlec}@merrimack.edu

Abstract

Experiential learning (EL) permeates the Computer Science disci-
pline. This work seeks to codify EL practices for computer science peda-
gogy into five key pillars. These pillars have been successfully applied at
a small to mid-sized college within the heavily competitive Boston area.
This paper further describes how a computer science department may
effectively implement the pillars in their own curriculum.

1 Experiential Learning in Traditional Pedagogy

The benefits of EL practices in higher education are well established [4, 9, 10].
Research has shown that students learn most when they are more engaged in
the experience rather than as passive participants [14]. The Association for Ex-
periential Education (AEE), founded in 1977, regards experiential education
as “a philosophy that informs many methodologies in which educators purpose-
fully engage with learners in direct experience and focused reflection in order to
increase knowledge, develop skills, clarify values, and develop people’s capacity
to contribute to their communities.” [1] Traditionally, this has manifested in
student internships and the use of case studies. While computer science stu-
dents have traditionally been encouraged to seek internships and co-ops, and
have been overall successful in attaining them, there are skill competencies

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

66

that these experiences are not guaranteed to provide, such as communication,
team/self management, or service learning.

Computer science, by its nature, is rife with experiential opportunities in-
side the classroom. First and foremost, the hands-on aspects of courses in
the discipline (project-based learning, in-course labs, internships-for-credit, and
practical quizzes and tests) are common in university curricula and important
for the overall growth of the students. These have also been universally-adopted
by the community as a whole. We take these EL components as given for a
computer science curriculum. However, from years of discussing program re-
quirements with CIOs and hiring managers from several industries seeking re-
cent graduates in computer science, as well as environmental scans of the local
industry, this is no longer seen as sufficient by employers and graduate schools.
Students need more well rounded experiential opportunities during their time
as undergraduates.

This has been supported by the literature. Previous work has argued the
importance of developing soft skills in computer science, through the use of
service learning [16], modification of students’ theories on self [2], and a form
of gamification [17]. Previous work, except [2], placed soft skill development
late in the curriculum, normally in a capstone experience. We assert this delay
in soft skill development reduces the potential impact on student development.

There are several ways that schools introduce additional EL opportunities
into their curricula. A near ubiquitous EL technique is the use of “hackathons,”
which have been adopted into formal instructional processes by authors such as
Gama et al. [5]. Hackathons can increase student engagement and enhance team
based learning outcomes. Hackathons are sometimes incorporated into curricula
as either a prep course, or as part of a larger programming course. Along similar
extracurricular lines are external experiences such as the NASA Robotic Mining
Competition [7]. The authors of this work believe this is not sufficient for well-
rounded graduates of computer science undergraduate programs.

1.1 Background of Institution and Department

Our institution is a Catholic college, in the Augustinian tradition, located
outside of Boston, Massachusetts; an area of heavy competition in higher ed-
ucation. It currently enrolls 3500 undergraduate students and 700 graduate
students. The computer science department graduates between 15 and 20 ma-
jors each year, and has roughly doubled in size since 2012.

Prior to 2012 the computer science department’s use of EL was drastically
different. While there was a capstone experience and some project oriented
courses, there was a dearth of independent studies, public and in-class presen-
tations, or formalized soft-skill development. Moreover, the curriculum lacked
cohesion around the use of EL practices. Starting in 2012, the faculty initiated

67

an organized effort to introduce consistent use of EL throughout the curricu-
lum. The resulting curricular decisions are captured as a five-pillar framework.

1.2 Contribution

EL curricular frameworks have been presented in several disciplines, such as
Marketing [13], Management [11], Medicine [12], and Foreign Language [8], for
example. Additionally, authors have provided frameworks for particular aspects
of EL curricula, such as scaffolded reflections [3] or working in teams [6]. To the
best of this work’s authors’ knowledge, no framework for experiential learning
curricular guidelines for small- and mid-sized computer science undergraduate
programs has been explored in the literature.

This paper presents a formalized framework for EL in small- to mid-sized
undergraduate computer science curricula that has been effectively deployed in
the authors’ computer science department. The framework is broken into five
pillars which are emphasized throughout the curriculum. Although we recog-
nize the fact that many of these curricular aspects are present and even ubiqui-
tous throughout many institutions’ undergraduate computer science curricula
(specifically an emphasis on internship opportunities and a project-based cur-
riculum), our work attempts to codify these notions into a sustainable frame-
work that can be applied to institutions similar in size to our own.

2 Experiential Learning Framework

The following five pillars of our framework describe a formalized pedagogical
approach to incorporating EL into undergraduate students’ curricular and co-
curricular experiences. In the following paragraphs, the incorporation and focus
of each of these pillars will be discussed. Each discussion is followed by a
description of how the pillar is implemented at our institution, though these
are not the only ways in which they can be incorporated into the curriculum
or department student outcomes. It’s important to note that, while each pillar
can be discussed separately, they all inform each other and as such create a
web of EL opportunities.

• Soft Skills - Focus on soft skills through reinforcement and repetition

• Real-World Focus - Consistent and constant real-world curricular tie-
ins

• Group Work - Group work with an emphasis on tools such as source
control, test-driven development, and real-time collaborative develop-
ment

68

• Student Empowerment - Student empowerment through choice and
ownership of learning

• Dissemination of Individual Work - All novel or substantial work is
disseminated to the broader community

2.1 Soft Skills Pillar

To incorporate soft skills into the curriculum our experiences have demon-
strated that emphasis, at all levels, should be placed on both written and oral
communication and self promotion. In both forms of communication, strong
technical and non-technical communication should be fostered; paying special
attention to communicating with audiences of various technical backgrounds.
Oral communication should be honed through frequent projects incorporating
presentations whose length is proportional to the scope of project. For theo-
retical courses and capstone experiences written skills should be fostered, in
addition to oral skills. The key factor for building good communication skills is
repetition. For this reason it is recommended that a concerted effort be made
to include communications skills in a majority of the curriculum. Self promo-
tion is most amenable to co-curricular activities, generally through the form of
interview and internship preparation. We also recommend involving any career
center on campus to participate in a portion of these co-curricular activities.

At our institution soft skills are present in almost every class and co-
curricular opportunity. In our curriculum oral communication skills are prac-
ticed through course final projects in which presentations are required. Without
exception, students are provided with a rubric to help focus the presentation
and determine the instructors’ weight on certain components (generally in-
cluding clarity and professionalism). In independent studies and the capstone
experience, communicating with varying audiences has been practiced through
college wide poster sessions. The capstone experience additionally provides a
communication opportunity that simulates direct interaction with a client, as
well as a heavy seminar and discussion component where students can engage
with each other and their faculty in debating current important topics, such
as net neutrality or algorithmic transparency. Soft skills are incorporated into
other coursework as well, such as public debates, the value of which has been
previously demonstrated [15].

To ingrain in students the idea of self promotion the department runs sem-
inars, in cooperation with the career center, in the last course of the introduc-
tory sequence. These seminars include writing a good resume, discussions of
elevator pitches, and how to perform well in a code interview. These are often
re-emphasized during informal meetings, such as office hours with either the
faculty of the computer science department or advisers from the career center.

69

This pillar maps well to our student outcome goal of graduating students
with “an ability to communicate effectively with a range of audiences”.

2.2 Real-World Focus Pillar

An emphasis should be placed on how skills and ideas learned through curricu-
lar and co-curricular means are necessary and valued by the industry and grad-
uate school community. This emphasis takes many forms. Instructors should
make an attempt to map in-class project topics to real-world applications.
Where applicable, course content should encourage students to engage with
important topics of the day and think about these topics in ways beyond a
traditional computer science curriculum, such as from ethical or service per-
spectives. Faculty should not only allow this exploration, but encourage it
through course content and informal discussion. Faculty should require a de-
gree of professionalism from students when communicating through e-mail or
in person.

Departments should encourage students to seek internships as soon as prac-
tically possible. Not only are internships arguably the most traditional of EL
avenues, but they are an invaluable resource for students to experience first-
hand application of the skills and ideas they acquire through course work.
Departments should also be flexible in allowing students to engage with co-ops
and study abroad opportunities, though this is a challenge as programs con-
tinue to grow. Additionally, departments should track internships taken on by
their students, and encourage thoughtful formal reflection on their experiences.

Faculty should encourage and teach aspects of entrepreneurship. Students
should understand intellectual property, knowing who owns the work they pro-
duce at school and in their internships. The environment they work in should
foster creativity and encourage initiative, so that students believe what they
create is valued and may be successful.

In our department we work closely with our institution’s career services
center in a variety of ways. First, all internships can be registered through
the center and reflection papers are required for the institution to formally
acknowledge the internship as part of the student’s experience while in school.
The department encourages students to register all internship and co-op expe-
riences with the career center. Secondly, the career center regularly attends our
classes and hosts workshops on resume building, interview tactics, and other
career preparation topics.

Courses in the major present project opportunities that map directly to
real-world applications. In some courses, such as Artificial Intelligence or Com-
puter Graphics, this is straightforward. However, even in courses where the
mapping might not be as obvious, such as Operating Systems, students write
shells and implement and utilize thread pools to construct web servers and

70

content filtering proxies, all tied back to the algorithms and concepts taught
in the course.

This pillar maps to our student outcome goal of graduating students with
“an understanding of professional, ethical, legal, security and social issues and
responsibilities”.

2.3 Group Work Pillar

Whether in an industry setting or a graduate school setting, students will
eventually spend significant portions of their lives working in groups toward
a common goal. This clearly presents a large set of challenges. An EL-rich
education should afford students as many opportunities as possible to work in
groups. They will not always have a positive reaction to these opportunities,
but they are important experiences. However, the curriculum should also strive
to provide students with the tools to thrive in group settings, by providing the
tools to enhance students’ workflows and by providing the necessary emotional
ground work for the challenges they may face when in group settings.

Faculty should encourage the use of group workflow tools for their group
projects. This includes version control software (such as git), collaborative de-
velopment tools (such as Google Docs), and project management tools (such as
BitBucket’s issue tracker). Embedding these ideas throughout the curriculum
allows students to overcome their learning curve and get used to them, but also
provides additional directly-applicable skills that can be added to resumes.

Arguably the most prolific complaint from students regarding group work
is the unfair workload that emerges from working as a team. Faculty should
put countermeasures in place to combat this workload imbalance. Allowing
students to weight each members’ contribution is a classic example of this,
but there are others. Incorporating an issue tracker and weighting the projects
based on issues closed is a more transparent method.

At our institution, group work is a focus of many upper level classes, and all
include an emphasis on these team management tools. Groups present, produce
deliverables, and disseminate together. Our capstone experience especially pro-
vides a heavy emphasis on group work, and includes units on group dynamics
and inter-group communication. Groups are required to provide both individ-
ual and group-written deliverables and group contribution is weighted based
on the number, weight, and priority of issues closed and bugs squashed.

This pillar maps directly to our department student outcome goal of grad-
uating students with “an ability to function effectively on teams to accomplish
a common goal”.

71

2.4 Student Empowerment Pillar

We, like others, have observed that students who feel empowered with choices
in a class often achieve a deeper learning experience. It is recommended that,
when possible, students should be provided choice in projects. Whether that
choice is through a list of potential topics, a free form choice approved on a
case-by-case basis, or a combination of the two.

It is important to foster a culture of independent studies within the depart-
ment. Independent studies empower students to take control of their learning
by adapting the curriculum to their aspirations. In order to build a success-
ful culture of independent studies, the faculty must engage in practices that
highlight the value of independent studies to the students. A substantial per-
centage (36.5%) of our student population engages in independent studies and
thus mold the curriculum towards their interests. In our view, a culture of
independent studies has formed over the past seven years, the time period
where this framework was in place. This growth was energized by the faculty
through announcement of potential topics in courses, where appropriate, as well
as through curation of a student accessible list of potential topics of faculty
interest. This culture has created a sense of a community of learners.

At our institution thirteen of the eighteen courses offered to computer sci-
ence majors beyond their first year have presentations based on a project of the
student’s choosing. Some of these classes use group work while others utilize
individual projects. Independent studies consist solely of student chosen work,
in consultation with a supervising faculty member.

Finally, a component of course reflection by students is empowering. This
may be achieved through the use of a post-course survey asking key questions
such as: what they feel they learned, what changes to the course they would
like to see implemented, what topics they feel they benefited from the most,
etc. These questions may be used by the faculty to potentially modify courses,
thus empowering students to enact changes in their learning environment. Thus
the curriculum moves from prescriptive to adaptive. The faculty at our institu-
tion have implemented student course reflection using the questions described
above, as well as additional questions. The feedback has been used to modify
curriculum, which has not gone unnoticed by the students. The most change
is normally enacted in the upper level electives as they are most malleable.

This pillar maps to our department student outcome goal of graduating
students with “recognition of the need for and an ability to engage in continuing
professional development”.

72

2.5 Dissemination of Individual Work Pillar

There are two ways in which dissemination should be formalized in the cur-
riculum. First, all research projects, independent studies, and applicable final
projects should be presented to the broader community. This can be accom-
plished through poster sessions, presentation symposia, or in-class project pre-
sentations. Second, faculty should emphasize and provide opportunities for stu-
dents to present work at local and regional conferences. Even if student work
is not accepted, the process and abstract writing that usually accompanies
application procedures to conferences is valuable as it forces students to dis-
till, summarize, and visualize their work for audiences with variable technical
backgrounds.

Work dissemination ties together several of the other pillars while provid-
ing additional benefits for students. There are clear benefits with regard to soft
skill development, as it forces students to communicate, through both written
and oral means, with audiences of varying technical skills and backgrounds.
Students who are given a choice as to what and where to disseminate are em-
powered to own their work, and this can often lead to requests to continue work
on a project past the end of its allotted time. Additionally, work dissemination
gives students a sense of belonging to a larger society of academics, both at
their institution and beyond, boosting morale and improving retention.

At our institution, the computer science department hosts a symposium at
the end of each semester. All students who take part in independent studies
during that semester are required to present their work in formal 15-minute
presentations to the department faculty and students, regardless of whether
their semester included original research or not. Additionally, our institution
hosts a campus-wide poster session each spring semester, and students present
their work to the broader college community. Beginning with their sophomore
fall semester, thirteen out of eighteen courses offered to computer science ma-
jors require a significant oral presentation component, and department faculty
are invited to view these presentations. Students are regularly encouraged to
present their work at local conferences by their faculty, and the department
funds these presentations.

3 Conclusion

Informal reactions to several portions of this framework have been overwhelm-
ingly positive. Student survey answers have praised aspects of the curriculum
that focus on soft skills, such as: public debates, in-class seminars, and end-of-
semester presentations. Student learning has tracked with student reactions.
Faculty have observed both greater engagement and deeper understanding of
course material. Independent studies have led directly to graduate school and

73

career path choices, as well as an active culture of student work dissemina-
tion. Many of our students have received offers for full time post-graduation
employment as a result of their internships.

Faculty and staff workload considerations are important as well. It has been
our experience that the initial investment of time and energy is steep as course
curricula are adjusted and faculty work to include students in multiple aspects
of their reseach. However as with any cultural shift, this investment levels over
time.

Almost all institutions face limited resources and must work to prepare
students as best as they can for employment with vertical mobility in spite of
those limitations. The presented framework has allowed our program to flourish
within these limitations. In particular, evidence suggests that the framework,
described above, has resulted in an increase in opportunities for graduates as
well as greater satisfaction with their undergraduate experience.

The institution is working to establish a database of alumni positions and
opportunities. Our immediate future work is to assess each pillar individually
using feedback from the alumni and their employers and adjust our curriculum
accordingly.

References

[1] What is experiential education. https://www.aee.org/what-is-ee. Ac-
cessed: 2019-07-25.

[2] Mikko-Ville Apiola and Mikko-Jussi Laakso. The impact of self-theories
to academic achievement and soft skills in undergraduate cs studies: First
findings. pages 16–22, 07 2019.

[3] Debra Coulson and Marina Harvey. Scaffolding student reflection for
experience-based learning: a framework. Teaching in Higher Education,
18(4):401–413, 2013.

[4] J. Dewey. Experience And Education. Free Press, 1938.

[5] Kiev Gama, Breno Alencar Gonçalves, and Pedro Alessio. Hackathons
in the formal learning process. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2018, pages 248–253, New York, NY, USA, 2018. ACM.

[6] Brenda S. Gardner and Sharon J. Korth. A framework for learning to
work in teams. Journal of Education for Business, 74(1):28–33, 1998.

74

[7] A. Heiney. Nasa lunabotics engineering competition. www.nasa.gov/
offices/education/centers/kennedy/technology/nasarmc.html. Accessed:
2019-07-28.

[8] Viljo Kohonen. Experiential Learning in Foreign Language Education.
Routledge, 2000.

[9] David Kolb. Experiential Learning: Experience As The Source Of Learning
And Development, volume 1. 01 1984.

[10] David Kolb. Experiential Learning: Experience As The Source Of Learning
And Development, volume 1. Pearson FT Press, 01 2014.

[11] Makoto Matsuo. A framework for facilitating experiential learning. Human
Resource Development Review, 14(4):442–461, 2015.

[12] Greg Ogrinc, Linda Headrick, Sunita Mutha, Mary Coleman, Joseph
O’Donnell, and Paul Miles. A framework for teaching medical students
and residents about practice-based learning and improvement, synthesized
from a literature review. Academic medicine : journal of the Association
of American Medical Colleges, 78:748–56, 08 2003.

[13] Ed Petkus. A theoretical and practical framework for service-learning
in marketing: Kolb’s experiential learning cycle. Journal of Marketing
Education - J Market Educ, 22:64–70, 04 2000.

[14] Patricia Sendall, Kristin Stowe, Lisa Schwartz, and Jane Parent. High-
Impact Practices: An Analysis Of Select University And Business School
Programs. Business Education and Accreditation, 8(2):13–27, 2016.

[15] Christopher Stuetzle. Public debate format for the development of soft
skill competency in computer science curricula. J. Comput. Sci. Coll.,
30(6):32–37, June 2015.

[16] Joo Tan and John Phillips. Incorporating service learning into computer
science courses. J. Comput. Sci. Coll., 20(4):57–62, April 2005.

[17] Bojan Tomić, Jelena Jovanovic, Nikola Milikic, Vladan Devedzic, Sonja
Dimitrijevic, Dragan Ðurić, and Zoran Sevarac. Grading students’ pro-
gramming and soft skills with open badges: A case study. British Journal
of Educational Technology, 06 2017.

75

Workforce and Career Readiness for
Computing and Technology Students∗

Jean Chu1, Patricia Morreale1, Michael Press2
1School of Computer Science and Technology

Kean University, Union, NJ
{jchu@kean.edu, pmorreal}@kean.edu

2Manager, Software Sales Engineering
Tech Data Corporation, Plano, TX

mbpress@pressmail.org

Abstract
Colleges and universities provide students with both knowledge and

skills to be successful in life. In parallel with academic achievement in
higher education is the development of career skills for the challenges of
professional life that are further developed through internships or co-op
jobs. The role of the curriculum in this development is pivotal for the suc-
cess of college students, especially first-generation college students with
a non-professional family background. Career awareness and professional
preparation should be an integral aspect of the university curriculum, as
it helps prepare students for employment and guides them to develop
the necessary career skills before they enter the workforce. Adoption of
career development into a curriculum as one credit course plays an im-
portant role. The career development course curriculum presented here
focuses on career education and the key components that play a crucial
role in getting a job. Students must be aware of the challenges and un-
derstand the skill needed for post-graduate success in industry. Career
education should be introduced as early as sophomore year with an em-
phasis on internship or co- operative experiences that allow students to
utilize knowledge gained in the classroom. The career education course
outlined here is part of a four-year program for both computer science
and information technology majors at the university level. The outline of
the course content is provided along with assessment from students who
successfully completed the curriculum.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

76

1 Introduction and Motivation

The practical application of learning is paramount for a student to ensure
his/her success and attainment of his/her career goals. A Gallup survey [11]
found that students

who reported having an internship or job that allowed them to apply what
they were learning in the classroom during college were two times more likely
to be engaged at work, but only 29% of students had that experience. Of
the six high-impact experiences identified as contributing to work engagement,
25% of graduates participated in zero, and only 3% participated in all six [2].
Employment in computer science and information technology occupations is
projected to grow 13 percent from 2016 to 2026, faster than the average for all
occupations. These occupations are projected to add about 557,100 new jobs.
Demand for these workers stems from greater emphasis on cloud computing,
the collection and storage of big data, and information security. The median
annual wage for computer and information technology occupations was $86,320
in May 2018, which was higher. than the median annual wage for all occupations
of $38,640 [10]. Table 1 provides some details.

Low-income and first-generation students are less likely to be engaged in the
academic and social experiences that foster success in college, such as study-
ing in groups, interacting with faculty and other students, participating in
extracurricular activities, and using support services [5]. Non-residential stu-
dents (commuters) and students with jobs are similarly unlikely to participate
in campus and pre-professional activities. Low-income and first-generation stu-
dents often face barriers and challenges in understanding of their career options.
With some experience, students can explore or narrow their interests from in-
dustry mentoring, coaching and job shadowing with an informed sense of their
career direction when making decisions about what to study. Academic advis-
ing is complimentary to this process from the start when it includes purposeful
career planning - start small think big.

Students at the university level generally have a goal or an idea about their
future career choice. The university and academic departments should build
on a student’s career interests early and strive to forge a connection between
the curriculum and the student’s future career choices. Faculty can help by
providing students with an opportunity to link their classroom learning with
its workplace application. This will lead to positive learning outcomes such as
motivation, grit, and career goal setting. “Guidance and information focused on
careers should be included throughout one’s undergraduate experience” [12].
Inviting guest speakers from various business sectors and industries can also
prove beneficial in this regard. Integrating career-focused curricula into class
discussions and projects can help students make a connection between the
curriculum and practical education, an important fact to be noted. Students

77

Table 1: Computer Science job descriptions and pay scale [10]

who do not have exposure to careers or career planning results in graduates who
know very little about what they can do professionally post-graduation, which
puts the students at risk for poor professional choices and limited success. In
a career-focused curriculum, the projects and research papers submitted by
students help to highlight those skills in the resume which are mostly sought
by employers.

When examining the awareness and use of career services at a large Mid-
western university, the research found that the career center resources were
underutilized and that many students were having difficulty with career deci-
sions [4]. Previous research regarding career services has identified that social
stigmas and lack of awareness negatively impact students’ usage of career ser-
vice centers [11]. Kean University’s Career Services Center helps all university
students to find an internship or job to launch their career while Kean’s School
of Computer Science and Technology (SCS&T) focuses on computer science

78

and information technology (CS/IT) students based upon each individual stu-
dent’s skills and interests, creating a culture of college and career readiness.
The SCS&T works in collaboration with Career Services for student success.
In SCS&T, career education is offered as part of the curriculum in the shape
of a one-credit course. Other computer science programs elsewhere, such as
Drexel, Carnegie Mellon, and Columbia, have integrated career education in
the curriculum in a similar manner to prepare students for careers in a rapidly
changing profession.

2 Gauging the importance of career education
Employers, regardless of industry, do have a preference for experience. Only
29% of college graduates had an internship or job during college [6]. It is ev-
ident from the figures that the number of students opting for internship is
abysmally low while the preference of employers for students with internships
over students without internships is overwhelming. The data only reinforces the
fact that career readiness education must be an integral part of the university
curriculum.

Recruiting has changed due to intense competition for graduates and tech-
nology. Organizations are utilizing the internet to attract, recruit, and select
applicants more widely than ever before. There are many tools available to a
hiring manager looking to fill an open role. From LinkedIn, Twitter, and Face-
book networking groups, to the company’s website and beyond, it has never
been easier to access a deep pool of qualified candidates. Hiring managers are
very focused on an individual’s resume. For example, what sort of schooling
did the applicant have? Had s/he won any awards? How much experience did
a person have in the field? What were their technical qualifications? It is in-
creasingly easy to create a workforce made up of a mix of permanent, freelance,
outsourced and automated staffing options. All these options are the competi-
tion, so students must be even clearer and more compelling about their specific
contributions [1].

The National Association of College and Employers (NACE) surveyed em-
ployers on what attributes they want to see on students’ resumes. NACE [1]
reported that the results of the Job Outlook survey (2019) showed that em-
ployers are looking for skills and qualities beyond a strong grade point average
(GPA); more than four out of five employers indicated written communica-
tions skills (Table 2), problem-solving skills and an ability to work as part of
the team are highly preferred. Another highly sought attribute in recent years
is initiative and leadership. Other high value attributes include analytical and
quantitative skills and a strong work ethic [8]. In addition, the Job Outlook
survey (2019) by NACE stated employers look at the social media of applicants,
such as LinkedIn, Twitter and Facebook.

79

Table 2: Attributes Employers Seek on Candidate’s Resume

Career education as defined by Kean University’s School of Computer Sci-
ence and Technology (SCS&T) is to prepare students who seek an internship
or cooperative education during their sophomore year and is not limited to
graduating and graduate students. The course curriculum is rendered in detail
in section 3. In response to changes in employer recruiting, SCS&T adopted
a more purposeful approach to promoting early career planning by students.
This includes aligning academic and career counselling, making students aware
of the relevant data e.g. current labor market and return on investment figures.
Apart from that, alumni highlights, speeches, and knowledge exchange are good
elements of career education and conversation between student-to-student and
faculty-student interactions.

3 Curriculum for career education

3.1 The Rationale for Developing a Curriculum

Kean University’s School of Computer Science and Technology (SCS&T) pro-
vides pre-professional student chapters such as the ACM, ACM-W, and WiCyS

80

with unique opportunities for networking, mentoring and bonding over common
interests. The Women in Cybersecurity (WiCyS) group addresses the female
workforce where women make up 11 percent of the global cybersecurity work-
force [7]. Students interested in research can work with the faculty during one
summer on campus and then apply for a National Science Foundation Research
Experiences for Undergraduates (NSF REUs) opportunity to further develop
their expertise as elaborated in Table 2. Other opportunities for participation
include attending career fairs, being involved in a Hackathon, participating in
ccoding challenges needed for interviews [9], and writing and solving algorith-
mic problems [3, 13].

Students are encouraged to become involved in the pre-professional chap-
ters to develop their collaboration and leadership skills, as well as to learn
more about their interests and meet a community of like-minded students. By
infusing career development in early courses, with invitations to ACM, ACM-
W, and WiCyS meetings, students are made aware of opportunities outside
the classroom. Employers have stressed to faculty the importance of students
being passionate about their future career, and these opportunities give stu-
dents a chance to try out different areas within their major field. Guest or peer
speakers talk about topics as varied as version control systems, new languages,
or demonstrate robots that they have built. This allows students develop a
self-identity within the profession. Early engagement in student groups also
supports the development of a student culture that encourages undergraduate
research or internships, which later moves students towards successful inter-
views and full-time professional positions or graduate school. By embedding
career development in the curriculum and reinforcing it throughout the aca-
demic years, students develop confidence and expertise.

Student readiness is a shared responsibility and career readiness is a top
priority in Kean’s School of Computer Science and Technology where faculty,
staff, and administrators support the growth of students by dedicating time
and effort to student career readiness. Students are encouraged to remain flex-
ible and adaptable in their career planning. If one approach is not working,
students are encouraged to try a Plan B or alternative strategy and alternative
vision. Therefore, in the development of a career education curriculum, both
traditional and life-changing job searches are addressed [1].

A special emphasis on ensuring the career readiness of the students is used.
For this, faculty and the contributing academic and administrative staff strive
to contribute towards the professional nurturing of the students. The idea is
to develop a curriculum that not only satisfies the educational needs but also
contributes towards the aim of career readiness. A 5-step process has been de-
veloped, as listed in Table 3, which provides a learning spine for the curriculum.

81

Table 3: CS/IT Career Education Curriculum Steps and Learning Activities

3.2 Curriculum Design

The curriculum was designed after conversations with the program’s Industrial
Advisory Board, alumni, and current seniors going through the interview and
hiring process. Table 4 details the specific units of the course.

Instruction is primarily through class lectures, student discussion and par-
ticipation, and student research, using publicly available sources, such as the
internet. Assessment includes projects and assignments, usually related to re-
search specific firms or industry segments. Students are encouraged to select
prospective firms they would like to work for and investigate those companies.
Mock interviews are held, with students partnering with each other and alter-
nating the roles of interviewer/interviewee. Finally, a career analysis report is
expected from each student at the conclusion of the course, in which the stu-
dent identifies roles they might like to have after graduation, firms where they
might work, and outline the steps they will take in the coming semester to make
their goals a reality. Learning outcomes include creating a professional resume,
identifying career objectives, preparing a 30-second elevator pitch, practicing
interviewing skills, employment negotiation, and how to accept a formal job
offer. Table 4 details the specific units of the course.

82

Table 4: CS/IT Career Education Curriculum Units

83

The class is taught by a faculty member and offered as a one semester credit
for the satisfactory completion of a course that requires at least 15 hours (of
55 minutes each) of instruction and supplementary assignments.

4 Student Assessment and Feedback

Career preparedness education should be an integral part of a student’s ed-
ucation at higher levels. Every student, as in this case a Computer Science
or Information Technology student, needs meaningful employment and career
advancement. During college and even before, the student should think about
giving an early start to his or her career, thus ensuring availability of a wide
array of choices at the time of graduation. A late start, on the other hand, leads
to a loss of many valuable opportunities and thus increases the challenges in
finding employment even after getting good grades.

Internships are important, as they are investments in a person’s future. The
general trend is that, despite the faculty counselling, regardless of career edu-
cation being a part of the course work, and irrespective of the requirement, an
internship or related experience is required for graduation. It is unlikely that
students think about this. Often, students are reluctant to pursue internships
because they worry they’ll be stuck doing menial tasks like getting coffee or
making copies and certainly no one wants to work for free. The truth is, al-
though not all internships pay in cash, they do pay in other ways. Table 5
provides student comments after taking a Career Education course.

5 Future Work

This study explores the experience at one public university in the School of
Computer Science and Technology. The subject study is a semester where the
student size of the class is smaller (approx. 15 students). As indicated from the
student testimonials the course proved to be extremely beneficial in making
them think about the career from an early stage. Twenty percent landed an
internship because of this course, with data collection is still taking place.
The SCS&T will continue to report data for upcoming semesters and gauge
the outcomes in terms of student journeys toward success. Integrating career
education content into class discussions provided an opportunity for students
to share their questions about different jobs. Many students considered class
discussions and practices to be the heart of the classroom learning. Integrating
key career information in the course provided students with the opportunity
to explore, connect, and apply career-focused questions and discussions.

Below are additional ways career content may be integrated into the class-
room in the future:

84

Table 5: CS/IT Student Comments after taking Career Education course

• Industry and site visits to observe company culture
• Ensuring employer engagement including workplace tours, job-shadowing

experiences, career professional interviews and related opportunities
• Alumni mentorship programs
• Job site reviews and workshops
• Industry speaker series
• Student champions
• Provide the students with some data to prove return on investments

(ROI) on college education to help understand their majors and creden-
tials

• Provide industry certifications to make the students more marketable

A carefully designed and meticulously planned curriculum can ensure faster
entry of the students into the workforce post-graduation and a higher likeli-
hood of attaining a job in the desired field. As the program grows and extends
to other departments, more opportunities will emerge to provide students with
information about their potential and future outcomes attached to this inte-
gration of career education into the curriculum. If the future of a student can
be shaped through such thoughtful guidance, it will encourage other students
to seek career information in support of informed choices that will help their
future success.

85

References

[1] National association of colleges and employers (nace).

[2] C. Billotte. Career services usage: An analysis of efficacy and contextual
barriers’ influence. ScholarWorks@BGSU 2019.

[3] Richard N Bolles. What Color Is Your Parachute? Ten Speed Press, 2017.

[4] B Busteed and S Seymour. Many college graduates not equipped for
workplace success. Gallup Business Journal, 2015.

[5] J. Eagle and V. Tinto. The pell institute for the study of opportunity in
higher education publications. Pellinstitute.org 2019.

[6] Nadya A Fouad, Amy Guillen, Elizabeth Harris-Hodge, Caroline Henry,
Alexandra Novakovic, Sarah Terry, and Neeta Kantamneni. Need, aware-
ness, and use of career services for college students. Journal of career
assessment, 14(4):407–420, 2006.

[7] S Frost. The 2017 global information security workforce study: Women in
cibersecurity. Center for cybersecurity and education, 2017.

[8] Lauren Levine. Then and now: How the hiring process has
changed. https://hr.sparkhire.com/best-hiring-practices/now-hiring-
process-changed 2017.

[9] Gayle Laakmann McDowell. Cracking the coding interview. 2015.

[10] Bureau of Labor Statistics. Computer and Information Technology Oc-
cupations: Occupational outlook handbook. https://www.bls.gov/ooh/
computer-and-information-technology/mobile/home.htm, 2019.

[11] Purdue University. Gallup-purdue index report 2014. Gallup.com 2019.

[12] Beth M Schwartz, Virginia R Gregg, and Mark McKee. Conversations
about careers. Teaching of Psychology, 45(1):50–59, 2017.

[13] SS Skiena. The algorithm design manual, 2008.

86

An Interdisciplinary Approach to
Detecting Empathy Through Emotional

Analytics and Eye Tracking∗

Jami L. Cotler1,Luis Villa1, Dmitry Burshteyn2, Zachary Bult3

Garrison Grant4, Michael Tanski5, Anthony Parente5
1Computer Science, 2Psychology, 3Sociology

Siena College, Loudonville, NY 12211
{jcotler,lc19vill,dburshteyn,zb20bult}@siena.edu

4Let’s Chat About It
garrison@letschataboutit.com

5Dumbstruck
{michael, a.parente}@dumbstruck.com

Abstract

The aim of this interdisciplinary study was to bring together differ-
ent perspectives to discover if detecting empathetic emotional reactions is
possible. This area of research has received recent attention from the com-
puter science, human-computer interaction and psychological research
communities. The research team consisted of three students; a computer
science, sociology and marketing major. The team worked to understand
the complexities of detecting emotions based on facial movement. The
team collected time stamped facial emotional data from 210 participants
as they watched a video clip from the popular movie depicting bullying
behavior towards a disabled person. The results demonstrated significant
before-and- after mean differences in emotions that are characterized as
empathic towards the main character for the bullying events, which is a
promising start to detecting empathic reactions. Each student brought a
different perspective from their majors resulting in an educational expe-
rience that transcended learning about emotional analytics.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

87

1 Introduction

The team started the project by agreeing on a common understanding and
definition of empathy. The definition used for this study is sharing in another
person’s affective state or being able to take the perspective of and/or feel
the emotions of another person, essentially to have the ability to put oneself
in another’s shoes, which is also called Affective Empathy [3, 12, 13, 1, 19].
Another type of empathy is cognitive empathy, which is the understanding of
how another person feels, but without actually experience that feeling [14].
The team select affective empathy because the aim of the study was to see if
the participants felt what the main character most likely felt. After becoming
familiar with the concept of empathy the team learned how to read micro
expressions by completing the Ekman library micro expression training tool
[9]. Discussed more in the methods sections, exposure to working with human
subjects, survey design and a technical understanding of the tools used were
part of the study development process.

Detecting empathetic emotional reactions is a growing area of research in
the field of Human-Computer Interaction [7, 14, 19]. Moreover, measuring em-
pathy has also garnered interest in the psychological and neuroscientific re-
search communities [2, 6]. Emotional detection has captured the attention of
researchers in the area of Affective Computing [17, 15] Using technology to
detect emotion has been realized in multiple applications including; text [4],
speech or voice [20], facial expressions[11, 15], body gestures and movement
[18], and emotion from physiological states [14]. State of the art facial recogni-
tion technology has been successful in predicting base emotions (joy, sadness,
fear, anger, surprise, and disgust as shown in Figure 2) with high levels of
accuracy [16]. This study extends facial expression detection to explore the
detection of empathic states. In this study, we used the commercial program
dumbstruck (dumbstruck.com) to collect facial expressions and attention (eye
tracking) data. The database that Dumbstruck uses is based on the validated
Facial Action Coding System (FACS) [5, 9, 10] and will be discussed in detail
the methods section.

Figure 1: Primary emotions as detected from dumbstruck algorithms [8]

88

2 Methods

To understand the intricacies of working with human subjects, all team mem-
bers went through the CITI human subject research program and helped de-
velop the Institutional Review Board study application. The team picked the
video clip and developed a short survey. The video clip from the movie Forrest
Gump was selected for two primary reasons. First, the clip depicted bullying
behavior based on a disability. Second, it clearly demonstrated both a bul-
lying and a bullying averted event. The survey was limited to six questions
that integrated different perspectives on the team and helped identify note-
worthy questions. The survey responses and the corresponding relationships
with the collected data will be investigated in our future studies. Dumbstruck
facilitated the distribution of the video and survey questions through their par-
ticipant network. Two hundred and ten participants watched the short video
clip and completed the survey questions. The participants watched the movie
clip while the camera on their computer recorded their responses. Dumbstruck
technology recorded the facial emotional state and eye tracking data of each
participant every millisecond. Our sample demographics are shown in Figure
2.

Figure 2: Study participants breakdown by age, gender and ethnicity

The “bullying event” occurs when the bullies hit the main character (Forrest
Gump) in the head with a rock and Forrest subsequently ends up on the ground
bleeding as a result of his injury. The “bullying averted event” commences when
Forrest gets up to his feet, starts to run away and successfully avoids further

89

bullying by breaking free of his leg braces and getting away. As a team we
hypothesized that participants would exhibit differences in emotional responses
to both bullying and bullying averted conditions in comparison to their baseline
condition. Our hypothesis was to evaluate the differences in emotional states
indicative of empathic behavior pre and post bullying events.

3 Results

An Analysis of Variance (ANOVA) was conducted to compare an equal number
of epochs (time segments) in baseline condition (BASE) and conditions depict-
ing bullying stimulus (BC), and bullying averting stimulus (BA). An ANOVA
yielded statistically significant differences for the following variables:

Mood F (2, 5656)=15.494, p<.0001,
Joy F (2, 5656)=34.621, p<.001,
Disgust F (2, 5656)=15.303, p<.0001,
Anger F (2, 5656)=6.157, p<.002.

Of interest, no significant changes in participants’ attentiveness measured
through eye tracking were observed between baseline and experimental con-
ditions.

Tukey HSD post hoc test was performed to compare mean differences be-
tween groups and indicated statistically significant differences between the fol-
lowing conditions:

Mood Baseline condition (Base) χ=-.85 and Bullying Averted (BA)
χ=.2.18 , p<.002, and Bullying Averted (BA) condition χ=.2.18 and
Bullying Conditions (BC)) χ=-2.50, p<.0001;
Joy BASE χ=2.91 and BA χ=6.05, p<.0001, and BA χ=6.05 and BC
χ=3.25, p<.0001;
Disgust BASE χ=1.04 and BA χ=1.95, p<.0001, and BA χ=1.95 and
BC χ=1.77, p <.0001, and BASE χ=1.04 and BC χ=1.77, p<.0001;
Anger BASE χ=3.09 and BA χ=3.91, p<.006, and Base χ=3.09 and
BC χ=3.92, p<.006.

4 Discussion

The results presented above and in Figure 3 demonstrate statistically signifi-
cant differences in key emotional responses between experimental and baseline
conditions. These differences in participants’ empathic responses point to the
effectiveness of our experimental manipulation and the possible role of innova-
tive technological tools in accurately detecting these types of responses.

90

Figure 3: Mean comparisons between Baseline (Base), Bullying (BC) and Bul-
lying Adverted (BA) Conditions

91

Some challenges and limitations we encountered include the type of stim-
ulus we selected. This type of movie depicts fictional characters and is not
necessarily representative of a realistic situation. Further, this is a popular
movie, which could have had an impact on the study results. Designing fu-
ture studies with better experimental conditions would be instrumental to the
generalization of our results. However, despite the limitations of our stimulus,
our findings are powerful and supported by the high level of statistical signifi-
cance between the groups. At the same time, we would like to be cautious to
not over generalize our findings until better control groups and more realistic
experimental conditions are selected for future experiments.

5 Benefits of interdisciplinary approach

The dynamic of an interdisciplinary team with a range of academic focuses
brought a unique team perspective and positively influenced our study. The
sociological perspective helped in wording of the survey questions and resulted
in participants achieving a high completion rate. In the analysis of the results,
this perspective aided in the team’s understanding and ability to differentiate
and recognize individuals’ emotions. The sociology major shared the perspec-
tive on human interactions as well as his expertise in research methodology
that helped construct the survey used in this study.

The marketing perspective helped the team find new ways to visualize and
interpret the data, and introduced an effective way to present the findings. Be-
ing able to produce a clear and concise summary of the data collected gave the
project traction. The team delivered several poster presentations and elevator
pitches for this project. The elevator pitches were constructed to describe the
project in-depth without overwhelming the audience with excessive level of de-
tails. The visual aids used in the study including charts and graphics allowed
for the audience to better understand the significance of the findings.

The computer science student was able to expound technology specifics and
explain complex concepts to the other team members. The student’s contribu-
tion led to the better understand of the role of camera angles, lighting, and the
effect of the distance between the participant and the camera on the quality of
data recorded. The computer science student learned how the Cohn- Kanade
AU-Coded Facial Expression Database was used to validate the use of the
dumbstruck coding algorithms to detect the primary emotions. The database
that Dumbstruck uses is based on the validated Facial Action Coding System
(FACS) [5, 10, 12]. The FACS-coded sequences are a snapshot of a collection of
the muscles that are being used when an individual has an emotional reaction.
Each part of the face has its own Action Unit or AU number [10]. The collec-
tion of certain muscles being used simultaneously is what gives the emotion

92

detection. Active Appearance Models (AAM) take the face and plots points
and then takes the measurements from each landmark and transfers that infor-
mation over to the Support Vector Machine (SVM) to then predict the emotion
that is being experienced by the participant [10]. The SVM is where the ma-
chine learning comes into play, the support vector machine makes decisions as
to what emotion is being shown. The SVM classifies the emotion by compress-
ing (regression) the information that is being given by the Active Appearance
Models (AAM) [14]. Dumbstruck has thoroughly trained and tested their SVM
and machine learning algorithms for commercial and research use.

Overall, the students reported very much enjoying this interdisciplinary
experience and team dynamic and felt that they complemented each other in
a way that increased the quality of the experience and study. They were each
able to make contributions that suited their respective fields, and along with
that came the general support and enthusiasm for the project.

6 Conclusion and future work

The goals of our future research are to analyze the responses of the six survey
questions and how they relate to the data collected and conduct additional
studies to discover potential cognitive-emotional substrate of empathy. In ad-
dition to using movie clips that introduce a potential confounding familiarity
variable into the experimental setting, we intend to use live experimental stim-
uli while empathetic behavior is monitored and recorded.

The facial recognition and eye-tracking data collected from the 210 par-
ticipants indicates significant differences between empathy induced conditions
and baseline conditions for several combinations of emotional states. Future in-
vestigations will seek additional clarity to further the scientific understanding
in identifying and recognizing such responses across multiple situations that
may elicit empathetic responses. It is important to investigate if these multi-
emotional responses remain stable or change as a result of a specific stimulus
in both magnitude and duration. Our future studies will focus on validation of
the empathy variable and expanding our knowledge of the effectiveness of facial
recognition and eye tracking technology in the accurate detection of empathetic
states.

We look forward to our future work in continuing the development of inno-
vative methods for detecting empathetic responses. This research also has the
potential to identify possible bullying prevention opportunities.

93

References

[1] Empathy. https://psychologydictionary.org/empathy/ accessed April 11,
2018.

[2] Zachary D Bloom and Glenn W Lambie. The adolescent measure of em-
pathy and sympathy in a sample of emerging adults. Measurement and
Evaluation in Counseling and Development, pages 1–15, 2019.

[3] Cambridge English Dictionary (2018). Definition of empathy. Retrieved
from: https://dictionary.cambridge.org/us/dictionary/english/empathy.

[4] Ankush Chatterjee, Umang Gupta, Manoj Kumar Chinnakotla, Radhakr-
ishnan Srikanth, Michel Galley, and Puneet Agrawal. Understanding emo-
tions in text using deep learning and big data. Computers in Human
Behavior, 93:309–317, 2019.

[5] Jeffrey F Cohn, Karen Schmidt, Ralph Gross, and Paul Ekman. Individual
differences in facial expression: Stability over time, relation to self-reported
emotion, and ability to inform person identification. In Proceedings. Fourth
IEEE International Conference on Multimodal Interfaces, pages 491–496.
IEEE, 2002.

[6] Michel-Pierre Coll, Essi Viding, Markus Rütgen, Giorgia Silani, Claus
Lamm, Caroline Catmur, and Geoffrey Bird. Are we really measuring
empathy? proposal for a new measurement framework. Neuroscience &
Biobehavioral Reviews, 83:132–139, 2017.

[7] David Coyle, Gavin Doherty, Mark Matthews, and John Sharry. Comput-
ers in talk-based mental health interventions. Interacting with computers,
19(4):545–562, 2007.

[8] Dumbstruck (2018). Tutorial from company dashboard. Retrieved from:
dumbstruck.com.

[9] P. Ekman. Micro expression training tools. Paul Ekman Group. https:
//www.paulekman.com/micro-expressions-training-tools/ 2019.

[10] Paul Ekman, Wallace V Friesen, Maureen O’sullivan, Anthony Chan,
Irene Diacoyanni-Tarlatzis, Karl Heider, Rainer Krause, William Ayhan
LeCompte, Tom Pitcairn, Pio E Ricci-Bitti, et al. Universals and cultural
differences in the judgments of facial expressions of emotion. Journal of
personality and social psychology, 53(4):712, 1987.

94

[11] Rosenberg Ekman. What the face reveals: Basic and applied studies of
spontaneous expression using the Facial Action Coding System (FACS).
Oxford University Press, USA, 1997.

[12] Robert Eres et al. Scanning for empathy. Australasian Science, 37(2):30,
2016.

[13] Xinbo Gao, Ya Su, Xuelong Li, and Dacheng Tao. A review of active ap-
pearance models. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 40(2):145–158, 2010.

[14] Jose Maria Garcia-Garcia, Victor MR Penichet, and Maria D Lozano.
Emotion detection: a technology review. In Proceedings of the XVIII In-
ternational Conference on Human Computer Interaction, pages 1–8, 2017.

[15] Maryam Hasan, Elke Rundensteiner, and Emmanuel Agu. Automatic
emotion detection in text streams by analyzing twitter data. International
Journal of Data Science and Analytics, 7(1):35–51, 2019.

[16] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Am-
badar, and Iain Matthews. The extended Cohn-Kanade dataset (CK+):
A complete dataset for action unit and emotion-specified expression. In
2010 ieee computer society conference on computer vision and pattern
recognition-workshops, pages 94–101. IEEE, 2010.

[17] Adria Mallol-Ragolta, Maximilian Schmitt, Alice Baird, Nicholas Cum-
mins, and Björn Schuller. Performance analysis of unimodal and multi-
modal models in valence-based empathy recognition. In 2019 14th IEEE
International Conference on Automatic Face & Gesture Recognition (FG
2019), pages 1–5. IEEE, 2019.

[18] R Santhoshkumar and M Kalaiselvi Geetha. Human emotion recognition
using body expressive feature. In Microservices in Big Data Analytics,
pages 141–149. Springer, 2020.

[19] Petr Slovak. Supporting teaching and learning of situational empathy by
technology. In CHI’14 Extended Abstracts on Human Factors in Comput-
ing Systems, pages 315–318. 2014.

[20] Adib Ashfaq A Zamil, Sajib Hasan, Showmik MD Jannatul Baki,
Jawad MD Adam, and Isra Zaman. Emotion detection from speech signals
using voting mechanism on classified frames. In 2019 International Confer-
ence on Robotics, Electrical and Signal Processing Techniques (ICREST),
pages 281–285. IEEE, 2019.

95

Project-Based App Programming: Tools
and Techniques for a Successful

Novice-Focused App Development Course
Michael Makutonin1 and Samuel Chen2

1Computer Science Department
St. Bonaventure University
St. Bonaventure, NY 14778
michael.makutonin@gmail.com

2College of Medicine
SUNY Upstate Medical University

Syracuse, NY 13210

Abstract

This paper presents an introductory app development course taught
over two semester-long sections to a mix computing majors and novice
programmers as a general elective. This project-based course aimed to
teach the requisite skills for application development in JavaScript in
a manner equally engaging to computing majors and novices. Students
were expected to complete practical exercises and functional projects fol-
lowing short daily lectures written in a reference-style format. A complex
final application was built by individuals or groups utilizing Scrum, and
showed the efficacy of tools and instruction pedagogy employed. Stu-
dents were able to look up syntax and reference external sources when
programming and could apply their understanding to learn other con-
cepts. There was no significant difference between novice and computing
major performance, as both groups could reference and integrate multiple
programming concepts to solve problems posed without an over-reliance
on specific syntax they were taught.

1 Introduction

Due to the increasing implementation of tools and practices traditionally con-
fined to CS careers in business and related fields, there has been increasing
demand for coding skills in traditionally non-technical disciplines [11]. In fact,
students graduating with degrees as disparate as philosophy and business are

96

all somewhat likely require skills like excel queries and analytics mastery [11].
Extensive research in novice computer science (CS) education has found com-
mon difficulties faced by students starting to learn programming in the uni-
versity setting [1, 10, 12]. These techniques are not universally implemented in
CS curricula, and CS remains an inaccessible field in the public view.
This paper describes an introductory programming course taught in the fall
and spring semesters of 2019 to a mixture of computing and non-computing
majors. This course assumed no prior programming experience, and employed
innovations recommended in prior research [1, 3, 4, 10, 12, 14, 15], implemented
current business practices [13], and adapted novel technologies [6, 8] to teach
students JavaScript (JS). Students were then meant to apply this knowledge
by programming an complex application after 5-7 weeks of instruction.

1.1 Grounding in Prior Research

Over the last couple of decades, researchers have consistently investigated the
challenges faced by novice programmers. Students tend to have an adequate
understanding of syntax but cannot apply multiple syntactic elements to solve
larger problems [7, 12]. Despite this, research reviewed by Robins et al. sug-
gested that many textbooks and computing courses place a heavy emphasis on
learning the syntax of a specific language [10].
Multiple surveys have attempted to pinpoint pain points of students learning
introductory computing [1, 7]. Many students significantly prefer to learn using
hands-on coding examples [7] and debugging code [1].
Studies have further shown that student engagement is an important indicator
of educational outcomes [5, 15]. Engagement can be increased by giving stu-
dents a stake in what they learn and allowing them to direct the work that they
complete. Students lose engagement when they are given inadequate resources
or forced to produce work that does not enhance their learning [13].
Literature has also contrasted novice and expert programming behaviors [3,
4, 10]. Novices tend to spend more time searching for information when solv-
ing problems, while experts spend more time defining problems and narrowing
search topics before search and implementation of solutions [4]. Novice pro-
grammers in the workforce also tend to have problems communicating solu-
tions and interacting with colleagues in a productive manner, suggesting a lack
of experience applying social skills and collaborating on long-term projects [3].

1.2 Grounding in Industry Practices

Industry environments tend to focus on process efficiency and reliability. In
software development, practices are designed to increase efficiency of program-
mer communication, work, and research/learning. In a project-centric course,

97

it is important to teach students these priorities, since inefficiency results in
time wastage on tasks unrelated to development. This wasted time would not
contribute to student learning and could result in increased student frustration
and less tangible progress.
Scrum, a development practice used by over 50% of programmers at a variety
of established software companies [2, 9] increases the efficiency of program-
ming teams and individuals by increasing communication and transparency of
the development process. Scrum iteratively focuses developer efforts on prior-
itized list of tasks to be completed in a set period, which is then reprioritized
based on business needs. Scrum also increases development efficiency through
continuous improvement tasks that are built into every development period.

2 Instruction Methodology

2.1 Course Meeting Structure

Course meetings occurred twice or thrice for five cumulative hours a week, and
usually involved a 20-minute lecture and an exercise work portion. Lectures
would introduce new material and review prior concepts, while exercises would
require students to reference and synthesize new concepts in order to solve
programming challenges. Students could collaborate on exercises if desired,
though each student had to submit an individual solution a week after the
exercise was assigned. The final 3-5 weeks of the course were devoted to work
on final projects of interest to teams of students.

2.2 Implementation of Best Practices

Function over Style

Due to difficulties novices have understanding programming concepts rather
than syntax [7, 12], this course emphasized the functionality of programs over
syntax and style. Most exercises were unit tested, and students were given full
credit if exercises passed unit tests. For projects other than the final, students
were given clear minimal acceptance criteria, and earned full marks upon meet-
ing said criteria. Only when students mastered programming concepts were
they encouraged to follow better syntactical practices. To assess that students
mastered best practices during the course, their final projects were assessed for
best practices as part of the project grade.

Familiarization via Debugging

JS involves concepts that are difficult for students to grasp [7] and implement
immediately. To help students become familiar with difficult concepts with

98

less frustration, some exercises involved debugging existing code rather than
implementing new functions. Debugging was meant to cause students to refer-
ence syntax and concepts frequently while building mental models of how the
intended code was supposed to work.

Student Engagement

Students were encouraged to create projects whose content and purpose was
meaningful to the student. Efforts of students who developed application be-
yond the minimal requirements were then validated by classmates’ praise dur-
ing project presentations. In order to decrease student frustration, students
were made aware of resources available to them prior to the start of every
project. Students were graded exclusively on performance of their code – lec-
ture attendance was not mandatory (except during sprint demos for the fi-
nal project). Scrum practices were taught to reduce student inefficiency and
frustration on large projects, and were implemented by all teams during final
project development.

Project Focus

A project-focused course has multiple benefits. It increases student engagement
by offering maximal flexibility and a feeling of tangible accomplishment to stu-
dent work. Project work also has a didactic benefit, since it allows students
to learn and be assessed via implementation rather than proxies like exams
or attendance. Group projects can build professional communication skills be-
tween team members, while individual projects encourage students to become
self-driven and creative with their ideas.

2.3 Adaptation of Novel Tools

The adoption and adaptation of the following tools was critical to the imple-
mentation of the best practices described above. Tools were meant to enhance
engagement, learning, and communication throughout the course.

Lecture Tools

Observable Notebooks [8] were used to create referenceable and interactive lec-
tures. Lectures were written in a textbook format: concepts were explained
using text and graphics so that students could read lectures independently as
instructors emphasized important points. Students could view the notebooks
on their personal computers during the lecture, which allowed them to follow
along and code inside the notebook during lecture. Exercises were included in
the notebook, and forked by students when complete. These exercises came

99

bundled with pre-written unit tests that allowed students to see if their code
met functional acceptance criteria before submission.
Because Observable Notebooks could not effectively display React, Codesand-
box [6] was used to teach React. Codesandbox projects could be embedded into
Observable Notebooks for easy reference and manipulation during the lecture.

Language

JS was taught because its primary applications are visual and tangible. This
allowed students to create code that produced interactive results, which could
increase engagement. JS allowed for exposure to facets of imperative, scripting,
and object-orientated paradigms, which may help them when learning other
languages in the future. When utilizing the React library, JS could be used
to create mobile, web, or desktop apps, increasing student flexibility in imple-
menting the final project.

3 Results and Discussion

This course was offered in the spring and fall of 2019, with section sizes of 7
and 5 students, respectively. The spring section was composed entirely of com-
puting majors, while the fall section contained two computing and three non-
computing majors. Performance between sections was compared to control for
variation between offerings and evaluate accessibility to novice programmers.
All data discussed below were collected with IRB approval.

3.1 Assessment Performance

Exercise completion was assessed as a measure of student understanding of
concepts taught in lecture. Though some modifications were made to exercises
assigned in the fall semester, they remained comparable across both semesters.
Notably, the fall cohort had better completion rates for exercises, especially as
concepts became more complex (Figure 1).

3.2 Project Performance

Several projects were assigned throughout both spring and fall semesters. Stu-
dent performance in each project is discussed below.

Control Project: HTML Assignment

Students in both cohorts were asked to build an HTML webpage (with little
instruction in HTML) at the beginning of the course. This project measured

100

Figure 1: A comparison of exercise completion rates in spring (S) and fall (F)
cohorts. Concepts missing S bars were not tested via exercises for that cohort,
but were implemented in final projects.

baseline programming skill of students and their ability to learn a simple new
language. Students were given online resources to reference and minimal out-
of-class help upon request.
In the spring semester, all students turned in websites on-time and were able
to incorporate multiple HTML constructs into creative, individual projects.
Students in the fall semester were asked to work on the HTML project in self-
selected pairs: the first pair, made up of two novices, delivered the project two
weeks late, after one of them dropped the course due to difficulty balancing
it with other commitments. The other two pairs, made up of one computing
major and one novice, were able to complete their projects on time. However,
when feedback was collected from those groups, it was found that the projects
had been coded mainly by the computing major.

Additional Projects in Fall Cohort

Students in the fall cohort completed two additional projects. First, students
had to extend their websites to call publicly available APIs. For this project,
students separated themselves into groups of two and three students, containing
one computing major each. Here, a similar pattern was observed in student
feedback, with most of the functionality being implemented by the computing

101

major when the groups were working together. However, in one group, when the
two non-computing group members were asked to work on the project without
the aid of the computing major for an hour, they were able to implement most
of the project alone. This incident showed that the non-computing majors
were able to implement projects without assistance from computing majors
but were more comfortable relying on a computing major’s expertise when
available. Keeping this event in mind, students were asked to complete the
final in-lecture project independently. This project involved the creation of
a random Pokémon generator using a React template and assessed students’
synthesis of several concepts (data structures and manipulation, higher order
functions, API calls, promises, and React/React Components) from the lecture.
Because this project was assigned during the second-to-last lecture, students
expressed a lack of motivation to complete the project – two projects were
turned in on time, two were late, and one was not completed. However, all
but one student were able to complete the project, showing an ability to apply
their understanding of complex programming concepts to an implementation.

Final Project

In the final three weeks of Fall and five weeks of Spring, students self-organized
into teams and worked on full-scale applications as a practical learning assess-
ment. This project was worth 50% of the student grade for the course.
In the spring cohort, two groups completed and presented projects to a panel
of external faculty. The first presented a Yelp-like web application. The second
completed a mobile quiz game meant to familiarize incoming university fresh-
men with campus landmarks by having them identify photos to earn points.
Both projects functioned during the demonstration and received positive feed-
back. When projects were assessed for their adherence to best practices, code
was readable and logically structured overall, which showed that teams were
able to follow some best practices in their implementations.
Group members contributed to development equally, with one notable excep-
tion: a student in the quiz app team did not communicate well with his team
and would not complete any programming portion of the project.
Students who developed mobile apps selected to use React Native and were
able to learn the library with minimal input and aid from instructors. Though
JS concepts translate to the construction of apps using React Native, the li-
brary is different enough from the React library taught in lecture that it should
have taken significant effort to learn.
Due to the deadline for this paper submission, the outcomes of the final projects
for the fall course have yet to be assessed. However, at the equivalent milestones,
the fall cohort’s results have surpassed those of the spring cohort consistently.
Due to their use of an iterative approach, all three teams in the fall cohort

102

currently have working applications: a 2D web-based adventure game, a web-
based “adulting” application, and a mobile educational game for children. The
games were developed by individual computing majors, while the web app was
developed by the three novices in the cohort.

3.3 Efficacy of Tools

Student success could not be quantitatively attributed to a particular tool
or technique. Nevertheless, there were strong trends observed in both cohorts
which recommended several tools and frameworks for use in an introductory
programming offering.

Observable Notebooks

Observable notebooks were essential for instruction of this course. They allowed
students to execute and modify code in real time and made programming a
primarily interactive and visual experience. In addition, since the notebooks
were written in a reference format, and since exercises were included directly
in the notebooks, they allowed students to develop skills in reading documen-
tation and looking up information. Students stated that they enjoyed learning
using notebooks, with multiple comments attributing learning outcomes to the
format of the lectures. When implementing exercises and assignments, stu-
dents identified the programming constructs necessary to solve a problem and
referenced notebooks/search engines to identify appropriate syntax.

Scrum

Students adopted Scrum principles in order to develop their final projects,
including sprint demos and other Scrum ceremonies that helped organize their
iterative development process. Students stated that Scrum made it easier to
develop their apps and allowed them to spread their work more evenly and
sustainably throughout the project work period. In addition, students stated
that iterative development allowed them to include useful features in their apps
that they had not thought of at the beginning of their development process.
Though many of the graduates of this course will not develop projects in teams,
Scrum allows them to organize their own work on individual projects and
finds application outside of a coding environment in other project management
applications. Some students have reported using Scrum significantly on passion
programming projects and projects unrelated to computer science.

103

Daily Exercises/Projects

We saw the impact of exercises and implementation of concepts on learning
when reviewing the case of an auditor in the spring semester. The auditor
attended each lecture and paid attention during lecture but refused to do any
of the daily exercises. The auditor stated to instructors around the middle
of the semester that he did not understand material being covered, despite
help from instructors and review of old notebooks. This auditor was not able
to program any portion of his team’s project at the end of the semester and
served only in an organizational capacity for his team.

4 Conclusion

The aim of the course presented in this paper was to teach programmers work-
ing knowledge in a new language that they could use to develop complex
applications. Using techniques found in industry and recommended by prior
research, as well as tools applied in a novel fashion to undergraduate CS ed-
ucation, students were taught JS in 5-7 weeks of lecture. Regardless of prior
programming background, students could create small-scale (but complex) ap-
plications after this lecture period.

5 Acknowledgements

The authors would like to thank the St. Bonaventure School of Arts and Sci-
ences for running this course, as well as individuals who helped in this paper’s
conceptualization (including Ashley Delvento, Dr. Remah Alshinina, Dr. David
Levine, and Dr. Xiao-Ning Zhang, among others).

6 Additional Resources

All materials for this course (including final project links, lectures, and syllabi,
can be found at http://bit.ly/ccscne_paper_materials.

References

[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. An analysis of
patterns of debugging among novice computer science students. SIGCSE
Bull., 37(3):84–88, June 2005.

[2] Scrum Alliance. The state of scrum report 2017 edition. In Technical
Report. Scrum Alliance, page 31. 2017.

104

[3] Andrew Begel and Beth Simon. Novice software developers, all over again.
In Proceedings of the Fourth International Workshop on Computing Edu-
cation Research, ICER ’08, pages 3–14, New York, NY, USA, 2008. ACM.

[4] Saskia Brand-Gruwel, IwanWopereis, and Yvonne Vermetten. Information
problem solving by experts and novices: Analysis of a complex cognitive
skill. Computers in Human Behavior, 21(3):487–508, 2005.

[5] Robert M Carini, George D Kuh, and Stephen P Klein. Student en-
gagement and student learning: Testing the linkages. Research in higher
education, 47(1):1–32, 2006.

[6] Codesandbox. https://Codesandbox.io/.

[7] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of
the difficulties of novice programmers. SIGCSE Bull., 37(3):14–18, June
2005.

[8] Observable notebooks. https://observablehq.com/.

[9] Mark C Paulk. A scrum adoption survey. Software Quality Professionals,
ASQ, 15(2):27–34, 2013.

[10] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and
teaching programming: A review and discussion. Computer science edu-
cation, 13(2):137–172, 2003.

[11] Matthew Sigelman, Scott Bittle, W Markow, and B Francis. The hybrid
job economy: How new skills are rewriting the dna of the job market.
Burning Glass Technologies, 2018.

[12] James C. Spohrer and Elliot Soloway. Novice mistakes: Are the folk wis-
doms correct? Commun. ACM, 29(7):624–632, July 1986.

[13] Jeff Sutherland and JJ Sutherland. Scrum: the art of doing twice the work
in half the time. Currency, 2014.

[14] Leon E. Winslow. Programming pedagogy- a psychological overview.
SIGCSE Bull., 28(3):17–22, September 1996.

[15] Linda G Wyatt. Nontraditional student engagement: Increasing adult stu-
dent success and retention. The Journal of Continuing Higher Education,
59(1):10–20, 2011.

105

Using Gamification
to Encourage Student Success∗

Patricia Morreale and Nohelia Diplan
School of Computer Science and Technology

Kean University
Union, NJ 07083

{pmorreal, diplann}@kean.edu

Abstract
Increasing computer science program enrollments have impacted col-

lege and university programs in many ways, usually resulting in addi-
tional curriculum offerings and larger courses enrollments. Student sup-
port, such as faculty mentoring, previously offered one-on-one or in small
group settings, has been impacted. First generation college students and
students without knowledge of professional careers are adversely im-
pacted, as faculty mentoring can be vital to their academic and pro-
fessional success.

Using gamification, a pathway has been designed to identify and en-
courage student success. The pathway offers concrete steps for students
to take in each of their four undergraduate years. Incentives are offered
to students as they complete each step, culminating in badges. The pur-
pose of the experience report presented here is to determine if gamifica-
tion can motivate students to take steps towards academic success and
career readiness. Lessons learned from this effort include the importance
of early introduction of gamification to the students, reinforcement in
the classroom and with faculty, and the use of experience rewards over
material rewards.

Student success has been outstanding, with a majority of eligible stu-
dents using the gamification pathways in the first semester. Completion
of tasks in support of professional success is high, and student internships
and first destination job placements reported in greater numbers and ear-
lier than ever before. Class attendance, extracurricular engagement and
advisement have also been improved, leading to academic success.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

106

1 Introduction
Surging enrollments in computer science and information technology programs
have necessitated the scaling-up of many programs, resulting in more curricu-
lum offerings and larger courses enrollments to meet increasing student de-
mand. For both research-oriented and teaching colleges and universities, this
increase in enrollment has the potential to adversely impact student outcomes,
as students may be unable or unwilling to interact with faculty in the larger
environment. Faculty and programs which had previously offered high-touch
interactions to students are now faced with maintaining the quality of their
teaching and research engagement with students, and student outcomes, in a
larger environment which does not allow as much student interaction as was
possible earlier.

This has the potential to impact student outcomes, particularly students
who are first generation college students and students who do not come from
professional family backgrounds. These students, previously able to rely on
small class sizes and faculty interaction as they developed their skills needed
to successful navigate a college degree in computer science and information
technology, as well as internships, and professional job interviews, are now
larger in number in many programs, a result of the enrollment increases, but
harder to reach, and effectively prepare for both engagement in undergraduate
program activities and professional careers.

In response to the need to clearly define the steps to be taken for academic
and professional success in computing careers, a pathway for success has been
defined by one program at a teaching university. This program design incen-
tivizes the students, using gamification techniques, to engage in a sequence of
activities which will develop academic and professional skills needed for suc-
cess. By listing the steps and options available to students and personalizing
the engagement of the students on each individual pathway, the faculty men-
toring role, once done one-on-one is now extended to a larger group of students,
allowing for consistent, greater impact overall.

In addition, the interview process for both internships and first jobs after
graduation has changed, with resumes, elevator speeches, video interviews and
coding assessments all part of the screening process, leading to team interviews
and site visits. This lengthy path is unfamiliar to many students pursing de-
grees in computer science and information technology. The insight available
from computer science faculty members and alumni is vital for student suc-
cess along this route. In order to capture the steps which students should take
in order to be successful, a guided pathway has been illustrated and publi-
cized, providing consistent, equitable information about student activities and
preparation which should occur prior to graduation for both academic and
professional success.

107

2 Prior Work
Inspired by the work of [17] and pathways identified in other, non-computer
science programs, a survey of the literature highlighted that gamification has
been effectively used for student engagement [4]. Gamification is defined as
the use of game design in non-game contents [16], and gamification when used
with teaching practices has been found to have a positive impact on student
achievement and student attitudes towards academic lessons.

Much of the prior work has been on the use of gamification in specific class-
room settings [2, 1, 6, 13]. The gamification of specific classes, with points,
badges, and experience levels, showed improvement in student participation,
pro-activity, superior performance, motivation resulting in higher grades, and
overall encouragement resulting from a motivated student mindset. While fac-
ulty are looking at educational games to determine if they can increase student
engagement and learning [11], it is most often in the context of a specific course,
not program wide. The use of a mobile application in a classroom was found
to improve student retention rates and academic performance [14]. Other web-
based gamification in the classroom also fared well [7].

The purpose of the designed pathway was motivation, and gamification
is recognized as being a strong student motivator [5]. Badges, or waypoint
indicators within a game, illustrating accomplishments, have been found to
increase student activity [8]. Gamification has been shown to improve awareness
of CS-related careers [15] as well. A gamification approach had been taken
for one aspect of new student orientation [10], which was shown to improve
student engagement and completion of tasks in support of badges and mastery
of material. The alignment of gamification with practice systems, such as those
found in CS1 and CS2 level courses show that gamification increased student
attendance, improved retention rates, and assisted students at all levels [9].

Academic work and career readiness have been explored previously, in isola-
tion. Earlier work on gamification in a course [12] demonstrated that students
did respond positively to gamification, when used to encourage development
of “soft skills”. Academic success, particularly attendance, has also been mea-
sured [3], and gamified awards did support improved completion of tasks and
class attendance. The work presented here integrates both academic work and
career readiness, outside individual classroom experience, measuring student
engagement and satisfaction.

3 Methodology
The purpose of this experience report is to determine if gamification could
motivate students to take steps towards academic success and career readi-
ness. A gameboard was developed through several iterations. The result was a
gameboard which depictstasks to be accomplished each year, moving students

108

towards their goals of academic success, development of a professional portfo-
lio, landing a paid internship and, after graduation, beginning a graduate or
professional career. The pathway for student success is visually appealing, with
roughly ten discreet activities students can accomplish during each academic
year. Depicted students were representative of the diverse student population.
Table 1 provides a sample of activities aligned by years. Figure 1 shows the
pathway game board.

Table 1: Tasks, by year, from the pathway for student success

While these activities are basic, to many students who are attending school
and unfamiliar with the effort which must be put into a professional job search,
the pathway for success has been very helpful. Many students work, in addition
to attending school, and professional preparation, particularly for internships,
which are very important in computer science and information technology, or
full-time jobs after graduation, is often deferred until graduation. However,
student success and program outcomes are greater if students are prepared
throughout their program, understanding why they are working on the aca-
demic courses and how they will contribute to their future professional success.

The gameboard and tasks have been reinforced with Quick Response (QR)
codes, available at events, during meeting with faculty advisors, resume review

109

Figure 1: Pathway to success gameboard

sessions, or any other tasks which will allow students to gain points in the
pathway for success game. The tasks correspond to three badges which were
developed, to provide intermediate feedback to students as they moved along
towards their goal. The three badges are the Ready to Succeed badge, Road to
Graduate School badge, and Academic Merit badge. Each badge can be earned
by completing tasks on the pathway to success. Table 2 outlines the badges
and subordinate tasks.

Additional events which occur during the semester, such as guest speakers
or corporate information sessions, can be easily added as events, allowing the
pathway for student success to be dynamically updated to support current
activities.

Badges correspond to professional, academic and networking activities and
encourage participation and engagement, as shown in Table 3.

A variety and range of activities which students can participate in is pro-
vided. Students in the department are frequently commuters, with jobs off-
campus, whichencouraged the faculty and staff developing the game to include

110

Table 2: Badges and tasks in the pathway to success game

a mix of both in- person on-campus activities, as well as off-campus activi-
ties, such as videos, webinars, programming skill development activities and
certifications. These activities are reported through reflections or the submis-
sion of evidence of completion or demonstration of new skills. Students are
not disadvantaged by their scheduling and the importance of participation and
engagement is supported by the adaptability of the activities and availability
of the platform.

Once designed, the game was deployed on a mobile application, allowing
students to download the app from the app store for both iOS and Android
phones, and play the game anywhere. This supports the ‘meeting students
where they are’ engagement allowing all students to participate, regardless of
location and time of day.

4 Evaluation
Student success has been outstanding, with almost 50% of the eligible students
registering for the pathway for student success in the first semester it was avail-
able. Registration in the following semester increased to 66%. Completion of
tasks in support of professional success is high, and student internships and first
destination job placements reported in greater numbers and earlier than ever
before. For the first year of use, reported internships and full-time job place-
ments doubled, with students eager to report their success and receive points.
This has provided the faculty with insight into student outcomes much ear-
lier than before. Class attendance, extracurricular engagement and advisement

111

Table 3: Professional/Academic/Networking Opportunities

have also been improved, leading to academic success. Students understand the
expectations of their program.

Students are enjoying having specific activities outlined as moving them
towards their goals. Student understanding of the importance of internships
and where internships fit into their overall college career is much higher than
it was before. This is apparent from the most recent career fair which was well
attended by juniors and seniors, as well as a few sophomores. Their engage-
ment in the pathway for student success was high, they had prepared resumes,
LinkedIn profiles and elevator pitches, and they understood the importance of
an internship or full-time job. Attending the career fair was the logical next
step and they were fully prepared.

The tasks and badges map back into competency areas, with personal and
professional development being the largest area of activity, followed closely by
academic achievement, and networking skills. Students can see their peers that
are on a ‘leaderboard’ and enjoy seeing who is doing well. The department, in
return, can see which students are most engaged in the process, and faculty
can reach out to students who may not be engaged to encourage participation.
Experience awards are given to the top students by academic year. For example,
early access to the career fair is given to the top students in the pathway
for student success, as they have shown a strong effort in preparing them for
the event. Student feedback has been positive, with students reporting that

112

they would encourage friends to play the game and stating how they felt for
interviews. Selected student responses are listed in Tables 4 and 5.

Table 4: Would you encourage your friends to play? Why? (selected responses)

Table 5: Were you better prepared for interviews? Why? (selected responses)

5 Conclusions and Future Work
Students have been encouraged to participate in the pathway for success through
their classes. During the first week of each semester, a department representa-
tive visits freshmen, sophomore, junior and senior classes to describe the game
and encourage students to sign up. With a large percentage of transfer stu-
dents and many transfers into the major from other majors in the university,
this regular reminder is necessary and effective. Lessons learned include:

1. Freshmen and sophomore students are most receptive to this defined
process. If gamification is used on a program-wide scale, it should be
introduced early to students.

2. Students should be required to sign up for the pathway for success. The
sign-up, reinforced through the classroom visit, is also listed on faculty
syllabi. Reinforcement through the learning management system (LMS),
also is important. Many faculty placed the sign-up link in their class
LMS banner, which encourages adoption. Sign-up is now included in the
freshman and transfer introduction course and reinforced through the
department’s career education course which prepares students for intern-
ships, graduate applications, and professional jobs.

113

3. Faculty must be onboard with the pathway for student success as well.
Reinforcement in the classroom, and faculty participation, encourages
student engagement. Several faculty are also ‘playing’ the game and can
be seen on the leaderboard at times.

Plans for future work include providing more rewards, such as inviting stu-
dents to alumni events, where they can interact with recent graduates and learn
more about the necessary professional preparation. The gamification provided
by the pathway for success has greatly increased both student understanding of
what is needed for academic and professional success and provided them with
measurable steps and feedback as they advanced in the program. This allows
increasing numbers of students to receive specific, detailed information about
their progress in and out of the classroom towards their professional goals.

The goal of providing information to students in an engaging format has
improved both student and faculty awareness of the steps needed to move
towards professional and graduate goals in computer science and information
technology fields .

References

[1] Paul E Anderson, Thomas Nash, and Renée McCauley. Facilitating programming
success in data science courses through gamified scaffolding and Learn2Mine.
In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education, pages 99–104, 2015.

[2] Gabriel Barata, Sandra Gama, Joaquim Jorge, and Daniel Gonçalves. Improving
participation and learning with gamification. In Proceedings of the First Inter-
national Conference on gameful design, research, and applications, pages 10–17,
2013.

[3] Hope Caton and Darrel Greenhill. The effects of gamification on student at-
tendance and team performance in a third-year undergraduate game production
module. In European conference on games based learning, page 88. Academic
Conferences International Limited, 2013.

[4] Luma da Rocha Seixas, Alex Sandro Gomes, and Ivanildo José de Melo Filho. Ef-
fectiveness of gamification in the engagement of students. Computers in Human
Behavior, 58:48–63, 2016.

[5] Sebastian Deterding. Gamification: designing for motivation. interactions,
19(4):14–17, 2012.

[6] Kiko Fernandez-Reyes, Dave Clarke, and Janina Hornbach. The impact of opt-
in gamification on students’ grades in a software design course. In Proceedings
of the 21st ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, pages 90–97, 2018.

114

[7] Panagiotis Fotaris, Theodoros Mastoras, Richard Leinfellner, and Yasmine Ro-
sunally. Climbing up the leaderboard: An empirical study of applying gam-
ification techniques to a computer programming class. Electronic Journal of
e-learning, 14(2):94–110, 2016.

[8] Juho Hamari. Do badges increase user activity? a field experiment on the effects
of gamification. Computers in human behavior, 71:469–478, 2017.

[9] Brian Harrington and Ayaan Chaudhry. TrAcademic: improving participation
and engagement in CS1/CS2 with gamified practicals. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education,
pages 347–352, 2017.

[10] Andrew Januszak and Cristina Koorie. Designing and deploying a virtual IT ser-
vices orientation for first-year undergraduate students in Moodle. In Proceedings
of the 2018 ACM SIGUCCS Annual Conference, pages 87–89, 2018.

[11] Trisha Litz and Kevin Pyatt. Using an educational game to increase student
engagement & learning. Journal of Computing Sciences in Colleges, 33(2):129–
133, 2017.

[12] Bruce R Maxim, Stein Brunvand, and Adrienne Decker. Use of role-play and
gamification in a software project course. In 2017 IEEE frontiers in education
conference (FIE), pages 1–5. IEEE, 2017.

[13] Olena Pastushenko, Tomáš Hruška, and Jaroslav Zendulka. Increasing students’
motivation by using virtual learning environments based on gamification me-
chanics: Implementation and evaluation of gamified assignments for students. In
Proceedings of the Sixth International Conference on Technological Ecosystems
for Enhancing Multiculturality, pages 755–760, 2018.

[14] Ekaterina Pechenkina, Daniel Laurence, Grainne Oates, Daniel Eldridge, and
Dan Hunter. Using a gamified mobile app to increase student engagement, reten-
tion and academic achievement. International Journal of Educational Technology
in Higher Education, 14(1):31, 2017.

[15] Brenda Scholtz, Larissa Raga, and Gavin Baxter. Design and evaluation of a
“gamified” system for improving career knowledge in computing sciences. The
African Journal of Information and Communication, 2016(18):7–32, 2016.

[16] Ibrahim Yildirim. The effects of gamification-based teaching practices on student
achievement and students’ attitudes toward lessons. The Internet and Higher
Education, 33:86–92, 2017.

[17] Dustin York. Non-verbal immediacy’s role in student learning. Journal of media
and Communication Studies, 7(1):1–7, 2015.

115

Automatic Programming Assignment
Assessment beyond Black-box Testing∗

Karen H. Jin
Department of Applied Engineering and Sciences

University of New Hampshire
Manchester, NH 03101

Karen.Jin@unh.edu

Michel Charpentier
Department of Computer Science
University of New Hampshire

Durham, NH 03824
Michel.Charpentier@cs.unh.edu

Abstract
Automatic programming assignment assessment is often premised on

black-box testing. Grading of student submissions typically relies on func-
tional specifications expressed in terms of expected outputs for given test
inputs. However, when students are required to use certain programming
language constructs, algorithms, or design strategies as they implement
their programs, a different approach to automated assessment is needed.
Our strategy is centered on programming assignments designed in such a
way that the internals of the assignment implementation can be evaluated
through automated testing. Compared to plain functional specifications
and black-box tests, auto-graded “cutout-box” assignments require that
both the specifications and the grading tests have a much higher level
of complexity. In this paper, we discuss the benefits and difficulties of
using such an approach through case studies in designing data structure
assignments with a functional programming language.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

116

1 Introduction

Courses that rely heavily on programming assignments for pedagogical and
grading purposes are common in computing curricula. Many of these program-
ming courses are dependent on automated black-box testing of assignments for
grading and evaluation. The programs to implement are thus specified func-
tionally in terms of expected outputs for given inputs. The benefits, drawbacks,
and limitations of automated evaluation based on black-box testing have been
documented [1, 4, 8]. It is usually agreed that this strategy tends to work
best in introductory courses, in which students have limited freedom on how
to implement programs and where a correct output is indicative of a suitable
implementation. Black-box assignments can also be used in some upper-level
courses [3, 6]. A course on algorithms, for instance, can often prepare large
enough inputs that sub-optimal implementations cannot solve in a reasonable
time—it is relatively easy to generate knapsack instances that can be solved
using dynamic programming but on which a naive recursive solution would
take an inordinate amount of time. Tools are being developed that can pro-
duce estimates of the complexity of an implementation, using black-box testing
[2].

Many courses, however, are centered on concepts that relate to how pro-
grams are implemented. In a course that teaches functional programming, for
instance, the assignments should require that students use functional program-
ming techniques, even if imperative solutions are supported by the language.
Similarly, a data structure assignment may require students to implement a tree
search that follows optimized paths rather than simply producing the target.
In these cases, black-box assignments are inadequate. They are not well-suited
to evaluate the proper use of recursion or the application of lazy evaluation to
reduce CPU and memory usage. Solutions that rely on iteration (instead of re-
cursion) or eager evaluation (instead of lazy evaluation) could possibly satisfy
all functional requirements but be unacceptable for the purpose of a course.

An alternative to running tests for evaluation and grading is to rely instead
on static analysis tools that operate at the source code level [5]. Such tools have
been very successful at checking the coding style of beginning programmers or
at looking for so-called “code smells” [7]. There are, for instance, excellent
tools that can help enforce good coding practice (formatting, naming, size,
cyclomatic complexity, etc.) in Java and other languages. Static analysis can
be used beyond style checking but remains limited when dealing with upper-
level courses. Moreover, these tools tend to suffer from the presence of false
positives. While false positives do not prevent a static checking tool from being
useful in guiding students, it usually precludes using it for grading purposes.

117

1.1 Auto-grading with Cutout-box Assignment Design

Our proposed approach to improve the automated assessment of programming
assignments is based on a hybrid form of black-box and white-box testing. Our
strategy is centered on the idea of designing programming assignments in such
a way that their internals (the how of their implementation) can be evaluated
through automated testing. We refer to such assignments as cutout-box assign-
ments (Fig. 1). Their specification needs to expose more implementation details
than is strictly necessary for a functional specification, in order to enable tests
to evaluate assignments beyond their performance and functional behavior.

Figure 1: Testing of black-box vs cutout-box programming assignments.

The primary motivation for using cutout-box assignments is to be able to
require that students rely on certain programming language constructs, algo-
rithms or design strategies as they implement their programs. In many courses,
the goal of programming assignments is for students to gain practice and expe-
rience with the specific concepts covered in the course; it is not to have them
create a program that accomplishes taskX by any means necessary. Meanwhile,
implementation requirements that are too specific might stifle student creativ-
ity. Thus, it is crucial that the specifications and grading tests of cutout-box
assignments are designed hand in hand.

Grading tests should also be able to detect forbidden algorithms or language
features. Even if a specification is clear about what not to use in an implemen-
tation, it can be hard to design tests that will check that students obeyed
such constraints. Most importantly, because the assignment specification will
need to include some level of implementation details, it is critical not to rely
on unspecified behavior in the design of grading tests. That is, a test should
not inadvertently rely on implementation details that were not specified. In
this paper, we illustrate the benefits of our strategy with two case studies in
which our strategy is applied to design programming assignments for teaching
functional programming in a course using the Scala programming language.

118

2 Case Study - List Recursion

2.1 Initial Assignment Design

This assignment aims to teach the use of recursion on the standard head/tail
functional list. Students were asked to implement a list-based representation
of a set of numbers and to practice recursive programming by implementing
standard set operations. Sets of integers are represented as lists of ranges, e.g.,
the set {3, 4, 5, 8} is represented as the list ([3, 5], [8, 8]). This representation
is potentially more compact than expanded lists when sets are dense. Imple-
menting typical set operations on such lists makes a good exercise in recursive
programming. For instance, a size function can be implemented in Scala using
tail recursion:

Unfortunately, our initial design was not careful enough to prevent stu-
dents from implementing it with unacceptable strategies. The original assign-
ment included toList and fromList functions (good exercises on recursion
in themselves), to convert sets to and from fully expanded lists. These func-
tions were only intended as a bridge between two models of the sets, but once
implemented, students could use them as the basis of all the other methods,
e.g.:

Such an implementation defeats the purpose of the assignment, which is to
practice recursion on lists. The only way for a black-box test to catch the prob-
lem would be to use extremely large dense sets that cannot be fully expanded

119

in memory. This tends to be impractical for reasons of timing and fragility.

2.2 Improved Assignment Design

A revised assignment uses instead a notion of marked lists and exposes the
constructors of such a list. Marked lists are very much like functional lists,
with a head and a tail, but the head can optionally be marked, allowing some
elements of the list to be singled out. A type MarkedList is defined using three
constructors, Empty, Cons and MCons:

For instance, Cons(1, Cons(2, Cons(3, Empty))) is the list (1, 2, 3) while
Cons(1, MCons(2, Cons(3, Empty))) is the list (1, 2, 3), where element “2”
is marked. Recursive code on marked lists is very similar to code on regular
lists, the only difference being two forms of “cons” instead of the :: method of
Scala.

The assignment still includes a toList and a fromList functions, but
toList loses all marks and fromList produces unmarked lists. In particu-
lar, fromList(toList(m)) is not the same marked list as m, which makes it
impossible to implement marked list functions directly in terms of correspond-
ing functions on regular lists. Instead, students end up writing recursive code
directly on the three constructors. For instance, a function that counts the
number of marked elements can be written using tail-recursion:

This function is almost identical to a length function, but it cannot be
implemented by converting the marked list into a regular list. As an added
benefit, other mark-specific functions can be used instead of the more complex

120

higher-order functions on lists, especially in an early assignment. For instance,
a function firstMark can look for the first marked element, if any:

This function is as good a practice on recursion as the standard higher-order
find function, but it is conceptually simpler.

By using a custom-made marked list structure that exposes constructors
similar to that of a regular list, the revised assignment allows for automated
testing of correct internal implementation, i.e., the proper use of recursion.

3 Case Study - Quadtree

3.1 Design Challenge

A quadtree is a hierarchical data structure that splits a two-dimensional space
into four quadrants (top-left, top-right, bottom-left, and bottom-right) and
recursively splits each subspace in the same manner. A classic implementation
of a quadtree consists of internal nodes with exactly four children representing
four quadrants of the space, and leaf nodes that contain the actual data, i.e.,
a collection of points in the space. Such a tree uses a notion of threshold : Leaf
nodes have at most the threshold number of elements and internal nodes are
only used for subtrees with more than the threshold. Trees that satisfy this
property are said to be in canonical form.

It is impossible for a purely functional, black-box test to check that a tree is
in canonical form, or, for all practical purposes, to check that a tree operation is
implemented with the correct algorithm. For example, searching for the nearest
point to a target in a quadtree can be sped up by relying on the tree’s spatial
properties. That is, certain quadrants—and thus the subtrees that represent
them— can be ignored during a search because they cannot possibly contain a
point closer to the target than a point already found. Automated testing needs
to check that the search has correctly traversed the internal nodes by not visit-
ing any unnecessary nodes. An implementation that systematically searches all
four quadrants of each node is considered incorrect even though it produces the
correct target. (This would be like visiting both children of a node in a binary
search tree.) Unfortunately, such an error cannot be detected by traditional

121

black-box testing. It is also infeasible to use a white-box testing approach that
would build explicit search paths (e.g., by requiring print statements to be in-
serted in the search code) because such paths are not fully specified in complex
search operations and because this approach would preclude testing large trees
with thousand of nodes.

3.2 Verify Canonical Form with Exposed Constructors

Our quadtree assignment is designed with the following constructors:

The class is parameterized by two types: A subtype K of Location, which
represents 2D coordinates and is used as keys, and a type A, which represents
the tree’s content. All classes are left public so tests can check the internal
structure of the tree. We represent the expected structure of quadtrees as ob-
jects of type TreeStruct, which can be given to students as part of a test.
Simple code is used to check that quadtrees generated by students match the
expected structure:

Exposing the quadtree constructors makes it possible to check that a tree
is in canonical form without including its exact value as part of the test, e.g.,
q2Struct(q) == expectedStruct where expectedStruct represents the ex-
pected structure of quadtree q.

3.3 Test Search Path with Customized Keys

Customized key implementations can be used to ensure that a search for the
nearest neighboring node in a quadtree only visits a subset of all nodes in
the tree. In our tests, a Point class is defined that keeps track of how many
times its coordinates are queried. A method untouched is written to check that
points have not been accessed during a search in a given quadtree:

122

The first assertion (pt == C) is the functional specification that the search
produced the correct output. The second assertion checks that a set of points—
belonging to quadrants that should not be explored—were not queried during
the search.

Note that there exist multiple valid search paths for the getNearestmethod,
and students are not required to produce a specific search path as long as their
search follows the optimized algorithm of a quadtree. With our approach, a
large number of automated tests can be written for various search scenarios—
all points within a distance, neighboring points that satisfy a filter, etc.—while
still giving students the freedom to implement the details of the searching
methods.

4 Lessons Learned

Over the years, we have learned several valuable lessons in the art of designing
good assignments specifications.

Firstly, good software engineering practices like modularity are essential.
Most assignments see a profusion of interfaces (Java) and traits (Scala) in
addition to code-containing modules like classes and functors. These make it
easier to write tests by introducing specialized variants of modules (so-called
mock objects). There have been many cases of grading tests that were impos-
sible to write until an assignment was re-engineered to introduce intermediate
types through interfaces and signatures. Hooks can also be used to measure
intended side-effects (e.g., count how many times a method is entered).

Secondly, writing extensive collections of grading tests makes it possible to
provide students with a set of sample tests as a way to clarify or emphasize
certain aspects of a specification. No matter how careful we are, specifications
tend to be ambiguous, as cutout-box assignments need to remain somewhat
open-ended when specifying a desired implementation without giving it away.
Sample tests can help alleviate this difficulty, but need to be designed care-
fully. Good sample tests can help emphasize subtle aspects of a specification,
steer students clear from common mistakes and give them some idea of what
performance is expected of their code. Bad sample tests are those that require
an implementation to exhibit specific behaviors not specified as part of the as-
signment. Here also, we have learned from past mistakes. For instance, a Java

123

assignment was designed using generic types, but all the sample tests used
strings for convenience. Actual grading code used numbers instead of strings
in order to generate large test instances more easily, but some of the code sub-
mitted by students relied on string typecasts and could not pass any of the
grading tests. In another case, sample tests used only small numbers. Incorrect
Java code that compared Integer instances using == could successfully pass
these tests because Integer instances under 127 are usually implemented as
singletons in Java.

Thirdly, good cutout-box assignments are often the result of multiple it-
erations. Ambiguities, inconsistencies and other mistakes can be detected one
semester and resolved before the assignment is reused. Our first case study
showed how a flawed assignment was reworked into a better one over time.
Since it is such a demanding task to design cutout-box programming assign-
ments with an adequate structure, a precise specification, helpful sample tests
and accurate grading tests, courses offered on a regular basis can only intro-
duce a few new assignments each time. Most assignments have to be reused
multiple times. Furthermore, variations of an existing assignment are hard to
produce. The constraint of writing specifications that expose internal aspects of
programs tends to make cutout-box assignments fragile. It is often difficult to
modify specifications, even in a minor way, without introducing inconsistencies
or resulting in semantics at odds with a large set of existing tests.

Finally, after years of writing in-house tools, we came to the conclusion that
it is preferable to rely on standard software development packages. Using them
provides students with an opportunity to be (re-)exposed to some concepts, like
version control or unit testing, that they will later use professionally. Standard
unit-testing tools like JUnit, TestNG, ScalaTest, etc., have improved over the
years and now support features that used to be lacking. Most of these tools can
be turned into grading systems by using customized observers and reporters
that keep track of passed and failed tests. Nevertheless, these tools were not
designed for teaching purposes and have their own limitations, and overall
support for testing more advanced features such as multi-threaded programs
remains limited.

5 Conclusion

The most frequent form of grading based on tests follows a black-box approach,
in which student programs are evaluated in terms of their functional behavior.
However, many advanced courses are centered on concepts that relate to how
programs are implemented, e.g., what algorithms are followed, what program-
ming language constructs are used. The black-box testing approach becomes
insufficient for these courses. The alternative that we have been using in our

124

teaching relies on a strategy that allows precise and thorough automatic grad-
ing of complex assignments. The strategy is based on specifying and evaluating
the details of a program implementation instead of solely on performance and
observable functional behavior. Exposed structure and hook methods are fre-
quent patterns in designing assignments that allow for automated testing of
their internal structure. The case studies of this article illustrate this approach
can be applied in designing data structure and functional programming assign-
ments. We believe that the design of such assignments is an important topic,
and we feel that there is a need for discussion, collaboration, code sharing and
common tool building, which we hope to foster with this work.

References

[1] Kirsti M. Ala-Mutka. Automatic test-based assessment of programming: A review.
J. Computer Science Education, 15(2):83–102, Jun 2005.

[2] Clara Benac Earle, Lars-Ake Fredlund, and John Hughes. Automatic grading of
programming exercises using property-based testing. In Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’16, pages 47–52, New York, NY, USA, 2016. ACM.

[3] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On automated
grading of programming assignments in an academic institution. Computers &
Education, 41(2):121–131, 2003.

[4] Christopher Douce, David Livingstone, and James Orwell. Automatic test-based
assessment of programming: A review. J. Educ. Resour. Comput., 5(3), September
2005.

[5] Stephen H. Edwards, Nischel Kandru, and Mukund B.M. Rajagopal. Investigating
static analysis errors in student java programs. In Proceedings of the 2017 ACM
Conference on International Computing Education Research, ICER ’17, pages 65–
73, New York, NY, USA, 2017. ACM.

[6] E. Enström, G. Kreitz, F. Niemelä, P. Söderman, and V. Kann. Five years with
kattis - using an automated assessment system in teaching. In 2011 Frontiers in
Education Conference (FIE), pages T3J–1–T3J–6, Oct 2011.

[7] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’17, pages 110–115, New
York, NY, USA, 2017. ACM.

[8] Vreda Pieterse. Automated assessment of programming assignments. In Proceed-
ings of the 3rd Computer Science Education Research Conference on Computer
Science Education Research, CSERC ’13, pages 4:45–4:56, Open Univ., Heerlen,
The Netherlands, The Netherlands, 2013. Open Universiteit, Heerlen.

125

Oh the Robots that You can Choose:
A Technical Review of Mobile Robot

Platforms∗

Benjamin T. Fine1 and Jory Denny2 and
Nate Dix2 and Ashley Frazier2

1School of Theoretical and Applied Sciences
Ramapo College of New Jersey

Mahwah, NJ 07480
bfine@ramapo.edu

2Department of Mathematics and Computer Science
University of Richmond
Richmond, VA 23173

jdenny@richmond.edu

Abstract

In recent years, the number of available robotic platforms on the
market has not only increased, but also the choices in terms of sensors,
actuation, and language compatibility have diversified. While there is a
large body of literature that discusses the integration and use of robots
in Computer Science, many of the works do not adequately treat the
selection of the robot platform. In this study, we review the technical
aspects of 17 mobile robot platforms for integration into a Computer
Science curriculum. This work presents a discussion on how one should
evaluate and compare various mobile robot platforms with respect to
how the robot will be integrated and utilized. Additionally, new metrics
for cross comparing the available robots on the market are presented and
used in exemplar case studies.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

126

1 Introduction

Educational robotics is a field that has been around since the early 1980’s
but is still rapidly evolving and expanding. There are many studies that show
the pedagogical benefits of using robots in the classroom, including experiential
learning [3, 13, 19], student engagement [9, 6], and improving transfer skills [1].
The field of educational robotics explores questions of diversity and broadening
participation [1, 14, 11, 10], effectiveness of robotics in education [7, 2, 8],
creativity and student engagement [9, 6, 16], and professional development [15];
ranging from K-12 to graduate institutions. While many investigations have
been conducted in this field related to the pedagogy, few studies have focused
on the the robot platform chosen. With the advancements of technology and
educational robotics, an increasing number of educators are introducing robots
into their courses [20, 4, 17, 5]; however, many of these still neglect the selection
of the robot.

Choosing an appropriate platform for use in a given Computer Science
curriculum should take in to account a number of factors, including, but not
limited to (1) the cost, (2) variety of support languages, (3) assignment ver-
satility, (4) ease-of-use for both the faculty and students, (5) and if the robot
platform will be used in a single course or across the curriculum. There are
only a few published reviews that cover the various robotic platforms available
on the market [12, 18]. These reviews cover a larger variety of robot styles,
such as articulated arms and aerial vehicles, where the review presented here
will narrow the focus to wheeled1 robots. Another key difference between prior
studies and the work presented here is that a series of metrics are presented as
a tool for faculty outside of the discipline of Robotics to use in the selection of
a platform.

In both of these studies the authors present short prose based descriptions
of the capabilities and sensor profile of each of the selected platforms. Each
of the robots were primarily evaluated on four factors: (1) modularity, (2) re-
usability, (3) versatility, and (4) affordability. While these factors are captured
in the work presented here, our review introduces new metrics which limit
subjectivity when evaluating a platform that we see in the previous works. In
this work, we will present

• a technical summary of 17 mobile robot platforms for use in a Computer
Science curriculum2,

1For this study, “wheeled” includes both wheeled and tracked actuation mechanisms. We
did not consider legged robots as the actuation mechanics are much different than wheeled
and tracked robots. Future work should include these platforms.

2We do not cite the robot platforms due to space limitations, but we note that they are
easily located with an internet search.

127

• a series of new metrics that compare these 17 platforms against the other
possible platforms,

• and recommendations for how to choose a mobile robot platform in com-
parison to other candidate platforms.

In addition to the above contributions, this study will present case studies
for how one would select a robot platform for integration into a Computer
Science curriculum. It is also important to note that the authors have hands-on
classroom/laboratory experiences with 10 of the 17 robot platforms reviewed
in this study, and we have integrated a number of these platforms into two
curricula at two different institutions. From these experiences, a number of
side considerations will be discussed throughout this work.

2 Robot Platform Review

2.1 Robot Selection

Over the past few decades the variety and style of robot platforms have steadily
increased. The variety of platforms range from articulated arms, aerial vehi-
cles, ground vehicles, marine vehicles, humanoids, and simulated robots. While
each of these platform types have a place in a Computer Science curriculum,
this study is going to only consider wheeled robots. We have chosen this clas-
sification of platform as it has the lowest entry cost both monetarily and in
integrating the platform into a given course or curriculum for educators not
directly in the field of Robotics.

This review consists of 17 wheeled robots that are available on the market
at the writing of this work. These robots range from platforms specifically
designed for the classroom to robots that are more geared towards higher level
research. We selected robots that have been used in a classroom setting in at
least one known instance. We do not include usage counts in our review as this
number could be skewed in a number of ways.

2.2 Metrics

The review of each platform is presented in Table 1, which is divided into three
sections: (1) the metrics for cross platform comparisons, (2) the supported
languages, and (3) the equipped sensors. Below are the definitions of the metrics
used in this study. We only explicitly cover Cost Ratio, Sensor Variety Count,
Sensor Diversity, Language Variety Count, Language Diversity, Computation,
IDE Restricted, and Expandability as the other metrics are standard in the
other platform reviews and are self-explanatory. Moreover, all of these metrics
are used in the metrics section of Table 1, which is the primary section we

128

will use for selecting appropriate platforms for a Computer Science course or
curriculum.

Cost Ratio This metric is the cost of the robot over the average textbook
cost ($153.00 USD [21]) students spend per course nationwide. This ratio
is useful in determining if it would be reasonable to have the students
purchase the robot platform or as justification for internal funding op-
portunities. For example, if the cost ratio is 2.00 and the robot will be
used in two separate courses (assuming no textbooks are required), then
the cost to the student stays in line with national averages.

Sensor Variety Count and Diversity The sensor variety count metric is
the number of different types of sensors that the robot has equipped.
Sensor diversity is the sensor variety count over the average variety count
for all 17 robots in this study. The sensor diversity tells us how diverse
the sensor layout is in respect to the other options on the market.

Language Variety Count and Diversity The language variety count met-
ric is the number of different languages natively supported by the plat-
form. We did not count languages that required firmware updates or
extensive serial port communication programming. Language diversity is
the language count over the average language count. Again, the diversity
metric allows for comparisons across available platforms.

Computation This metric refers to the level and style of computation sup-
ported by the robot. The three classifications used are On Board (OB),
Micro Processor (MP), and Tethered (T). On board computation means
that the robot is controlled by a full computer (e.g., Raspberry Pi or
laptop), Micro Processor means the robot is controlled by a micro pro-
cessor such as an Arduino, and Tethered means that the robot must be
connected to another device in order to operate.

IDE Restricted This metric is “Yes” if you must use a platform specific in-
terface to communicate, upload code, or execute programs. Here, the
restriction is not on the software libraries associated with the robot, but
on the programming interface. For example, in order to upload the code
to the Sparki platform, you must go through the SparkiDuino interface,
thus it is considered to be IDE Restricted.

Expandability This metric encapsulates the flexibility and modularity of a
given platform. To avoid subjectivity in this study, we only consider this
metric to be binary. A value of “No” signifies that there is no reasonable
way to modify or extend the robot. An exemplar of this would be the

129

Elisa-3 platform. The sensors and actuators are permanently attached to
the processing chip.

It is important to note that the data in the sensor section of Table 1 is
open to interpretation. With many of these platforms, there are a number of
configurations within the base kits and between available expansions. For this
work we tried to normalize the kits across the 17 platforms. For example, for
the GoPiGo3 table entry, this includes the basic kit and the sensor expansion
pack.

Also, we note in regards to the language section of Table 1 that all block
based languages such as Scratch, mBlock, and Snap are simply considered
“Block Based”. Additionally, we have chosen to merge NodeJS with JavaScript
and to exclude entries for the VEXCode and PBASIC languages; as these
languages are rarely used in a college setting. You will see that the entry for
the Boe-Bot and Sumo-Bot platforms are missing a language since they are
only programmed with PBASIC.

3 Discussion

With the large variety of available robots on the market, it can be difficult to
select an appropriate robot for a course or for an entire curriculum. Sometimes
robots are chosen because another educator from a different institution has
recommended the platform, the available language support, or the price point
of the platform. While these approaches are common, this work aims to present
a more systematic approach to the selection of a platform.

There are four key aspects one must consider when selecting a platform: (1)
the computational style of the platform, (2) the sensor profile, (3) the supported
languages, and (4) the cost. These aspects should be the driving force behind
any platform selection. We present two case studies below that consider these
aspects with the metrics presented earlier in this work.

3.1 Case Study: Selecting for a Curriculum

When considering a robot for use in multiple courses in a curriculum, the
computation style should be a complete computer (On Board), as to have the
computational power for a high level course such as Data Structures, Robotics,
or AI. As it is difficult to predict the various assignments that the students will
have throughout the curriculum, both the language diversity and the sensor
diversity should be high. This will allow for the most flexibility through the
entire curriculum. The cost of the platform is less of a factor in this case as it is
easier to justify (for internal funding), as the robot will be used across multiple

130

T
able

1:
T
his

T
able

is
broken

dow
n
into

three
m
ain

sections;
(1)

the
m
etrics

used
for

com
paring

robot
platform

s,
(2)

the
languages

natively
supported

by
the

platform
s,and

(3)
the

sensors
that

are
equipped

on
the

selected
robots.

131

courses. However, if the students are required to purchase the platform this
changes the consideration.

On one hand, the more courses the students takes with the robot, the more
justified the cost is, but the upfront cost of the robot may be too high for
some students. One consideration that is institution specific, is to work with
an on-campus book store to purchase a set of robots. This has two benefits,
(1) the bookstore can gain bulk discount prices and (2) the students can use
financial aid to purchase the robot. This option also has the added benefit
that the institution does not need to manage or maintain a large collection of
robots over the years and the robots for the curriculum can be updated with
little resource impacts.

A useful exercise is to determine what an ideal robot would be given the
presented metrics. For this case study, we would consider robots that have On
Board computation and diversity scores above 1.0 (i.e., above average in terms
of diversity). Therefore, using our notion of ideal and the results presented in
Table 1, we would consider platforms similar to the E-Puck or the Turtlebot3
platforms due to their high diversity and expandability.

Although the Finch robot has high sensor and language diversity, its com-
putation is tethered and its expandability is static; for this reason, it would not
be considered. However, one may argue that the Finch could be appropriate
for multiple lower-level courses such as CS0 and CS1 courses. Another reason
why the Finch may not be a reasonable choice for a curriculum is due to the
complexity and robustness of the equipped sensors.

There is a fundamental difference in information gathered from RGB-D
cameras, 360° LIDAR, distance sonar, and IR proximity sensors with respect
to robotic algorithms. That is to say, some common algorithms for sensing
an environment (e.g., SLAM) cannot be performed with all types of sensory
information. For more advanced courses such as AI or Robotics, this would be
a critical aspect of the selection. Regardless, the Finch may still be a plausible
selection if the robot is mainly used in lower-level courses where the specific
type of sensory data is not as vital. This information-centric view of sensory
data is not addressed in this review and is left for future work.

3.2 Case Study: Selecting for an Individual Course

When choosing a platform for a single course, each of the aspects have a dif-
ferent focus and priority compared with selecting for an entire curriculum. A
good place to start, again, is with determining the ideal robot for a particular
course. In this case, language diversity is not as important as most courses
revolve around a single language in any given semester. However, the metrics
of cost, sensor diversity, and computation are probably of high importance.

132

Let us consider the selection of a robot for a CS1 course in a C++ heavy cur-
riculum. The platform that might warrant consideration would be the Sparki.
This platform is under the average cost that students spend on a given course
and it has good value in terms of sensor diversity; while having native support
for C/C++. The other robot one may consider would be the GoPiGo3. While
this robot is almost twice the cost of what a student may spend on a course,
it offers a number of benefits in terms of diversity and expandability.

4 Conclusion

This work presented a review of wheeled robots for integration and utiliza-
tion in a Computer Science curriculum. The review of the robots was centered
around the technical specifications of the robot and how they related to Com-
puter Science pedagogy. From the review of the platforms, new metrics were
introduced to review the platforms and allow for cross comparisons. Lastly, this
work presented two case studies that walked through the selection of a robot
platform using the review and metrics presented.

Future work should apply this technical review approach presented here to
the other robot platform types (e.g., aerial, simulated, and articulated arms).
More investigations should study whether or not different types of robots serve
different pedagogical needs or more effectively addresses student engagement
and retention. With the rapid growth of this field, we must be mindful that
our studies should be cognisant that scholars and educators outside of the field
of Robotics will be utilizing our studies.

Another aspect of a platform not covered here is the reliability and ro-
bustness of the robot; take for example the Sparki and Finch platforms. The
Sparki platform is equipped with stepper motors where the Finch is not; thus
the motions of the Sparki robot are more precise and reliable. This may not be
a limitation in CS0 or CS1 courses but poses a strong limitation in upper-level
courses. This was not included due to the potential for subjectivity. Future
work will explore better methods for objectively quantifying this aspect.

Although not directly related to the capabilities of the platform, considera-
tion should be given to the support structure and documentation of the robot.
For example, the AlphaBot is mainly supported in the Chinese language and
we found difficulties in using the current documentation with students that
do not know the language. Similarly, if there are issues with the hardware or
the supporting libraries, it would be important to know if there are developers
working on known issues, or if the educator would be responsible for main-
taining the library. Lastly, future works should strive to frame Educational
Robotics work from a Computer Science perspective whenever appropriate.

133

Acknowledgements

We would like to thank the lab members of the Ramapo Robotics Lab at
Ramapo College of New Jersey and the members of the SPIder RObotics Lab
(SPIROL) at the University of Richmond for their efforts and input in reviewing
these robot platforms.

References

[1] Saira Anwar, Nicholas Alexander Bascou, Muhsin Menekse, and Asefeh Kardgar.
A systematic review of studies on educational robotics. Journal of Pre-College
Engineering Education Research (J-PEER), 9(2):2, 2019.

[2] Tucker Balch, Jay Summet, Doug Blank, Deepak Kumar, Mark Guzdial, Keith
O’hara, Daniel Walker, Monica Sweat, Gaurav Gupta, Stewart Tansley, et al.
Designing personal robots for education: Hardware, software, and curriculum.
IEEE Pervasive Computing, 7(2):5–9, 2008.

[3] Bradley S Barker and John Ansorge. Robotics as means to increase achievement
scores in an informal learning environment. Journal of research on technology in
education, 39(3):229–243, 2007.

[4] Amy Delman, Lawrence Goetz, Yedidyah Langsam, and Theodore Raphan. De-
velopment of a system for teaching c/c++ using robots and open source software
in a cs1 course. In FECS, pages 141–146, 2009.

[5] Zachary Dodds, Lloyd Greenwald, Ayanna Howard, Sheila Tejada, and Jerry
Weinberg. Components, curriculum, and community: Robots and robotics in
undergraduate ai education. AI magazine, 27(1):11–11, 2006.

[6] Martina Doolan and Michael Walters. Repurposing the learning environment:
using robots to engage and support students in collaborative learning through
assessment design. In European Conference on e-Learning, page 166. Academic
Conferences International Limited, 2016.

[7] Barry Fagin and Laurence Merkle. Measuring the effectiveness of robots in
teaching computer science. In Acm sigcse bulletin, volume 35, pages 307–311.
ACM, 2003.

[8] Barry S Fagin and Laurence Merkle. Quantitative analysis of the effects of robots
on introductory computer science education. Journal on Educational Resources
in Computing (JERIC), 2(4):2, 2002.

[9] Laura M Grabowski and Pearl Brazier. Robots, recruitment, and retention:
Broadening participation through cs0. In 2011 Frontiers in Education Confer-
ence (FIE), pages F4H–1. IEEE, 2011.

[10] Emily Hamner and Jennifer Cross. Arts & bots: Techniques for distributing
a steam robotics program through k-12 classrooms. In 2013 IEEE Integrated
STEM Education Conference (ISEC), pages 1–5. IEEE, 2013.

134

[11] Emily Hamner, Tom Lauwers, Debra Bernstein, Illah R Nourbakhsh, and Carl F
DiSalvo. Robot diaries: Broadening participation in the computer science
pipeline through social technical exploration. In AAAI spring symposium: using
AI to motivate greater participation in computer science, pages 38–43. Palo Alto,
CA, 2008.

[12] Allaa R Hilal, Khaled M Wagdy, and Alaa M Khamis. A survey on commer-
cial starter kits for building real robots. In Proceedings of the International
Conference on Electrical Engineering, 2007.

[13] Rosalyn S Hobson. The changing face of classroom instructional methods: service
learning and design in a robotics course. In 30th Annual Frontiers in Educa-
tion Conference. Building on A Century of Progress in Engineering Education.
Conference Proceedings (IEEE Cat. No. 00CH37135), volume 2, pages F3C–20.
IEEE, 2000.

[14] Stephanie Ludi. Educational robotics and broadening participation in stem for
underrepresented student groups. In Robots in K-12 education: A new technology
for learning, pages 343–361. IGI Global, 2012.

[15] Muhsin Menekse. Computer science teacher professional development in the
united states: a review of studies published between 2004 and 2014. Computer
Science Education, 25(4):325–350, 2015.

[16] Innwoo Park, Donjeong Kim, Junghyuk Oh, Yoonho Jang, and Keol Lim. Learn-
ing effects of pedagogical robots with programming in elementary school envi-
ronments in korea. Indian Journal of Science and Technology, 8(26):1–5, 2015.

[17] Andrew Ray. Evolving the usage of lego robots in cs1 to facilitate highlevel prob-
lem solving. In Proceedings of the IASTED International Conference on Com-
puters and Advanced Technology in Education (CATE’12). ICTA Press, pages
91–98, 2012.

[18] Marco Ruzzenente, Moreno Koo, Katherine Nielsen, Lorenzo Grespan, and Paolo
Fiorini. A review of robotics kits for tertiary education. In Proceedings of
International Workshop Teaching Robotics Teaching with Robotics: Integrating
Robotics in School Curriculum, pages 153–162, 2012.

[19] Newton Spolaôr and Fabiane B Vavassori Benitti. Robotics applications
grounded in learning theories on tertiary education: A systematic review. Com-
puters & Education, 112:97–107, 2017.

[20] Jay Summet, Deepak Kumar, Keith O’Hara, Daniel Walker, Lijun Ni, Doug
Blank, and Tucker Balch. Personalizing cs1 with robots. In ACM SIGCSE
Bulletin, volume 41, pages 433–437. ACM, 2009.

[21] Kaitlyn Vitez. An Action Plan for Affordable Textbooks. Technical report, 2018.

135

Animated Hints Help Novices Complete
More Levels in an Educational

Programming Game∗

Michael J. Lee and Joseph Chiou
Department of Informatics

New Jersey Institute of Technology
Newark, NJ 07102
{mjlee,jcc45}@njit.edu

Abstract

Many people are learning programming on their own using various
online resources. Unfortunately, learners using these resources often be-
come disengaged or even quit when encountering an obstacle they cannot
overcome without additional help. Teachers in a classroom can provide
this type of help, but this may be impractical or impossible to implement
in online educational settings. To address this issue, we added a visually-
oriented hint system into an existing online educational game designed
to teach novices introductory programming concepts. We implemented
three versions of the hint system, providing equivalent information for
each level of the game, adjusting the amount of interactivity between
versions. The first version consisted of a static image with text showing
how to solve a level in a single panel. The second version included a series
of images that allowing users to scroll through hints step-by-step. The
final version showed a short video allowing users to play, pause, and seek
through animated hint(s). In total, we had 150 people play the game,
randomly assigned to one of these three versions of the hint system. We
found that users had a strong preference for the video version of the hint
system, completing more levels. Based on these findings, we propose sug-
gestions for designers of online educational tools to better support their
users.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

136

1 Introduction

In recent years, there has been an increasing interest in enhancing comput-
ing literacy. Rising availability of online learning resources, such as tutorial
sites (e.g., Codecademy.org, Kahn Academy), block programming environments
(e.g., Scratch), and educational games (e.g., Swift Playgrounds), are popular
choices for people to acquire programming knowledge [21]. However, despite
these numerous online educational resources for learners to choose from, there
continues to be high dropout/attrition rates. Researchers and educators at-
tribute this to a lack of support [17, 18, 21], user frustration, a lack of motiva-
tion to continue studying, and no direct interaction with an instructor [23].

One potential way to address high dropout rates is to provide users with
additional help, or hints [22]. Textual hints are often used to provide important
information to users [5, 13]. Studies have shown that textual hints can positively
influence users’ in-system behavior and time spent on tasks [5, 27]. In addition
to textual hints, many non-educationally focused systems, such as games, use
visually-oriented hints to help their users overcome obstacles [2]. To the best
of our knowledge, we have not found any research examining the effectiveness
of visually-oriented hints in educational programming games.

To address the challenges of high dropout/attrition rates in online program-
ming resources, we explore the use of interactive graphics as an alternative
form to present hints. In this study, we examine how three different visualized
hints—a static image, a carousel (series) of images, and a video clip—affects
user retention in an educational game. Based on the success of certain types of
text-based [5, 13] and visually-oriented hints [2] we hypothesized that a hybrid
approach—the carousel hints—would provide a good combination of interac-
tivity, text, and visual aids to assist users overcome obstacles and ultimately
complete more levels than the other two conditions.

2 Related Work

Engagement, and how it affects learning, has been widely studied in educational
contexts. Student engagement has been shown to be key for student success at
all grade levels [6, 9, 19]. As students become more engaged in learning, they
improve learning outcomes and academic achievements [14, 19]. Engagement is
essential for learning challenging topics such as computer programming [4], and
educational games for teaching introductory programming concepts have shown
to be successful at attracting a wide range of learners [8, 16, 22]. However,
even with the success of these resources, users of these systems who encounter
difficulties and not do not receive the support they need to overcome difficulties
may become frustrated and quit the activity/topic.

137

To address these types of obstacles and frustrations, teachers often provide
personalized, directed feedback to their students in classrooms. Online learning
contexts—where teachers are unavailable or at a premium—such as Massive
Open Online Courses (MOOCs) and tutorial websites often utilize help and/or
hint systems of varying sophistication to help their users. Research shows that
students perform better in learning environments when hints are provided [3].
Moreover, studies have found that the content of hints may have different
effects, where high level hints tend to lead to long term positive effects, and
detailed hints tend to be more useful immediately [5, 22].

The visual and interactive aspects of hints may also be important factors
to consider when evaluating the usefulness of hints for online learners to over-
come obstacles. According to Presmeg, visualization aids one in understanding
a problem or a concept in a different modality and perspective, enabling them
to better seek solutions [24]. Similarly, Gangwer suggests that students combine
visualizations with active learning strategies to develop better mental models of
problems and actively work on different approaches to solve them [7]. Finally,
using visualization/graphics has shown to promote student learning and create
opportunities for them to apply what is taught [12, 15, 20]. However, there is
little consensus of how interactive graphics (e.g., static vs. animated images)
compare in their utility for helping learners overcome obstacles [1, 11, 25, 26],
especially in different online learning environments. In this study, we aim to
explore this space, specifically examining how different types of hint visualiza-
tions, ranging from static images to animations, may affect learners’ motivation
to continue playing an educational programming game.

3 Method

The goal of our study was to determine how different types of visual hints in an
educational computing game affects engagement and task completion rates in
self-directed learners, and to identify the extent of these effects. To do this, we
modified Gidget (see Figure 1-A; www.helpgidget.org), a freely available online
game, adding new types of hints. The game has a total of 37 levels, where each
level teaches a new programming concept (e.g., variable assignment, condition-
als, loops, functions, objects) using a Python-like language [16, 18]. The goal of
each level is to debug existing code to pass 1-4 test cases (i.e., statements that
evaluate to ‘true’) upon running the code. After code execution, the game dis-
plays which test cases were successful and which ones failed. The game already
includes a set of help features to assist players overcome obstacles while cod-
ing on their own [17]. These include popup bubbles explaining different code
components, a dictionary explaining keywords [17], and a context-aware, im-
plementation of the Idea Garden [13] to assist with programming anti-patterns.

138

Figure 1: A: the "Access Hint" button, displayed above the main code pane in
green; B: the static image hint condition; C: the carousel hint condition; and
D: the video hint condition.

Users could access the new hint system by clicking on a button labeled
Access Hint, which was prominently displayed above the game’s coding pane
(see Figure 1-A). This button opened one of three different kinds of visual hints,
which served as the independent variable we manipulated in our experiment:
(1) a static image with the entire hint for the level displayed in one panel
(see Figure 1-B); (2) a carousel , or sequence of images showing one step of
a hint at a time, allowing the player to scroll left or right through each hint
panel (see Figure 1-C), or (3) an animation hint in the form of a short, 5-50
second video clip showing one step of a hint at a time, with controls allowing
users to pause, play, and scroll through the clip (see Figure 1-D). We created
customized hints for each of the 37 levels in the game, ensuring that each
level’s three visual hint systems conveyed equivalent information so that we
could make a fair comparison among them. We used a “divide and conquer”
approach to breaking down each level’s hints into 1-5 smaller tasks (depending
on the complexity of the level) which were organized into a numbered list on
the right side of the hint, along with a graphical representation of the state of
the system on the left. We also did not want players to exploit the hint system
to get the exact answer(s) to complete the level [13], so we did not provide
actual code. Instead, the hint system presented one possible path and actions
that the character could take through the level to complete it successfully.

139

3.1 Participants

We recruited our participants on Mechanical Turk (MTurk), specifically sam-
pling adults who self-reported that they had no experience with programming—
those who responded “never” to all of the following statements: 1) “taken a
programming course,” 2) “written a computer program,” and 3) “contributed
code towards the development of a computer program.” We also required par-
ticipants to be U.S. residents to minimize English language barriers with the
instructions and activities. We followed our previous work’s pricing model from
a similarly scoped study [16], adjusting the payment to US$5 to better reflect
the task difficulty and other similar HITs and prices on MTurk at the time.
To help participants make an informed decision about the time commitment
required to participate in our study, we told them that they would be playing a
puzzle game for as long (or as short) as they wanted, over a maximum of seven
days so they could have flexibility in their play time(s). Our HIT was labeled
as “5 hours” for the task time, but emphasized that this was an estimate, and
that they could quit the task at any time without negative repercussions.

Once an MTurker accepted the HIT, they were required to fill out the form
certifying they were a novice programmer, and to read and digitally sign the
informed consent form agreeing to participate in the experiment. Once they
did so, they were redirected to the game website to make an account (requiring
an e-mail address, password, gender, and age). Each participant was randomly
assigned to one of the hint conditions, and this information was saved so that
they would always see their assigned type of hint whenever they played the
game. The introductory tutorial for the game (shown automatically the first
time someone logs in) highlighted the Access Hint button and included text
encouraging players to use it when they needed help. For the purposes of this
study, we logged the total number of levels the participant completed, how
many times they pressed the Access Hint button per level, and the cumulative
time they had the hint window open per level.

4 Results

We provide quantitative results comparing the outcomes from our three groups
using nonparametric Chi-Squared and Wilcoxon rank sums tests with α = 0.05
confidence, as our data were not normally distributed. For post-hoc analyses,
we use the Bonferroni correction for three comparisons: (α/3 = 0.016).

Our study was a between-subjects design, with an even split of 50 people
each among the three conditions. Demographic data revealed that there were no
significant differences between groups by age (range 18-54 years old; median 22)
or gender (88 females and 62 males). The key dependent variable in our study
was engagement, which we operationalized as the number of levels completed.

140

We also examine the participants’ use of the hint system (number of times
accessed per level and total time open per level).

4.1 Animation Condition Participants Complete More Levels

All participants completed at least seven levels. The range of levels completed
in the static, carousel, and animation conditions were 7-33 (median 10), 7-
37 (median 13), and 7-37 (median 13), respectively. There was a significant
difference in the number of levels participants completed between the three
conditions (χ2(2, N = 150) = 7.0276, p < .05). Further post-hoc analysis with
a Bonferroni correction shows that the significantly different pair was the static
vs. animation conditions (W = 14.64, Z = 2.541, p < .016), with the anima-
tion group completing more levels. The static vs. carousel (W = 11.52.5, Z =
1.996, p < .05) comparison trended towards significance (p-value was less than
.05, but not less than the correction threshold of 0.016) with the carousel group
completing more levels. Finally, comparing the carousel vs. animation condi-
tions showed no significant difference (W = 1.58, Z = 0.274, n.s.).

Since all participants were novice programmers with no statistical difference
in demographics, these results suggest that something about interacting with
the animated hints (and to a lesser degree, the carousel hints), had a significant
positive effect on participants’ engagement and ability to complete more levels
in the game compared to the other condition(s). This was surprising, as we
had hypothesized that the carousel hints would help learners the most because
it would allow quick, directed access to different parts of the hints (instead of
having to look through a long list of hints, or seek through a video).

4.2 No Significant Differences in Accessing the Hint System

All participants used their respective hint system at some point during their
gameplay. The range of access to the hint system in the static, carousel, and
animation conditions per level were 0-11, 0-11, and 0-10, respectively. Because
everyone completed a different number of levels, we calculated the average
number of times each participant accessed the hint system per level (sum of
number of times they pressed the hint button throughout their entire gameplay
record, divided by the farthest level number they reached) for our analysis.
There was no significant difference in the number of times participants accessed
the hint system among the three conditions (χ2(2, N = 150) = 0.036, n.s.).

We originally expected to see a different number of hint access across the
conditions because the information from each was conveyed so differently. For
example, we thought that the static image would be accessed the least, since it
showed the entirety of a hint in one image, and that the users of the carousel
and animated hints would have to jump back and forth between their code and

141

hints more often since the hints were broken down into smaller sections. How-
ever, this was not the case, with participants accessing their respective hints
a similar number of times on average per level. Combined with the previous
result, this suggests that animation participants made better use of their time
when accessing a hint, as they clicked on their hint button a similar number of
times as their counterparts, but ended up completing more levels.

4.3 Static Hint Participants Spend Less Time Looking at Hints

To further examine our last result, we examined how long participants looked
at their respective hints (i.e., time the hint window was open). The range of
looking at the hint system in the static, carousel, and animation conditions were
0-87 seconds (median 46), 0-81 seconds (median 62), and 0-96 seconds (median
65), respectively. Because everyone completed a different number of levels, we
calculated the average time each participant spent looking at a hint per level
(sum of the cumulative time they looked at a hint within each level throughout
their gameplay record, divided by the number of the farthest level they reached)
for our analysis. There was a significant difference in the time participants
looked at their respective hints between the three conditions (χ2(2, N = 150) =
8.335, p < .05). Further post-hoc analysis with a Bonferroni correction shows
that the significantly different pair was the static vs. carousel conditions (W =
14.28, Z = 2.462, p < .016) and the static vs. animation conditions (W =
14.40, Z = 2.482, p < .016) with the static group spending less time on the
hints. Comparing the carousel vs. animation conditions showed no statistically
significant difference between the two (W = 3.140, Z = 0.541, n.s.).

Similarly to the reasoning we described above, we expected (and found) that
participants spent the least amount of time looking at the static hints (since
everything was displayed in one image), and more time looking at the videos
(since each video hint had a specific pace and run time), with the carousel being
somewhere in the middle (since the user could skip to specific, labeled parts
of the hints on demand). Combining the last two results with this shows that
animated hint users (and to a certain degree, the carousel hint users) spent a
little more time looking at the same number of hints, but were more successful
in completing levels than the other condition(s), suggesting something about
the animated hints helped users better apply the information to complete levels.

5 Discussion & Conclusion

Our findings show that animated hints (and to a certain degree, carousel hints)
can significantly improve users’ performance in an educational game. The an-
imated hint condition group participants completed significantly more levels
than their static hint counterparts, while looking at their respective hints a

142

similar number of times. Our results have several potential interpretations for
better understanding hints in the context of educational games.

We tried to keep the information content of the three conditions equivalent—
mainly manipulating the visual density and interactivity of each condition—
but found significant differences in outcomes. A possible interpretation of our
results is that showing users different visual states of a program (i.e., a screen-
shot of beginning state, some middle states, and an end state) can help users
better understand the goals of a level. Both the animation and carousel hints
showed the users what their program should look like in at least three different
stages. On the other hand, the static hints presented everything in one pic-
ture, which may not have significant impact on helping understand the goal of
a level and cause information overload. Information overload can be a factor
that negatively affect users’ information acquiring process [10]. To further this
case, we observed that our static hint users spent less time with their hint
windows open compared to the other two conditions, even though users from
all three conditions opened their respective hint windows the same number of
times. This may mean that users were able to use the time they had their hint
window open more efficiently when the hints were broken down into smaller,
more digestible chunks. Our results show that hints in educational games can
be represented and interacted with in different ways, and that small changes
can have a significant impact on user engagement.

We have several limitations to our study. First, we recruited participants on
MTurk, which might not be representative of the larger population. However,
our groups were similar to each other, with no significant differences by age or
gender. Second, we provided an economic incentive for people to participate
in our study, which may have affected their engagement and sense of obliga-
tion to complete levels. To counteract this, our payment was low compared to
the estimated time to complete the task, and allowed participants to quit at
any time. Despite this, we found that participants were engaged with the task,
spending hours playing the game and everyone completing a minimum of 7
levels, suggesting that they were entertained and not playing the game for the
monetary compensation. Third, all participants completed a different number
of levels, making it difficult for us to get a consistent count of overall times
people accessed and looked at hints across the same levels. In our analyses, we
calculated the average count and time each participant took through their play
of the game, which may have introduced some level of inaccuracy. However,
this was intentional as we did not want to force all our players to complete
the entire game, which might be difficult and/or unreasonable for some par-
ticipants, and also because our main goal was to measure engagement as a
function of how many levels users in each condition completed. Future studies
may ask participants to complete all levels and/or collect qualitative measures

143

from users, asking them how they felt about the hints they used. Finally, we
plan to measure learning outcomes (using pre-post tests) to determine users’
knowledge before and after playing the game using these different hint systems.

In conclusion, our study examined how different visualized hints affect users’
engagement with an online educational game. We found that participants using
animated hints—video clips that allowed users to pause, play, and seek through
numbered hints—were more engaged with the game, completing more levels.
Our findings suggest that interactive, visual hints that are subdivided into
smaller parts showing different states of a program during execution assist
learners in understand programming task goals. Researchers, educators, and
designers of these online learning systems may benefit by utilizing these types
of hints. Future work will explore these findings further, especially with different
types of online resources to explore potential differences and similarities.

6 Acknowledgements

This work was supported in part by the National Science Foundation (NSF) un-
der grants DRL-1837489 and IIS-1657160. Any opinions, findings, conclusions
or recommendations are those of the authors and do not necessarily reflect the
views of the NSF or other parties.

References

[1] Erik Andersen, Yun-En Liu, Rich Snider, Roy Szeto, and Zoran Popović. Placing
a value on aesthetics in online casual games. In ACM CHI, 2011.

[2] Erik Andersen, Eleanor O’Rourke, Yun-En Liu, Rich Snider, et al. The impact
of tutorials on games of varying complexity. In ACM CHI. ACM, 2012.

[3] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier.
Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 1995.

[4] Lori Carter. Why students with an apparent aptitude for computer science don’t
choose to major in computer science. In ACM SIGCSE Bulletin, volume 38, 2006.

[5] Christa Cody, Behrooz Mostafavi, and Tiffany Barnes. Investigation of the in-
fluence of hint type on problem solving behavior in a logic proof tutor. In
International Conference on AI in Education, pages 58–62. Springer, 2018.

[6] Lyn Corno and Ellen B Mandinach. What we have learned about student en-
gagement in the past twenty years. Big theories revisited, 4:299–328, 2004.

[7] Timothy Gangwer. Visual Impact, Visual Teaching: Using Images to Strengthen
Learning. Simon and Schuster, 2015.

[8] Nan Gao, Tao Xie, and Geping Liu. A learning engagement model of educational
games based on virtual reality. In IEEE ICIME, pages 1–5, 2018.

144

[9] Rosemary Garris, Robert Ahlers, and James E Driskell. Games, motivation, &
learning: A research & practice model. Simulation & Gaming, 33(4), 2002.

[10] Kyle J Harms. Applying cognitive load theory to generate effective programming
tutorials. In IEEE VL/HCC, pages 179–180, 2013.

[11] Tim N Höffler and Detlev Leutner. Instructional animation versus static pictures:
A meta-analysis. Learning and Instruction, 17(6):722–738, 2007.

[12] Jozef Janitor, František Jakab, and Karol Kniewald. Visual learning tools for
teaching/learning computer networks: Cisco networking academy and packet
tracer. In IEEE ICNS, pages 351–355, 2010.

[13] Will Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, et al. A princi-
pled evaluation for a principled idea garden. In IEEE VL/HCC, 2015.

[14] Greg Kearsley and Ben Shneiderman. Engagement theory: Framework for
technology-based teaching and learning. Educational Technology, 38(5), 1998.

[15] Daesang Kim and David A Gilman. Effects of text, audio, and graphic aids in
multimedia instruction for vocabulary learning. Journal of Educational Technol-
ogy & Society, 11(3):114–126, 2008.

[16] Michael J Lee. Teaching and engaging with debugging puzzles. University of
Washington, Seattle, WA, 2015.

[17] Michael J Lee, Faezeh Bahmani, Irwin Kwan, et al. Principles of a debugging-
first puzzle game for computing education. In IEEE VL/HCC, 2014.

[18] Michael J Lee, Amy J Ko, and Irwin Kwan. In-game assessments increase novice
programmers’ engagement and level completion speed. In ACM ICER, 2013.

[19] Helen M Marks. Student engagement in instructional activity: Patterns in the el-
ementary, middle, and high school years. American educational research journal,
37(1):153–184, 2000.

[20] Richard E Mayer and Roxana Moreno. Aids to computer-based multimedia
learning. Learning and Instruction, 12(1):107–119, 2002.

[21] Daniel Fo Onah, Jane Sinclair, and Russell Boyatt. Dropout rates of massive
open online courses: behavioural patterns. EDULEARN, 1:5825–5834, 2014.

[22] Eleanor O’Rourke, Christy Ballweber, and Zoran Popovií. Hint systems may
negatively impact performance in educational games. In ACM LS, 2014.

[23] Angie Parker. Identifying predictors of academic persistence in distance educa-
tion. Usdla Journal, 17(1):55–62, 2003.

[24] Norma C Presmeg. Prototypes, metaphors, metonymies and imaginative ra-
tionality in high school mathematics. Educational Studies in Mathematics,
23(6):595–610, 1992.

[25] Fanny Ståhl and Hanna Holmgren. How does animated and static graphics affect
the user experience in a game?, 2016.

[26] Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. Animation:
Can it facilitate? International J. of Human-Computer Studies, 57(4), 2002.

[27] Kurt Vanlehn. The behavior of tutoring systems. International Journal of AI
in Education, 16(3):227–265, 2006.

145

(Re)Engaging Novice Online Learners in
an Educational Programming Game∗

Michael J. Lee
Department of Informatics

New Jersey Institute of Technology
Newark, NJ 07102

mjlee@njit.edu

Abstract

Many people are learning programming on their own using various
online resources such as educational games. Unfortunately, little is known
about how to keep online educational game learners motivated through-
out their game play, especially if they become disengaged or frustrated
with their task. Keeping online learners engaged is essential for learning
programming, as it may have lasting effects on their views and self-
efficacy towards computer science. To address this issue, we created a
coarse-grained frustration detector that provided users with customized,
adaptive feedback to help (re)engage them with the game content. We
ran a controlled experiment with 400 participants over the course of 1.5
months, with half of the players playing the original game, and the other
half playing the game with the frustration detection and adaptive feed-
back. We found that the users who received the adaptive feedback when
frustrated completed more levels than their counterparts who did not re-
ceive this customized feedback. Based on these findings, we believe that
adaptive feedback is essential in keeping educational game learners en-
gaged, and propose future work for researchers and designers of online
educational games to better support their users.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

146

1 Introduction

Online learning has expanded in popularity with the continued growth of the
Internet. Online learning’s popularity can be attributed in part to a number of
advantages including flexibility, convenience, access, and low cost [9]. Online
courses enable students to access materials anytime and anywhere, allowing
them to work in an environment of their choice and at their own pace.

However, with the lack of in-person, face-to-face communications in online
courses, keeping students motivated to learn can be challenging. Critics have
long claimed that online learning is not as effective as traditional classroom
learning because of the absence of face-to-face interactions [4]. In a classroom,
teachers can gauge students’ reactions, body language, and behaviors to de-
termine if and when students are engaged with the course content. Teachers
can use these cues to determine the best course of action to re-engage their
students. Unfortunately, many of these opportunities to encourage learners go
unfulfilled in online contexts (which are essential for any learning setting [1]),
negatively affecting learning outcomes [13]. In fact, lack of motivation has been
identified as a major cause of the high dropout rates in many online courses [19].

This project explores how feedback, based on users’ actions in an online,
educational programming game, might affect their motivation to complete more
levels. We tested our game with and without a new feedback system with
400 new users, tracking their progress through the game for one week each
(approximately 1.5 months total). Our goal was to test if we could successfully
detect learners’ frustration using models of past users, and how intervening
with adaptive feedback might help them re-engage with the content/levels.

2 Related Work

2.1 Dropouts in Introductory Computing Courses

It is well established that introductory programming (CS1) courses in higher
education have high dropout rates [11, 15]. A worldwide survey on comple-
tion rates reported that only an average of 67% students complete their CS1
course [3]. Further meta-analysis synthesizing 15 years of research on CS1 lit-
erature found that the mean pass rate of CS1 courses is 67.7% and that pass
rates have not improved over time [3, 23]. Online teaching resources, such as
Massive Open Online Courses (MOOCs) fare even worse, with recent numbers
reporting fewer than 5% of users completing the curricula they sign up for [10].
Although there are fewer statistics of dropout rates for discretionary online
learning settings such as educational games, it is reasonable to presume that
rates would be similar, or possibly worse since these online settings lack the
mechanisms that compulsory learning resources have to retain their students.

147

Much of the recent work on engagement in educational programming games
has been conducted by our research lab using Gidget [16] (www.helpgidget.org).
We investigated several strategies for preventing dropout (or abandonment), in-
cluding more personalized error feedback [17] and the inclusion of in-game as-
sessments [18], finding that features that anthropomorphized characters in the
game or confirmed understanding could significantly increase engagement [17].
Outside the domain of coding, some researchers have successfully built pre-
dictive models of learners’ motivational states in similar interactive learning
environments [7, 21]. These systems have found predictive success using fea-
tures related to help seeking, particularly the use of manuals and tooltips.

These and other efforts from prior work have several implications for coding
tutorial abandonment prediction. First, many of the most predictive features
in prior work have concerned social, instructional, and motivational factors, all
of which are difficult to detect using a coding tutorial, especially if the users
are using it anonymously. Moreover, the majority of studies have considered
dropout at the end of a course of learning, leaving open the possibility that
early detection of dropout is not feasible. That said, prior work suggests that
some behavioral features, particularly indicators of frustration, may be strong
predictors of either engagement or disengagement.

2.2 Detecting Frustration and Providing Feedback

There has been much work in modeling users and providing feedback to change
their behavior in the fields of learning science and instructional design. Baker
et al.’s work suggests the use of educational data mining and prediction mod-
eling to have educational systems display messages to encourage positive be-
havior [2]. Rodrigo & Baker identified several coarse-grained measures (e.g.,
consecutive compilations with the same edit location, the number of pairs of
consecutive compilations with the same error, the average time between com-
pilations and the total number of errors) to detect frustration by observing
students and analyzing their coding assignment logs [22]. Hattie & Timper-
ley’s survey of different kinds of feedback found that the most effective at
engaging learners were not those that were related to praise, rewards, or pun-
ishment, but rather informative messages relating to feedback about a task and
how to do it more effectively [12]. Similarly, Kickmeier-Rust et al. found that
adaptive feedback (those relating to a user’s current context) helped facilitate
users’ learning and educational game immersion. However, some researchers
report the opposite effects, such as Conati & Manske, who found that adaptive
feedback based on learners’ actions in an educational game did not lead to
learning gains [8]. Our study builds on these previous works, using models of
past users’ behavior data to detect learners’ frustration as a basis to provide
an intervention to re-engage them with the content and complete more levels.

148

3 Method

Wemodified our free, introductory coding game,Gidget (see Figure 1), adding a
coarse-grained frustration detector that provided adaptive feedback. The game
has a total of 37 levels, where each level teaches a new programming con-
cept (e.g., variable assignment, conditionals, loops, functions, objects) using a
Python-like language [16, 18]. For each level, a player has to debug existing
code so that the protagonist character can complete its missions. The goal of
each level is to pass 1-4 test cases (i.e., statements that evaluate to ‘true’) upon
running the code. After code execution, the game displays which test cases were
successful and which ones failed. Each level introduces at least one new pro-
gramming concept, becoming progressively more difficult as players reach later
levels. Therefore, completing more levels means that users are exposed to more
programming concepts. Finally, the game also includes a set of help features
to help players overcome obstacles while coding on their own [16].

3.1 Modeling Frustration

Based on our literature review and our own prior work using machine learning
techniques to detect factors leading to game abandonment [24], we decided to
focus on frustration as a primary predictor for addressing disengagement and
game abandonment. We were inspired by prior work that found that coarse-
grained predictors performed better than fine-grained predictors at detecting
frustration [22] and used that model for our frustration detector. As a proof-of-
concept, we also decided to to limit the number of factors our disengagement
detector distinguished to reduce resource overhead (i.e., client/server process-
ing requirements). We selected a total of five signs of frustration (loosely de-
fined), with the first two adapted from Rodrigo & Baker’s work [22] and the
latter three adapted from our past work [24]:

1. deviations from the average number of consecutive code executions with
the same edit location

2. deviations from the average time between code executions
3. deviations from the average number of code executions
4. deviations from the average time spent on a level
5. deviations from the average time without any activity (idle time)

We defined deviation as values exceeding two standard deviations from the
calculated mean of any measure. This value was chosen because two standard
deviations away from the mean can be considered “unusual,” and we did not
want to provide feedback too often (which could result in the Clippy effect,
where users find the intervention bothersome rather than helpful [20]), or too

149

Figure 1: The experimental condition, displaying an adaptive message (bottom-
center speech bubble) that is helping with a function call after detecting consec-
utive code executions with the same edit location.

rarely (in which case we miss opportunities to re-engage users). We calculated
all of the means and standard deviations for each of the frustration measures
above using a data set of 15,448 past users’ game logs. These game logs were
detailed, including individual players’ time spent on level, idle time, all of their
code edits, clicks, keystrokes, and execution button usage.

3.2 Adaptive Feedback

We took Hattie & Timperley’s [12] and Kickmeier-Rust et al.’s [14] approach
in providing users with customized, adaptive feedback relating to their current
context (as described in Section 2.2). Our objective was to provide users with
contextually relevant information to help (re)engage them with their current
task, without giving them exact solutions. To do so, we adapted the design of
the Idea Garden, a help system that examines and transforms users’ code to
provide relevant, but not exact, code examples [5, 6]. For all five cases described
above, we used the Idea Garden analysis methodology (described in [5]) with
the most recently executed or current version of the users’ code to generate
a customized, adaptive message for the user (see Figure 1). Longer messages
were split into multiple panels that the user could click through (forward and
backwards). Finally, because we did not want to directly interrupt the user
and allow them to ignore the message if they wanted to, we had the message

150

generator fade text into the protagonist character’s permanent speech bubble
at the bottom of the screen. Examples include:

• Hey, it looks like you’re trying to call a function, checkBaskets(), which
doesn’t exist. Let’s make sure it’s spelled correctly (cAsiNG matters!) or
I can help you define it.

• You’re almost there! The last thing you were working on was on Line 5,
which seems to be inside a for loop block. Remember, for loops are
written in the following way to iterate through each item in the list:
for myPiglet in /piglets/s

goto myPiglet
Don’t forget to add tabs for code belonging in the for code block!

3.3 Participant Recruitment

We tested our system with a group of 400 online users who were randomly as-
signed to the regular version of the game (the control condition participants) or
a version of the game with the new feedback system (the experimental condition
participants) during account creation. The game logged each user’s condition
so that they would only see the game version they were assigned to, even when
coming back to play at a later time. The sign-up page required users to enter
their age, gender, e-mail address, state whether they have prior programming
experience, and agree/disagree to participating in a research experiment. For
the purposes of this study, we only selected users that indicated they were at
least 18 years old, had no prior programming experience, and were willing to
participate in a research experiment. We set the observation window to 7 days
(168 hours) per user to have a consistent timeframe for all users. To expedite
the account creation procedure, we did not collect other demographic informa-
tion such as ethnicity, geographical location, or education level. Participants
were required to read and digitally sign an online consent form that briefly
described the study. We were intentionally vague in our description of the mes-
sages participants might see, stating that we were "testing various types of
messages to see how they might help players" to minimize any potential lead-
ing or biasing of participants focusing on specific types of messages. However,
we e-mailed all participants a copy of the study procedures 7 days after the
end of their individual observation window to debrief them, regardless of the
condition they were assigned to. Prior to the debrief message (one day after
their observation window ended) we sent an e-mail with a link to an optional
online questionnaire that asked participants to rate their agreement to the fol-
lowing three statements about their experience with the game on a scale from
1 (‘strongly disagree’) to 7 (‘strongly agree’):

1. The messages that Gidget provided helped me with my goals.

151

2. The messages that Gidget provided came up too often.
3. The messages that Gidget provided were distracting.

We intentionally under-specified messages (and their contents), so that par-
ticipants from both conditions could interpret what messages were on their
own. Our system e-mailed two different URLs containing the same questions
to their respective participants to distinguish responses between the conditions.

4 Results & Discussion

We provide quantitative results comparing the outcomes from our three groups
using nonparametric Chi-Squared and Wilcoxon rank sums tests with α =
0.05 confidence, as our data were not normally distributed. Our study was a
between-subjects design, with an even split of 200 participants in the control
condition group (aged 18-54; median 20), and 200 participants in the experi-
mental condition group (aged 18-55; median 20). Comparisons of demographic
data revealed that there were no significant differences between the control and
experimental conditions by age or gender (107 males, 88 females, and 5 other
or decline to state; and 102 males, 90 females, and 8 other or decline to state,
respectively). The key dependent variable in our study was engagement, which
we operationalized as the number of levels completed. We also examine the
participants’ responses to the optional questionnaire.

4.1 Experimental Condition Participants Complete More Levels

All participants completed at least four levels. The range of levels completed
in the control and experimental conditions were 4-37 (median 10) and 4-37
(median 13), respectively. We verified that all participants in the experimen-
tal condition saw messages from the new feedback system throughout their
time playing the game (with more occurring in later, more difficult stages).
There was a significant difference in the number of levels participants com-
pleted between the two conditions (W = 42385, Z = 1.986, p < .05), with the
experimental group participants completing more levels.

Since all participants were novice programmers, these results suggest that
something about interacting with the new feedback system (frustration detec-
tor and adaptive message generator), had a significant positive effect on the
experimental condition participants’ engagement and ability to complete more
levels in the game compared to the control condition participants.

4.2 Unable to Compare Differences in Play Times

Next, we had planned to measure the differences in how long participants took
to complete the levels they passed. However, because everyone completed a

152

different number of levels and the range of completion times for each level
were vastly different, we would only able to compare the levels that all 400
participants completed (i.e., Levels 1-4) to see if there were any differences in
play times. However, we found that only a few (11 out of 200) participants in
the experimental condition received at least one of the new feedback system
messages during the first four levels. Therefore, we were unable to compare
the differences between the control and experimental group play times since
the majority of the experimental group (189/200, or 94.5%) did not experience
anything differently from the control group for these common completed levels.

4.3 Experimental Group Agrees Messages Helped with Goals

Finally, we compared our optional questionnaire responses, which had a total
response rate of 10.25%, (19 control, 22 experimental). For our analyses, we
flipped the scales for Questions 2 and 3 since the statements were negative.

For Questions 1 and 2, our median scores for both conditions were 6 (range
4-7) and 4 (range 2-6), respectively. For Question 3, the control and experimen-
tal conditions were 3 and 4 (range 2-6), respectively. Additionally, we found a
significant difference between the control and experimental groups agreement to
Question 1 (χ2(3, N = 41) = 8.299, p < .05). However, we did not find signifi-
cant differences between conditions for Question 2 (χ2(4, N = 41) = 2.410, n.s.)
or Question 3 (χ2(4, N = 41) = 1.385, n.s.)

We had not expected to find significant differences in our questions because
of the low response rate and were excited to find that the experimental group
users reported that their messages helped them with their goals—which was
the aim of this study. However, we need to explore this result further in future
work, as we did not specify exactly which messages in our questions.

5 Conclusion

Our findings show that adaptive feedback messages, triggered by a frustration
detector using coarse measures, can significantly improve users’ performance
in an educational game. In our study, our experimental group participants
(those with the frustration detector and adaptive feedback messages) completed
significantly more levels than their control group counterparts (who played the
game without these additional features). Researchers and educators for online
resources for teaching programming may benefit from adding these types of
frustration detection and adaptive feedback to their systems.

We have several limitations to our study. First, we recruited participants
who opted into a research study. These types of participants may already have
high motivation, and therefore may not be completely representative of the
larger population. However, we found that the participants in our two groups

153

were similar to each other, with no significant differences by age or gender.
Second, participants from both groups completed a different number of lev-
els, making it impossible for us to compare their usage of the new feedback
system (especially because the frustration detector was triggered more often
in later levels, which many participants did not reach). Third, we had a low
questionnaire response rate in comparison to our full participant pool, which
may limit the generalizability of the findings. Future studies may ask partici-
pants to complete all levels and everyone to fill out the questionnaire. Finally,
we also plan to measure learning outcomes (using pre-post tests) to determine
how this feedback system affects learners’ knowledge.

Our results from this proof-of-concept study shows that adaptive feedback,
triggered by coarse measures to detect frustration, are sufficient in increasing
online learners’ performance. Our future work will examine these outcomes in
more detail to determine what exactly is causing these effects, along with addi-
tional coarse frustration predictors, and possibly some fine-grained predictors.

6 Acknowledgements

This work was supported in part by the National Science Foundation (NSF) un-
der grants DRL-1837489 and IIS-1657160. Any opinions, findings, conclusions
or recommendations are those of the authors and do not necessarily reflect the
views of the NSF or other parties.

References

[1] Susan A Ambrose, Michael W Bridges, Michele DiPietro, Marsha C Lovett, and
Marie K Norman. How learning works: Seven research-based principles for smart
teaching. John Wiley & Sons, 2010.

[2] Ryan Shaun Baker and Paul Salvador Inventado. Educational data mining and
learning analytics. In Learning Analytics, pages 61–75. Springer, 2014.

[3] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory pro-
gramming. ACM SIGCSE Bulletin, 39(2):32–36, 2007.

[4] Mark Bullen. Participation and critical thinking in online university distance
education. Int. Journal of E-Learning & Distance Education, 13(2):1–32, 2007.

[5] Jill C Cao. Helping end-user programmers help themselves: the idea garden
approach. Oregon State University, Corvallis, OR, 2013.

[6] Jill C Cao, Scott D Fleming, Margaret Burnett, and Christopher Scaffidi. Idea
garden: Situated support for problem solving by end-user programmers. Inter-
acting with Computers, 27(6):640–660, 2014.

154

[7] Mihaela Cocea and Stephan Weibelzahl. Eliciting motivation knowledge from
log files towards motivation diagnosis for adaptive systems. In International
Conference on User Modeling, pages 197–206. Springer, 2007.

[8] Cristina Conati and Micheline Manske. Evaluating adaptive feedback in an
educational computer game. In International Workshop on Intelligent Virtual
Agents, pages 146–158. Springer, 2009.

[9] Simone CO Conceição. Faculty lived experiences in the online environment.
Adult Education Quarterly, 57(1):26–45, 2006.

[10] Wenzheng Feng, Jie Tang, and Tracy Xiao Liu. Understanding dropouts in
moocs. Association for the Advancement of AI, 2019.

[11] Mark Guzdial and Elliot Soloway. Teaching the nintendo generation to program.
Communications of the ACM, 45(4):17–21, 2002.

[12] John Hattie and Helen Timperley. The power of feedback. Review of Educational
Research, 77(1):81–112, 2007.

[13] Starr Roxanne Hiltz. Collaborative learning in asynchronous learning networks:
Building learning communities. 1998.

[14] Michael D Kickmeier-Rust, Birgit Marte, SB Linek, Tiphaine Lalonde, and Diet-
rich Albert. The effects of individualized feedback in digital educational games.
In European Conference on Games Based Learning, pages 227–236. Academic
Publishing Limited, 2008.

[15] Päivi Kinnunen and Lauri Malmi. Why students drop out cs1 course? In ACM
ICER, pages 97–108, 2006.

[16] Michael J Lee. Teaching and engaging with debugging puzzles. University of
Washington, Seattle, WA, 2015.

[17] Michael J Lee and Amy J Ko. Personifying programming tool feedback improves
novice programmers’ learning. In ACM ICER, pages 109–116, 2011.

[18] Michael J Lee, Amy J Ko, and Irwin Kwan. In-game assessments increase novice
programmers’ engagement and level completion speed. In ACM ICER, 2013.

[19] Lin Y Muilenburg and Zane L Berge. Student barriers to online learning: A
factor analytic study. Distance education, 26(1):29–48, 2005.

[20] Emerson Murphy-Hill and Gail C Murphy. Recommendation delivery. In Rec-
ommendation Systems in Software Engineering, pages 223–242. Springer, 2014.

[21] Lei Qu and W Lewis Johnson. Detecting the learner’s motivational states in
an interactive learning environment. In AI in Education: Supporting Learning
through Intelligent and Socially Informed Tech., pages 547–554. IOS Press, 2005.

[22] Ma MT Rodrigo and Ryan S Baker. Coarse-grained detection of student frus-
tration in an introductory programming course. In ACM ICER, 2009.

[23] Christopher Watson and Frederick WB Li. Failure rates in introductory pro-
gramming revisited. In ACM ITiCSE, pages 39–44, 2014.

[24] An Yan, Michael J Lee, and Amy J Ko. Predicting abandonment in online coding
tutorials. In IEEE VL/HCC, pages 191–199, 2017.

155

Dealing with Uncertainty:
a PiecewiseGrid Agent

for Reconnaissance Blind Chess∗

Timothy Highley, Brendan Funk, Laureen Okin
Department of Mathematics and Computer Science

La Salle University
Philadelphia, PA 19141

highley@lasalle.edu

Abstract
Reconnaissance Blind Chess (RBC) is a two-player chess variant where

players do not have complete knowledge of the game state. Each turn,
a player has a sense action and a move action. For the sense action, the
player chooses a square on the board and then is informed of the identity
of all pieces in that square and the eight surrounding squares. The only
information about the locations of opposing pieces comes from the results
of a sense action or when an opponent captures one of your pieces. The
move action is a standard chess move with slight rule changes to adjust
for the incomplete knowledge of the game state. Whenever a player cap-
tures an enemy piece, the player learns that a capture took place but not
which enemy piece was captured. This paper presents a rules-based agent
for playing RBC that took second place in the first worldwide RBC com-
petition: the Fall 2019 NeurIPS RBC tournament sponsored by Johns
Hopkins University Applied Physics Laboratory. Following a more de-
tailed explanation of RBC, the fundamental underlying data structure
that the agent uses to track game state is presented: the PiecewiseGrid.
The PiecewiseGrid maintains a separate probability distribution for each
piece, reflecting the agent’s belief about where that piece might be lo-
cated on the board. This allows the agent to track possible game states
and their relative likelihood in a space-efficient manner. Strategies for
choosing where to sense, making a move, and updating the PiecewiseG-
rid are also presented.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

156

1 Introduction

The game of chess has long been a testbed for advances in artificial intelligence.
Reconnaissance Blind Chess (RBC) is a recently introduced variation of regular
chess [2] in which the players do not know exactly where the opponent’s pieces
are. That is the “blind” part of the game. The reconnaissance part of the game
comes from the sensing actions that the players take. On a player’s turn, they
take a sense action and a move action. In a sense action a square is chosen, and
then that square and the eight immediately adjacent squares – a three by three
block – are revealed. The contents of those squares (if anything) are revealed
but only to the player that took the sense action. Only what is in the sensed
squares is certain; everything else is unknown. Aside from that, the rules of the
game are generally the same as regular chess. The king is the target. However,
rules for check and checkmate are ignored since players may not be aware that
they are even in check. Instead, the game ends when a king is actually captured.
If a player attempts an illegal move, such as a rook moving through an enemy
piece, the piece will move as far as it can. This may result in an unexpected
capture.

Markowitz, et al analyzed RBC and determined that when a player is facing
an uncertain situation in RBC, on average the number of possible game states
that are consistent with prior observations exceeds that of a player in Texas
Hold ‘Em poker [1]. They looked at several different approaches to RBC and
how they impact the number of game states that a player is facing.

An RBC player, whether human or an AI agent, must deal with uncertainty
in order to succeed. In the agent that is described in this paper, piecewise prob-
ability distributions are used to generate sample boards that are fed to a leading
open-source chess engine: Stockfish [3]. The engine is used to both decide the
agent’s own moves and to guess the opponent’s moves. The predictions of op-
ponent moves are then used to update the piecewise probability distributions.
For sense actions, the agent essentially senses the individual square that has
the greatest uncertainty (i.e. a piece whose probability of being in a specific
square is closest to 50%).

Some of the strategies employed here are refinements of other RBC strate-
gies published by Markowitz, et al [1] or that have been discussed elsewhere.
However, the piecewise probability distributions for representing the game state
that are presented here is a novel approach in the context of RBC.

2 RBC Agent

Any RBC agent must tackle four problems. In the face of uncertainty, how will
the game state be represented? As moves are taken, how will the game state be

157

updated? Based on the game state, what move should the agent take?Based on
the game state, what sense action should the agent take? This section answers
each of these questions in turn.

2.1 PiecewiseGrid: Representing the Game State

The board state is represented as a collection of 32 PiecewiseGrid objects:
one for each piece in the game. Each PiecewiseGrid consists of a probability
distribution that is represented as a two-dimensional array: a probability for
each square on the board that indicates the agent’s belief that the piece is in
that particular square. The actual probability grid is the principal element in
a PiecewiseGrid object, but there are also a few other pieces of information
to help keep track of a piece’s state. There are Boolean variables to indicate
if a piece has been captured or is a promoted pawn. There is a list of other
pieces (the capturedList) that is populated when an enemy piece is marked as
captured. The list can be used to correct the game state if it is later determined
that marking the piece as captured was an incorrect conclusion. For each pawn,
there is a list of columns that the pawn might possibly be in.

One of the most common operations involving the PiecewiseGrids is to
generate a possible board state. Most of the time, the exact board state is
unknown, but the PiecewiseGrids represent the agent’s beliefs about what the
board might look like. To generate a possible board, each piece is placed onto
the board, one after the other, each into a square based on its own probability
distribution. If two pieces happen to be randomly placed into the same square,
the second piece that would be placed there is simply placed in a different
square instead. This skews the probabilities for any piece that gets bumped
from its initially chosen square, but it is a quick way to generate a potential
board without maintaining a massive collection of possible boards. When gen-
erating a board, the pieces are placed onto the board in order of importance,
beginning with the kings and queens and ending with the pawns. In that way,
if any piece suffers from skewed probabilities, it is less likely to be one of the
more important pieces.

2.2 Updating the PiecewiseGrid

At the start of the game, the location of every piece is known with 100%
certainty. Throughout the game, a player always knows the locations of their
own pieces. As a consequence, the 16 probability grids for a player’s own pieces
always have the same format: 1.0 for the square where the piece is located and
0.0 for the other 63 squares. (If the piece has been captured, all 64 squares
are 0.0.) The probability grids for the opponent’s pieces are not so simple, and
they must be updated regularly.

158

There are three points at which the game state is updated: after the oppo-
nent’s move action, after a player’s own sense action, and after a player’s own
move action.

After the opponent’s move action, there was either a capture or not. If there
was a capture, the agent will make a guess about which enemy piece performed
the capture. If there was no capture, the agent makes a guess about what move
the enemy made.

To guess which enemy piece made a capture, a board is first generated that
contains only the pieces where the agent is fairly certain of the location (i.e.
probability > 0.99). This includes all of the player’s own pieces and some of the
enemy pieces. After these pieces are “locked” in, it is then determined, based on
each piece’s probability grid, how likely it is that each enemy piece (including
those not locked in) would be able to attack the square where the capture
occurred. The pieces that are locked in may block certain pieces from attacking
the square in question, eliminating those pieces from consideration and allowing
the agent to better zero in on the actual attacking piece. Ultimately, the exact
piece might not be determined. In either case, the probability grids are updated
under the assumption that the probability a particular piece was the attacker
is proportional to the probability that the piece was in a position to attack.
Naturally, if only one piece had a non-zero probability of being in a position
to attack, then the agent is sure about which piece performed the capture.

For each enemy pawn a list of possible columns is maintained. A capture is
the only way that a pawn can change columns, so whenever the enemy captures
a piece, the pawns possible-columns lists are updated. For example, a pawn that
begins in column A is known to still be in column A as long as no capture has
occurred in column B.

If no capture took place on the opponent’s turn, then updating the game
state after an opponent’s move takes a very different approach. Using the prob-
ability grids, a number of possible boards are generated. Each board is analyzed
using Stockfish. The best move on each board according to Stockfish is noted.
Other good moves on each board according to Stockfish are also noted as good
moves, and any moves that might put the king in check or pin a piece are
also noted as good moves. (Those moves get special attention because in RBC,
putting the king in check and pinning a piece are stronger than they are in
regular chess. Those moves can lead to an immediate win if the opponent does
not sense them.) Moves that are not noted as the “best” move or a “good” move
are still noted as “other” possible moves. The agent places all of the possible
moves into one of those three categories, and the probability grids are updated
with the assumption that the opponent was most likely to have taken one of
the “best” moves, less likely to have taken one of the “good” moves, and very
unlikely to have taken one of the “other” moves. As each move is processed,

159

the probability that a piece is in the move’s starting square is decreased and
the probability that the piece is in the move’s ending square is increased by an
equal amount. Figure 1 gives a simple example, where the two possible enemy
knight moves are processed, and one of the moves is deemed much more likely
than the other.

Figure 1: An enemy knight’s probability grid before an opponent’s move

Figure 2: An enemy knight’s probability grid after an opponent’s move. The
agent thinks the knight probably didn’t move, but if the knight did move, it
probably moved toward the center of the board.

After a player’s own sense action, more information is known about what
the opponent did than was known immediately after the opponent’s turn. Many
potential moves that were processed after the opponent’s turn may be known to
be impossible after the sense action. The agent rolls back all impossible moves.

160

If a square that was known to be empty now contains an enemy piece, any
move not involving that piece is impossible. If the agent was sure of an enemy
piece’s location and that square is now empty, then any move not involving
that piece is impossible. Similarly, if the piece is still in the same location, then
any move involving the piece is impossible. This allows the agent to narrow
down the opponent’s possible move to just a small set of viable candidates, or
possibly even to identify the move exactly. After rolling back any moves that
are deemed impossible, the probabilities of the remaining viable candidates are
proportionally increased and updated.

The reader may wonder why there is a two-step process to determining
the opponent’s move. After an opponent’s move, why not wait until after the
agent’s own sense action to guess what the move was? By first processing
a larger number of potential moves immediately after the opponent’s action,
more information is available for the agent to decide where to sense. Then,
after the sense action, the information from the sense action can be used to
better determine which move the opponent actually took.

After a player’s own sense action, the probability grids are also updated
for the 9 squares that are sensed. (This is in addition to refining the guess
about the opponent’s move, as described above.) For any square that contains
a piece, the corresponding piece’s grid is updated to 1.0 for that square and 0.0
for every other square, since the piece’s location is known with 100% certainty.
If there are multiples of that type of piece still on the board (e.g. if a rook is
seen but it is not known which rook it is), the best guess is assumed to be the
correct piece. Every piece’s probability grid is zeroed out for any squares where
it is known that they are not located. Whenever a probability is zeroed out, the
probabilities for that piece being in other squares are proportionally adjusted
upward to so that each piece’s grid remains a valid probability distribution. If
the agent sees an enemy piece in the sense result but thought that all enemy
pieces of that type were already captured, then it considers two possibilities.
First, the agent considers that perhaps it was wrong in an earlier guess about
which enemy piece was captured. If that possibility is detected, a correction
referred to as a “resurrection” is issued. Second, if no resurrection is possible
then the agent considers that perhaps an enemy pawn was promoted.

The third time that the agent updates the game state is after the agent
makes its own move. If no capture occurred, the update is simple: change the
moved piece’s probability grid and zero out the destination square in all other
pieces’ probability grids. If a capture did occur, the agent knows where the
capture occurred but is not told which enemy piece was captured. In most
cases, the capture happens because the agent knew where the enemy piece was
and intentionally captured it. However, there is almost always at least a small
chance of being wrong, and sometimes the capture is unexpected. Whenever

161

an enemy piece is captured, the agent makes its best guess about which piece
was captured, and updates that piece’s probability grid by zeroing out every
square and marking it as captured. The agent also creates a list, known as the
capturedList, of all other enemy pieces that had a non-zero probability of being
in the square where the capture occurred.

The probability grids are merely the agent’s best guesses about the game
state. They are almost never completely accurate. Notably, it is possible for a
grid to indicate a 1.0 probability for a particular square when the enemy piece is
not actually in the square. Similarly, it is possible for an enemy piece to show up
in a square even though the probability grid indicates a 0.0 probability. This
can happen because not every possible board is investigated and not every
possible move is accounted for. When the agent generates possible boards to
consider, the actual, ground truth board might not be (and in fact probably
isn’t) actually generated. As a result, some moves that are possible on the
actual, ground truth board might never be seen, considered, or taken into
account in the probability grids. This can lead to the agent truly being caught
off guard.

For example, the agent might end up capturing a piece in a square where
the probability grid for every single enemy piece indicates a 0.0 probability of
being in the square. In this case, the agent has no idea what piece was just
captured, but the agent will try to guess anyway. If there is a pawn that is not
captured and could possibly be in the given column, then the agent marks such
a pawn captured. That keeps the count of defeated enemy pieces accurate. The
agent also adds almost every enemy piece to the capturedList for that pawn,
so that if the guess proves to be incorrect the agent can roll back and try to
correct the error.

2.3 Choosing the Move

When deciding where to move, the agent generates a number of possible boards
based on the probability grids. The number of boards that are generated de-
pends on the amount of uncertainty in the probability grids and the amount of
time remaining. (In a standard game, each player has a total of 15 minutes for
the whole game.) For example, if the agent knows where every piece is located
then only one board is considered. If the agent knows where almost every piece
is located, then only a few boards are considered. If there is a greater degree
of uncertainty, more boards are considered.

The agent generates a number of boards and for each board, it uses Stockfish
to determine the best move on that board. After considering those boards,
the result is a set of candidate moves. All of the candidate moves are then
evaluated on a new set of generated boards. Stockfish gives every candidate
move a numerical score on each of the new boards, and the scores are tallied.

162

The move that has the highest total score is chosen as the move to take.

2.4 Choosing Where to Sense

When choosing where to sense, the agent chooses the area of the board with
the greatest uncertainty.

Each piece is given an uncertainty score for each square. As a first step,
the uncertainty score is a number from 0 to 0.5 that indicates how certain the
agent is about whether the piece is in the square. If the piece’s probability grid
contains a 0.0 or 1.0 for that square, then the agent is certain about whether or
not the piece is in the square and the uncertainty score for that piece/square
combination is 0.0. If the probability grid contains a 0.5 for the square in
question, then the agent has no idea whether that piece is in the given square.
That indicates a great deal of uncertainty about whether that piece is in the
square, and the uncertainty score for that piece/square combination is 0.5. The
uncertainty score for a piece/square combination is the absolute value of 0.5
minus the probability that the piece is in the square.

That describes the basic uncertainty score, but then several adjustments
are made to the score. If the piece can attack the agent’s king from the given
square, then the uncertainty score is increased. If the piece pins one of the
agent’s pieces from the given square, then the uncertainty score is increased. If
the piece cannot attack any of the agent’s pieces from the given square, then
the uncertainty score is greatly reduced. If the piece is a pawn that is near
promotion, the uncertainty score is increased.

After calculating the uncertainty scores for every piece/square combination,
an uncertainty score for each individual square is calculated. To calculate the
uncertainty score for a square, the agent considers every piece in combination
with that square, and the uncertainty score for the square is the maximum
uncertainty score for any of those piece/square combinations.

The agent will choose to sense the square with the maximum uncertainty
score, but it does not necessarily sense that square directly. Instead, it chooses
the 3-by-3 block of squares that contains the chosen square while maximizing
the sum of the uncertainty scores of all 9 squares that will be sensed.

3 Tournament Results

The agent described here took second place in the Fall 2019 NeurIPS RBC
tournament sponsored by Johns Hopkins University Applied Physics Labora-
tory. There were 22 entries in the tournament, and each entrant played every
other entrant 24 times (12 as black and 12 as white). The agent had a record
of 11-13 against the eventual winner and 10-14 against the fifth place finisher,

163

but other than that it had a winning record against every other entrant, and
at least 20 wins against every finisher outside the top 5.

4 Opportunities for Improvement

Some losses in the tournament came because the agent lost track of a piece. For
example, in one game a knight moved forward from its starting position and
aggressively went for (and reached) the agent’s king. Opponent moves that were
terrible chess moves but good RBC moves (like moving a knight aggressively
toward the king) were less likely to be sensed by the agent. Stockfish is an
engine that plays regular chess. The agent uses Stockfish to both decide its
own moves and predict the opponent’s moves. If the agent used an engine that
was tuned specifically for RBC to decide moves and predict opponent moves,
it could do better.

There are a large number of constants embedded within the agent. Tuning
of those constants could improve the performance of the agent. Here are just
a few of the constants that could be used for tuning purposes:

• When choosing a move, how many boards should be considered? What
about when predicting an opponent’s move?

• When choosing a move, how long should Stockfish think about each
board? What about when predicting an opponent’s move?

• When predicting an opponent’s move, how many “good” moves should
Stockfish return?

• When predicting an opponent’s move, what percentage of the time should
the agent assume the opponent is taking one of the “best” moves versus
a “good” move versus all the other moves?

• When evaluating a move, bonus or penalty points are granted for cap-
turing the opposing king, putting the opposing king in check, moving
the agent’s own king into check, and moving a piece away from allied
pieces (so that it is harder for the opponent to sense the whole board).
How many bonus points are each of these situations worth? Should the
bonuses differ when moving versus predicting the opponent’s moves?

• When evaluating the uncertainty of a square, a bonus is given if the king
could be in check or if a piece is pinned. A penalty is given if the piece
would not be able to make any attacks from the given square. How much
should the bonuses and penalty be?

Reconnaissance Blind Chess is a new chess variant that has been proposed
as a testbed for AI and machine learning research that requires agents to deal
with uncertainty. As one of the top finishers in the first worldwide RBC tour-
nament, the approaches taken by this agent offer a promising foundation for

164

future RBC agents as the research community explores approaches to dealing
with uncertainty in this context.

References

[1] Jared Markowitz, Ryan W Gardner, and Ashley J Llorens. On the com-
plexity of reconnaissance blind chess. arXiv preprint arXiv:1811.03119,
2018.

[2] Andrew J Newman, Casey L Richardson, Sean M Kain, Paul G Stankiewicz,
Paul R Guseman, Blake A Schreurs, and Jeffrey A Dunne. Reconnaissance
blind multi-chess: an experimentation platform for isr sensor fusion and re-
source management. In Signal Processing, Sensor/Information Fusion, and
Target Recognition XXV, volume 9842, page 984209. International Society
for Optics and Photonics, 2016.

[3] Tord Romstad, Marco Costalba, and Joona Kiiski. Stockfish chess. http:
//www.stockfishchess.org.

165

Real-World Assignments at Scale
to Reinforce the Importance of
Algorithms and Complexity∗

Jason Strahler1, Matthew Mcquaigue1, Alec Goncharow1

David Burlinson1, Kalpathi Subramanian1

Erik Saule1, Jamie Payton2

1Computer Science
UNC Charlotte, Charlotte, NC 28223

{jstrahl1, mmcquaig, agoncha1, dburlins, krs, esaule}@uncc.edu
2Computer and Information Sciences

Temple University, Philadelphia, PA 19122
payton@temple.edu

Abstract

Computer Science students in algorithm courses often drop out and
feel that what they are learning is disconnected from real life program-
ming. Instructors, on the other hand, feel that algorithmic content is
foundational for the long term development of students. The disconnect
seems to stem from students not perceiving the importance of algorithmic
paradigms, and how they impact performance in applications.

We present the point of view that by solving real-world problems
where algorithmic paradigms and complexity matter, students will be-
come more engaged with the course and appreciate its importance. Our
approach relies on a lean educational framework that provides simplified
access to real life datasets and benchmarking features. The assignments
we present are all scaffolded, and easily integrated into most algorithms
courses. Feedback from using some of the assignments in various courses
is presented to argue for the validity of the approach.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

166

1 Introduction

Algorithms courses are generally a cornerstone of computer science bachelor’s
degree programs. They introduce concepts critical to CS students’ theoretical
foundations, and are a significant part of the core curriculum recommended
by ACM in their 2013 CS guidelines [9]. Meanwhile, students often see these
classes as being overly theoretical; they express frustration that calculating
complexity, proving correctness, and studying obscure paradigms are the focus
of the entire class. While some mathematically-minded students will appreciate
the content, most perceive the class as unimportant. As such, the failure rate
in algorithms classes is often high, and they are known in many universities for
being the weed-out class.

Runtime efficiency of algorithms is a hard topic to teach. Gal-Ezer and Zur
showed that students have many misconceptions about runtime efficiency, and
wrote “Concepts like big-O..., are known to be difficult to conceive and difficult
to teach and learn” [6]. Misconceptions in algorithms courses are common and
have received some academic attention [4]. While some efforts were made to
design tools to help students understand algorithms [11, 7], little effort has
focused on getting students engaged in the topic.

We present extensions to the BRIDGES framework which are designed to
help engage students with the content in algorithms courses. In particular,
BRIDGES provides access to real-world data which can be processed by algo-
rithms to solve real-life problems. Algorithms can be visualized in multiple ways
to improve students’ understanding of how a particular algorithm works. More-
over, our framework provides larger scale instances which enable performing
run-time benchmarking of algorithms. These different features enable students
to develop a keener understanding of why algorithmic content is relevant to
them and their career. The BRIDGES framework and scaffolded assignments
are available online (http://bridgesuncc.github.io/).

2 Related Works

What Makes Students Engaged. Strategies for engagement seem to come
from two complementary approaches. Teaching style engagement strate-
gies focuses on how a course is taught and managed. Active learning techniques
have become popular in recent years to promote student engagement and can
include any combination of lab-based instruction, flipped classrooms, gamifi-
cation, peer-learning, and use of multimedia content [8]. Content based en-
gagement strategies present the topics of the course using learning materials
that capture the interest of the students. This is a common thread in the popu-
lar assignment repositories such as Nifty Assignments [14], EngageCSEdu [12],

167

and game-themed assignments [3]. Real-world and large datasets in course
projects have been demonstrated to successfully engage students [1], in contrast
to tiny contrived examples.

What Algorithms Courses Typically Look Like. Looking at topics and
learning outcomes in curriculum guidelines [9], algorithms textbooks [2], and
concept inventories of algorithms courses [4] paints a picture of a typical algo-
rithms course. Algorithms courses typically start with a discussion of runtime
estimations, using complexity notations like Big Oh and Big Theta, followed by
methods for proving algorithm correctness, and computing runtime complexity.
Courses may look at advanced data structures such as trees, graphs, or hash
tables to define problems, or as a way to solve problems in the class. Algorithm
design techniques such as brute force, divide and conquer, greedy algorithms
and dynamic programming are introduced to solve a variety of problems. Ad-
vanced courses may contain discussions of calculability, NP-Completeness and
methods such as Branch and Bound methods, and approximation algorithms.

Existing Educational Efforts in Algorithms Courses have been aimed
at visualizing what a data structure or algorithm looks like [13, 10]. These
efforts have focused on creating a visually interactive way to show and teach
algorithms to students, and was shown to be effective at learning algorithmic
concepts [5]. There have also been efforts to bring real world map data into
algorithm courses [15], for use in sequential search, graph traversal, Dijkstra’s
algorithm, and convex hulls. This effort shows an interest in bringing real world
data into algorithm courses instead of using synthetic or contrived data.

3 The BRIDGES system

The BRIDGES system enables assignments relevant to the goals of introduc-
tory CS courses, including algorithms courses. The system provides bindings
for Java, C++, and Python based on a commonly used object hierarchy. Out-
put from assignments are highly visual and can easily be shared with friends
and family.

Scalable Dataset Access. A simple API provides access to external data
sources such as USGS Earthquake data, Wiki Data, IMDB actor/movies, Ge-
nius’ Song Lyrics, and OpenStreet Maps. Usually a single function call returns
a set of easy to understand objects. Assignments that leverage these interesting
datasets seem more real and relevant. When possible, these data are accessed
live. BRIDGES plays the intermediary, dealing with credential issues, access
policies, etc. Because the data is live and real, the datasets can be as large as

168

Assignment Topics Engagement
Plotting Com-
plexity

Order of Growth Visual Output, use own machine
spec

Sorting Imple-
mentation

Order of Growth, Divide/Conquer, Decrease/Con-
quer, Heaps

Visual Output, Real Data

Book Distance Order of Growth, Trees, Hash Maps Visual Output, Real Data Analy-
sis, Interest:literature

Mountain Path Order of Growth, Optimization, Dynamic Program-
ming, Shortest Path, Greedy Algorithms, Problem
Modeling

Visual Output, Real Data, Real
Problem, Interest:hiking

Routing in a City Order of Growth, Shortest Path Visual Output, Real Data, Real
Problem, Choose own city, Inter-
est:social

Hollywood Anal-
ysis

Order of Growth, Graphs, BFS, Graph Construction Visual Output, Real Data Analy-
sis, Interest:entertainment, Fun

Table 1: A set of assignments using real data, real problems to teach algorithms.
they need to be. One could access a map of every street in the United States
from Open Street Map or get information on every single movie ever released.
To minimize network transfers and computational costs, the data is cached,
both within the BRIDGES infrastructure and on the student’s machine. The
expectation is that having data at that scale will let students explore different
problems, see practical applications as part of their studies, and realize that
problems can be at large scale without appearing to be made up.

Performance and Benchmarking Features. Algorithm teaching tools
typically lack elements to understand questions related to the runtime of al-
gorithms. BRIDGES provides features to plot performance charts. Elaborate
visualizations of complexity [16] have been designed for trained algorithm ex-
perts, but BRIDGES uses classic runtime plots where algorithms are associated
with pairs (size, time) displayed using a classic line chart (See Figure ?? for
a sample output). Secondly, BRIDGES enables automatic benchmarking of
particular problems. Take sorting of an array as an example. The student-
implemented sorting function is passed to a benchmarking object that will run
the algorithm at different sizes to extract performance information. When pos-
sible, the benchmarks are run using real-world data, to avoid students’ feeling
that the problems have been scaled up for their own sake.

4 A Set of Engaging and Scalable Algorithm Assignments

Next we present a set of assignments leveraging BRIDGES which are appro-
priate for an algorithms course. Table 1 presents concisely the assignments,
the topics they map to, and their engagement characteristics. The assign-
ments cover most topics in an algorithm class, often use real data, perform
a real analysis, or solve a real life problem. The assignments are linked to
areas of interest usually popular with students. Assignments scaffolded for
C++, Java, and Python are accessible online (http://bridgesuncc.github.io/
newassignments.html).

169

Figure 1: Sorting in BRIDGESThe Classic Plotting of Complexity consists in plotting the cost of a few
algorithms given their precise instruction count for given machines and shows
that an algorithm with higher complexity running on a much faster machine will
still be slower than an algorithm with a better complexity running on a smaller
machine. For instance, the runtime an algorithm using 104n operations and an
other one using 5∗104n operations on a machine at 1MHz would be much faster
than a machine at 100MHz running an algorithm taking 102n2 operations.
Engagement comes from the visual output, which is easy to understand and
from personalizing the assignment, by using a student’s own machine.

The Classic Sorting Assignment consists in implementing classic sorting
algorithms. Insertion sort and selection sort are quadratic decrease-and-conquer
algorithms often covered when talking about arrays or correctness. While Merge
sort and Quick sort are often used to show an Θ(n log n) algorithm using a
divide-and-conquer approach, sorting by leveraging a tree data structure such
as a Heap or a Binary Search Tree can also be used.

BRIDGES can be used to understand how the sorting happens across dif-
ferent sorting algorithms by visualizing the current state of the algorithm.
Figure ?? shows a Binary Search Tree that can be then in-order traversed to
extract a sorted array. BRIDGES provides unit testing and benchmarking of
the algorithms. Figure ?? shows the performance of insertion sort and bubble
sort compared to Java’s standard sorting function.
Engagement comes primarily from the visualization of the algorithm and
of the runtimes. Real data can be used for what is being sorted: Figure ??,
for instance, shows sorting using the magnitude of recent Earthquakes. But
without a more precise scaffold, it can appear artificial to students.

Computing Book Distance is inspired by Natural Language Processing.
The idea is to compare how close books are using a bag-of-word model. For

170

a particular book, one can compute how many times each word appears and
normalize that count to form a vector representation of the book (maybe the
word “dog” appears 1% of the time.) These frequency vectors can be leveraged
to compare books, for instance, by using the L1 distance or a cosine similarity
function. This analysis will highlight that books from a particular author are
more similar than books from different authors.

The core of the assignment is the implementation of a Dictionary which
can be done using different data structures: array, linked list, binary search
tree or a hash map. The application in the assignment is counting words and
computing distance between sparse vectors. BRIDGES provides access to data
for this assignment through Project Gutenberg. Using small Shakespearean
poems is very good for debugging. But computing the distance between larger
books will drive home the importance of complexity. A comparison of all the
works of Shakespeare against all the works of Mark Twain will take hours if
one uses a Θ(n) implementation of Dictionary such as an unsorted array while
it will take only seconds using an O(1) hash maps.
Engagment. The Dictionary can be visualized and debugged using BRIDGES.
The application is real: this type of analysis was conducted to identify who
wrote the Federalist Papers. Students with interests in literature will appreciate
this assignment and plug in their favorite classic authors.

Optimizing Path through a Mountain. The mountain path assignment
first appeared as a Nifty assignment [14]. Given an elevation map (image)
the task is to find the lowest cost path, from one end of the image to the
other, where the cost is defined as the sum of difference in elevation between
consecutive pixels in the path. A simple greedy approach is used to make local
decisions and the selected path of pixels is drawn in color (shown in Figure 2).

Figure 2: Path of Least Elevation
(Greedy)

Figure 3: Map of Minneapolis, MN
colored by distances to the center
of the map.

This problem from Nifty is particularly good to teach algorithms for op-
timization problems. The algorithm is a greedy heuristic. However, one can
easily build a variant where you always have to go right, but are allowed to
choose whether to go up-right, straight-right, or down-right by looking at the

171

entire map. This variant can be solved using dynamic programming or a brute
force method. With a large map, the difference in computation time between
the greedy heuristic, and the optimal algorithm will be obvious and enable dis-
cussions of time-quality tradeoff. A second variant is to go from a pixel to any
of the 8 neighbors and the problem becomes a classic shortest path problem.
Engagement. The output is visual, and addresses a real problem using real
data. It will echo well in students who love hiking. History-buffs may be
interested in figuring out where Hannibal should have crossed the Alps, or
whether Xerxes the Great had to fight the Greek army at Thermopylae. Fi-
nally, BRIDGES lets students choose the elevation map they will use in the
assignment, for instance, their own campus, city, or a favorite hiking area.

Scalable Routing through a City. Implementing Dijkstra’s algorithm
with best case complexity is difficult because it relies on a Fibonacci Heap [2].
Often implementations seen in algorithms courses use a regular Binary Heap
which has a higher complexity. This is not a major problem when the map is
small as the difference is hard to notice. BRIDGES provides access to Open
Street Map data and enables students to access maps of the continental US
for any latitude/longitude bounding box at different resolutions (the graph
of Minneapolis is shown in Figure 3). This enables BRIDGES to benchmark
automatically Dijkstra’s implementation.
Engagement. Students get to choose the map they will use, can relate to the
need for routing in a city, and get the feeling they are solving a real problem.

Figure 4: Bacon Number

Analysis of Hollywood Movies. Computing
the Bacon Number of an actor consists in figuring
out how many movies away an actor is from Kevin
Bacon by only going from actor to one of his/her
movie and from a movie to one of the actors that
played in it. Listing the actors and movies in the
chain is a game known as the “Six Degrees of Kevin
Bacon”. Provided a graph composed of movies and
actor with edges if the actor played in the movie,
computing the Bacon number of an actor is achieved with a BFS traversal.

BRIDGES enables accessing a toy actor-movie graph from IMDB with
about 2000 edges. This graph can be styled to highlight the shortest path
between an actor and Kevin Bacon (see Figure 4).

It is also possible to access all the data of all English movies since the
1910s. The students will build graphs of about 1M edges and BRIDGES en-
ables to easily query particular time intervals. This makes the dataset very
versatile, permitting students to study who was the most central actor for a

172

particular decade; this calculation requires computing a BFS from each actor
in the dataset. While a single BFS computation takes about 0.5 sec. on a 1M
edge graph, calculating BFS from all vertices takes on the order of a day, thus
emphasizing that calculation time compounds quickly at real world scales.
Engagement. The analysis that students perform is real and a big data prob-
lem, and a dataset students are often interested in is explored visually.

5 Results: Student Reactions

We deployed several of the above projects in courses on algorithms, data
structures and object oriented systems. We obtained student feedback on the
projects through reflection and project surveys, performed after each project.
The reflection survey gives students the chance to describe their learning expe-
riences and specifically what they liked and did not liked about the assignment.
Other questions focused on engagement, completion time, preparedness, assign-
ment difficulty, and if the assignment increased their interest in computing.

Book Distance Project. The project was assigned in a data structures class
in Fall 15 as a four-part project. Student started by writing the book distance
comparison using a provided Dictionary implementation using unsorted arrays,
then they implemented a Dictionary object using sorted arrays, binary search
trees, and hash maps. They computed distance between books of different sizes.
No formal reflection or engagement quiz was given. The following comments
come from the notes of the instructor (an author of this paper).

Students initially felt that the implementing the application was difficult,
but eventually appreciated seeing distances between books. Computing the
distances using sorted arrays was very slow and students computed only some
of the distances. Using the BST, students were able to compute all the pair-
wise comparisons. Many students were surprised at the speed of hash maps,
and commented on how they “killed their laptop” on computation that was
unnecessary with better data structures.

Mountain Path. We only considered the greedy algorithm. BRIDGES was
used to display the input elevation image and the final path. The project was
given in Fall 18, Spring 19 and Spring 20 in an object oriented programming
course. Students found the project highly engaging (96%, 100%,85%) and dif-
ficult (85%, 74%, 78%). Short answer responses also indicated difficulties with
programming concepts, clarity of instructions, and also satisfaction with the as-
signment challenges. Students really seemed to enjoy the project, with remarks
such as ‘excellent practical example of the greedy algorithm’, ‘very challenging
and learned quite a bit’, ‘at first ... intimidated, ... after thoroughly reading...

173

I felt a bit more confident’, ’liked the assignment challenged my programming
ability’

Bacon Number. The project was given to an algorithms course in Spring
16 and Fall 17 to an algorithms course. Only the first part of the project was
given to the students, to implement the Bacon Number project on the 2000
node graph. Students found the project to be difficult (57% vs. 30%, 45% vs.
9%) but increased their interest in computing (51% vs 30%), and felt it was
relevant to their career goals (48% vs. 16%, 54% vs. 18%)

Students were excited about the visual output “This is the first time in ALL
of comp sci, that we could actually visually see the data structures”, interest in
lowering runtime: “an individual [may be] required to work with a large data
structure and ... to effectively traverse [it] in a reasonable computation time”,
liked working with graphs, “graphs are more fun/interesting” and found them
relevant, “Bfs is an extremely useful and popular algorithm and graphs are used
frequently in computer science and tech industry”.

6 Conclusion

This paper presents strategies to engage students with the content of typical
algorithms courses. The main strategy is to assign course projects that are or
look like real-life problems and rooted in domains students care about and use
visualization. The data used in the projects are extracted from live sources,
grounding the projects in reality. We presented 6 assignments/projects that
cover most of the content of a typical algorithms course. Three of the projects
were assigned to students in various courses. The projects were deemed hard
but were eventually perceived positively by the students. A threat to the valid-
ity of this work is that the projects were not all in a single algorithms course,
and one probably one would not assign all of them in such a course. We will
address that in the future by performing such an intervention and conducting
formal studies.

Acknowledgment

This material is based upon work supported by the National Science Founda-
tion under grant no. DUE-1726809 and CCF-1652442.

References

[1] David Burlinson, Mihai Mehedint, Chris Grafer, Kalpathi Subramanian, Jamie
Payton, Paula Goolkasian, Michael Youngblood, and Robert Kosara. BRIDGES:

174

A system to enable creation of engaging data structures assignments with real-
world data and visualizations. In Proc. ACM SIGCSE 2016, pages 18–23, 2016.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, third edition edition, 2009.

[3] Peter Drake and Kelvin Sung. Teaching introductory programming with popular
board games. In Proc. of ACM SIGCSE, pages 619–624, 2011.

[4] Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Clifford A. Shaf-
fer. Towards a concept inventory for algorithm analysis topics. In Proc. SIGCSE,
pages 207–212, 2017.

[5] Mohammed F. Farghally, Kyu Han Koh, Hossameldin Shahin, and Clifford A.
Shaffer. Evaluating the effectiveness of algorithm analysis visualizations. In
Proc. SIGCSE, pages 201–206, 2017.

[6] Judith Gal-Ezer and Ela Zur. The efficiency of algorithms—misconceptions.
Computers and Education, 42(3):215 – 226, 2004.

[7] Michael T. Goodrich and Roberto Tamassia. Teaching the analysis of algorithms
with visual proofs. SIGCSE Bull., 30(1):207–211, March 1998.

[8] Mark Guzdial. A media computation course for non-majors. In Proceedings of
the ITICSE 2003, pages 104–108, 2003.

[9] Joint Taskforce on ACM Curricula. Computer Science Curricula 2013: Cur-
riculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM/IEEE Computer Society, 2013.

[10] Jeff Lucas, Thomas L. Naps, and Guido Rößling. Visualgraph: A graph class de-
signed for both undergraduate students and educators. SIGCSE Bull., 35(1):167–
171, January 2003.

[11] Joan M. Lucas. Illustrating the interaction of algorithms and data structures
using the matching problem. In Proc. SIGCSE, pages 247–252, 2015.

[12] Alvaro Monge, Beth A. Quinn, and Cameron L. Fadjo. EngageCSEdu: CS1 and
CS2 materials for engaging and retaining undergraduate CS students. In Proc.
of ACM SIGCSE, pages 271–271, 2015.

[13] Thomas L. Naps, James R. Eagan, and Laura L. Norton. JHAVÉ - an environ-
ment to actively engage students in web-based algorithm visualizations. In Proc.
SIGCSE, pages 109–113, 2000.

[14] Nick Parlante. Nifty assignments, 2018.

[15] James D. Teresco, Razieh Fathi, Lukasz Ziarek, MariaRose Bamundo, Arjol
Pengu, and Clarice F. Tarbay. Map-based algorithm visualization with METAL
highway data. In Proc. SIGCSE, pages 550–555, 2018.

[16] Jeyarajan Thiyagalingam, Simon Walton, Brian Duffy, Anne Trefethen, and Min
Chen. Complexity plots. In Proc. EuroVis, pages 111–120, 2013.

175

Activity Based Learning for Cloud
Computing∗

Michalina Hendon and Loreen Powell
Information Technology, Analytics, and Business Education

Bloomsburg University
Bloomsburg, PA 17815

{mhendon, Lpowell}@bloomu.edu

Abstract

Cloud computing technology is relatively untapped as the world learns
how to utilize the cloud’s potential to provide greater efficiencies in hard-
ware and software to meet and exceed business needs and goals. Orga-
nizations continue to explore the flexibility that cloud computing can
provide. There is a growing need for employees to continue an organiza-
tion’s digital enterprise transformational strategies. Industry is looking
for skilled students that are introduced or have been immersed in differ-
ent specialties of the Information Technology (IT) field. Cloud comput-
ing sources skills from different areas of IT and Computer Science (CS).
As such, educators and universities seek to provide a cloud computing
curriculum. Literature, however, is lacking in hands-on pedagogical re-
sources to enhance textbook theory. The purpose of this paper is to pro-
vide educators with a framework of applied hands-on tools and resources
to enhance a student’s experience in an introductory cloud computing
course and feedback.

1 Introduction

There are many variations defining cloud computing. One of the most popu-
lar definitions by the National Institute of Standard and Technology (NIST)
defines cloud computing as: "A model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

176

(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction" [12]. Simply stated, cloud computing, in general, describes the
multitude of on-demand data and storage centers, as well as the computer re-
sources and services available to organizations via the internet. Typically, there
are three types of clouds; public, private, and hybrid [11], which provide back-
end or front-end considerations. This paper focuses on public, back-end cloud
computing.

Large public and private cloud providers, for example, Amazon’s Web Ser-
vices (AWS) [16] or Microsoft’s Azure allow organizations to take advantage of
provided services of the PaaS (Platform as a Service), SaaS (Software as a Ser-
vice) IaaS (Infrastructure as a Service) and BaaS (Back-end as a Service). The
service models that are available to the organizations allow for scalability, lower
costing for on-demand hardware lessens infrastructure concerns, provides soft-
ware with subscription, and more. However, the pay as you use model, which
enables flexibility, is most enticing for an enterprise [8]. As organizations begin
to take advantage of larger cloud providers like AWS, the provider can sup-
ply the model framework, but the enterprise/organization is still responsible
for the security, development, authorization, and maintenance of the cloud.
Hence, there’s both a need and an opportunity to provide educational training
to equip students with the necessary skills to compete in this high-demand
market. Teaching cloud computing concepts covering the full-stack business
solution requires introducing students to different full-stack layers.

Today, cloud computing is a vital factor in enterprise computing as more en-
terprise workloads move to the cloud [17]. Thus, organizations’ need for skilled
employees to handle the change in culture to digital enterprise architecture is
rapidly growing. Chun, [3] states that information technology and computing
students must possess cloud computing knowledge and skills to be properly
prepared for the workforce. He argues that it is crucial for cloud computing to
be incorporated into the curriculum.

Currently, there are several theoretical cloud computing texts and resources
available for instructors. However, there are a limited number of applied/hands-
on exercises for students. This paper seeks to add to the body of literature re-
garding applied cloud computing resources and activities. Specifically, we aim
to provide recommended applied pedagogy cloud computing resources that
can aid an instructor teaching an introductory cloud computing course. In this
work, we believe that applied/hands-on exercises will help enhance the stu-
dents’ cloud computing knowledge and skills. This work has practical implica-
tions for higher education institutions, faculty, and computing degree programs
by providing framework and resources that can help assist faculty with applied
resources to increase cloud computing awareness within IT and computing dis-

177

ciplines. The remainder of this paper is structured as follows: background/re-
view of the literature, methods, applied resources, and conclusion.

2 Background/Review

2.1 The Future of Cloud Employability

As the cloud is operated more frequently in personal and enterprise use, the
need for skilled employees is growing. According to Forbes, in 2019, "50,248
cloud computing positions are available in the U.S. today available from 3,701
employers and 101,913 open positions worldwide today" [4].1]. Accordingly, the
top cloud providers are providing lucrative opportunities in cloud computing,
with a median salary of $125,097 for a cloud engineer position. According to In-
deed [7] skills (depending on the cloud position), which include but are not lim-
ited to; knowledge of at least one programming language, networking, database
management, application development, system development, and understand-
ing in business modeling [3]. However, demands and uses of cloud technology
have changed; the need to provide a specific course in cloud computing will aid
in student employability after graduation.

Challenges and benefits from a pedagogical perspective, as it relates to
providing students with theory in practice, can be thwarted with a lack of
student introduction to coding, database management, network architecture
before taking the cloud computing course. However, an introduction to how the
various skills are combined to provide cloud service can have career implications
for student’s employ ability [7]. Educators attempt to match industry needs
with the curriculum offered within their course [13].

In the past, students were offered an introduction to the cloud as an interme-
diate course offering. The intermediate course provided a limited introduction
of the cloud’s capabilities due to the time constraints of the course. As Mew
and Money[9] found, with the phenomenon of the cloud being still new, the
skill requirement may be self-serving and distorted as to what may be actually
needed within an organization. Currently, the introduction of skills for devel-
opment within a cloud computing course includes highlighted uses of; database
management, infrastructure, security, and administration positions that have
the opportunity for exploration[9]. The topics discussed in an introduction to
the cloud course can provide the students with the direction of the potential
concentration of study. Additionally, as the uses of cloud computing and the
demand for skilled employees grow, an introduction to the theory of cloud com-
puting allows students to find a direction in addition to established skills from
other courses [3],[17],[2],[8],[6],[14].

178

2.2 Obstacles of Hands-on Application

The availability of direct learning resources in cloud computing sources can be
complex With a multitude of providers and trial availability of sophisticated
platforms, there is the accessibility to engage in theory with practice but not
without obstacles. When discussing adding courses to the curriculum, several
variables need to be considered. First, the availability of faculty to instruct
the course can be an issue. As cloud computing is a newer technology, the
availability of faculty that are educated in the technology can be a barrier to
offering such a course. The consistent and swift speed of advancements in cloud
technology may impede the learning curve to match organizational demands
[1]. The skills of the students and when the course is offered in comparison
to the student’s course schedule may have an impact on basic knowledge of
foundational networking, database, and security brought to thee course.

Finally, the cost of providing the students the ability to provide hands-on
activities can be costly to the students. For example, if students would like to
provision a server and utilize the sandbox tools offered by AWS the student is
asked for a credit card to establish login credentials to initiate the sandbox even
though it is provided by AWS Educate (which provides training for educational
institutions) [16]. The trend of available training by cloud providers is usually
based on the student’s ability to providing a credit card authorization. An
obstacle is faced when students can not provide credit card for registration.
Faculty teaching the course may not be authorized to use university credit cards
as an additional option. Additionally, the ability of instructors to secure funding
or resources from the educational institution can impact providing students
activity-based learning. At most public Universities, budgetary restraints are
common [10]. Instructors are looking to implement training that is at minimal
cost to the department as well as cost passed on to the students [10].

2.3 Implications for Curriculum Development

A principal course in cloud computing can cover a variety of topics. Cloud
delivery and deployment models should be discussed within the course. Ex-
planation of the communicating the culmination of the different skill sets to
create, maintain, and develop both the virtualization of the cloud and the un-
derpinning of the back-end with activity-based assignments can add to students
understanding of theory. Providing an environment that allows students not
only to discuss how cloud theory can be performed on a theoretical basis, but
students can also visualize and apply the back-end elements [15]. Suggestions
for the inclusion of activity-based learning utilizing free training and sandboxes
from cloud providers can be implemented.

179

3 Method

The goal of this paper is to demonstrate how an applied framework is to pro-
vide an instructor implementing activity-based assignments into a fundamen-
tal cloud course resources to align with theoretical concepts introduced within
the course. The following framework was utilized within the Cloud Comput-
ing course. The course was offered in the Fall 2019 semester as special topic
elective within an accelerated IT degree program. Although the course was a
condensed course of 6 weeks, the following framework is mapped to a 16 week
semester to provide a broader perspective of activities available. The majority
of students enrolled in the course as a point of interest with little to no un-
derstanding of cloud technology and little to no experience with programming
languages. With the varying degrees of education, the need to convey the fun-
damental theory in cloud computing was a visible component of the course.
The students required reading included the text Cloud Computing: Concepts,
Technology, and Architecture[5], to provide a foundation of theory develop-
ment and reference. The text was dated in sections; however, the videos in the
activities provided current insight into theoretical application. An additional
outcome of the course activities not only provide the students with hands-on
activities but supply certificates of completion from the service providers.

4 Applied Cloud Computing Framework and Resources

The framework was first created from a break down of activities listed by
major cloud providers low to no-cost training as well as InLearning resources
(the university subscribes to the service).

4.1 Resources

Resources provided in Table 1 demonstrate a list of hands-on activities that
can be applied within a fundamental cloud course. Table 1 provides a shortlist
of activities by the provider and refers to the certification of completion that
students can achieve. The availability of free training can enhance the stu-
dent’s interest in the subject and increase understanding of cloud computing
concepts. The list is then broken down to match a suggested stream of content
in sequential learning order, building on established concepts.

4.2 Applied Cloud Computing Framework

As noted in Figure 1, the course is broken into weekly sections (suggestion).
When implemented in topical sections, the activities will build upon theoretical
strength. Introducing students to available free training with a learning path

180

will provide the students with tools to develop a role in cloud computing and
cloud certification. It was found within the introduction course that the activ-
ities enhanced the learning method by providing students with the application
to support the class discussions regarding theoretical learning.

The flow of the course begins with an introduction to cloud computing.
Within the first two weeks, the dissemination of a broad theory of cloud com-
puting is vital to the base of conceptual understanding. The LinkedIn Learning
videos and quizzes allowed students to further theories and test their knowl-
edge. The next week’s follow of the suggested sequence of topics. Infrastructure
is suggested as the next topic to build upon the theory. The Infrastructure sec-
tion allows for the introduction of providers and of the provider service models.
Next virtualization will build upon the previous sections. Providing two weeks
to focus on virtualization affords students the ability to use the knowledge to
complete the activity of launching virtual machines in a cloud environment.

Once the virtualization theory and application are discussed, the network-
ing portion of the course will demonstrate the connection of cloud services. As
such, the AWS activity with an Introduction to CloudFront can provide stu-
dents with learning more about content delivery. The Azure training introduces
students to the options that are available through the Azure platform. The next
topical area discusses storage. There is a multitude of activities available de-
pending upon the concentration of service. To introduce students to storage
concepts and demonstrate backup and restore, the different options available
from providers(AWS and Azure) for storage, including Amazon’s Elastic File
Storage (EFS), and Elastic Block Storage (EBS).

Finally, the course ends on the topic of security. This section should only be
accomplished when an individual understands the inter-working of the cloud.
The activities under the security topic introduce students to management and
governance through cloud platforms as well as support theory learning for
best practices. The activities suggested are on the AWS platform and guide
students through the creation of Identity and Access Management (IAM), as
well as AWS security module. The security module allows for implementing
roles, and access demonstrates the importance of the human factor of security
and in different security-oriented services.

Feedback Generalized student feedback found the resources applicable to
the theory learned within the text, but students could also see a learning path
for future exploration and training. Signified by a certificate of completion or
badges the student (after completion of the activity) the badges demonstrate
growth, which can be applied to future or potential professions. For exam-
ple, the InLearning Certificate of Completion can be linked to the students’
LinkedIn account/virtual profile. Badges and Certificates from AWS and Azure
can also be applied to a digital profile or included within a section of the re-

181

T
able

1:A
ctivities

by
P
rovider

and
C
ertification

of
C
om

pletion
A
w
ards

182

Figure 1: Course Flow of Activities by Topic

sume. The advantage of using training that provides certifications or badges of
completions can also offer the student with a sense of accomplishment and can
encourage further training.

5 Conclusion

Cloud Computing is essential to computing science curriculum and is impor-
tant to be included within the curriculum as organizations are expanding their
digital enterprise transformational strategies. This paper provided pedological
and theoretical concepts for instructors teaching or developing a cloud com-
puting course. This paper also provides a foundation for instructors to utilize
and include activity-based assignments in a cloud course.

While this paper adds to the body of literature, limitations due exist. Limi-
tations include the larger cloud providers are the front runners that are supply-
ing the availability of training. This paper is limited to specific cloud providers.
Another limitation is the availability of the training over semesters as many tri-
als are limited to a week or can extend for three months. A standard semester
is usually four months, which is outside of the trial access. The trial also limits
students from using the same software or access to resources in another course
after the initial trial expires. Finally, the list of resources are suggestions and
a selected list which can be expanded.

Future research should address these limitations and build additional pedo-
logical resources within this area. The principle of providing students the ability
to increase skills and put theory in practice utilizing activity-based learning can

183

provide students not only application skills but also future learning paths.

References

[1] The year ahead data will drive the enterprise 2019. Database Trends
Applications, 32(6):4 – 10, 2018.

[2] L. Chen, Y. Liu, M. Gallagher, B. Pailthorpe, S. Sadiq, H. T. Shen, and
X. Li. Introducing cloud computing topics in curricula. Journal of Infor-
mation Systems Education, 23(3):315, 2012.

[3] W. Chun. Cloud computing and running your code on google cloud. Jour-
nal of Computing Sciences in Colleges, 34(5):81–81, 2019.

[4] L. Columbus. Where cloud computing jobs will be in 2019.
https://www.forbes.com/sites/louiscolumbus/2018/11/27/where-cloud-
computing-jobs-will-be-in-2019/#a5096276add5, 2018.

[5] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud Computing:
Concepts, Technology & Architecture. Prentice Hall Press, Upper Saddle
River, NJ, USA, 1st edition, 2013.

[6] Dahai Guo and Anna Koufakou. A comprehensive and hands-on under-
graduate course on cloud computing. In Proceedings of the ASEE South-
eastern Section Conference, 2018.

[7] Indeed. Cloud engineer salaries in the United States. https://www.indeed.
com/salaries/cloud-engineer-Salaries, 2019.

[8] D. Irwin, P. Sharma, S. Shastri, and P. Shenoy. The financialization of
cloud computing: Opportunities and challenges. In 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pages
1–11, July 2017.

[9] L. Mew, W. H Money, and S.C. Charleston. Cloud computing: Chang-
ing paradigms for information systems development service providers and
practitioners. Journal of Information Systems Applied Research, 2018.

[10] Kathleen Masterson Michael Mitchell, Michael Leachman. A lost decade
in higher education funding state cuts have driven up tuition and reduced
quality, 2019.

[11] Microsoft. What is cloud computing? https://azure.microsoft.com/en-
us/overview/what-is-cloud-computing/.

184

[12] National Institute of Standards and Technology. The
NIST Definition of Cloud Computing : Recommenda-
tions of the National Institute of Standards and Technol-
ogy National Institute of Standards and Technology, url=
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
145.pdf.

[13] R Panko. Cloud education lags at universities: 4 professors’ per-
spectives. https://clutch.co/cloud/resources/cloud-computing-education-
2017, 2017.

[14] M Suhail Rehman, Jason Boles, Mohammad Hammoud, and Majd F Sakr.
A cloud computing course: from systems to services. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education, pages
338–343. ACM, 2015.

[15] J. C. Sandí Delgado and P. Bazán. Educational serious games as a service:
Challenges and solutions. Journal of Computer Science & Technology, 19,
2019.

[16] Amazon Web Services. Training and certification. https://aws.amazon.
com/training/, 2019.

[17] R. Sjodin and M. Lotfy. Integrating cloud computing into the curriculum.
In Journal of Computing Sciences in Colleges., volume 35, pages 29–38,
2019.

185

Cohorting Incoming Students in a CS1
Course: Experiences and Reflections from

the First Year of Implementation∗

Adrienne Decker1, Christopher Egert2, Erin Cascioli2
1University at Buffalo, Buffalo, NY 14260

adrienne@buffalo.edu
2Rochester Institute of Technology, Rochester, NY 14623

{caeics, edcigm}@rit.edu

Abstract
The expansion of computing into K-12 classrooms has created many

opportunities for students to be exposed to and choose computing as a
field of study. Despite this growth, others are still left with little to no
exposure to computing. This creates a disparity of skill levels in CS1
courses, which can, at times, lead to interesting classroom dynamics for
both the student- teacher relationship and the student-student relation-
ship. In an effort to help create a more nurturing learning atmosphere
for our CS1 students, we undertook a process of cohorting students into
course sections based on past experience. The mechanism for grouping
the students was based on a self- report survey. Students were placed ei-
ther into our normal course sequence or accelerated course sequence. In
this paper, we will discuss our survey and selection criteria and present
results from the first year which resulted in changes in DFW rate in the
courses. Even with this success, we end with reflections on what needs
to be improved on the process going forward and how this choice may
shape our curriculum in the future.

1 Introduction

In CS1 classrooms across the country, we are faced with increasing enrollments
in our courses [8]. This comes as both a blessing and a curse. While it shows an

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

186

increased interest in students in our field and shows that students are recog-
nizing computing as a skill they need to have, it brings a much wider array of
students to our doors [7]. Something that is lurking behind those doors is the
fact that CS1 isn’t easy for many students and several do not master the ma-
terial adequately enough to pass the course or continue on to further courses
[4]. However, we also know that the level of exposure is not uniform for all
students in all areas [7]. The problem seems untenable, more students, more
diverse backgrounds, and teaching a subject where students have historically
had varied levels of success.

Faced with this issue in our own courses, we sought out ways to create
a better classroom environment for our students, with the goal to get more
of them to successfully complete the course and continue with their studies
in computing. As such, we looked towards cohorting students based on prior
experience as a possible solution. In this paper, we discuss some other previ-
ous attempts at grouping students in introductory courses and describe our
approach for determining the cohorts. The paper concludes with our findings
from the pilot year of the cohort (2018-2019), some instructor observations,
and our plans for the future of cohorting our first-year sequence.

2 Background

Over the last decade, computing programs in the United States expereienced
record growth. The CRA update [6] to the Generation CS report [8] shows
an incredible increase in the average of computer science majors, noting an
increase of 52% in average new majors and an increase of total majors of
35% over the period from 2015 through 2018 [6]. Despite such proliferation of
interest and access to computer science education, the introductory course still
suffers from low pass rates ranging anywhere from 67-72% [4, 5].

For many CS and computing educators, this pass rate is disturbingly low,
and many look to techniques that alter the pedagogy, such as choice of lan-
guage or paradigm [3, 9, 14], use of mental models [20], or rearranging the
relationship between problem solving and programming skills [11, 14]. Others
choose techniques to change the learning environment by incorporating active
learning exercises [19], using peer instruction techniques [16], and adoption of
techniques to address potential disruption of defensive climates in the class-
room [2].

Still another method is the separation of introductory students into different
classes based upon perceived aptitude and prior experience. Such separation
can be desirable, as mixing students with different skill levels in the same
course can create issues with efficacy and degrade the classroom experience
[13]. However, one of the challenges faced is how to place students in the correct

187

introductory course.
The literature notes several instances of the use of placement tests to deter-

mine the proper entry course based on mathematical skill [12], ability to write
programs [17], online surveys [18], and self-tests [10]. However, Archer et al.
[1] noted that placement tests done before the start of the semester can cause
students to be overwhelmed as the activity is lost in the jumble of opportu-
nities and expectations slated for freshman students. Placement instruments
can also fail, not providing the outcomes originally intended [15]. Despite such
challenges, placement into classes of similarly experienced cohorts holds great
potential for students and educators alike.

2.1 Our Course

Our department (Interactive Games and Media) is situated in a college of com-
puting at a large technical university in the northeast United States. Incoming
students to the university are accepted into their major from their first year
of study and begin taking courses within their department immediately upon
entry into the university. The department has roughly 800 students and 30
faculty. Most of the courses in the curriculum are taught in computer labs
of 30 students, including the first-year sequence, which is equivalent in topic
coverage to a CS1-CS2 sequence.

The language of implementation of the sequence is C. In the past, we have
tried to accelerate students with AP CSA credit out of our first course in the
first semester, but the language shift (AP CSA is taught in Java), has proved
a challenge for the incoming students. Therefore, we made the decision several
years ago to not give placement to those AP CSA students with scores of 4
or 5 into the second course. We also did not have any type of challenge or
placement exam for our courses that students could have taken to place into
the second course. All students, regardless of background, were taking the first
course together. The side effects of this were two-fold. First, students who did
have prior experience were expressing feelings of boredom and restlessness with
both the course and the program. They felt they were not being challenged
enough in their first course. Second, students without prior experience were
feeling overwhelmed by the ones that did. It was creating, at times, a less than
welcoming environment for true novices.

3 Cohorting the First Course

In response to the problems we were facing in our first course, we decided to pur-
sue a cohorting solution for the start of the 2018-2019 academic year. Students
who were entering the program/university as first year students scheduled to
take our introductory course were asked to complete a survey that we designed

188

to help us determine their exposure to programming prior to enrolling at the
university. This survey was advertised to incoming students in the packet they
received about attending orientation, which also asks students to take a math
placement exam and fill out other forms. The addition of this requirement,
while new to our program, was not something radically out of step with other
activities the incoming students were asked to do.

3.1 Survey Contents and Administration

We adapted our survey from an unpublished survey we obtained from faculty
at the University of Oklahoma. The survey as our students saw it is presented
in Appendix A of this paper. The contents of the survey are largely demo-
graphic questions asking students about their background with programming
or programming courses, including but not limited to, AP courses. The final
three questions ask the students to provide answers to programming questions.
The first asks for the result from a series of assignment statements. The second
asks them to write a loop that prints out the numbers from 1 to 100 in any
programming language of their choice. The third asks them to write a func-
tion that given a collection and an element returns the index of an element
if found and -1 if not, in any language of their choice. The survey delivery
system (Qualtrics) is a simple text editor with no functionality for compiling
or running code.

3.2 Analyzing Survey Results

Once they survey closed, all student responses were downloaded into a spread-
sheet and specific answers were analyzed to determine which section the stu-
dents should be placed into (accelerated or regular). Of the 207 incoming stu-
dents who were asked to complete the survey 135 did so, a 65.2% completion
rate. Students were placed into the regular section if they:

• Indicated they had never written a computer program before or had never
taken a programming course before (21 students).

• Indicated that they had programmed before, but for a duration of less
than 6 months, may have taken AP CSA with an exam score of 1 or
2 or no score reported, and had indicated that they had only written
programs less than 5 screen lengths long (20 students).

• Indicated larger amounts of programming experience with longer pro-
grams, answered correctly or nearly correctly on the first two program-
ming questions, but did not answer the third programming question (22
students).

• Indicated larger amounts of programming experience with longer pro-
grams but did not give a satisfactory answer to the third programming

189

question (10 students). For purposes of the analysis of the survey re-
sponses, a satisfactory answer consisted of a function and indicated pa-
rameters, a loop that iterated over entire collection (or until element
found) and returning an index of the element or -1 if not found. Syntac-
tical errors that did not impact the algorithm were not weighed in our
assessment of the solutions.

Students were placed into the accelerated section if they:

• Reported a score of 4 or 5 on the AP CSA exam (23 students).
• Reported taking either AP CSA or both AP CSA and CS Principles, said

they had been programming for more than six months and produced a
program that was more than five screen lengths or files. Quickly looking
at their programming question answers indicated that they answered all
three to some reasonable degree (15 students).

• Reported having programmed in one or more programming languages,
had programmed for over six months and produced programs of five or
more screen length. A quick look at their programming question answered
indicated that they answered all three to some reasonable degree (24
students).

In the end, out of the 135 students, 62 students were placed into the acceler-
ated section and 73 students were placed into our regular section. Students who
did not complete the survey were also placed into our regular section unless
they had an AP CSA score of 4 or 5 [17 students].

From a workload standpoint, while 135 students took the survey only 83
needed to answer the programming questions due to the skip logic in place
for some of the answers. The third question was the most work to grade but
because students skipped the question or were able to be placed with a combi-
nation of their other answers, only 41 responses needed to be carefully screened.
Thus, aside from building initial Excel formulas (which can now be re-used),
assessment of the student responses took about 1 hour by one instructor.

4 Course Results

We will discuss some general observations of the classroom and the process in
Section 5. This section presents results in terms of grades and retention for the
students who were our incoming students for the 2018-2019 academic year.

In the fall term 2018 (August-December 2018), there were eight sections of
the first course taught by four instructors (A, B, C, D). Three sections were
accelerated and five were regular. Instructors A and B taught the accelerated
sections. Instructors A, C, and D taught the regular sections. For the spring

190

2019 term (January-May 2019), there were seven sections of the second course
taught by four instructors (A, B, C, E). Three sections were accelerated and
four were regular. Accelerated sections were taught by A and B again. The
regular sections were taught by B, C, and E. For all sections throughout the
year, each section had approximately 30 students and all were taught in- person
in computer labs.

By university policy, students are allowed to elect to receive a grade of W
(withdraw) up until the end of the 11 th week of the 15-week term. Grading
across the sections of the courses was based on roughly the same criterion and
in many cases, the homework assignments were the same across all sections of
the course.

4.1 First Course Results

Of the 78 students that were enrolled in the accelerated sections of the intro-
ductory course, two students elected to go to the regularly-paced sections of
the course as opposed to staying in the accelerated sections during the first
week of class, leaving 76 students in the accelerated sections. Table 1 presents
the final grades for students in the accelerated sections of the first course. The
DFW rate for the accelerated sections was 7 out of 76 (9%).

Based on the results of the survey, 73 students were placed into the regular
sections of the course. They were joined by the two students mentioned above,
and 56 students who did not complete the survey for a total of 131 students.
Table 1 presents the final grades. The DFW rate for the regular sections of the
course was 20 out of 131 (15%). Overall, the DFW rate for the first course for
the incoming students was 27 out of 207 (13%).

Table 1: Final Course Grades in first course in 2018-2019 academic year

191

4.2 Second Course Results

Students who did not receive a grade of C- or better in the first course were not
allowed to take the second course in either the accelerated or regular sections.
Students in the accelerated section of first course could opt to take the regular
section of second, but none chose to do so. Students were not allowed to move
from the regularly-paced first course to the accelerated second course.

There were 68 students (out of 69) enrolled in the accelerated sections of
second course for the second term of the academic year, retention rate 99%.
Table 2 presents the final grades for students in the accelerated sections of the
second course. The DFW rate for the course was 5 out of 68 (7%).

There were 116 students enrolled in the regular sections of the second
course, but only 109 were students from the most immediate preceding term.
Therefore, the retention rate was 109 out of 131 (83%). Table 2 presents the
final grades for students in the regular sections of the second course. The DFW
rate for the course was 23 out of 109 (21%). Overall, the DFW rate for the
course was 28 out of 177 (16%).

5 Discussion and Observations

While the overall course outcomes give us one dimension of the picture of
the success of the cohorting experiment, another piece of this picture is the
classroom climate for the students, which we present at this time as instructor
observations.
Table 2: Final Course Grades in second course in 2018-2019 academic year

In terms of the survey itself, we feel that we successfully achieved our out-

192

comes. It was easy to administer, reasonably quick to analyze the results, and
fairly accurate in terms of not putting under-prepared students into the ac-
celerated section. Since there were only two students who were recommended
for the accelerated sections that selected to move to regular, students did not
generally feel misplaced by the survey results. Also, instructors did not report
students in the regular section who took the survey complaining about their
placement and asking to be accelerated.

We had higher than normal retention rates in each of the cohorts and over-
all, 177 out of 207 retained from the first to the second course for an 86%
retention rate. Since 27 of the non-continuing students were DFW, we only
lost three students who passed the first course but did not take the second.
One student switched majors within the university, one seemed to have left the
university because they were not enrolled in the second term in any courses,
and one never intended to continue on, taking our first course to fulfill a general
education requirement.

Our DFW rates were near or lower than our historical averages for both
groups (accelerated vs. regular). Historically, we have had a 15% DFW rate
in our courses. This past year, with cohorting, the rates were 13% and 16%
respectively. The DFW rate in the accelerated group was even lower, 9% and
7% respectively.

It is unclear that cohorting was the cause of the change of our DFW rates
or retention rates. While there were no dramatic overhauls of the curriculum
undertaken for the 2018-2019 academic year and the instructors for this cohort
have all taught the course before (in some cases for almost a decade), we can’t
conclusively determine the cause because we did not formally study or control
for factors of instructor influence. However, something did change and the
change in the DFW rate followed. The one thing that definitively changed was
the cohorting.

Looking at the students who ultimately did not succeed in either course,
a major factor seemed to be lack of attendance or failure to turn in assign-
ments. Anecdotally, it would seem that this is a common reason students fail
any course, so it is not a surprising observation. A regular-section only phe-
nomenon was related to the impact of external help. For many students, they
seemed to be receiving a lot of external help on their assignments from other
students (near peers or upper-class peers), tutors, or other sources. We are not
characterizing this help as inappropriate, but rather, they relied on the help
to get them through assignments outside of class and could not demonstrate
their knowledge inside of class on assignments, exams, or discussion.

One point that was unique to the accelerated section was an over-inflated
opinion of their own abilities. For example, one of the accelerated students
would often skip class, thereby missing new coding concepts, and instead try

193

to rely on their prior knowledge from their high school AP course which often
didn’t work in C.

In terms of general classroom environment, instructors did observe some
decrease of the “toxic wizard” attitudes in the regular sections. Since a major-
ity of the students with advanced knowledge were removed from the sections,
it seemed to allow students who were unsure to voice their concerns more of-
ten. Our solution was not perfect, however, because not all students took our
placement survey and therefore, there were most likely students with possibly
extensive prior non-AP experience in the regular section because they failed to
fill out the survey and we did not have AP scores to use for their placement.

One place that the accelerated students demonstrated an advantage of the
cohorting was in the second course. That course has a group project and in-
structors observed that the student teams in the accelerated sections pushed
their projects farther than they remember previously. The project has been the
same open-ended project for more than ten years. As opposed to competitive
pushing, the instructors saw this more as a cooperative/supportive pushing.
They observed that since students were roughly in the same place in terms of
experience and background, they could focus on the project and not on stu-
dents with less depth of understanding of the material. It seemed to allow time
for further exploration and deeper development of the team’s ideas.

There are limitations to our process for the cohorting and our observations
of the results. Both illuminate the need for further investigation. First, this
was not in any way a research study. It was definitely a pilot offering of both
the survey and the courses cohorted in this way. While we are happy with the
results of the survey and feel it adequately helped us determine placement,
a more rigorous investigation of the instrument is needed. The classroom ob-
servations of both the climate and student interactions are strictly anecdotal.
They could be enhanced by formal observation protocols to determine what
the classroom climates really are in the two cohorts. Lastly, the fact that not
every student took the placement survey makes it unclear that the cohorts
were accurate. The instructors definitely felt there were students in the regular
sections that probably should have been in the accelerated section but did not
complete the survey.

6 Conclusion

In this paper, we discuss the implementation of a largely self-report survey for
determining placement in an introductory course. The survey uses information
on prior experience, both formal and informal to determine placement. After
the first year, we have seen a decrease in the DFW rate in both our first-year
courses and have observed that the classroom climate has improved for our

194

students. The pilot was considered enough of a success to once again use the
survey for placement in the 2019-2020 academic year. Future work needs to be
done to determine the exact impacts on the classroom environment and the
impacts of the initial cohorting on the students as they progress through our
program and to degree completion.

References

[1] Glen Archer, Briana Bettin, Leonard Bohmann, Allison Carter, Christopher Cis-
chke, Linda M Ott, and Leo Ureel. The impact of placement strategies on the
success of students in introductory computer science. In 2017 IEEE Frontiers
in Education Conference (FIE), pages 1–9. IEEE, 2017.

[2] Lecia Jane Barker, Kathy Garvin-Doxas, and Michele Jackson. Defensive climate
in the computer science classroom. In Proceedings of the 33rd SIGCSE technical
symposium on Computer science education, pages 43–47, 2002.

[3] David John Barnes, Michael Kölling, and James Gosling. Objects First with
Java: A practical introduction using BlueJ. Pearson/Prentice Hall, 2006.

[4] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory pro-
gramming. AcM SIGcSE Bulletin, 39(2):32–36, 2007.

[5] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory pro-
gramming: 12 years later. ACM Inroads, 10(2):30–36, 2019.

[6] Betsy Bizot and Stu Zweben. Generation CS, three years later. https://cra.org/
crn/2019/08/generation-cs-three-years-later/.

[7] code.org. State of computer science education.
[8] Computing Research Association. Generation CS: Computer science undergrad-

uate enrollments surge since 2006. http://cra.org/data/Generation-CS.
[9] Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-first in

introductory computer science. ACM SIGCSE Bulletin, 35(1):191–195, 2003.
[10] Lucia Dettori, Theresa Steinbach, and Martin Kalin. Is this course right for you?

using self-tests for student placement. Director, page 07, 2006.
[11] Katrina Falkner and Edward Palmer. Developing authentic problem solving skills

in introductory computing classes. In Proceedings of the 40th ACM technical
symposium on Computer science education, pages 4–8, 2009.

[12] Carl Farrell. Predicting (and creating) success in CS1. Issues in Information
Systems, 7(1):259–263, 2006.

[13] Päivi Kinnunen and Beth Simon. CS majors’ self-efficacy perceptions in CS1:
results in light of social cognitive theory. In Proceedings of the seventh interna-
tional workshop on Computing education research, pages 19–26, 2011.

[14] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. Teaching intro-
ductory programming: A quantitative evaluation of different approaches. ACM
Transactions on Computing Education (TOCE), 14(4):1–28, 2014.

195

[15] Cindy Marling and David Juedes. CS0 for computer science majors at Ohio
University. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, pages 138–143, 2016.

[16] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. A multi-institutional study of
peer instruction in introductory computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, pages 358–363, 2016.

[17] Robert H Sloan and Patrick Troy. Cs 0.5: a better approach to introductory
computer science for majors. ACM SIGCSE Bulletin, 40(1):271–275, 2008.

[18] Leen-Kiat Soh, Ashok Samal, Suzette Person, Gwen Nugent, and Jeff Lang.
Designing, implementing, and analyzing a placement test for introductory cs
courses. ACM SIGCSE Bulletin, 37(1):505–509, 2005.

[19] Keith J Whittington. Infusing active learning into introductory programming
courses. Journal of Computing Sciences in Colleges, 19(5):249–259, 2004.

[20] Susan Wiedenbeck, Deborah Labelle, and Vennila NR Kain. Factors affecting
course outcomes in introductory programming. In PPIG, page 11, 2004.

196

197

Creation of a Virtual Machine
for a Database Class∗

Christine F. Reilly
Computer Science Department

Skidmore College
Saratoga Springs, NY 12866

creilly@skidmore.edu

Abstract

In a database class, it is essential for students to connect to a database
server so that they can practice writing and running SQL queries. Provid-
ing the same database environment to all students presents a challenge
to the professor. This paper discusses the creation of and experience with
using a virtual machine (VM) for both an undergraduate and a graduate
database class. The VM enabled all students to access the same database
environment from their personal computers. Experience with using this
VM during three semesters shows that this is a feasible approach. This
paper contains instructions and guidelines for creating the VM and dis-
tributing it to students. The approach discussed in this paper is useful for
other professors who are teaching database courses, and can be modified
for use in other types of classes.

1 Introduction

This paper discusses the creation of and experience with a virtual machine
(VM) for both an undergraduate and a graduate database class. The professor
created a Linux VM that contained all of the software and example databases
that were used for in-class examples, assignments, and the database design
project. By providing students with this VM in combination with making the
same resources available in the department computer lab, the professor could

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

198

ensure that students had access to the same computing environment regard-
less of whether they chose to work in the department lab or on their personal
computers. The approach described in this paper is likely to be useful in other
computer science courses, and was inspired by a set of computer security as-
signments [4].

The VM described in this paper was first used in undergraduate and
master’s-level database courses in the Computer Science department at a re-
gional public university in the USA that is designated as a minority serving
institution. Many of the undergraduate and graduate students who took these
courses were classified as non-traditional students because they may not live
on campus, may have full time jobs, may have significant family responsibili-
ties, or may be older than traditional college age. In the USA, the majority of
college students fall into the non-traditional category [6], and it is critical for
faculty to consider the needs of non-traditional students when choosing course
materials and designing assignments. The author has also taught at institu-
tions that mostly have traditional college students and finds the VM approach
is useful when students prefer to work on their personal computer rather than
go to the department computer lab.

The students who took the database classes described in this paper have
a wide variety of experience with the use of computers and with computer
system administration, and come from a diverse range of backgrounds. In order
to provide all students with opportunities to access the database software, the
following principles were followed during the design of the VM:

• Use free and open source software and tools.

• Do not expect students to have prior knowledge about computer system
administration.

• Expect that students may have personal computers that have limited
computing resources (memory, disk space, processing capacity).

In order to motivate the use of a VM for database classes, other approaches
for providing database access to students are surveyed in Section 2. Next,
the steps for creating the VM, installing the software for database class, and
distributing the VM to students are discussed in Section 3. The experience
of using this VM during three semesters of database classes is presented in
Section 4, followed by conclusions in Section 5.

2 Related Work

A variety of approaches for providing database access to students have been
described in prior work. These approaches are grouped into two general cat-
egories: a common platform used by all students, and utilizing the student’s

199

personal computer. This paper focuses on a hybrid of these two approaches:
having students use a common platform on their personal computer. A discus-
sion of the benefits and drawbacks of each approach follows.

2.1 Common Platform

Providing a common platform for all students in a database class ensures that
students are completing their SQL assignments in the same environment where
they will be graded. This is beneficial to the students because they can properly
test their SQL queries before handing in the assignment. A benefit to the
professor of the common platform approach is having a centralized platform to
maintain. Benefits and drawbacks of specific methods for providing a common
platform are discussed below.

A department database server can be used as the common platform for
a database class. As long as the professor is granted sufficient administrative
privileges on the department database server, the professor can easily upload
customized databases for the class and create database server accounts for
students. Students can connect to the department server from the lab worksta-
tions at the college and possibly from their personal computer. Due to security
concerns, the institution may require the use of a virtual private network for
connections from off campus. The challenges of connecting to the department
database server from off campus is a drawback to this approach. An addi-
tional drawback is that if class assignments include modifying the data in the
database then each student must be provided with a separate database and
database user.

Another way to provide a common platform is to utilize an online SQL tool.
There are a variety of online tools available from third-party vendors and free
websites. However, these online tools have many drawbacks from the professor’s
perspective [2]. Some of the online tools do not allow the professor to upload a
custom database, and students are able to search the internet for solutions to
homework problems that use the common databases. Other drawbacks are that
the online tool tool could become unaccessible in the middle of the semester
and that the third-party vendor may not provide adequate customer support.

Simple database software, such as Microsoft Access or LibreOffice Base, can
be installed on the workstations in the department’s computer lab [2]. Because
the database is stored as a single file, the instructor can provide students with a
file that contains the example database. The benefits of this approach include
the simplicity of installation and use. Drawbacks include that these are not
production-level database systems, and that students can use the graphical
user interface that is provided with these software products to create SQL
queries without actually writing SQL.

Cloud computing providers such as Google Cloud Platform (GCP) and

200

Amazon AWS are willing to donate computing credits for educational use.
With these computing credits, students in a database class can utilize cloud
database platforms for their coursework [3]. Benefits of this approach include
that the cloud platforms often have a variety of software available for use, allow-
ing students to gain experience with multiple database systems; and students
gain useful career experience by working in a real-world environment. The main
drawbacks of this approach are related to the computing credits that must be
provided to students. The instructor must request donated computing credits
prior to each semester and administer the distribution of computing credits to
students, and these credits may expire soon after the course ends. It is also pos-
sible that students can run out of computing credits prior to completing their
coursework, especially if they make mistakes in the use of the cloud platform.
The responsibility of monitoring and managing computing credits provides a
useful real-world experience.

2.2 Student’s Personal Computer

The students can be expected to install a database server on their personal
computer and then to load the example databases onto their computer. A ben-
efit of this approach is that many students prefer to use their personal computer
rather than the department computer lab, and this approach enables students
to do classwork off campus. The drawbacks of this approach include requir-
ing students to have some knowledge of computer system administration, and
the difficulty of supporting the variety of operating systems on the students’
personal computers.

Students can install simple database software, such as Microsoft Access or
LibreOffice Base, on their personal computers. The benefits and drawbacks
are the same as discussed with this approach in Section 2.1. An additional
drawback is that students may have different versions of the software on their
personal computers and compatibility issues can arise when using the database
file provided by the professor.

2.3 Virtual Machine

A third approach, and the focus of this paper, is to provide students with
a virtual machine (VM) that contains the software and data that is used in
the database class. This is a hybrid approach that enables students to use a
common database platform on their personal computer. The main drawback
of this approach is that each student must have a computer with sufficient
resources to run the VM. In order to ensure that all students have access to
the resources needed for class, it is best to combine the VM approach with a

201

second option such as connecting to a database server from the workstations
in the department computer lab.

3 Providing a VM for DB Class

This paper focuses on how to use a VM to provide the students in a database
class with access to the same database environment. A similar approach could
be utilized in other classes where it is useful for all students to have access to
the same computing environment. As will be discussed in Section 4, this VM
has been used in undergraduate and graduate database classes where students
complete homework assignments that require them to create SQL statements,
and where the final project for the course is a database design project.

The steps for creating the Linux VM are discussed in Section 3.1, then
the steps for preparing the VM for use by the database class are discussed in
Section 3.2. The methods for distributing this VM to students are presented
in Section 3.3. Faculty who are interested in using this VM approach for a
different course can overlook the steps in Section 3.2 and instead install the
software needed for their course. Table 1 provides a summary of the software
that is installed on the VM.

Table 1: Software Installed on Virtual Machine

Category Software
Linux Lightweight distribution such as Bodhi Linux;

Run the system update utility;
VirtualBox Guest Additions.

Database MariaDB Server;
Graphical interface such as phpMyAdmin.

Development Software Java JDK;
Java Development Environment.

The overall approach taken when designing the VM is to keep it as small
as possible, both in terms of the size of the file that contains the VM and
the amount of memory used while the VM is running. A small VM requires
less computing resources on the students’ personal computers, making this ap-
proach accessible to students who have lower cost or older computers. Table 2
outlines the requirements for running this VM on the students’ personal com-
puters. When this paper was written in 2019, the low cost personal computers
available from retail stores had 4 GB to 8 GB of RAM. The lowest cost personal
computers in the netbook category, such as the Google Chromebook, are most
likely not supported by this approach because of limitations in the operating
system used by these computers. Students who have experience in computer

202

system administration may be able to find a way to modify the netbook oper-
ating system and install the VM software.

Table 2: Requirements for Students’ Personal Computers

Category Requirement
Operating System Any that serve as VirtualBox host

(Windows, Mac OSX, or Linux);
Permission to install new software.

Software Oracle VM Virtual Box
(free and open source software).

RAM 8 GB or more preferred;
4 GB may be sufficient.

Available Storage Space 10 GB or more.

3.1 Creating the VM

Oracle VM Virtual Box [9] was chosen as the VM software because it is free
and open source software that is available for all of the operating systems that
students are likely to have on their personal computers (Windows, Mac OSX,
and Linux). In order to keep the VM as small as possible, choose a lightweight
Linux distribution that has low hardware requirements and does not install
much software by default. When this paper was written in 2019, Bodhi Linux
Standard Release 5.0.0 [1] was chosen as the operating system to install on
the VM. Because Linux distributions evolve over time, it is suggested that the
reader perform a web search for “lightweight Linux distribution” in order to
find a Linux distribution that is appropriate at the time when the reader is
creating their VM.

The following steps detail how to create the Linux VM. These instruc-
tions assume that the reader is familiar with the use of VirtualBox and with
installing and using a Linux distribution. For more information about these
topics, consult the product documentation or search the web for tutorials.

1. Download VirtualBox and install it on your computer.

2. Download the Linux disk image to your computer.

3. Open VirtualBox and create a new VM with a name such as LinuxDB.
For the Bodhi Linux VM in 2019, 1 GB of RAM and a dynamically
allocated hard drive with maximum size of 8 GB were adequate.

4. Start the LinuxDB VM. In the boot image dialog, select the previously
downloaded Linux disk image.

203

5. Follow the installation instructions for the Linux operating system.

6. Document the Linux username and password and provide this informa-
tion to students so that they can log into the machine and act as the
system administrator on their VM.

7. Run the system update utility to install available software updates.

8. Install VirtualBox Guest Additions so that the guest machine works more
seamlessly with the host.

3.2 Preparing the VM for Database Class

For database class, install a database server and other software and tools that
students will utilize for the class. Note that it is best to carefully consider
the software that will be used throughout the semester and include all of this
software in the VM that is distributed to students at the beginning of the
semester. Two commonly used free and open source database servers are Mari-
aDB and PostgreSQL. MariaDB [5] was chosen for the class discussed in this
paper because it, and the MySQL database server that the MariaDB code was
forked from, is commonly used in production environments. A pedagogically
interesting option is to install database servers from more than one vendor and
include comparisons of different database systems as a learning activity [7].
The following steps outline the process of installing the database class software
on the VM.

1. Use the package manager to install MariaDB Server.

2. Use the package manager to install a graphical user interface for the
database (e.g. MySQL Workbench or phpMyAdmin).

3. Install any other tools and programs needed for the class (e.g. Java JDK
and a development environment).

The database server must be prepared for the class. The preparation in-
cludes creating database users and creating the test databases that will be
used during class. The following steps outline these preparations.

1. Create database users and document the usernames and passwords for
the students. A suggested practice is to create at least two database users:
one with read only access, and the second with all database privileges.
Encourage students to develop good database security habits by connect-
ing as the user with the minimum privileges needed.

204

2. Create databases and upload data to these databases. For example, in-
clude the textbook example database and the databases that will be used
for in-class examples and SQL assignments. Grant appropriate permis-
sions for each of the database users on the databases.

3.3 Providing the VM to Students

VirtualBox has a utility for exporting the VM to a file that can be distributed
to others. Use the “Export Appliance” dialogue to create a file (with .ova ex-
tension) that contains the VM you created. Distribute this file to students
and instruct them to use the “Import Appliance” dialogue to add this VM to
VirtualBox on their personal computer.

The professor should provide students with a document that contains in-
structions for installing the VM, information about basic Linux use and use of
the installed database, and guidelines for working with a VM. Make sure to
include the usernames and corresponding passwords for the Linux user and the
database users. Guidelines about using a VM should include instructions for
taking periodic snapshots of the machine state, and a suggestion that VM per-
formance can be improved by closing all other programs on the host machine
and being patient while the VM starts up and acquires memory resources from
the host machine.

4 Experience

This VM setup was deployed in three semesters of database classes. One
semester was an advanced undergraduate course, and two of these semesters
were masters-level courses. This section discusses the professor’s experience
with using the VM, including informal feedback that students provided to the
professor. In addition to providing this VM to students, the professor also pro-
vided access to the same example databases on a server that students could
access from the department computer lab. The combination of a VM and the
department server was sufficient for providing all students with access to the
database resources needed for the classes.

Overall, the use of the VM for the database classes was successful. Because
students used the computer platform that would be used for grading, the pro-
fessor had fewer questions about SQL assignment grades. An active learning
approach was utilized for the in-class portions of the SQL unit [8], and the VM
was used by students for their pre-class assignment. For the semester when
class could not be scheduled in the computer lab, enough students brought
laptops running the VM to class so that they could work in small groups on
the in-class learning activities.

205

The lesson of keeping the VM as small as possible was learned in the first
semester. In the first iteration of this approach, the professor used the default
VM settings in Virtual Box and the default installation of Ubuntu Linux. Some
students found that this Ubuntu VM was unusable on their personal computer,
and the faculty observed that the VM ran slow on even on high-end computers.
Students had fewer complaints about the performance of the VM when it was
created with a smaller memory and disk size and when it ran a lightweight
Linux distribution as described in Section 3.

The students in these classes had a wide variety of experience with using
computers and with computer system administration. Students who had issues
with slow performance of the VM told the professor that they would switch
to using a different program on their computer while they waited for the VM.
This provided an opportunity for the professor to discuss how an operating
system virtualizes memory in order to provide more memory resources than
are available in RAM. The professor also specifically instructed students who
experienced performance problems with the VM to close all other programs
running on their computer and to keep the VM window active so that more of
their computer’s memory would be made available to the VM.

Providing the VM to the students seemed most beneficial to the students
with less experience using computers. The professor observed that this group of
students continued to use the VM throughout the semester as the class worked
on their database design projects. Students who have more experience with
computer system administration tended to install database software directly
onto their personal computers and abandon the use of the VM after the class
finished the SQL unit. This demonstrates the benefit of providing students
with a VM in the situation where the class size is relatively large and the
professor has limited time available for instruction beyond the class topics or
for helping students with computer troubleshooting. By having a VM available,
all students in the class had access to the computing platform that they needed
for success in the class.

5 Conclusion

This paper provided a demonstration of how to create a VM for a database
class, and discussed the experience with deploying this VM in three semesters
of classes. The professor found that providing students with the VM enabled
students to complete SQL practice problems and assignments on a consistent
environment and reduced the number of questions related to platform-specific
issues. The VM was especially useful for students with less experience using
computers and ensured that this group of students was able to fully participate
in the SQL coursework.

206

An additional benefit of providing students with a Linux VM is that stu-
dents can use the VM to learn about using and administering a Linux machine.
The ability to save snapshots of the VM state encourages students to exper-
iment with Linux because they can easily roll back to an earlier snapshot in
the case that they take some action that causes the machine to not function
properly.

Because many students prefer to work on their personal computer rather
than in the department computer lab, a VM that is configured for a specific
class is a good option for database classes and other computer science classes.
By providing both a VM and access to the computing resources in the depart-
ment computer lab, a professor can ensure that all students have access to the
resources needed for the class.

Acknowledgements

The students in database classes at University of Texas Rio Grande Valley
provided useful feedback about using the VM. Skidmore undergraduates (Selina
Almasarwah and Matt Clark) edited the final version of this paper.

References

[1] Bodhi Linux. https://www.bodhilinux.com/ (accessed November 2019).

[2] John Cigas and Barbara Kushan. Experiences with online SQL environments.
Journal of Computing Sciences in Colleges, 25(5):251–257, May 2010.

[3] Karen C. Davis. Teaching database querying in the cloud. In 2019 IEEE Frontiers
in Education Conference (FIE), 2019.

[4] Wenliang Du. SEED: Hands-on lab exercises for computer security education.
IEEE Security and Privacy, 9(5):70–73, September 2011.

[5] MariaDB. https://mariadb.com/ (accessed November 2019).

[6] Alexandria Walton Radford, Melissa Cominole, and Paul Skomsvold. Demo-
graphic and enrollment characteristics of nontraditional undergraduates: 2011-12.
Technical Report NCES 2015025, National Center for Education Statistics, 2015.

[7] Gary B. Randolph. The forest and the trees: Using Oracle and SQL Server
together to teach ANSI-standard SQL. In Proceedings of the 4th Conference on
Information Technology Curriculum, CITC4 ’03, pages 234–236, New York, NY,
USA, 2003. ACM.

[8] Christine F. Reilly. Experience with active learning and formative feedback for
a SQL unit. In 2018 IEEE Frontiers in Education Conference (FIE), pages 1–9,
2018.

[9] VirtualBox. https://www.virtualbox.org/ (accessed November 2019).

207

Jupyter Notebooks versus a Textbook
in a Big Data Course∗

Roland DePratti
Department of Computer Science

Central Connecticut State University
New Britain, Ct 06053
roland.depratti@ccsu.edu

Abstract
In building curriculum in new areas of computer science, often the

tools introduced in the course are an important component. This is es-
pecially true in the area of big data, where the complexity of the prob-
lems the area tackles is high. In the 4 years since its inception, my big
data course has gone through two major redesigns and has settled on
a tool set including: the Hadoop platform, Spark processing engine, the
Python programming language, Eclipse IDE, and Jupyter Notebooks.
Many of the changes were driven by input from professional peers on
big data teams, who were struggling with the complexity resulting from
the low-level programming model used by MapReduce. Jupyter Note-
book, a type of computational notebook, was added to the course to
introduce students to the Python programming language. Data scien-
tists and researchers have found computational notebooks an effective
tool to manage their work by providing a way to track their thinking
process, their code, and conclusions in one web document. To assess the
effectiveness of using Jupyter Notebook in a big data course, students’
views on the use of computational notebooks and traditional textbooks
were captured and statistically analyzed.

1 Introduction

Software complexity has long been a topic of interest in computer science. It
has been written that “the rise of information system complexity, however, is

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

208

driven by the incredible capabilities and opportunities computing offers us”
[15]. To take advantage of those opportunities we must apply our computer
acumen to move difficult problems, leading to more layered, complex systems.
These same authors note that “earlier research shows that significant gains
can be made by using PC development tools, graphical interfaces, packages
software, and simpler programming languages” [15]. It can easily be argued
that a big data platform, with its 100s of open source, distributed components,
reacting to complex queries in a self-adaptive manner represents a complex
system. In 2015, I was part of an effort to develop a course that would teach
undergraduates about this new area of computer science [7]. The core con-
cepts covered in the course (distributive processing, functional programming,
data management, abstraction) were easily decided early in the course design
process. The software implementation details (frameworks, programming lan-
guages, and IDE) have been much thornier. The experience of teaching the
course over the last 4 years has resulted in two major revisions. Looking back
on the journey now, it is easy to see that my struggle was about managing
complexity and how to teach students about a topic, i.e. big data, that had
not yet developed all the tools needed to manage that complexity. As the field
developed those tools, the task of education became easier by incorporating
those tools into the classroom.

One of those tools is the computational notebook. Many researchers have
discovered that computational notebooks are a valuable way to centrally cap-
ture the thought process, data discovery and visualizations of their work. These
notebooks become interactive documentation that helps researchers manage
the complex process of coming to a research conclusion. A computational note-
book can be reviewed and executed months after the original work was com-
pleted. For that reason, notebooks have become an important collaboration
tool among researchers working on the same or related projects. A notebook’s
usefulness has extended to areas outside universities. I have seen computa-
tional notebooks used often by presenters at technical conferences, as well as
IT practitioners, to explore and present new technology.

Noting how others were taking advantage of notebooks caused me to wonder
how this tool could be helpful in teaching a complex topic like big data. Two
collaborators and I did some initial work examining three separate efforts to
support undergraduate statistics projects using Jupyter and R [5]. Our findings
in this initial work was anecdotal. If I was going to incorporate this new tool, I
wanted to be able to measure its impact. I wanted to determine if the students
experienced those benefits. Did they perceive an advantage in using a notebook
over a traditional textbook? The goal of this project is to answer that question.

For the remainder of the paper, I describe my exploration, implementation
and research in the benefits of computational notebooks usage in the follow-

209

ing sections: Background, Big Data Course Redesign, Research Methodology,
Results, and Conclusions.

2 Background

Formed in 2001 by Dr. Fernando Perez, the IPython project developed a com-
mand shell for interactive computing in multiple programming languages. In
2014, the group spun-off the Jupyter project [2]. The new project’s main goal
was to provide tools for interactive data science. Its first product was Jupyter
Notebooks [3], a computational notebook. The Jupyter project development
team is made up of contributors from several large universities and prominent
technology companies. In 2017, the Jupyter project won the ACM Software
System Award. The award committee seeks to recognize software projects "for
developing a software system that has had a lasting influence, reflected in con-
tributions to concepts, in commercial acceptance, or both" [1].

The Jupyter designers realized that by clearly identifying the purpose of a
section of a web document, you could build specific functionality around those
sections. Referred to as a cell, these cells can perform specific tasks, but still
reside in the same web document. Cells can be markup cells, where researchers
capture descriptions of their project, identify their current understanding, post
diagrams or images, and list additional questions to be asked. Code cells (ex-
ecutables) are web page sections in which researchers provide program code,
queries or job flows that can provide answers or progress on those questions.
Jupyter provides processing kernels that allow the commands in the code cells
to be executed. There are approximately 114 kernels available that support
many programming languages and frameworks. Output from the code cells,
once executed, can also be stored in the notebook. Researchers can build web
documents by combining cells of different types based on their research and
documentation needs.

As educators in researcher universities saw the notebook’s potential, they
began introducing Jupyter into their classes. As a result, the interest in
’education-friendly’ functionality grew. Instigated by Dr. Jessica Hamrick at
UC Berkley, the NBGrader project was founded to develop additional Jupyter
functionality that allowed educators to distribute and automate the grading of
course assignments in Jupyter Notebooks [4]. With these additional libraries,
notebook designers can add cells which can execute and test the results from
other code cells, identified as assignments, in the notebook. This provides two
important capabilities: it provides instructors the ability to automate the grad-
ing of the notebooks, and most importantly, when made available to students,
it provides instant feedback to students on their assignment solutions.

210

2.1 Jupyter Notebooks in Research and Education

Over the last couple of years, references to Jupyter Notebooks have increased in
research publications across many disciplines. Randles discovered 91 research
articles in the Astrophysics Data System literature that mentioned Jupyter
Notebooks [12]. That same year, Rule analyzed 1.23 million Jupyter Notebooks
on GitHub across 100,500 users [14]. People gravitate to tools that make them
productive and add value.

Researchers, who for decades have dealt with large amounts of data, have
streamlined their data delivery process using Jupyter Notebooks. Over the last
couple of decades HPC centers have worked to make their data and process-
ing services more easily accessible to researchers and students. The concept
of a Science Gateway has developed out of this work [16]. These Gateways
began as simple web views of subsets of data. Of late, HPC facilities have im-
plemented Jupyter environments to increase data access and processing flex-
ibility. Researchers have free reign to use the Jupyter server to generate and
post individualized notebooks using HPC data. The individualized notebooks
can become permanent members of their analytical platform based on peer
feedback. Some of the most interesting exploration of Jupyter architectures is
happening in this space giving researchers the tools to more easily curate and
manage data [11].

Data cleaning and curation is an important step in high-quality analysis.
Freire examined how different tools supported the process of data curation [8].
She identified the differences between how a spreadsheet, a computational note-
book, and relational database handles data exceptions. Seeing the value of the
added functionality in notebooks, her research team developed Vizier, a data
curation environment that combines the flexibility of spreadsheets, notebooks
and relational databases.

Exposed to computational notebooks used in their research, instructors be-
gan considering them as educational tools. Educators have developed a flood
of experiential approaches to learning. It is not surprising that education re-
searchers have developed Jupyter Notebooks in support of these experiential
learning techniques. Hu found that it was easy to implement a cycle of experi-
ential learning in Jupyter. It easily supported exploration, concept invention,
and concept application in notebooks that supported the collaboration needed
the POGIL learning approach [10]. Rowe found that the Jupyter environment
was a great way to present topic examples, where the students could modify
and re-execute code to examine the impact of their changes [13]. In teaching
computer science to science majors, Smith found that the simplicity of Python
and Jupyter Notebooks allowed him to focus more on the concepts in the labs
rather than how to do it, which an interactive development environment (IDE)
and a more complex languages like Java would require [17]. In teaching High-

211

Performance Computing, Glick found that notebooks were a good tool for both
directed and self-directed instruction [9]. Students’ course feedback pointed out
the benefits of being able to execute code examples and then learn by changing
the examples and re-executing them. These studies were convincing evidence
of the benefits others see in computational notebooks.

3 Big Data Course Redesign

In 2017, I conducted an informal survey on big data implementations from
peers that worked on big data teams for large companies. I became aware of
the demand for employees with big data knowledge and coding skills in the
Python programming language. It was a signal that the industry was shifting
its tool set from the MapReduce processing model, often coded in Java, to the
more abstract Spark processing model, which used more abstract, functional
programming languages like Python or Scala. My course at the time used the
Java programming language, which aligned with the language students had
experienced in prior courses. If I wanted to convert the course to use Python,
I needed a painless way to introduce my students to a new language in a short
amount of time. In a course that already used two textbooks, I did not want
to assign another text to the course. Nor could I afford the time to go over 8
chapters in a textbook before the students became proficient. The redesign’s
resulting constraints drove me to examine the use of computational notebooks
more closely.

3.1 Notebooks Versus Textbooks

The key contrast between computational notebooks and textbooks is one of
functionality versus volume. The interactive nature of notebooks allows a stu-
dent to read an example and then apply it on the same screen. Notebook code
cells can contain executable, instructor-provided examples or can be used by
the student to code her own examples to be executed. Results from the execu-
tion are displayed in the notebook providing immediate feedback. Unexpected
results allow the student to correct and retry. Overall, it provides the student
with a platform that encourages exploration, while providing instruction close
by. This capability contrasts with the strengths of a textbook.

The ability to enhance text content with multiple examples, illustrations
and problem sets is a textbook’s strength. By presenting the material in differ-
ent ways, the student develops the deeper understanding he needs to apply the
material. While computational notebooks can include illustrations and multi-
ple examples, they become cumbersome when they grow large. Paging through
a large notebook could potentially discourage rather than encourage learning.

212

One of the goals when designing a notebook is to balance these opposing ben-
efits, while being sensitive to the student’s experience in using the notebook.

Any measure of students’ attitudes concerning the use of notebooks versus
textbooks would need to measure these opposing benefits. Did the student
feel that the interactivity provided a strong benefit? Did the student miss
the additional content provided in textbooks that was not provided in the
notebooks?

3.2 Notebook Design and Implementation

I decided to design Jupyter Notebooks to support the students’ initial instruc-
tion in Python. Once this part of the course was completed, assignments in
support of more complex course topics, such as coding Spark applications,
would make use of an Eclipse IDE. After identifying the Python constructs
needed for the later sections of the course, a Python topics list was developed
(see Table 1). Using this list as a guide, three notebooks were developed. Two
notebooks took the students through the basics of Python, another covered
data structures.

Table 1: Python Notebook Topics

Jupyter allows you to incorporate different types of cells in a notebook.
These cells can be inserted anywhere in the notebook to support the instruc-
tion. Instructional text, coding examples, assignments and autograded cells
were developed for each topic. In the following sections, I describe each cell
type showing an example from the course notebooks instructing students on
the use of functions in Python.

Text Cells for Instructional Content

Text cells provide the instructional content. This can include text or images.

213

214

Code Cells for Examples and Assignments

Code cells are used to either provide executable examples or identify assign-
ments to the student. In the former case, instructors can provide students
with an executable example, which is working code that demonstrates an ear-
lier instructional text cell. Students can review and execute code to examine
how it works. In assignment cells, students are provided with a text writeup
providing the details of an assignment. These assignments most often ask the
student to write a function, method or class using what they learned in the
prior instructional text cell. In this code cell, students can read the assignment
requirements, write the appropriate code and execute it.

In defining the assignment cells, instructors include a solution to the as-
signment for documentation. The section of the cell between Begin Solution
and End Solution is excluded when the notebook is distributed to the student.

Autograder Cells

Notebook designers can add cells which can execute and test the results from
prior assignment cells in the notebook. This provides two important abilities: it
provides instructors the ability to automate the grading of the notebooks, and
most importantly, when made available to students, it provides the student
instant feedback on the student’s solution. After completing an assignment
cell, students can execute an autograded cell and get immediate feedback on
the correctness of the work. Incorrect assignment cells can be corrected and
rechecked, encouraging students to work at a problem until they found the
correct answer.

For my big data course, notebooks were used during the third and fourth
week of the semester. The notebooks were assigned as pre-work prior to the
topic being covered in class (a flipped classroom approach). This required that
students read through the notebooks, executed examples, completed any as-
signments included in the notebooks, and submitted completed notebooks just

215

prior to the topic being covered in class.

4 Research Methodology

The course redesign occurred in the summer of 2017. The redesigned course
has been used in both the Spring of 2018 and 2019. To capture student views
on notebooks and textbooks, students in the 2018 class completed a survey
the week after finishing their last notebook. The survey included 16 questions.
Most of the questions looked for feedback on content shortcomings for future
improvement. However, 4 of the questions were used to assess how the stu-
dents evaluated the positive qualities of notebooks and textbooks (Table 2).
The answers to those questions were used to develop an evaluation score for
notebooks and an evaluation score for textbooks for each student.

Table 2: Assessment Questions

4.1 Statistical Analysis

If students did not see positive advantages to using computational notebooks
compared to using a more traditional textbook, there would be no benefit
to including notebooks in the computer science classroom. Asking students to
assess the benefits of notebooks would be a direct reflection on their experiences
in using them to learn Python and how effective they felt notebooks were in
that process compared to using a textbook. To test this question, a statistical
hypothesis test was applied to the survey data to determine if the students
perceived these advantages compared to prior experiences with textbooks.

Using the notebook and textbook assessment questions, an evaluation score
was generated for both notebooks and textbooks for each student by averaging
the scores to the questions (see chart below). Due to the small sample size and
that fact that normal distributions could not be guaranteed for the underlying
populations, a Wilcoxon Signed Rank Test was applied to the scores. The H 0
in this case, is that computational notebooks functionality is perceived equal or
less than the benefits of textbooks to learn the Python programming language.

216

A rank score above the critical value would signify that the null hypothesis
is false, and that the students perceived the characteristics of notebooks more
valuable than those of textbooks.

5 Results

The calculations for the Wilcoxon Signed Rank are shown in Table 3. The
data are the evaluation scores for computational notebooks and textbooks.
Both textbooks and notebooks scores are compared. This is a right-tailed test
(H0 : notebookµ1 <= textbook µ2). The critical value for α = .01 is W >=
50. The test statistic W+ = 55 > W.01 = 50. Therefore, we reject the null
hypothesis. This demonstrates a significant statistical difference between the
scores of notebooks and textbooks. This is evidence that students rate the
characteristics of computational notebooks higher than those of traditional
textbooks.

6 Conclusions

Jupyter Notebooks provided my students an interactive environment that they
enjoyed using to learn Python. Grades on course assignments later in the
semester demonstrated to me that it was an effective learning tool. As a caveat,
it is important to note that this is a field study on a limited sample size, not
a controlled experiment. The possibility exists that some additional factor im-
pacted the students’ evaluation scores on the survey. One possibility is that
the cost of textbooks versus a freely supplied notebook drove the students to
evaluate textbooks’ benefits lower. In any case, the evaluation scores for the
notebooks were high, acknowledging the value that the students recognized in
them.

217

Table 3: Wilcoxon Signed Rank Calculations

I developed a list of Jupyter pros and cons from my experiences as part of
my project documentation that I have listed below. The items are not listed in
any order.

Table 4: Jupyter Notebooks Pros and Cons
As the field of big data has progressed tools have been developed to help

manage both the programming and analytical complexity. The low-level cod-
ing processing model of MapReduce has been replaced with processing engines
with higher level, functional programming constructs, like Apache Spark. Simi-
larly, computational notebooks have been introduced to provide a way for data
scientists to integrate their thought process and data results, making the hard
work of developing and documenting conclusions easier to manage. By incor-
porating these tools into the classroom with proper instruction, we teach our
students about complexity and how best to manage it.

218

As one last note, publishers and textbook authors are recognizing the
benefits of computational notebooks. A new published text introducing com-
puter science students to Python and data science provides Jupyter Notebooks
through the book’s website [6].

7 Acknowledgments

I would like to thank Drs. Marsha Davis and Garrett Dancik for the initial col-
laboration on this topic. I also owe a debt of gratitude to Dr. Darius Dziuda for
providing some valuable statistical advice. However, any mistakes in applying
that advice are purely mine.

References

[1] ACM software system award. https://en.wikipedia.org/wiki/ACM_
Software_System_Award.

[2] IPython. https://en.wikipedia.org/wiki/IPython.

[3] Jupyter. https://www.jupyter.org.

[4] NBGrader. https://nbgrader.readthedocs.io/en/stable/.

[5] M. Davis, G. Dancik, and R. DePratti. Autograding, interactive tools
for learning R/Python: Preparation for statistics projects. Proceedings
of the 30th Annual International Conference on Technology in Collegiate
Mathematics, 2019.

[6] P. Deitel, P.J. Deitel, and H. Deitel. Intro to Python for the Computer and
Data Sciences: Learning to Program with AI, Big Data and The Cloud.
Deitel developer series. Pearson Education, Incorporated, 2019.

[7] Roland DePratti, Garrett M Dancik, Fred Lucci, and Russell D Samp-
son. Development of an introductory big data programming and concepts
course. Journal of Computing Sciences in Colleges, 32(6):175–182, 2017.

[8] Juliana Freire, Boris Glavic, Oliver Kennedy, and Heiko Mueller. The
exception that improves the rule. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, pages 1–6, 2016.

[9] Ben Glick and Jens Mache. Using jupyter notebooks to learn high-
performance computing. Journal of Computing Sciences in Colleges,
34(1):180–188, 2018.

219

[10] Helen H Hu. Using pogil activities to teach cs principles to diverse stu-
dents. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, pages 676–676, 2015.

[11] Michael B Milligan. Jupyter as common technology platform for inter-
active hpc services. In Proceedings of the Practice and Experience on
Advanced Research Computing, pages 1–6. 2018.

[12] Bernadette M Randles, Irene V Pasquetto, Milena S Golshan, and Chris-
tine L Borgman. Using the jupyter notebook as a tool for open science:
An empirical study. In 2017 ACM/IEEE Joint Conference on Digital
Libraries (JCDL), pages 1–2. IEEE, 2017.

[13] Penny M Rowe, Haiyan Cheng, Lea Fortmann, Aedin Wright, and Steven
Neshyba. Teaching image processing in an upper level cs undergradu-
ate class using computational guided inquiry and polar data. Journal of
Computing Sciences in Colleges, 34(1):171–179, 2018.

[14] Adam Rule, Aurélien Tabard, and James D Hollan. Exploration and ex-
planation in computational notebooks. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pages 1–12, 2018.

[15] Scott L Schneberger and Ephraim R McLean. The complexity cross: im-
plications for practice. Communications of the ACM, 46(9):216–225, 2003.

[16] Eric Shook, Davide Del Vento, Andrea Zonca, and Jun Wang. Gisandbox:
A science gateway for geospatial computing. In Proceedings of the Practice
and Experience on Advanced Research Computing, pages 1–7. 2018.

[17] Adam A Smith. Teaching computer science to biologists and chemists,
using jupyter notebooks: tutorial presentation. Journal of Computing Sci-
ences in Colleges, 32(1):126–128, 2016.

220

Learning Assembly Language through
Visual Simulation∗

Kamen Kanev1, Mokhtar Aboelaze2, Reneta P. Barneva3

1Research Institute of Electronics
Shizuoka University

Hamamatsu, Shizuoka 432-8011, Japan
kanev@shizuoka.ac.jp

2Lassonde School of Engineering
York University

Toronto, ON M3J1P3, Canada
aboelaze@cse.yorku.ca
3School of Business
SUNY Fredonia

Fredonia, NY 14063, USA
reneta.barneva@fredonia.edu

Abstract
This work focuses on the design and development of a specialized ed-

ucational environment for assembly language learning support involving
different Instruction Set Architectures (ISA’s). We discuss in particular
the implementation of the RISC-V Visual Simulator (RVS) and the po-
tential pedagogical benefits of its employment in Computer Organization
and Architecture courses at various educational institutions.

1 Introduction

One of the ABET requirements [4] is to include in the computer science cur-
riculum “exposure to computer architecture and organization, information man-
agement, networking and communication, operating systems, and parallel and

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

221

distributed computing.” No surprise, therefore, that intermediate or upper level
courses on Computer Architecture and Organization are offered in almost all
undergraduate programs in the USA and worldwide.

On the one hand, these courses incorporate key hardware topics such as
fundamental circuits and CPU design, memory organization and caching, in-
terrupts and exceptions handling, I/O devices integration, and others. On the
other hand, they provide a detailed coverage of the respective Instruction Set
Architecture (ISA) involving key software topics such as machine language fun-
damentals, assembly language programming concepts, translation of assembly
instructions into machine language, and so on.

While the theoretical aspects of both, the hardware and the software com-
ponents of the courses could be covered at lecture time, all practical aspects
are usually studied in a laboratory environment. The practical aspects of the
design of electronic circuits and systems, and their testing and verification are
often taught through hardware description languages such as VHDL or Verilog.
In some cases, access to physical hardware components matching the adopted
ISA and allowing native assembly programming and machine code execution
could also be provided. In other cases specialized software that emulates the
ISA adopted in the course is used instead for cross compiling and/or simulated
execution of the ISA machine code.

Computer Architecture and Organization is one of the foundational under-
graduate courses in computing that is taught not only to computer science
students, but also to computer information systems, network security, and
computer and electrical engineering majors. Despite the immense changes in
information and communication technology that lead to new courses on topics
like cloud and mobile computing to game development to data analytics to
block-chain technology, the essence of the Computer Architecture and Organi-
zation courses remained stable over the years. Content updates were mostly
related to the specific technology developments and the advancements in novel
instruction set architectures thus allowing to keep the course in line with the
latest trends in the industry.

The contemporary computer science students, belonging predominantly to
the Generation Z and being digital natives, are often not so interested in why
the technology functions in one way or another, but rather in how to make it
function in the way they want. In fact, many of those students perceive the
Computer Architecture and Organization material as less exciting when com-
pared to the content of other modern technology courses with clearer paths
for immediate applications. Some additional accommodations would, there-
fore, be needed to further engage the students and stimulate their Computer
Architecture and Organization studies. Given the mix of hardware and software
components involved, we believe the learning outcomes in this particular field

222

of studies could be significantly improved by employing highly focused visual
simulation tools that attract and retain students’ attention more effectively.

In many universities, especially in view of the trends to reduce the cost
of higher education, the same Computer Architecture and Organization course
is offered to students majoring in various disciplines, such as computer sci-
ence, computer engineering, computer information systems, and network and
computer security [13, 11, 14]. This approach, however, poses some didactic
challenges since depending on the discipline students may have different hard-
ware/software backgrounds thus requiring the emphasis of the material to be
put on different topics. For example, students majoring in computer informa-
tion systems may have taken courses on Visual Basic and may feel comfortable
working with an integrated interactive development environment rather than
coding, while students in computer science prefer writing code in a program-
ming language and would not have difficulties to grasp the idea of assembly
language instructions.

One of the most widely used textbooks for this course is “Computer Or-
ganization and Design: The Hardware/Software Interface” by Patterson and
Hennessy [7]. It has been adopted by large renowned schools, such as Stanford
University, Cornell, Georgia Tech, Johns Hopkins University, and Northeastern
University, as well as by colleges, including colleges in Northeast, such as SUNY
New Paltz, St. Bonaventure University, and Villanova University in the USA
and by many other universities worldwide. The earlier editions of the book [7]
were based on the MIPS ISA while the more recent ones are geared towards
RISC-V [9] and ARM [8] ISA’s, respectively. On the one hand, this provides
convenient specialization and educational support towards one or another in-
struction set. On the other hand, it is a challenging task to teach a course in
which some of the students majoring in one discipline may need to use one of
the ISA’s, while another group of students need to use the other one. Ideally,
there should be a unified software interface and respective support for all the
instruction sets, but in practice this is not the case.

In this paper we discuss the design and development of a multi-platform
visual simulator, configurable for different architectures (e.g. MIPS, RISC-V,
and ARM) and consider its benefits to the pedagogical process. The simulator
has been successfully used in Computer Architecture and Organization courses
taught at York University were it allowed instructors to handle more effectively
the programming-related practical components. We believe that this software
would facilitate both the instructors offering courses on a multiplicity of ISA’s
and the students aspiring to learn the specifics of various instruction sets.

The paper is structured as follows: in the next section we consider the
concept of the proposed pedagogical approach. In Section 3 we discuss the
design and organization of the developed visual simulator. In Section 4 we

223

share our experience from the implementation and use of the visual simulator
in the Computer Architecture and Organization courses at York University.
Finally, we conclude with a discussion and plans for further work.

2 Proposed Pedagogical Approach

As described above, the course on Computer Organization and Architecture
consists of two parts – a theoretical part and a practical part. The theoretical
part is delivered in the form of lectures and can accommodate large groups of
students. During the practical part, the students have hands-on activities and
are required to solve a number of problems in a supervised lab environment.
The practical part is more interactive so the groups should be smaller, e.g.,
shall not exceed the size of the sections in regular programming courses.

When it comes to a general computer architecture course, choosing between
two different architectures such as RISC-V and ARM, for example, is not a triv-
ial task, especially when the needs of students majoring in different disciplines
have to be considered. From pedagogical perspective it would be good, there-
fore, if the course could be offered for different architectures, possibly at the
same time, so that the students might decide individually what would be most
beneficial for them. The students could then be assigned to different lab sec-
tions depending on their interest or the need to cover a specific instruction set
– MIPS, RISC-V, or ARM.

Our idea is, therefore, to have slightly different, but compatible versions
of the course that will be shaped after the three currently available editions
of the textbook “Computer Organization and Design: The Hardware/Software
Interface”. The architecture design part of the course can be fully covered by
Verilog [3] in a consistent way despite of the differences between the MIPS,
RISC-V, and ARM architectures. With respect to the assembly language part,
the earlier editions of the book had an appendix covering a freely available
MIPS simulator [6, 5]. The two more recent editions are based on the RISC-
V [9] and the ARMv9 [8] instruction sets thus providing for more choice and
new pedagogical options, but they are lacking respective simulators coverage.
Hence, in order to employ this approach, a unified set of properly documented
software simulation tools suitable for educational use will be needed.

Indeed, while professional software development tool chains are available
both for the RISC-V [2] and the ARM instruction set architectures [1], they
have been independently developed and thus adhere to different policies, each
of them optimized for the specific architecture. In an educational setup where
efficiency is of lesser concern, however, a unified design policy becomes a viable
option.

224

3 The Developed Visual Simulator

3.1 Design

With the pedagogical goal described above in mind, we have designed a new
visual environment for assembly programming and simulated code execution
for different architectures. Our initial implementation target – the RISC-V
architecture – has

been tested with all the sample code from the RISC-V edition of the text-
book [9]. A snapshot of the GUI of the visual simulator with brief explanatory
texts dedicated to each of the six main windows is shown in Figure 1.

Figure 1: The GUI of the experimental RISC-V Visual Simulator
The use of the interactive assembly language programming and architecture

simulation environment through the above GUI is highly intuitive. Any text
loaded or directly written into the Assembly Source Window can be compiled
at a press of a button and the outcome is immediately shown in the Assembly
Listing Window. The execution of the resulting program can then be controlled
through the Start, Stop, Run, and Next controls at the bottom of the Assembly
Listing Window. The progress and outcome of the program execution is shown
in real time in the Execution Tracing Window. In addition, the two windows
at the bottom-left of the GUI provide interactive views of the current state of
all simulated registers and RAM. Finally, the window at the bottom-right of
the GUI is used for I/O communications with the running code.

In Figure 2 we show another snapshot of the GUI with a complete example

225

incorporating the text of a sample assembly program, its compilation and the
output listing, the trace of its execution, and the resulting values stored in
some of the registers and in RAM.

The implementation is table driven and its retargeting to other architectures
is currently in progress. We are planning to cover the LEGv9 subset of the
ARMv9 instruction set as described in the ARM edition of the textbook [8] as
well as the MIPS instruction set from the earlier editions of the textbook.

Figure 2: A snapshot of the GUI with a complete assembly program example

3.2 Multi-Architecture Support

While the adopted strategy is clear, there are many subtle details that need
to be taken into account and properly tackled at the design and implementa-
tions stages. The different editions of the book, for example, employ different
commenting schemes denoted by a semicolon (;), a pair of slashes (//), and a
number sign (#). The number sign, however, is also employed for marking of
the immediate values in the ARM edition which precludes its use as a univer-
sal comment marker for all architectures. Another complication with the ARM
edition is that instead of parentheses, square brackets are used to denote the
memory addressing modes. While this may be consistent with the richer set
of addressing modes in the ARM architecture, the LEGv9 instruction subset
which is confined to unscaled addressing could possibly be tuned to mimic more
closely the assembly syntax employed in the other editions of the book. With
respect to the syntax of the entered machine language instructions, all three

226

architectures employ fixed order operands with minor modifications. The most
notable differences are in the way different addressing schemes are denoted in
the different architectures. The MIPS and RISC-V instructions sets, for exam-
ple, refer to memory addresses by providing an offset value as an immediate
operand followed by an index register enclosed in parentheses as shown in Fig-
ure 3 (a) and (b) respectively. The LEGv9 instructions subset of ARMv9, on
the other hand, refers to memory addresses by providing in square brackets a
register followed by a comma and an immediate offset value preceded by the
number sign (#) as shown in Figure 3 (c).

Figure 3: Memory addressing in the MIPS (a), RISK-V (b), and ARM (c)
architectures

Note that in the standard operand order, applicable to most other instruc-
tion, the register operands come first from left to right while the immediate
operand is the last one on the right as shown in Figure ??.

Figure 4: Standard operand order for the majority of the instructions
Both in the MIPS and the RISC-V assembly instruction sets, therefore, the

second register and the immediate value are swapped in the case of memory
addressing. We tackle this issue through defining a canonical assembly instruc-
tion representation that is consistent over all supported architectures. It is
implemented as an instruction code followed by a list of operands with possi-
ble qualifiers. Simple instructions as the ones shown in Figure 3 can be easily
rewritten in canonical form adhering to unified operand syntax as shown in
Figure 5.

Figure 5: The instructions from Figure 3 rewritten in canonical form
List elements are separated by white space and automatically enclosed in

curly braces in case a white space itself is included in a list element. The
resulting list structure is a key component of the architecture simulation engine
and is used in the process of instruction interpretation and execution.

227

The source code in canonical form shown in the Assembly Listing Window
in Figure ?? displays all constants in hexadecimal. It is followed on the right by
the source code in standard form with all constants converted to decimal. For
completeness, the original source including the comments is appended last. The
different representations of the source code in the listing can be inspected by
scrolling with the slider on the bottom of the window. In this way students can
see the values of the employed constants both in decimal and hexadecimal and
can use the canonical form as a reference and for comparisons while learning
the native assembly code of the specific ISA.

3.3 Binaries and Virtual Memory

While the binary representation of all machine instruction is not strictly re-
quired for the proper architecture simulation with the above approach, our
system generates bit-accurate machine code which can be used both for edu-
cational purposes and for verifying the simulations outcomes. The generated
binaries have been successfully matched to the sample machine instructions
provided in the textbook [9] and have been compared to object files generated
by the RISC-V tool chain [2].

Our implementation employs a virtual memory model implemented through
associative arrays which provides access to the entire 64-bit addressing space
irrespectively of the physical limitations of the host computing system. We
support the following memory initialization and access modes that are switch-
able as required by the concrete pedagogical objectives of each programming
exercise:

• Virtual memory is treated as initialized to zero. Access to uninitialized
memory cell silently returns zero. Memory cells are automatically allo-
cated at writing of non-zero values. Writing of zero values releases previ-
ously allocated memory cells.

• Virtual memory is treated as non-initialized. Access to an uninitialized
memory cell returns an error. Memory cells are automatically allocated
at writing of any value.

• Virtual memory is treated as non-initialized. Access to an uninitialized
memory cell silently returns a random value. Memory cells are automat-
ically allocated at writing of any value.

Note that the last memory initialization and access mode is closer to the
hardware although the first two modes usually produce better learning out-
comes.

228

4 Practical Implementation

We implemented the Visual Simulator described above at York University,
where a standard computer architecture course has been on the undergraduate
computer science curricula at for over 20 years. While initially, in the early
90s, various textbooks were used [12, 10] the course was eventually streamlined
to follow the book of Patterson and Hennessy [7]. The course is offered as a
strong synergy of theory and practice and has continuously being updated. As
a result, it has been in high demand for all these years with averages of over
1000 students per academic year.

One part of the course is offered in a classroom setting, while another
part, devoted to solving practical problems, is offered in a computer laboratory
setting. The labs are divided into two parts namely MIPS and RISC-V assembly
programming based on the SPIM and the RVS simulators respectively and
circuit and CPU design based on Verilog [3]. With respect to the assembly
component of the labs diverse pedagogical goals are set since the course is
being offered to both engineering students and computer science (CS) students
which have different levels of programming skills and different needs.

At undergraduate level the quick and easy access to the essential compo-
nents of the respective programming environments and tools are of particular
importance. To ensure such access the RISC-V Visual Simulation has been
made available on a number of university servers and workstations both for
direct and remote use. Students can also download the RVS and use it on their
own machines. The RVS executables that are currently available for Linux,
Windows, and MacOS do not require any specific installation and can be run
immediately after downloading.

5 Conclusion and Further Work

Based on our observations, personal communications with the instructors, and
the feedback obtained from students, we felt a strong positive sentiment to-
wards using the RISC-V Visual Simulator in the courses on Computer Archi-
tecture and Organization. We believe that the highly interactive and easy to
learn RVS interface helped many students to quickly grasp the basics of as-
sembly language and start making progress despite their limited prior coding
experience.

The instructors were also pleased with the software and reported that it
allowed an easier way of demonstrating the concepts, models and algorithms.
From organizational point of view, the course was structured more efficiently,
concentrating the resources for the activities that needed more interactivity.

Device I/O, system calls, and interrupt handling are important components

229

of the assembly language support. A simulated I/O device and a set of system
calls for printing and reading the major data types are embedded in the current
RVS. Interrupt based I/O device support is planned for the next major RVS
release.

While the current RVS implementation is confined to the RISC-V architec-
ture, the Visual Simulator design allows for multi-architectural support. Our
next step will be to extend the architecture support to LEGv9 subset of ARMv9
as in [8].

Although the Visual Simulator was developed for courses on Computer Ar-
chitecture and Organization, it could also be used in courses on networks, se-
curity, and/or software engineering where work in assembly language is often
needed. We, therefore, plan to test the RVS and our pedagogical approach with
different courses at other schools.

6 Acknowledgements

Part of the work reported in this article is supported by a Cooperative Research
Project of the Research Center for Biomedical Engineering.

References

[1] ARM Developer. https://developer.arm.com/.

[2] RISC-V Foundation Software Tools. https://riscv.org/software-status/.

[3] Verilog Resources. http://www.verilog.com/.

[4] ABET. Computing accreditation commission, criteria for accrediting com-
puting programs. Effective for Reviews during the 2019-2020 Accreditation
Cycle.

[5] James Larus. A MIPS32 simulator. http://spimsimulator.sourceforge.
net/.

[6] James Larus. Assemblers, linkers, and the SPIM simulator. 2014.

[7] David A Patterson and John L Hennessy. Computer Organization and
Design: The Hardware/Software Interface. 2014.

[8] David A Patterson and John L Hennessy. Computer Organization and De-
sign ARM Edition: The Hardware Software Interface. Morgan kaufmann,
2017.

230

[9] David A Patterson and John L Hennessy. Computer Organization and
Design RISC-V Edition: The Hardware Software Interface. 2017.

[10] William Stallings. Computer Organization and Architecture 2nd ed.
Macmillan, 1990.

[11] SUNY Polytechnic Institute. 2019-2020 undergraduate catalog. https:
//webapp.sunypoly.edu/undergrad-catalog-2019-2020/.

[12] Andrew S. Tanenbaum. Structured Computer Organization (3rd ed.).
Prentice-Hall, Inc., 1990.

[13] University at Buffalo. Undergraduate degree course catalog 2019-20.
https://catalog.buffalo.edu/.

[14] York University. Supplemental calendars for EECS programs and
courses. http://eecs.lassonde.yorku.ca/wp-content/uploads/Undergrad/
Supplemental%20Calendars/.

231

Cooperative Learning in Computer
Science: Jigsaw Activity∗

Anastasia Kurdia
Department of Computer Science

Tulane University
New Orleans, LA 70118

akurdia@tulane.edu

Abstract

Jigsaw is a cooperative learning approach in which a topic is broken
into several segments, each student learns one segment of a topic individ-
ually, then students work in small groups to review what they learned, to
teach their segments to each other, and to construct a complete picture of
the topic. This paper aims to help computer science instructors who are
interested in developing jigsaw activities by providing a model activity
and by sharing the experience of implementing it in the classroom.

1 Introduction

Jigsaw is a cooperative learning approach in which a topic is broken into sev-
eral segments, each student first learns one segment of the topic individu-
ally (Preparation phase), then students work in small groups to review what
they have learned (Review phase), to teach their respective segments to each
other (Present phase), and to construct a complete picture of the topic (Reflect
phase).

Jigsaw was originally developed by Elliot Aronson in the early 1970s to in-
crease collaboration and weaken racial tensions in desegregated schools. Since
then numerous research studies have demonstrated advantages of jigsaw ap-
proach, such as improved communication, listening and problem-solving skills,
self-esteem, tolerance, and compassion, to name a few [1].

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

232

A typical jigsaw exercise usually spans one class period (or even a portion
of a class period) making it a low-stakes easy-to-adopt classroom activity, in
comparison with other active learning tools (such as flipped classroom, peer
instruction [6], process-oriented guided inquiry learning [3]) that might require
restructure of a large portion of the course or the entire course. Consequently,
it is an ideal approach to try for graduate teaching assistants and new instruc-
tors who are just starting to incorporate active learning into their courses, or
for experienced instructors who would like to add variety to their classroom
without major effort.

The idea of using jigsaw exercises in a computer science (CS) classroom has
been proposed previously [2, 4] but it has not found widespread adoption. One
of the main reasons might be linear or hierarchical nature of CS material. It
is more common to see CS topics build on one another rather than to see a
set of small topics that could be studied independently, which makes it hard
to identify the parts that can become jigsaw "pieces". Another reason is the
concern of the instructors about its implementation.

The goal of this paper is to help educators who are interested in develop-
ing and using jigsaw activities in their instruction. Section 2 provides a model
jigsaw exercise that is ready for implementation in an introductory CS course.
Section 3 describes the experience of implementing that exercise in a classroom
of a medium-size selective residential four-year university and generalize it to
other settings and other exercises. The paper is concluded in Section 4 with
additional recommendations on developing jigsaw exercises. Appendices 5, 6
provide example student-facing materials that can serve as starters for devel-
oping jigsaw activities.

2 Implementation example: binary tree traversals

This section describes Preparation, Review, Present, and Reflect phases of an
in-class jigsaw activity on binary tree (BT) traversals that was designed for
an introductory computer science class. The three tree traversal algorithms
(preorder, in-order, and postorder) naturally become individual segments of
jigsaw. The class period in which activity takes place is the second session on
trees (following the one with introduction of trees, binary trees, and binary
search trees).

2.1 Preparation phase

At the preparation phase, the instructor identifies a printed or an electronic
resource describing binary tree traversals in the terminology and details appro-
priate for the course, and assigns homework requiring to study that resource,

233

for example, ch. 13 in "Data Structures and Algorithms Using Python" [5] and
the homework assignment text provided in Appendix 5.

2.2 Review phase

At the start of the class, students who studied the same traversal algorithm
are asked to get together and confirm their understanding of their algorithm
with other experts on this same algorithm: they’re asked to practice their
presentations, put examples and pseudocode for their traversal algorithm on
the board or on a blank piece of paper, prepare to reason about big-Oh analysis,
etc.

2.3 Present phase

After Review phase is finished (or nearly finished), the students are split into
small groups so that each group contains one or two students who know a
particular algorithm, and all three algorithms are represented in a group. Stu-
dents are then asked to present their traversal method to those in the group
who haven’t studied it.

2.4 Reflect phase

Lecturer offers summary and discussion: a one-line verbal summary of each
algorithm, followed by the presentation of the actual code for the traversal (if
students only used pseudocode in their explanations), discussion of running
time, and comparison and contrast of usage of the traversal algorithms.

Students are then asked to solve a few exercises on BT traversals to solidify
their mastery of the content and to identify gaps in their understanding (a sam-
ple problem handout is provided in Appendix 6). The instructor then discusses
correct solutions and answers students’ questions. This activity takes almost
entire 50-minute class period. If time remains, the instructor solves more tree
problems with the students.

3 Discussion and implementation details

This BT jigsaw activity was employed in five incarnations of the course and
proved to be more engaging, dynamic, fun, and most importantly, more ef-
fective compared to a lecture on binary tree traversals. Similar activities were
designed and ran in other courses where several related topics need to be cov-
ered (e.g. different CPU scheduling algorithms or locks using different hardware
primitives in operating systems course). It worked well in all those instances,
even when no other active learning techniques were employed in the course,

234

and when other homework reading assignments or participation were not as-
sessed, formally or informally. In final course evaluations, students repeatedly
mentioned how these activities made them feel confident by allowing them to
master a digestible portion of the material.

3.1 Preparation issues

The success of the activity depends on the preparation of the majority of the
students. The following steps might help facilitate preparation:

• Advance notice. At the end of the preceding class session, I mention
that the next session will be experimental and will require preparation
(reading a short chapter and preparing a 5-minute presentation); and
that different students will prepare different topics. I also mention where
to find learning materials and topic distribution.

• Emphasis on a cooperative nature of this assignment. I highlight that
this exercise is like a potluck - a communal meal where every guest con-
tributes one dish. While the individual effort is small, collectively the
guests compose a great dinner. If everyone brings a small piece of new
knowledge for the next class, we all will have an intellectual feast; if too
many people show up unprepared, everyone will starve, just like at a real
potluck.

• Reminder(s). I send a reminder email a day before the class and make
an assignment on learning management system (LMS) that has reminder
functionality.

With two reminders most of the students come prepared. Few high-achieving
students prepare excessively well using PowerPoint presentations with videos,
animations, and code. In order not to discourage such preparation I ask to have
those excellent materials and post on LMS for all students to see. Few students
come unprepared. I distribute them evenly between the groups, asking them
to be critics and "devil’s advocates" who should ask all questions necessary
to clarify the material. Students are not given a lot of information about the
class structure in advance, except for the information that’s already provided
in the assignment. If students press for details ("Are we really going to listen
to twenty presentations on the same topic?"), I say that they will present in
groups. When a student needs to miss a class, I tell them to study all jigsaw
topics on their own. No proof of work is required but some of those students
still choose to send their notes as evidence of learning the topics. No in-class
participation grade or points are assigned for this exercise (but it might be
appropriate to do so in then case when formal participation assessment is built
into the course).

235

My main worry when deciding to adopt jigsaw method was the flow of the
class if too many students come unprepared. To eliminate this stress, I prepare
the standard lecture notes and tell the students ahead of time that the activity
is experimental and the class may need to be stopped and converted to a lecture
if the experiment doesn’t go smoothly.

When Prepare phase won’t work In a classroom where the majority of
students can’t be expected to prepare ahead of time, Prepare phase can be
substituted by in-class Read phase, in which the students read the explanation
of one topic in class. They then review it with the group, present it to others,
and reflect together with the instructor, just like in the original version of jigsaw
activity.

3.2 In-class issues

Scaling A natural question is how many students can participate in a jig-
saw activity. My experience pertains to classrooms of 10-50 people. In a larger
class, an additional consideration needs to be given to methods of topic distri-
bution, and to grouping during Review and Present phases. With those issues
addressed, jigsaw can still work as a small-group activity with all the benefits
of required individual participation.

Grouping How students are partitioned into groups is not essential for the
activity as long as the grouping process is clear and intentional; mere "find
yourself a partner" is too slow and chaotic. Next I describe the grouping method
that I employ.

For Prepare phase topic distribution, the class roster is sorted alphabetically
and is split into three even parts.

For Review phase grouping, students physically move to a corner of the
room designated as a meeting point for a particular algorithm (in a large class,
several groups on the same algorithm might be necessary).

To group the students for the Present phase, I walk around during Review
phase and give each student a count (1,2,3) in their algorithm group, with the
intention for every group to have an expert on every one of three topics. Despite
splitting the class in thee even parts in the Prepare phase, in-class Review
groups are rarely the same size, because of absences, coming unprepared, etc.
I hence use the size of the smallest Review group as the max value for the
count and wrap around to 1,2,3, etc. in larger groups. Then I designate a place
in the classroom where all 1s should meet, another place where all 2s should
meet, and so on. I use index cards with numbers or write group numbers on
the board or on the wall (simply pointing hasn’t worked well).

236

Note that this grouping method does not take into account students’ aca-
demic levels or established social groups, and therefore facilitates student in-
teraction and promotes communication in diverse groups outside of students’
regular circle.

Pace Different Present groups progress at a different pace. Short questions
or simple exercises can keep fast groups working while they’re waiting for the
rest of the class to finish presentations. For instance, BT traversal exercise can
include questions such as:

• Use the pseudocode to write the actual code of the traversals.

• What is the running time for each of these algorithms?

• Modify your algorithm to find a number of nodes in the tree/a node with
a given key/a sum of values in the tree.

• When would each algorithm be used? Why would someone select one
algorithm over the other traversal algorithms?

Some groups are very slow and need to be stopped when the majority of
the class has finished their presentations.

Getting attention This class is loud. To be able to get the attention of the
talking students, it is necessary to agree on a signal for silence at the beginning
of the class. This signal can be flipping the lights or asking everyone who is
hearing the clap to join in a steady, synchronized clap or asking everyone who
is seeing a raised hand to raise their hand and to stop talking.

4 Concluding remarks

When several related topics are covered in a course, jigsaw activity is an ef-
fective and active way for students to master those topics. For instance, in
introductory operating systems class, the topics of different CPU scheduling al-
gorithms and implementations of software locks using different hardware primi-
tives are good candidates for jigsaw. Jigsaw activities might also be designed for
element-based and index-based iteration in Python in introductory CS course;
linked list-based and array-based implementations of abstract data types or
hashing with different collision resolution strategies in data structures course;
queue and stacks issues or different self-balancing trees in algorithms course.
It is also reasonable to consider a jigsaw-like approach for project-oriented
courses where each team member researches and learns a piece of technology
and teaches it to other team members.

237

Jigsaw activities are small in scale and are a great tool to try for the educa-
tors who are beginning to develop teaching materials and to incorporate active
learning methods in their instruction. Compared to a traditional lecture, the
success of jigsaw activity hinges on students’ preparation rather that of the
instructor. Preparing an equivalent lecture material can help eliminate the in-
structor’s uncertainty and stress. A variation of jigsaw in which the students
prepare right in class can be effective in the cases when it’s unrealistic for the
students to prepare in advance.

References

[1] The jigsaw classroom, 2020 (accessed February 2, 2020). https://www.jigsaw.org.

[2] Maria Kordaki and Haris Siempos. The jigsaw collaborative method within the
online computer science classroom. In Proceedings of the 2nd International Con-
ference on Computer Supported Education, volume 2, pages 65–72, January 2010.

[3] Clifton Kussmaul. Process oriented guided inquiry learning (POGIL) for com-
puter science. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE ’12, page 373–378, 2012.

[4] Laurie Murphy, Kenneth Blaha, Tammy VanDeGrift, Seven Wolfman, and Carol
Zander. Active and cooperative learning techniques for the computer science
classroom. J. Comput. Sci. Coll., 18(2):92–94, December 2002.

[5] Rance D. Necaise. Data Structures and Algorithms Using Python. John Wiley
and Sons, 2010.

[6] Leo Porter and Daniel Zingaro. Peer instruction in CS: Research and experience.
J. Comput. Sci. Coll., 28(6):11–13, June 2013.

5 Appendix: Student-facing homework assignment for bi-
nary tree traversals in-class jigsaw activity

For the next class on Friday, October 18 read your algorithm for tree traversal (ch.
13.2.3, and you are welcome to use any other sources). Prepare to explain the algo-
rithm in front of the class in 5 minutes, to draw an example tree and illustrate how
the algorithm proceeds on that tree, and to present Python code or pseudocode for
implementing your algorithm.

You may prepare and use Powerpoint (you’ll need to print the presentation in
advance) or use handwritten notes to help you, but don’t plan to read from them.

• If your last name starts with A-H, you’re presenting preorder traversal;

• If your last name starts with I-P, you’re presenting in-order traversal;

• If your last name starts with R-Z, you’re presenting postorder traversal.

238

6 Appendix: Student-facing handout for binary tree
traversals in-class jigsaw activity

1. Consider the following tree:

A traversal algorithm visits each node of the tree and prints the character
stored there. Write down

• The result of an in-order traversal of this tree:

• The result of a postorder traversal of this tree:

• The result of preorder traversal of this tree:

2. Draw a binary tree T that simultaneously satisfies the following conditions:

• Each internal node of T stores a single character

• A preorder traversal of T yields COOKIES

• An in-order traversal of T yields KOIOECS

3. If you’re done earlier than the rest of the class, solve a variation of problem
2: draw a binary tree whose preorder traversal yields COOKIES and in-order
traversal yields OOKCEIS.

239

Real-World Data, Interactive Games and
Visualizations in Early CS Courses Using

BRIDGES∗

Confernce Workshop

Kalpathi Subramanian1, Erik Saule1, Jamie Payton2

1Computer Science
The University of North Carolina at Charlotte

Charlotte, NC 28223
{krs,esaule}@uncc.edu

2Computer and Information Sciences
Temple University

Philadelphia, PA 19122
payton@temple.edu

Summary

Despite the huge explosion in CS enrollments in the past few years, reten-
tion of CS majors remains a major concern. Grounding Computer Science
concepts in reality by solving important real-world problems or fun prob-
lems are key to increasing students’ motivation and engagement in comput-
ing, which may provide a path to improving retention in CS degree programs.
This workshop provides instructors with a hands-on introduction to BRIDGES
(http://bridgesuncc.github.io/), a software infrastructure for programming as-
signments in early computer science courses, including introductory program-
ming (CS1, CS2), data structures, and algorithm analysis. BRIDGES provides
capabilities for creating more engaging programming assignments, including:
(1) a simplified API for accessing real-world data sets, including from social
networks; scientific, government, and civic organizations; and movie, music,
and literature collections; (2) interesting visualizations of the data, (3) an easy
to use API that supports creation of games that leverage real-world data, and,

∗Copyright is held by the author/owner.

240

(4) algorithm benchmarking. Workshop attendees will engage in hands-on ex-
perience with BRIDGES with multiple datasets and will have the opportunity
to discuss how BRIDGES can be used in their own courses.

Using BRIDGES in data structures, algorithms, and other courses have
shown better student outcomes in follow-on courses, when compared to stu-
dents from other sections of the same course. BRIDGES has impacted over 1500
students across 10 institutions since its inception 5 years ago. A repository of
BRIDGES assignments (http://bridgesuncc.github.io/newassignments.html) is
now maintained for use by BRIDGES users. Example BRIDGES visualizations
are illustrated below.

Figure 1: BRIDGES Examples. [Left:] Students can explore Dijkstra’s short-
est path algorithm applied to the streets of Minneapolis (or any city/region
of their choice) using Open Street Map data in their assignments in a data
structures course (here, gray values are lighter close to the source and darken
with distance). [Right:] Students can explore arrays and control structures in
a simple fire spreading simulation exercise for use in CS1 or CS2.

Workshop Agenda

Participants will be provided accounts on Cloud9, with all needed software
installed ahead of the workshop for 3 programming languages. Participants
will work in groups.

• BRIDGES Overview, Design, Demo [10 min]
• Setup [10 min]: Cloud 9 login; execute sample BRIDGES program
• Hands-on Experience 1 [30 min]: Scaffolded example of creating a

simple BRIDGES program and exploring visualizations of output.
• Break [10 min]
• Hands-on Experience 2 [45 min]: Participants in each group will

choose from a set of 3-4 example problems (a game, or assessing perfor-
mance of algorithms, or a data structure with a chosen dataset) relevant
to a course of interest; attendees will work through the chosen exam-
ple with provided scaffolder/starter code (extensions will be provided

241

for early finishers). Examples are available at the BRIDGES site and
in our assignment repository. the BRIDGES site (http://bridgesuncc.
github.io/) and in our assignment repository (http://bridgesuncc.github.
io/newassignments.html)

• Break [10 min]
• Participant Discussion [20 min]: Each group of participants through

a discussion of (1) difficulties faced in creating examples and assignments
in early CS courses, (2) opportunities for the use of BRIDGES to address
these issues, and (3) challenges in using infrastructure like BRIDGES.

• Participant Presentation/Discussion [30 min]: Each group will re-
port on their discussion.

• Surveys and Closing Remarks [10 min]

242

Conference Workshop

How to Create, Host, and Successfully
Run a High School Programming Contest

Eric Breimer, Daniel DiTursi, Robin Flatland, Ira Goldstein,
Darren Lim, James Matthews, Scott Vandenberg, Pauline White

Siena College
Loudonville, NY 12198

{ebreimer, dditursi, flatland, igoldstein, dlim, matthews,

vandenberg, pwhite}@siena.edu

In this workshop, we will describe the numerous processes and tasks in-
volved in successfully hosting a high school programming contest. We will de-
scribe the mechanics of running the contest using PC^2, within the logistics
of a college campus environment. We will talk about the logistics necessary to
support the number of high schools and teams (currently we involve 15+ high
schools and over 60 4-person teams). Finally, we will describe our local chapter
of CSTA, which strengthens bonds and connections between ourselves and the
school’s coaches and advisors.

The workshop will start with Jim Matthews introducing the contest itself;
the May 1st edition will be the 33rd annual contest held at Siena College. The
schools and the number of teams that participate have varied over the years,
with many schools who stopped participating until recent developments. He
will talk about the average number of teams per contest before 2018. He will
then address the drastic format change in 2018, where teams are split into
two groups: Gold and Green, based upon the team members’ programming
experience.

Following the introduction, Jim will continue on details of registration and
date/time scheduling. The teams are informed of the contest date nearly a year
in advance, with the date carefully chosen so as to not conflict with the schools’
calendars. The contest has recently been on a Friday afternoon and evening,
with a strict contest date schedule of a welcome/orientation, the programming
contest itself, a CSTA meeting, and an awards ceremony.

Darren will then describe the programming contest problem making pro-
cess. Typically, a problem set consists of 7 problems, generally written in in-

243

creasing difficulty. Since 2018, the contest has split into two groups. The Green
group are teams with members having taken one programming course; the
Gold group are teams with more than one programming course and/or an AP
course. Two problem sets are made for contests since 2018, although program-
ming problems may be used for both the Gold and Green groups.

After the problem descriptions, Scott will talk about the rooms/program-
ming environments used for the contest. At Siena, we have typically supported
Java, Python and C, based upon the requests of the schools who have at-
tended. The responsibility of the room scheduler is to determine which rooms
are needed, which (and how many) computers will be used, and which lan-
guages/IDEs are found on those computers.

Dan will then discuss the system and networking requirements for using
PC^2. Given our network, and the use of predominantly (but not exclusively)
wired- connection machines, the Siena contest has been able to support over
sixty teams on site. He will describe the preparation work needed to set up the
local clients, the judging clients and the scoreboard, which is also covered by
Eric.

To support sixty or more teams, a healthy student volunteer population
is needed. Robin will talk about the issues of student involvement. The pre-
contest phase of student helpers includes the creation of programming con-
test team folders and T-Shirt organization. The day-of-contest phase includes
helpers at registration, problem judging, food distribution, and at all rooms
(some of which are actually professor offices) with programming teams.

Since the contest lasts nearly four hours starting around 5:00 PM, we pro-
vide food for all participants (students, teachers/coaches, volunteers). Ira will
discuss the food issues for feeding over three hundred people. Feeding that
many people on a Friday night is not possible through local college catering; a
process for ordering and bringing food for all participants will be described.

Finally, the connections that we have made with teachers and advisors over
the years helped in the creation of the NY Capital District chapter of CSTA.
Since the chapter’s formation and membership expansion, the programming
contest has attracted participation from a number of new school districts and
advisors. Pauline will describe the chapter’s creation and its connection to the
programming contest. She will also discuss the chapter meeting held during the
contest, which includes a review of hints and solutions for the programming
contest problems.

244

From Drawing to Coding:
Teaching Programming with Processing

Conference Tutorial

Mihaela Malita1, Ethel Schuster2
1Department of Computer Science & Engineering

Saint Anselm College
Manchester, NH 03102

mmalita@anselm.edu
2Department of Computer & Information Sciences

Northern Essex Community College
Haverhill, MA 01830
eschuster@necc.mass.edu

We have successfully introduced students to programming using Processing
as the language of choice in both our courses: “Introduction to Computer Sci-
ence” at Northern Essex Community College, and “Introduction to Computer
Graphics” at Saint Anselm College.

“Put a pencil in a child’s hand and you will have him/her quiet for a long
time.” The same goes for our students. We have encouraged them to draw and
create their own art pieces using colors and shapes while learning to program
and write their own code. Programming [4] has served as the tool for them to
create and solve problems. It is fun to solve problems when one can visualize
the results almost instantly.

Processing, a programming language based on Java, was specifically de-
signed for artists and programmers to visualize works of art [2], [5], [1]. Its
syntax is simple, its interface is easy to use, and it enables the students to see
their code on a canvas. It is an object-oriented programming language. These
factors make it a good fit for a wide variety of students, including non-computer
science majors. Our students have been able to create complex and beautiful
pieces of art while learning how to manipulate variables and objects, and using
control structures that include branching and repetition.

In this tutorial, we will introduce the participants to Processing and its
qualities, such as shape, color, and form, which please the aesthetic senses,
especially the visual one, and are universal, even among non-majors and people

245

who are not in the field of computer science. We will share how our students
have been so excited about programming and problem-solving [6] that they
have not been hindered by the required concepts or mathematics. We have
found that students struggle with understanding the coordinate system; thus,
we will share exercises that facilitate the process. We will show how our students
have learned to understand coordinate systems, sizes, and measurements. We
will share examples of how natural recursion can be taught by drawing recursive
shapes. Art examples will include the works of artists such as Piet Mondrian,
Jackson Pollock, Vasarely, Agnes Martin, and Josef Albers.

We will present hands-on problems that entail writing programs to: (1)
draw multiple objects of varying sizes and colors — including balls, balloons,
pencils, Christmas trees, (2) solve problems that involve conditionals — for
example. when the user clicks on a mouse or presses a key, (3) repeat certain
actions: draw the same object multiple times, change its location, size, and/or
colors as a way to understand loops, (4) animate a scene, create an interactive
game, (4) manipulate images: one specific task involves taking students’ own
selfie and manipulating the image to change colors, distort it, and perform
other modifications [3].

References

[1] Processing foundation. http://www.processing.org/.

[2] Ira Greenberg. Processing: Creative Coding and Generative Art in Processing 2.
Apress, 2013.

[3] Mihaela Malita. Learn processing. https://github.com/mmalita/
BeginProcessingArt.

[4] Abdallah Mohamed. Designing a cs1 programming course for a mixed-ability
class. In Proceedings of the Western Canadian Conference on Computing Educa-
tion, pages 1–6. WCCCE ’19, 2019.

[5] Casey Reas and Ben Fry. Processing: A Programming Handbook for Visual De-
signers and Artists (The MIT Press). The MIT Press, 2014.

[6] Daniel Shiffman. The coding train. https://www.youtube.com/user/shiffman/
playlists?view=50&sort=dd&shelf_id=2.

246

Tutorial on Open Educational Resources
and Creative Commons License∗

Conference Tutorial

Susan Imberman1 and Ann Fidder2
1Computer Science Department

College of Staten Island
Staten Island, New York USA

2Office of Library Sciences
City University of New York
New Yo9rk, New York USA
susan.imberman@csi.cuny.edu

Open Educational Resources are quickly becoming the norm for sharing
curricula and curricula related materials [3]. The CS education community has
always been supportive of the creation and sharing of innovative and new meth-
ods for teaching computer science. By publishing work in conference venues and
placing materials in repositories, we have openly shared these resources. What
we have not paid as much attention to is HOW we share these resources with
respect to copyright. By default, if there is no explicit copyright associated with
a work, the copyright defaults to “all rights reserved”. This means that should
someone wish to modify the work, and share the modification back to the CS
education community, they would have to get the author’s explicit permission.
This is fine if one or two people contact the author, but as we share our material
in venues such as CCSC, we hope to reach a broad audience. Hence, authors
may have many colleagues interested in using and tweaking their published
materials. One way to inform the community as to how you wish your work is
shared is by adding a Creative Commons copyright license to the work. The
various levels of license explicitly define to what extent, and how work is shared
back.

Many educators are not familiar with the Creative Commons license, the
Open Education Resource movement, and how the two work together to allow

∗Copyright is held by the author/owner.

247

for a broader cycle of improvement and sharing of an academic product. In
this tutorial, the authors will share their experience in creating Open Educa-
tional Resources (OER) as well as how to submit these to the various OER
repositories in order to render them discoverable and available. Many areas in
Computer Science are actively evolving. Thus, we often find that material be-
comes quickly outdated. By sharing our resources under a Creative Commons
license, we allow the community as a whole, to update and share, thus keeping
content current [1] [2]

Open Educational resources, including open textbooks, was shown to save
students considerable amounts of money. In CUNY, over the two years of a
New York State funded Open Educational Resource project to adopt and create
OER, students have saved over 28 million dollars in textbook costs. We have
also found that in OER courses, there was a modest increase in grades and a
measurable decrease in course drop, fail, withdrawal rates. [4]

This tutorial will focus on what are open educational resources (OER), def-
initions of the various Creative Commons licenses, and the tools and methods
used to incorporate these into a shared work product. We will instruct on how
to find repositories and other sources of OER materials by listing current pop-
ular OER sites and their focus. Knowledge of how we can share our resources
while broadening their availability, as well as allowing for quick and current
updates, enables educators to more easily offer cutting edge, updated course
content within a quicker time frame.

References

[1] Creative Commons. CC Licenses and Examples. https://creativecommons.
org/share-your-work/licensing-examples/.

[2] Creative Commons. Creative commons. https://creativecommons.org/.

[3] Susan Imberman and Ann Fiddler. Share and Share Alike: Using Creative
Commons Licenses to Create OER. ACM Inroads, 10(2):16–21, April 2019.

[4] Achieving the Dream. Achieving the Dream New Study Reveals that OER
Courses and Degrees Benefit Student Retention and Completion, Improve
Faculty Engagement, and Result in Cost Savings for Students;. https:
//www.achievingthedream.org/press_release/17506/new-study-reveals-
that-oer-courses-and-degrees-benefit-student-retention-and-completion-
improve-faculty-engagement-and-result-in-cost-savings-for-students.

248

Using Subgoal Labeling in Teaching
Introductory Programming∗

Conference Tutorial

Adrienne Decker1, Briana B. Morrison2, Lauren Margulieux3

1Department of Engineering Education
University at Buffalo
adrienne@buffalo.edu

2Computer Science Department
University of Nebraska Omaha

bbmorrison@unomaha.edu
3Department of Learning Sciences

Georgia State University
lmargulieux@gsu.edu

1 Summary

As global interest in computing increases, so have the enrollments in CS1
courses along with increased interest in computing in the primary and sec-
ondary (K-12) environment. Despite considerable research and efforts to im-
prove student outcomes and success in the first programming course, failure
rates remain somewhat constant, around 30% (Bennedsen Caspersen, 2007,
2019)[1, 2]. This demonstration will introduce our implementation of using
subgoal labels within worked examples and associated practice problems for a
Java-based introductory programming courses. Our findings indicate that using
subgoal labels have been shown to improve the problem-solving performance
of students while helping at-risk students succeed and improving persistence
in the course. We will demonstrate 1) recorded videos explaining the worked
examples and 2) the eBook implementation of the practice problems that al-
low students to put into action what they have learned. This demonstration
will also provide a brief overview of the research and evidence demonstrating
the efficacy of our instructional materials. Additional information about using
subgoals in computing can be found at http://cs1subgoals.org/.

∗Copyright is held by the author/owner.

249

2 Background

Subgoal labeling is a technique for teaching with worked examples and practice
problems has been shown to increase novice user understanding of introduc-
tory concepts and problem-solving performance. In our initial research into
using subgoal labels in an introductory programming course, we found that
students who learned with subgoal labeled instructional materials performed
better on weekly quizzes [4] and gave more complete answers (based on the
SOLO taxonomy) [3]. Additionally, when looking at students who did not take
all the exams in the course or had an average exam score below 70% (pass-
ing), approximately half as many students in the subgoal group as the control
group fell into this category. Students in the subgoal group were half as likely
to withdraw and half as likely to fail than the control group. Subgoal labels
also aided in persistence in the course, especially for students most at risk.

3 Tutorial Agenda

1. Introduction and Background (10 minutes)

(a) Cognitive Load Theory, Worked Examples with Practice Problem
Pairs

(b) Subgoal Learning Framework (which will include labels)

2. Sample Lesson (30 minutes)

(a) Introduction of Topic and Worked Example Walk-Through (10 min-
utes)

(b) Small group exercise/discussion to develop understanding of how to
use the worked examples in class (15 minutes)

(c) Assessment using subgoals (5 minutes)

3. Presentation of current results (10 minutes)

(a) Quiz, exam, persistence results
(b) Explain in Plain English results

4. Ebook Implementation (10 minutes)

(a) Demonstration of worked examples and practice problems online

5. Wrap up Discussion/Questions (15 minutes)

250

4 Acknowledgments

This work is funded in part by the National Science Foundation under grants
1712025, 1712231 and 1927906. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References

[1] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory
programming. AcM SIGcSE Bulletin, 39(2):32–36, 2007.

[2] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory
programming: 12 years later. ACM Inroads, 10(2):30–36, 2019.

[3] Adrienne Decker, Lauren E Margulieux, and Briana B Morrison. Using the
SOLO taxonomy to understand subgoal labels effect in CS1. In Proceed-
ings of the 2019 ACM Conference on International Computing Education
Research, pages 209–217, 2019.

[4] Lauren E Margulieux, Briana B Morrison, and Adrienne Decker. Design
and pilot testing of subgoal labeled worked examples for five core concepts
in CS1. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, pages 548–554, 2019.

251

Want your students to participate in
Open Source?

Join us in LibreFoodPantry!∗

Lightning Talk

Karl R. Wurst1, Stoney Jackson2, Heidi J. C. Ellis2,
Darci Burdge3, Lori Postner3

1Computer Science Department
Worcester State University, Worcester, MA 01602

kwurst@worcester.edu
2Computer Science and Information Technology Department,
Western New England University, Springfield, MA 01119

{stoney.jackson, heidi.ellis}@wne.edu
3Department of Mathematics,

Computer Science and Information Technology,
Nassau Community College, Garden City, NY 11530

{darci.burdge, lori.postner}@ncc.edu

Student participation in Humanitarian Free and Open Source Software
(HFOSS) communities and projects has many benefits — students get experi-
ence working on authentic software projects, with large codebases, real users,
and communities of experienced developers to interact with. But, the learning
curve for working within these project communities can be steep, requiring
a significant investment of time and effort to navigate and integrate into the
project’s community. This may be enough to prevent some faculty and students
from attempting to join a community, or to give up after trying.

In order to make it easier and more comfortable for students and faculty
to join a project community, we have developed LibreFoodPantry — a wel-
coming and inclusive, faculty-led, multi-institutional HFOSS community with
an on-ramp specifically designed to simplify that learning curve. You can cus-
tomize the code for your own campus food pantry, or if you don’t have one,
help other campus food pantries. The LibreFoodPantry community accommo-
dates full classes of students joining for just a semester, as dictated by the

∗Copyright is held by the author/owner.

252

instructor’s teaching schedule. The community is intended to have a critical
mass of developers and mentors, both faculty and current and former students,
to provide help and rapid on-boarding. Class members become full members
of the development community and are able to help make decisions that af-
fect the direction of the project and receive elevated privileges over project
resources. To make it easier for new faculty and classes to join, we have devel-
oped documentation and example workflows, and configured development and
communication tools. In return, we expect the participating faculty member to
participate in the governance of the project for the semester(s) that their class
is participating.

Come to this lightning talk to find out more about how joining our com-
munity will benefit you and your classes.

Biographies

Karl Wurst (Worcester State University), Stoney Jackson (Western New Eng-
land University), Heidi Ellis (Western New England University), Darci Burdge
(Nassau Community College), and Lori Postner (Nassau Community College),
are founding members of the LibreFoodPantry Coordinating Committee. For
years they have been working to encourage student and faculty participation in
Humanitarian Free and Open Source Software projects and communities. Li-
breFoodPantry is their latest attempt to make HFOSS participation accessible
for both students and faculty.

Supporting Materials

The LibreFoodPantry website (http://librefoodpantry.org) has links to the vi-
sion, mission, and code of conduct for the community, as well as documentation
on tools, development processes, and workflows. The site also has links to the
constituent projects’ codebases, issue trackers, and communication channels.

253

Bringing Industry into the University
Experience∗

Panel Discussion

1Adrienne Decker, 2Peter DePasquale, 3Rajendra K. Raj
4Matt Jadud

1Department of Engineering Education
University at Buffalo, Buffalo, New York 14260

adrienne@buffalo.edu
2Tandon School of Engineering

New York University, New York, NY 10003
peter.depasquale@nyu.edu

3Department of Computer Science
Rochester Institute of Technology, Rochester, NY 14623

rkr@cs.rit.edu
4Applied Research in Acoustics

matthew.c@jadud.com

1 Summary
A large percentage of students in any computing program will graduate and
take jobs in industry. Part of the challenge in the college curriculum is creating
real-world experiences for students while still in school that will help prepare
them for the challenges that lay ahead in their future work in professional
practice. This panel will examine different approaches to providing students
with industry experiences and perspectives while they are still students to help
better prepare them for their professional lives.

2 Adrienne Decker
I am currently involved in a funded research project in conjunction with a
company whereby the company is driving the design and development of the
project as it aligns with their business goals but the university is providing

∗Copyright is held by the author/owner.

254

support in terms of additional direction and students. The project is entirely
distributed as the company and the university are not in the same state. The
project team consists of one full-time developer and one manager/developer
from the company and three undergraduate students working at the univer-
sity. I will discuss the nature of the workflow of the projects and how we are
facilitating interactions between the students and company. I will discuss the
positive and negative aspects of this relationship both from the perspective of
the faculty and students and the company.

3 Peter DePasquale
While at The College of New Jersey, I was the Computer Science faculty advi-
sor to the for-credit internship program. For four years, I worked with local and
regional companies to facilitate the recruitment of our students for internships.
I additionally met with the student’s manager during their internship experi-
ence to ensure a high- quality experience for both parties. From 2015-2019, I
returned to the commercial software development with stops at two start-up
companies and one larger organization, focusing on designing and implement-
ing backend software for Enterprise Java applications. I am currently working
to develop a course (and possible textbook) in Enterprise software development
bringing together many upper-level topics, all of which are utilized in current
commercial software development.

4 Rajendra K. Raj
At Rochester Institute of Technology, computing students are required to com-
plete a certain number of hours of cooperative education (co-op) work expe-
riences before they graduate. For example, undergraduate computer science
majors need to complete two semesters and one summer of co-op before grad-
uation; note that the different co-op experiences cannot be contiguous. Co-ops
typically commence in the third year and must end at least one term prior to
graduation. I will present co-op implementations at different universities, and
discuss their strengths and weaknesses.

5 Matt Jadud
I have served as faculty at three liberal arts institutions, and have recently
joined ARiA full-time, a research and development firm I collaborated with
(and sent students to) over the past decade. My role involves algorithm design
and development, proposal development and reporting, project management,
team development, and recruiting and retention, from interns to new hires. It
is humbling to see how quickly one’s perspective on curricula and traditional
classroom experiences shifts in transitioning away from the academy.

255

Strategies for Maximizing the Value of
Industry Adjuncts:

The Tech-in-Residence Corps Model∗

Panel Discussion

1Susan P. Imberman, 2Robert Domanski, 3Shermane Austin, 4Ross Dakin
1The Graduate Center, CUNY, New York, NY 10017

2New York City Government
3 Medgar Evers College, Brooklyn, NY 11225

4 New Jersey Office of Innovation

1 Summary

Responding to NYC Mayor Bill de Blasio’s call to double the number of stu-
dents graduating with a Bachelors degrees in computer science, in 2017, the
Tech-in-Residence Corps (TIRC) program, first-of-its-kind multi stakeholder
partnership between academia, government, and private industry, was estab-
lished at the City University of New York. The TIRC program quickly led to
a rethinking of the potential roles that industry adjuncts can take on within
CS Departments. Its driving hypothesis was that by employing a coordinated
campaign to recruit top-quality industry practitioners to not only teach stu-
dents advanced applied topics directly, but also provide feedback on curriculum
development, this would enable campus departments to align better with in-
dustry practices. In addition, industry adjuncts explored opportunities within
their companies for student internships and full-time entry-level jobs, with the
hope that this would increase students’ job competitiveness. Ultimately, this
created a sustained feedback loop that lead to other mutually beneficial ar-
rangements between the tech industry and the university’s CS Departments.
This panel discussion will represent the different perspectives of various stake-
holders who have directly participated in the Tech-in-Residence Corps program:
department faculty, an industry adjunct, the TIRC program manager, and a
university administrator.

∗Copyright is held by the author/owner.

256

2 Susan Imnberman and Robert Domanski

The Tech-In-Residence program is a university wide initiative focused on bring-
ing industry professionals into City University of New York (CUNY) class-
rooms. Faced with increasing enrollment in tech majors, difficulty in hiring
faculty, and the need for more industry focus, a multi campus approach was
needed to best leverage available resources. With most graduates entering in-
dustry as opposed to academics, there is a shortage of instructors to fill the
needs of most campus departments. Individual campus computer science de-
partments do not have the connections, or administrative resources, to recruit
classroom adjuncts from industry. The TIRC program coupled the industry
relationships of New York City’s Tech Talent pipeline with the University’s
own industry relationships through its workforce development side, to recruit
from the NYC tech ecosystem, individuals who can bring into the classroom
the tech skills identified by industry as being high in demand. The central ad-
ministrative approach was crucial in the success of this program. The program
has grown from 7 courses across 5 campuses in Spring 2018 to 22 courses across
9 campuses in Spring 2020. Since inception in 2018, the program has run an
accumulated total of 73 courses in in-demand topics such as A.I., Blockchain,
Cloud Computing, Cybersecurity, Data Science, and more.Due to program suc-
cess, we have plans to extend this program to other industry-focused disciplines
such as business and engineering.

3 Shermane Austin

The Computer Science Program at CUNY Medgar Evers College has been
participating in the Tech-in-Residence Corps (TIRC) for three (3) semesters.
Our objective has been to enhance our CS curriculum with the rapidly chang-
ing needs of the tech industry in order to improve student readiness for the
tech workforce. This is the overall purpose of TIRC. The TIRC program has
provided us with the opportunity to enrich or develop new application-based
courses addressing current industry needs. In our case, we have been able to
utilize program industry professionals (TIRCs) provided by the program to
bring real world practice, applications, and challenges into the CS curriculum.
Faculty work directly with these professionals to develop syllabi fusing out-
comes with new or updated content. The two courses implemented at Medgar
were “Security Software Engineering” and “DevOps”. These courses have been
successful for our students and will be continued as electives in our curriculum.
From our standpoint, even with this limited experience, TIRC is valuable for
a number of reasons. The program engages a broad range of industry profes-
sionals, vets them for suitability in the classroom, provides introductory-level
training for those teaching for the first time, and works closely with faculty

257

and professionals to insure a positive experience for students. As faculty, we
would have difficulty attempting to replicate the recruitment of these industry
professionals and implement the thoughtful training process used to engage
them in the classroom.

4 Ross Dakin

Ross Dakin will present his experience teaching a Web Development course
as an adjunct at Lehman College while simultaneously maintaining a full-time
role at Bank of America. His perspective offers valuable insights into both what
skills and factors shape students’ relative levels of job-preparedness, as well as
how CS curriculum can be more aligned to industry hiring processes. As an
inaugural Tech-in-Residence Corps Member from the program’s inception, Ross
also provides a lens through which the program’s design and implementation
can be analyzed from a first-time industry adjunct’s "street-level" perspective.

5 Biographies

Susan P. Imberman is The University Associate Dean for Technology Educa-
tion at the City University of New York Central Office. Her charge is to foster
the development of new and innovative technology programs in CUNY. Be-
sides her current administrative role, Dr. Imberman holds academic positions
at both The College of Staten Island, CUNY, where she chaired the computer
science department, and The Graduate Center, CUNY.
Robert Domanski Ph.D., is the Director of Higher Education for the New
York City government’s Tech Talent Pipeline industry partnership. As the
former Senior Program Manager of the Tech-in-Residence Corps, he oversaw
nearly two dozen advanced Computer Science courses at CUNY each semester
taught by industry professionals from NYC’s tech ecosystem.
Shermane Austin is a Professor of Computer Science at CUNYMedgar Evers
College. She is the Program Coordinator for Computer Science and facilitator
for the Tech-in-Residence program in the department. She is also the Site
Lead for the Google CSSI-Extension program at the college and is an Affiliate
Director of the NASA NY State Space Consortium.
Ross Dakin is a former industry adjunct who taught at Lehman College
(CUNY) as an inaugural member of the TIRC program. He is currently em-
ployed at the New Jersey Office of Innovation. Previously he was the Senior
Strategist of Global Technology Operations at Bank of America Merrill Lynch.
Ross was also a Presidential Innovation Fellow in the Obama White House.

258

Integrating Cloud Computing across
Existing Computer and Information

Science Courses∗

Poster Abstract

Ruth Kurniawati
Department of Computer and Information Science
Westfield State University, Westfield, MA 01086

rkurniawati@westfield.ma.edu

The Gartner group [3] notes that most in the IT industry will be using
cloud-based resources in 2020 and that future use of cloud computing is only
expected to grow. Furthermore, 75% of surveyed organizations currently using
cloud-services plan to adopt a "cloud-first" strategy, in which cloud computing
solutions are evaluated first before making new investments.

The ACM 2013 Computer Science curriculum includes a basic set of cloud
computing topics in the Parallel and Distributed Computing area but leaves
these topics as elective. There have, however, been suggestions to make this
topic a required topic in the CS curriculum [5]. Additionally, we have seen pro-
posals for modular frameworks for cloud computing courses ([2], [1]), an ap-
proach which would make it easier to integrate cloud curricula into the greater
CS curriculum.

At Westfield State University (WSU), our approach, beginning in fall 2018,
has been to introduce students to cloud computing topics by gradually inte-
grating cloud computing resources into our "traditional" computer and infor-
mation science classes. We chose to use Amazon Web Services (AWS), because
this platform is the market leader in cloud computing [4]. In 2019, WSU joined
AWS Educate as an institution, which provided us a better platform to set up
and monitor assignments. In addition, we have also begun to utilize Google
Cloud Platform and QwikLabs in our courses to give students a more vendor-
agnostic view of the cloud.

In this poster, I describe the introduction and integration of cloud comput-
ing into our Introduction to Networking and Database courses. In these courses,

∗Copyright is held by the author/owner.

259

we first introduce students to an IaaS service in AWS which feels more natural
to the students because they have already worked with an equivalent service
running on a local machine. This prompts a discussion of the advantages and
disadvantages of the cloud services and becomes a foundation for introducing
more advanced cloud services. In this poster, I provide an overview of the chal-
lenges faced in adding and integrating cloud computing topics into these classes
and outline what approaches have helped in overcoming the difficulties experi-
enced along the way. I also outline of our department’s future plans, developed
in response to our experiences, student feedback, and the modular frameworks
as proposed by Foster et al. [2] and Debzani et al. [1].

References

[1] Debzani Deb, Muztaba Fuad, and Keith Irwin. A module-based approach to
teaching big data and cloud computing topics at cs undergraduate level. In Pro-
ceedings of the 50th ACM Technical Symposium on Computer Science Education,
SIGCSE ’19, page 2–8, New York, NY, USA, 2019. Association for Computing
Machinery.

[2] Derek Foster, Laurie White, Joshua Adams, D. Cenk Erdil, Harvey Hyman, Stan
Kurkovsky, Majd Sakr, and Lee Stott. Cloud computing: Developing contempo-
rary computer science curriculum for a cloud-first future. In Proceedings Com-
panion of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2018 Companion, page 130–147, New York,
NY, USA, 2018. Association for Computing Machinery.

[3] The Gartner Group. Advanced cloud strategy. https://www.gartner.com/en/
information-technology/insights/cloud-strategy. Last accessed on 2020-01-11.

[4] The Gartner Group. Gartner says worldwide IaaS public cloud services
market grew 31.3% in 2018. https://www.gartner.com/en/newsroom/press-
releases/2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-
grew-31point3-percent-in-2018. Last accessed on 2020-01-12.

[5] Joel K. Hollingsworth and David J. Powell. Requiring web-based cloud and mobile
computing in a computer science undergraduate curriculum. In ACM Southeast
Regional Conference, pages 19–24. ACM, 2011.

[6] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA, 2013.

260

The Low-Budget Experimental Computer
Lab Boosts Students’ Research∗

Poster Abstract

David Pitts and Vladimir V. Riabov
Department of Mathematics and Computer Science

Rivier University
Nashua, NH 03060

{dpitts, vriabov}@rivier.edu

This poster discusses efforts at Rivier University to create and run the ex-
perimental computer lab that provides undergraduate and graduate students
with opportunities to explore various operating systems, computer architec-
tures, databases, multimedia applications, and data communication means as
well as build-up and analyze different system prototypes. This approach helps
address the considerable student interest in developing medium-size computing
and networking systems from scratch and use the acquired practical skills in
their capstone research projects.

The Experimental Computer Science Laboratory was open in a 200-square-
feet room right near the IT Office in fall 2011. Since then, it has supported the
instructional and research needs of the Computer Science/Information Tech-
nology students and faculty. The Lab allows instructors to design new advanced
course lab assignments and offer research projects requiring a dedicated net-
work of systems and which would be undesirable and unsafe to conduct on the
Rivier University network, including projects involving distributed computing,
cybersecurity, and data mining. The Lab serves as a general computing resource
for the students and faculty.

There are ten computers connected in a local area network available for
students’ use in the Computer Science Lab: seven are dual boot FedoraTM

Linux and WindowsTM machines; and three are single boot FedoraTM Linux
systems. The computers have basic design and development software, includ-
ing compilers, database management systems, web servers and associated de-
velopment tools. The systems are connected in a local area network through
a NortelTM/AvayaTM BayStack 5510-48T switch. Two servers with powerful

∗Copyright is held by the author/owner.

261

GTX-570 graphic drivers and OpenGL library are regularly used for projects
and students’ research in Computer Graphics and Multimedia Web Develop-
ment courses.

One of the servers in Lab equipment is running FedoraTM Linux and is
acting as the DNS server for the network. The machines in the network have
the Internet access, but filtered through an IT department router to prevent
unauthorized access to the equipment. Within the local area network, machines
have complete network access to each other and can be configured to bring up
local web servers as needed by class activities.

One of the servers in Lab equipment is running FedoraTM Linux and is
acting as the DNS server for the network. The machines in the network have
the Internet access, but filtered through an IT department router to prevent
unauthorized access to the equipment. Within the local area network, machines
have complete network access to each other and can be configured to bring up
local web servers as needed by class activities.

For the WindowsTM systems, the Windows 10TM is installed on the remain-
ing server machines using media supplied by the IT department. A second Linux
server running SambaTM with active directory support provides login service
and roaming for the windows systems. The final solution utilizes the VirtualBox
tool installed on both WindowsTM and FedoraTM Linux systems. (Potentially,
with this option, it is possible to run any other operating system in the lab).
All clients are dual boot and the default operating system is FedoraTM Linux.

Most of the lab equipment (computers, switches, racks, wiring, etc.) was
“donated” by the IT department of Rivier University. The lean Lab bud-
get (1K−2K annually) was used forpurchasing small items (e.g., graphic
drivers and inexpensive CISCOTM small firewall-type routers) requested by
instructors for lab assignments in particular courses (e.g., Networking Tech-
nologies and Computer Security). The long list of installed software in-
cludes “traditional” and specialized packages: GCC, g++, IntelliJ Idea, JDK,
NetBeans, PostgreSQL, SQL Developer, Foxit Reader, Android SDK Tools,
Eclipse–Android Development Tools, Eclipse–Java Development Tools, Plu-
gin, ActivePerl, Adobe Flash Player, Python, VLC, VMware Player, WinSCP,
TELNET, PuTTY, Wireshark, and many others.

For the first time, the Experimental Computer Science Lab was effectively
used in the authors’ courses in Fall-2011 and Spring-2012 semesters. Dr. Pitts’
students successfully used the Lab computer systems in the Distributed Com-
puting classes. They experimented with the development of web services using
SOAP and WSDL technologies, culminating in the development of a small ap-
plication using a web service supported by the National Weather Service. Stu-
dents also performed a lab using Java’s remote method invocation mechanism.
This example highlights a major benefit of having this isolated lab facility: the

262

software they used in the Distributed System course activities was identified
and discussed during one class meeting; by the next class meeting, Dr. Pitts
had downloaded the software, installed it and had it ready for the students
to use. He has also used the Lab systems in his High Octane Java course for
hands- on activities in Java network programming, as well as courses on parallel
programming and database programming.

Later, with the help of Hamid Habibi, a lab assistant, Dr. Riabov and
other CS instructors developed a set of hands-on Computer Networks lab as-
signments to replace the OPNET IT GURU virtual labs that became obsolete
after the acquisition of OPNET by Riverbed Technology, Inc. For the High
Performance Computing course, Dr. Yili Tseng built five computer clusters
connected with NortelTM/AvayaTM 10/100/1000 routing switches (generously
donated by the IT department) that were used by students for improving the
system performance in their projects.

Nowadays, the Experimental Lab is considered as a main experimental fa-
cility to accommodate the needs of students who pursue careers in computer
security, cybersecurity management, multimedia, Internet of Things (IoT),
cloud computing, and data analytics. Many students use this facility for their
extra-curriculum activities (IEEE/ACM group meetings and CS/IT Club) and
work on various challenging projects, including the capstone ones, e.g., “Se-
cure Online Biometric Authentication Solution”, “Visualization of Multivariate
Data through Chernoff Faces”, “Searchable Cryptosystem Secure Cloud Stor-
age”, “Clue Computer Game”, “Tactus: A World Learning Game for Children
with Autism”, “Design and Implementation of an IoT Smart Farming Sys-
tem”, “Smart Grasses Technology Implementation” (based on the XamarinTM

Cross Platform framework), “Data Mining with 3D-RBT Perturbation Tech-
nique”, “DEM846: Digital Elevation Modeling” (developed by Kevin Gill, a
Rivier’s alumnus and recently adapted to several space missions at the NASA
Jet Propulsion Laboratory) and others.

In numerous course evaluations and exit interviews, students stated that
they became deeply engaged in lab and research project activities in the Ex-
perimental Computer Science Lab through examining the complex case studies
and challenging problems related to the real-world applications of modern com-
puting technologies.

The Lab design, system settings, and maintenance could not be success-
fully implemented without the outstanding support of Sr. Therese Larochelle,
p.m., a former Vice-President for Academic Affairs; the Office of Information
Technologies (Bill Schleifer, Marie McMullen, David Bedard, and Sr. Martha
Villeneuve), and the Division of Sciences (Dr. Paul Cunningham).

263

Integrating Personalized Online Practice
into an Introductory Programming

Course∗

Poster Abstract

Yana Kortsarts1, Kamil Akhuseyinoglu2

Jordan Barria-Pineda2, Peter Brusilovsky2

1Computer Science Department
Widener University
Chester, PA 19013

ykortsarts@mail.widener.edu
2School of Computing and Information

University of Pittsburgh
{kaa108, jab464, peterb}@pitt.edu

We present our experience in integrating interactive learning tools into an
introductory programming course curriculum. Our department offers an under-
graduate program leading to a Bachelor of Science degree in both Computer In-
formation Systems (CIS) and Computer Science (CS). Students pursuing both
majors take Introduction to Computer Science 1 (CS 1) and Introduction to
Computer Science 2 (CS 2) courses in their first year. These courses are essen-
tial prerequisites to all subsequent computer science courses. The CS1 course
combines a thorough introduction to Python programming language. Super-
vised laboratory sessions include a sequence of exercises covering the following
topics: variables and operations, input/output, decision structures, loops, func-
tions, one-dimensional lists, and value and reference parameters concept. Each
course is a 4-credit course and the students spend three hours in class and
three hours in the laboratory per week. Despite the rich body of the literature
in the area of computer science education related to introductory program-
ming, teaching novices how to program remains a challenging task. Educators
are constantly looking for innovative ideas and new efficient ways to instill
fundamental programming principles and to build problem-solving skills.

∗Copyright is held by the author/owner.

264

In Fall 2019, to enhance students’ learning and engagement, an integrated
online practice system, Mastery Grids [6], was introduced to the CS1 course cur-
riculum. Mastery Grids provides access to multiple types of interactive learning
content through a personalized interface with social comparison and open learn-
ing modeling features [2]. The interface of the Mastery Grids consists of a series
of topics (a grid structure) and the learning content is accessed through these
topics. The topics and the available content were aligned with the course struc-
ture by the instructor. The personalized interface visualized their progress and
classmates’ progress to help students to reflect on their current level of progress
and provide navigational support.

The learning contents available in this study are developed by the Univer-
sity of Pittsburgh Personalized Adaptive Web Systems (PAWS) Lab and Aalto
University LeTech group [1]. The content developed by the PAWS lab includes
parameterized problems that focus on code behavior delivered by the QuizPET
system [4], and worked examples and faded examples (challenges), which fo-
cus on program construction, delivered by the PCEX system [3]. The content
authored by the LeTech group consists of animated code examples [7] and Par-
son’s coding problems [5]. Animated examples demonstrate how programming
constructs are executed through animation steps. In Parson’s coding problems,
students construct a program by sorting given code fragments. Throughout
the semester, the instructor assigned some of the available interactive content
as a part of the laboratory assignments and left the rest of the content as an
elective practice.

The poster discusses our experience in the integration of interactive learn-
ing tools into the CS1 course curriculum and reports the preliminary results
including student’s self-reflections and the responses to the end-of-semester
survey. We present the goals and the objectives of the course, a detailed course
curriculum focusing on the utilization of Web-based technology, and weekly
assignments. The poster also includes the description of the lectures and lab-
oratory sessions demonstrating various ways to integrate the interactive tools
into the course material and future plans. In addition, the technical aspects
and logistics of the project will be presented and discussed.

265

References

[1] Peter Brusilovsky, Lauri Malmi, Roya Hosseini, Julio Guerra, Teemu Sirkiä,
and Kerttu Pollari-Malmi. An integrated practice system for learning pro-
gramming in Python: design and evaluation. Research and Practice in
Technology Enhanced Learning, 13(1):18, 2018.

[2] Peter Brusilovsky, Sibel Somyürek, Julio Guerra, Roya Hosseini, Vladimir
Zadorozhny, and Paula J Durlach. Open social student modeling for per-
sonalized learning. IEEE Transactions on Emerging Topics in Computing,
4(3):450–461, 2015.

[3] Roya Hosseini, Kamil Akhuseyinoglu, Andrew Petersen, Christian D
Schunn, and Peter Brusilovsky. PCEX: interactive program construction
examples for learning programming. In Proceedings of the 18th Koli Call-
ing International Conference on Computing Education Research, pages 1–9,
2018.

[4] I-H Hsiao, Sergey Sosnovsky, and Peter Brusilovsky. Guiding students to
the right questions: adaptive navigation support in an e-learning system for
Java programming. Journal of Computer Assisted Learning, 26(4):270–283,
2010.

[5] Petri Ihantola and Ville Karavirta. Two-dimensional parson’s puzzles: The
concept, tools, and first observations. Journal of Information Technology
Education, 10(2):119–132, 2011.

[6] Tomasz D Loboda, Julio Guerra, Roya Hosseini, and Peter Brusilovsky.
Mastery grids: An open source social educational progress visualization.
In European conference on technology enhanced learning, pages 235–248.
Springer, 2014.

[7] Teemu Sirkiä. Jsvee & Kelmu: Creating and tailoring program anima-
tions for computing education. Journal of Software: Evolution and Process,
30(2):e1924, 2018.

266

Becoming Lifelong Learners:
CS Learners’ Autonomy∗

Poster Abstract

Ruiqi Shen, Joseph Chiou, Michael J. Lee
Department of Informatics

New Jersey Institute of Technology
Newark, NJ 07102

{rs858,jcc45,mjlee}@njit.edu

Those who choose careers related to computer programming typically need
to be lifelong learners. Because of rapidly changing technology, whatever they
learned at school or on their own may eventually become obsolete. Therefore,
people with computer programming careers must continue to learn to keep
up with updates, improvements, and trends. Literature suggests that learner
autonomy—where learners take charge of their own learning—plays a vital
role in developing lifelong learning. Our work is among the first to exam-
ine learner autonomy in the context of computing education. A preliminary
interview study revealed that computer science (CS) learners with different
autonomy levels have different needs from educators and online educational
resources. To further explore this finding and learn more about CS learners’
autonomy, we conducted a follow-up study. We surveyed 364 CS learners and
found that 1) CS learners have overall medium to high autonomy levels; 2)
learning experience contributes to these different levels of autonomy; and 3)
CS learners prefer using autonomy-supportive systems when learning about CS
topics. Based on these observations, we present and discuss potential implica-
tions for computing education and provide suggestions to CS educators and
system designers.

∗Copyright is held by the author/owner.

267

Jupyter Notebooks in Education∗

Poster Abstract

Jeremiah W. Johnson, Karen H. Jin
Department of Applied Engineering & Technology

University of New Hampshire
Manchester, NH 03101

{Jeremiah.Johnson, Karen.Jin}@unh.edu

Jupyter notebooks are widely used in industry for a range of tasks. This
is particularly so in areas that involve significant amounts of data analysis or
machine learning; indeed, while 5% of Python developers surveyed in the 2018
JetBrains Python Developer Survey report using Jupyter notebooks for their
primary development tool, when restricted to those working in data science
roles, Jupyter notebooks tied with the PyCharm IDE as the most popular
tool for Python development [1], and in the 2019 StackOverflow developer
survey, 9.5% of developers surveyed listed Jupyter notebooks as their preferred
development environment [2].

Jupyter notebooks provide a format that allows the user to combine code,
explanation, and analysis in a single document. The ability to mix educational
or explanatory content, including, but not limited to, images, video, typeset
mathematical equations, and live code makes notebooks a highly effective com-
munication tool that enables a ‘flowing narrative’ for students to follow. This
has a significant pedagogical advantage, and it is difficult to produce a similar
experience in other formats. However, literature on if or how Jupyter notebooks
are currently being used in education is limited, and what literature does exist
is often tailored to their use in teaching specific narrow topics [3, 4]. There
is little guidance in the literature on best practices for incorporating Jupyter
notebooks into the curriculum.

In this poster, we present the results of a survey of educators on their use
of Jupyter notebooks for education. Our goal is to provide some perspective on
how Jupyter notebooks are currently being used in education and to illustrate
common sentiments regarding their strengths and weaknesses in the classroom,
so that others considering the use of Jupyter notebooks in their courses can
use them effectively.

∗Copyright is held by the author/owner.

268

References

[1] JetBrains 2018 developer survey. https://www.jetbrains.com/research/
python-developers-survey-2018/. Accessed 25 Nov. 2019.

[2] StackOverflow 2019 developer survey. https://insights.stackoverflow.com/
survey/2019. Accessed 25 Nov. 2019.

[3] Roland DePratti. Using Jupyter notebooks in a big data programming
course. J. Comput. Sci. Coll., 34(6):157–159, April 2019.

[4] Ben Glick and Jens Mache. Using Jupyter notebooks to learn high-
performance computing. J. Comput. Sci. Coll., 34(1):180–188, October
2018.

269

End-to-End Machine Learning Project
Design for Undergraduate Classrooms∗

Poster Abstract

Karen H. Jin
Department of Applied Engineering and Sciences

University of New Hampshire
Manchester, NH 03101

{Karen.Jin}@unh.edu

A Machine Learning (ML) workflow refers to the complete process for car-
rying out an ML solution, typically including problem formulation, data acqui-
sition, feature engineering, model training, evaluation, and deployment. As the
demand for building high-quality ML applications continues to grow in the in-
dustry, the current instruction in undergraduate classrooms still focuses mostly
on modeling techniques and algorithms. In this work, we explore project de-
signs that provide upper-level undergraduate students with experience in the
full ML application development process, while still being manageable in a
classroom setting.

The workflow for building machine learning applications has several distinct
characteristics compared to traditional software applications, such as data ac-
quisition and transformation, model evaluation and deployment. ML solutions
involve more complex infrastructure and development process than traditional
software systems [4]. Challenges and risk factors specific to integrating ML
capability into software and services have been described in several case stud-
ies of real-world ML solutions [1, 2, 3]. Current applied ML courses are often
modeling-centric rather than system-centric. The focus is typically placed on
ML algorithms and techniques, not on the development of end-to-end ML sys-
tems. Although ML code only contributes to a small fraction of real-world
ML systems [4], classroom teaching is often still centered around the modeling
stage, and rarely goes beyond the coverage of programming languages (e.g.,
Python, R), libraries (e.g., Scikit-learn, Keras) and other tools such as Jupyter
Notebook. Most students don’t have the necessary exposure to the complexity
of real-world ML application development even after taking upper-level ML

∗Copyright is held by the author/owner.

270

courses. Whereas a real-world ML pipeline starts with obtaining data, running
some transformation upon the data, loading the data into an ML model, ini-
tiating the training of that model on a large cluster, and putting the model
into production, existing classroom projects rarely integrate all these stages.
Students are typically given clean datasets for their assignments/projects, and
such datasets often require minimal effort for further manipulation. Project
submissions are often required in the format of notebook or as local programs,
rather than an integrated ML system with multiple software components. Stu-
dents rarely have experience working on a full ML solution, even on a smaller
scale than real-world applications.

We aim to help students understand the complexity of real-world ML appli-
cation development. Subjects in data engineering, software engineering, as well
as in development and operations (DevOp) are integrated. The class projects
span the full ML workflow, on a scale manageable for both the students and the
instructors. Important components of the projects include data collection/fea-
ture engineering, model development, and iterations during model training and
evaluation. Our experience indicates that designing and teaching such an ap-
plied course require that instructors are equipped not only with ML background
but also practical knowledge of software engineering and system design. More-
over, given the plethora of constantly changing tools/libraries/platforms, de-
signing projects that are up-to-date with current industrial practice while still
being suitable for classroom instruction is a challenge.

References

[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
Software engineering for machine learning: A case study. In Proceedings of the
41st International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’10, pages 291–300, Piscataway, NJ, USA, 2019. IEEE Press.

[2] Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald Kossmann. On human
intellect and machine failures: Troubleshooting integrative machine learning sys-
tems. CoRR, abs/1611.08309, 2016.

[3] Md Saidur Rahman, Emilio Rivera, Foutse Khomh, Yann-Gaël Guéhéneuc, and
Bernd Lehnert. Machine learning software engineering in practice: An industrial
case study. CoRR, abs/1906.07154, 2019.

[4] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Di-
etmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. Hidden technical debt in machine learning systems. In Advances in
neural information processing systems, pages 2503–2511, 2015.

271

Applying Three Machine Learning
Algorithms to Three Breast Cancer

Diagnosis Datasets∗

Poster Abstract

Lilly Shelomyanov and Sofya Poger
Department of Computer Science

Felician University
Lodi, NJ 07644

lostrovsk@gmail.com pogers@felician.edu

Breast cancer is the second most common cause of mortality in women
in the United States [10]. An estimated 268,600 women were diagnosed with
breast cancer in 2019, and 41,760 died from the disease [10]. The early de-
tection of breast cancer is imperative for improving chances of survival [5].
Mammography remains the gold standard for screening individuals for breast
cancer [3]. However, this screening tool carries risk for false-positive results,
especially in women with high-risk features, resulting in unnecessary and in-
vasive procedures to confirm diagnosis [11, 4]. As such, there’s an unmet need
to develop alternative breast cancer diagnostic tools. Machine learning (ML)
is one such tool that is gaining traction in the breast cancer arena, with the
goal of accurately predicting breast cancer diagnosis [12, 6, 1, 2]. Current re-
search efforts are focused on finding the most accurate, robust ML algorithms
for predicting breast cancer [6]. Many studies that evaluate the performance
of ML algorithms either do so using only one algorithm and/or one dataset,
thereby limiting the applicability of the algorithm to datasets of varying size
and attributes (features) [6]. This study was conducted to provide a more com-
plete overview of three algorithms—generalized linear model (GLM), support
vector machine (SVM), and artificial neural network (ANN)—with respect to
how they compare to one another and how they perform on three datasets
of varying size and features, including the Wisconsin Breast Cancer Original
(WBCO) dataset, the Wisconsin Breast Cancer Diagnostic dataset (WBCD),
and the Wisconsin Breast Cancer Coimbra (WBCC) dataset.

∗Copyright is held by the author/owner.

272

The WBCO dataset includes 11 attributes collected from 699 patients, and
the WBCD dataset contains 30 attributes from 569 patients; in both of these
datasets, attributes were extracted using Xcyt from digitized images of sam-
ples obtained from fine needle aspiration biopsies [9, 8]. The WBCC dataset
includes 10 attributes that were analyzed during routine blood work in 116
patients [7]. Performance of the three algorithms was assessed using accuracy,
sensitivity, and specificity. Each of the datasets was split into training (66%)
and testing (33%) sets, and we used R and RStudio to perform the data anal-
ysis. Accuracy results exceeded 96% when the GLM and SVM algorithms were
applied to the WBCO and WBCD datasets, but decreased to <74% when these
two algorithms were used on the WBCC dataset. Of the three algorithms, ANN
was the least accurate across all three datasets, demonstrating the lowest accu-
racy in the WBCC dataset (48.25%). Sensitivity was highest in the WBCO and
WBCD datasets when the GLM and SVM algorithms were used, ranging from
93.06% to 97.44%; however, when applied to the WBCC dataset, sensitivity
results of GLM and SVM were significantly reduced (range, 52%-64%). Sensi-
tivity results were lowest across all datasets with the ANN algorithm (range,
0% to 40%). Specificity was highest across all algorithms in the WBCO and
WBCD datasets (range, 96.64%-100%), and was lowest in the WBCC dataset
(range, 64.1%-92.31%), with ANN being the least specific (64.1%).

References

[1] Adel Aloraini. Different machine learning algorithms for breast cancer
diagnosis. International Journal of Artificial Intelligence & Applications,
3(6):21, 2012.

[2] Manisha Bahl, Regina Barzilay, Adam B Yedidia, Nicholas J Locascio, Lili
Yu, and Constance D Lehman. High-risk breast lesions: a machine learn-
ing model to predict pathologic upgrade and reduce unnecessary surgical
excision. Radiology, 286(3):810–818, 2018.

[3] Joann G Elmore, Mary B Barton, Victoria M Moceri, Sarah Polk, Philip J
Arena, and Suzanne W Fletcher. Ten-year risk of false positive screening
mammograms and clinical breast examinations. New England Journal of
Medicine, 338(16):1089–1096, 1998.

[4] Susan G. Komen. Accuracy of mammograms. https://ww5.komen.org/
BreastCancer/AccuracyofMammograms.html Accessed January 21, 2020.

[5] Epidemiology National Cancer Institute: Surveillance and End Results
Program. Cancer stat facts: female breast cancer. https://seer.cancer.
gov/statfacts/html/breast.html Accessed January 21, 2020.

273

[6] Ricvan Dana Nindrea, Teguh Aryandono, Lutfan Lazuardi, and Iwan
Dwiprahasto. Diagnostic accuracy of different machine learning algorithms
for breast cancer risk calculation: a meta-analysis. Asian Pacific journal
of cancer prevention: APJCP, 19(7):1747, 2018.

[7] UCI Machine Learning Repository. Breast cancer coimbra data
set. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra
Accessed November 19, 2019.

[8] UCI Machine Learning Repository. Breast cancer wisconsin (diagnos-
tic) data set. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Diagnostic) Accessed November 19, 2019.

[9] UCI Machine Learning Repository. Breast cancer wisconsin (original) data
set. https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+
(original) Accessed November 19, 2019.

[10] American Cancer Society. How common is breast cancer?
https://www.cancer.org/cancer/breast-cancer/about/how-common-
is-breast-cancer.html Accessed January 21, 2020.

[11] American Cancer Society. Limitations of mammograms. https:
//www.cancer.org/cancer/breast-cancer/screening-tests-and-early-
detection/mammograms/limitations-of-mammograms.html Accessed
January 21, 2020.

[12] Wenbin Yue, Zidong Wang, Hongwei Chen, Annette Payne, and Xiaohui
Liu. Machine learning with applications in breast cancer diagnosis and
prognosis. Designs, 2(2):13, 2018.

274

Differentiating Computer Science Courses
in Undergraduate and Graduate Level∗

Poster Abstract

Songmei Yu and Sofya Poger
Department of Computer Science

Felician University
Lodi, NJ 07644

{yus, pogers}@felician.edu

We have BS and MS programs in Computer Science. As some graduate
students come to MS programs without prior computer science background,
they need to take certain pre-requisites before they take the master level courses
[1]. Meanwhile, we offer the same courses to both programs, most likely these
courses are elective courses which are developed based on the current market
need, such as Data Mining and Big Data, Computer Vision, Machine Learning,
Artificial Intelligence, undergraduate/graduate Capstone Project to prepare
students for their future career interests.

Although the basic contents are similar for each course, two complexity
levels are offered with different course number and title (i.e., for undergraduate
program we name it as Intro to xxx, whereas for graduate programs we name
it as Advanced xxx), and at different times of day (the undergraduate level is
normally in the daytime, the graduate level is at night). Moreover, we need
to adjust the contents and assignments to differentiate the undergraduate and
graduate levels, so that students could benefit the most from each course. As
an example, the curriculum for Data Mining and Big Data course is illustrated
below.

We have both CS430 (Intro to Data Mining and Big Data) for the un-
dergraduate level, and CS675 (Advanced Data Mining) for the graduate level.
For CS430, we use Introduction to Data Mining (ISBN: 0133128903). The
course contents include Intro to Data Mining, Data basics, Classification: Basics
and Alternatives, Association Analysis: Basics and Advanced, Cluster Analy-
sis: Basics and Additional, Anomaly Detection, as well as Big Data and Re-
lated Technics. For CS675, we use Data Mining: Concepts and Techniques

∗Copyright is held by the author/owner.

275

(ISBN: 9780123814791), as well as research papers from ACM and IEEE Re-
sources. The course contents include Introduction to Data, Data Warehousing
and OLAP, Pattern Mining: Basics and Advanced, Classification: Basics and
Advanced, Cluster Analysis: Basics and Advanced, Outlier Detection, and Data
Mining Trends and Research Frontiers.

For the assignments, CS430 will be assigned a project to implement a se-
lected Algorithm with students having options to choose from one of the three
topics: Data mining for weather prediction and climate change, Web Mining
Techniques, and Mining of government data for getting valuable information).
CS675 will be assigned a research paper where students need to write a 10-12-
page research paper to survey current research work on one of the selected data
mining areas, present the challenging issues of the current research, and investi-
gate possible ideas or solutions to tackle one of the challenging issues. For other
assessments, both courses will be given weekly quiz, midterm and final exam,
as well as project/research presentation. The same is done for CS 470 Introduc-
tion to Artificial Intelligence and CS 665 Advanced Artificial Intelligence. CS
460 Undergraduate Capstone Project and CS 699 Graduate Capstone Project.
Since many undergraduate students are interested in research in Computer
Science and pursuing graduate degree, we give the undergraduate students a
choice for their term project: programming project or survey research paper
[2].

Although both levels of each course are overlapped in certain contents, the
two major differences are as follows:
1. Pace and Depth of the Contents

The teaching pace and depth varies between two levels, as we teach more
materials and present current research work for each topic on the graduate
level, and for the undergraduate level, we start from the basics, and gradually
move to the existing algorithms to solve the problem.
2. Assessment

For the undergraduate level, we normally give a project and students are
required to implement it based on the given algorithm(s). For undergraduate
students, we give an alternative: a programming project or a research paper.
Also, weekly quiz and midterm/final exam are required to enhance the learn-
ing outcome of the basics. For the graduate level, a research paper is required
and plays an important role in the final assessment. Students need to read as-
signed papers and perform a survey, analysis, and investigation of the possible
solutions to the current challenging issue(s). A term paper/project and its pre-
sentation, quizzes after each chapter, online and in-class discussions, midterm
and final exams serve as the basis for the final grade. This research work serves
as the direction for undergraduate students to pursue a graduate degree and
for a graduate student to study further.

276

Our future work will be focusing on other aspects of learning outcome
comparisons; and integrating students’ job placement into consideration [3].

References

[1] Sorathan Chaturapruek, Thomas S Dee, Ramesh Johari, René F Kizilcec,
and Mitchell L Stevens. How a data-driven course planning tool affects
college students’ gpa: evidence from two field experiments. In Proceedings
of the Fifth Annual ACM Conference on Learning at Scale, pages 1–10,
2018.

[2] Paul R Pintrich and Dale H Schunk. Motivation in education: Theory,
research, and applications. Prentice Hall, 2008.

[3] Michael Prince. Does active learning work? a review of the research. Journal
of engineering education, 93(3):223–231, 2004.

277

Capstone: Transitioning a Successful
Undergraduate Research Program to a

Multi-Research Model∗

Poster Abstract

Michael Jonas
Department of Applied Engineering and Sciences

University of New Hampshire, Manchester, NH 03101
michael.jonas@unh.edu

The Capstone course for computing students at the University of New
Hampshire at Manchester (UNH-M) was introduced in spring 2011. It was
designed as an undergraduate research project whose focus was speech recog-
nition [1, 2]. In its 10th year, the course is now being transitioned into multiple
projects with an initial split of two research topics. Much deliberation was
needed to help determine the best approach on how to split the course into
two components; a seemingly simple task fraught with pitfalls. Two important
issues were whether to run parallel projects or alternate between spring an
fall semesters, and how to determine the best method on dividing students
among the competing projects. What initially seemed a trivial task turned
into a complex problem that needed to address potential consequences so as
not to undermine the successful mechanism that had been put in place and
had worked so well over that decade.

With Capstone at UNH-M being an internal research project where anony-
mous peer evaluations are the primary driver of student success in the class,
being able to ensure workable class size was another consideration. Offering
projects in both spring and fall could present occasion where one semester
might only yield a small handful of students participating and thus remove a
critical element that a large group research project provides where students
need to communicate, collaborate, and find ways to contribute to the overall
success of the project. Could faculty determine student schedule before their
final year and dictate who would take the fall versus spring Capstone to ensure
a balanced set of projects, or was that too problematic resulting in a weak-
ened experience? Conversely, would running dual research projects in parallel

∗Copyright is held by the author/owner.

278

present a shortage of resources in both faculty and facilities? These were im-
portant issues needed to be addressed.

Although offering the course every semester would make it more convenient
for students, offering it only once a year adds an element of commitment and
responsibility. The decision of simply dropping the course because the student
felt unprepared or overwhelmed would mean having to wait an entire year to
re-take it. Stated more simply, a student may find it easier, when confronted
with a difficult challenge, to drop a course knowing they can simple take it
again the following semester, whereas if the course is only offered once a year,
that decision has greater ramification. Since an integral part of Capstone is
to expose students to experiences to better prepare them for their careers, it
was important to balance the convenience of student needs with keeping the
principal of Capstone in tact. This can affect how a student might respond to
the pressures of a real job. Would they simply walk away or formulate successful
strategies to confront it head on – something they perhaps learned in Capstone.

This poster will discuss the various issues involved in the different ap-
proaches and the solution developed: concurrent running projects with an
added common time to enable cross project interaction. It will highlight the
undergraduate research model that has been developed at UNH-M over the
past decade. Various materials have been published in computing educational
forums on the format and achievements of this model and feedback from col-
leagues at other institutions has led to the evolution of a strong internal Cap-
stone experience [1, 2, 3, 4]. This is an important model as it helps create an
alternative to the traditional work-embedded model that can add strain to a
computing department as much work is needed to build industry relationships.
Though UNH-M has built its own network of industry partners, it has more
freedom in how to engage them without the need of their companies providing
places for students.

References

[1] Michael Jonas. Capstone experience: engaging students in speech processing to ex-
cite them about STEM: faculty poster. Journal of Computing Sciences in Colleges,
26(6):180–181, 2011.

[2] Michael Jonas. Capstone experience: lessons from an undergraduate research group in
speech at UNH Manchester. In Proceedings of the 2011 conference on Information tech-
nology education, pages 275–280, 2011.

[3] Michael Jonas. Capstone experience: achieving success with an undergraduate research
group in speech. In Proceedings of the 15th Annual Conference on Information technology
education, pages 55–60, 2014.

[4] Michael Jonas. Capstone: impact of a successful undegraduate research program: faculty
poster abstract. Journal of Computing Sciences in Colleges, 31(6):50–51, 2016.

279

What Makes Students’ Capstone
Projects Successful?∗

Poster Abstract

Vladimir V. Riabov
Department of Mathematics and Computer Science

Rivier University
Nashua, NH 03060
vriabov@rivier.edu

Practices of computer-science majors in capstone-project developments for
the last 15 years have been analyzed revealing the lack of novelty, weakness
of applications, and low quality of the project- related artifacts. The project
criteria are revised and changed guiding the students to work successfully on
the state-of-the-art challenging research projects, to build solid project port-
folios, and to go “an extra mile” in their starting careers. The examples of
students’ outstanding capstone projects (developed within the frame of the
revised criteria) are reviewed.

The Capstone Project is the last course (some sort of the Master Theses)
in the Computer Science curriculum. Students select project topics and work
individually on the design and implementation of moderately large software
systems as the deliverables for this course. At the end of the semester, every
student presents the results of her/his project work and the system demo to
the rest of the class.

In the past (before the course revision), many students (about 70% of the
class) made “shopping” for “reasonably-good” grades and selected basic topics
(which are “popular” on the Internet) for their capstone projects, e.g., “Library
Online Management System”, “Furniture Online Shop”, “Online Bus Reserva-
tion System”, “Mobile Billing System”, etc. These “shallow” projects did not
reveal neither the students’ actual potentials nor their readiness to deal with
the career challenges of applying the state-of- the-arts technologies in the high-
tech company projects.

Several years ago, Rivier’s CS/IT faculty had reviewed practices of running
the Capstone Project course, revised the course criteria and even renamed the

∗Copyright is held by the author/owner.

280

course to the Professional Seminar. Course instructors have started promoting
class discussions covering various modern societal issues, e.g., “Environments
Become Smart”, “Life after the Internet”, “How Biology Became an Informa-
tion System”, “Environment in Human-Centered Systems,” and others. Also,
every student has led discussions on two selected peer-reviewed articles from
professional journals and/or books on the future of computing. There are a
few examples of the successful students’ survey reviews: “A New Experimental
Website Converts Photos into 3D Models”, “Taking Measure of SaaS Reliabil-
ity”, “An Overview of Malware”, “Automatic Information Extraction from Large
Websites”, “Online Analytical Processing”, “Computers ’Taught’ to Search for
Photos Based on Their Contents”, “Quantum Computing”, “The Future of Elec-
tronic Displays”, and others. This search for knowledge helps students stay at
the cutting edge of computer science. In addition to these activities, students
read the Craft of Research textbook that helps them develop research skills.

In this poster, the revised course criteria (such as the orientation on prac-
tical application, novelty, the structured methodology of project development,
quality of the project-related artifacts, creating a system demo, and building
a project portfolio), the “extra-mile” opportunities, and examples of students’
outstanding CS capstone projects are considered in details.

For selecting of a project topic, students are encouraged to conduct the
feasibility analysis of the system potential users and the expected valuable
services provided by the proposed system to the users. Students, who have
experience of working in high-tech companies or taking internships there, have
typically selected the interesting, challenging project topics promising strong
practical applications.

Natural curiosity and novelty bring the talented students the greatest ec-
stasy that governs them in discovery endeavors in their academic lives and,
later, in professional careers. The students have tried to introduce new elements
in their capstone projects and got the outstanding results. The novelty has fea-
tured in the wide variety of students’ recent projects, including “Modeling a
Digital Video Cluster”, “Design and Implementation of an IoT Smart Farming
System”, “Applying XamarinTM Cross Platform Framework for Smart Glasses
Design”, “Personal Encrypted Talk Tool”, “Cloud-based Searchable Storage
Cryptosystem”, “Development of the Personal Accounting WebApp with Angu-
larTM and SpringTM Frameworks”, “A Public Resource Computing Platform
for Simulating N-Body Galaxies”, “A Multi-Domain Musician’s Web-service
Using Ruby-on-Rails, SOAP, FLEX, and AJAX”, “Secure Online Biometric
Authentication Solution”, “Visualization of Multivariate Data through Cher-
noff Faces”, “Tactus: A Learning Game for Children with Autism”, “DEM846:
Digital Elevation Modeling”, and others. Some of these projects are reviewed
in the poster.

281

As the general requirement for this course, students should follow the es-
tablished project- development procedures (“stages” of project planning, feasi-
bility and functional analyses, system design, code programming, and system
prototype testing) and standards. Typically, this process takes 12-14 weeks.
Prior to these activities, students develop mini projects on small system pro-
totypes in various core and elective CS courses, including the Object-Oriented
System Analysis Design, Computer Architecture, Operating Systems, Soft-
ware Engineering, Database Management Systems, Multimedia Web Devel-
opment, Computer Security, Java Programming, C/C++ Programming, Ex-
ploring Perl Ruby, Computer Graphics, and Software Quality Assurance. The
acquired knowledge and skills have been successfully used by students in their
work on the capstone projects.

In the project evaluations, the course instructors draw special attention to
the quality of various project-related artifacts (e.g., Unified Modeling Language
diagrams, conceptual client-server architecture, user-computer interfaces, win-
dows navigation diagrams, normalized data tables, entity- relational diagrams,
and codes). After every stage of the system development process, the corre-
sponding test plans have to be created. The special requirements were devel-
oped for the high quality of the project reporting (the style of project report
organization, citation of sources, image quality, etc.) as well as for the project
oral presentations. These efforts help students develop strong “soft skills” that
have become in the growing demand in high-tech companies and in the scholar
community.

Finally, at the end of the course, students are required to submit the project
portfolios with all the project documentation burnt on a CD or accessible from
the student’s personalized website. In many cases, students use these portfolios
during the internship or job interviews and for the job promotions.

Faculty encourage students to pursue “extra-mile” scholarly activities (e.g.,
publish the first article in a peer-reviewed research journal, or present a paper
at a conference) and share their research results with the global community of
scholars. Several talented students included their capstone-project portfolios
into applications for the further studies in Ph.D./Computer Science programs
at M.I.T., W.P.I., UMASS-Lowell, UNH, and other universities. Upon com-
pleting successfully these programs, they continue collaborating with our de-
partment in many ways, including the lecturing, the supervising of our interns,
and the students’ mentoring.

In the course evaluations, students stated that they became deeply engaged
in capstone-project activities through examining the challenging problems re-
lated to the real-world applications of the state- of-the-arts computing tech-
nologies.

282

Assessment of Computer Science Courses
in the Context of a Global Knowledge

Economy∗

Poster Abstract

Viktoria Popova and Sofya Poger
Department of Institutional Assessment

Department of Computer Science
Felician University
Lodi, NJ 07644

{popovav,pogers}@felician.edu

The role of assessment in academic practices is usually associated with
evaluating students’ knowledge, skills, and competencies exclusively within a
given subject area. Thus, a course in Computer Programming is not likely to
include assessment of students’ persuasive communication skills. Traditional
teaching and assessment have taken a very targeted (and siloed) approach to
introducing and practicing both applied and theoretical fields of knowledge.
The shortcomings of this practice may not have explicitly affected student
readiness to enter the workforce in the last millennium. However, it has become
increasingly evident in the last 20 years that the exponentially expanding global
knowledge economy requires that knowledge workers, such as professionals in
computer science fields, are adept not only in their field of study: graduates
should be able to demonstrate proficiency in “Human Skills,” as well as be
able to operate as “Business Enablers.” The New Foundational Skills of the
Digital Economy report by the Burning Glass [1], reveals the need expressed
by employers across various sectors for the new workforce to be equipped with
a broader set of skills than that usually required by a single discipline.

To address this need, the Felician University Computer Science Program,
housed in the new Institute for Information Sciences, has developed a unique
approach, which prompts students to practice a set of “human” and business
skills. To move beyond assessing computer science students exclusively for their
computer skills, at Felician University, we emulate a business environment, so

∗Copyright is held by the author/owner.

283

that computer science students can obtain and practice a variety of communi-
cation skills and training/instruction skills that are required for most business
experiences.

In Felician’s revision of the BS in Computer Science program, we have
established a dual assessment track: one is focused on the employability skills
based on the Burning Glass study (cited above); and the second, on the depth
of student learning through a sustained project over their degree. In the first
term of the first year, students take Information Sciences 100, Information and
Knowledge. This course addresses the 14 skills identified in the Burning Glass
Report. Students initiate their portfolio (which has a tab for each employability
skill) and are expected to contribute leaning assets to that portfolio throughout
their entire degree. To facilitate that process, Computer Science faculty have
developed a matrix wherein relevant employability skills are identified within
each course (i.e., project management, collaboration, data analysis, etc.).

Faculty agree to let students use their projects for course work where rel-
evant (at the faculty member’s discretion for relevance). For example, if a
student is taking a Database course, and thehomework asks them to normalize
a database, they can perform the assignment in their project rather than using
the sample in the textbook. Thus, the assessment is interwoven throughout the
student’s coursework.

To assess students’ abilities in integrating discipline specific skills with
communication and analytical skills, the following activities have been im-
plemented throughout a number of Computer Science classes at Felician Uni-
versity: project presentation, project presentation critique, in-class discussions
and feedback, students participating in delivering a “flipped classroom” teach-
ing modality, and reciprocal tutoring. For example, in the Software Engineering
and AI courses the following activities have been implemented:

• A student presents his/her short-term project to the class; classmates
provide feedback in the form of a discussion; classmates participate in
an anonymous survey by providing a detailed critique on the project, its
content, presentation skills, and engagement value.

• Following the project presentation, the instructor provides individual as-
sessment to each student by offering one-on-one discussions for the pur-
pose of addressing student’s communication skills and recommendation
of further steps for improvement.

• The student’s next short-term project is assessed based on the degree of
each student having incorporated all of the suggested improvement steps.

In the Computer Vision course, when covering a topic of Image Segmen-
tation, the class is divided into small groups and each group is assigned with
a unique algorithm, which student will be presenting to the entire class. The

284

class discusses pros and cons of each technique and students attempt to tutor
each other on hard-to-understand issues and finer points. At the final stage, the
students are given a quiz involving the entire body of the presented material,
and the quiz results serve as an assessment of this approach for developing
learning and communication skills.

In the Discrete Structures course, following a lecture on a particular subject
area, the class is divided into small groups (3 – 4 students) and each group is
assigned a unique problem to be solved. Each group presents a solution to the
class, which discusses the accuracy of the solution or, in some cases, suggests a
more efficient solution. Following this activity, each student is assigned with a
homework task that requires finding solutions to similar problems. This process
supports assessment of both student learning of a subject area (“hard skills”),
as well as evaluation of communication and critical thinking skills.

As a result of these activities, we are able to observe an improvement in
students’ application of “human skills.” More importantly, students demon-
strate an increased willingness and enthusiasm in communicating their “hard
skills” via different modes of “soft skills.” This point is critical, given that for a
mastery of “hard skills” to be highly marketable in the context of global knowl-
edge economy, students will be able to use soft/human skills as a conduit for
representing and validating their expert knowledge.

References

[1] Will Markow, Debbie Hughes, and Andrew Bundy. The new foundational
skills of the digital economy: developing the professionals of the future.
Business-Higher Education Forum, Washington, District of Columbia, 2018.

285

LibreFoodPantry:
Developing a Multi-Institutional,

Faculty-Led, Humanitarian Free and
Open Source Software Community∗

Poster Abstract

Karl R. Wurst1, Stoney Jackson2, Heidi J. C. Ellis2,
Darci Burdge3, Lori Postner3

1Computer Science Department
Worcester State University, Worcester, MA 01602

kwurst@worcester.edu
2Computer Science and Information Technology Department,
Western New England University, Springfield, MA 01119

stoney.jackson@wne.edu, heidi.ellis@wne.edu
3Department of Mathematics,

Computer Science and Information Technology,
Nassau Community College, Garden City, NY 11530

darci.burdge@ncc.edu, lori.postner@ncc.edu

Engaging students in humanitarian free and open source software (HFOSS)
projects allows them to gain real-world software development skills while help-
ing society. For years the authors have been working to encourage student and
faculty participation in HFOSS projects and communities, but they have found
that participating in an existing HFOSS project, although ripe with learning
opportunities, presents a number of hurdles for faculty and students. An al-
ternative to joining an existing HFOSS project community is to participate in
a faculty-led HFOSS project. These projects provide the instructor with more
control over the learning environment, but often lack an active community
outside of the classroom.

This poster describes LibreFoodPantry, a multi-institutional effort to en-
gage a community of developers in creating humanitarian open source projects

∗Copyright is held by the author/owner.

286

to support their on-campus food pantries. Starting a faculty-led HFOSS project
involves making decisions not only about the features of the project but also
about community norms, tool choices, project development workflow, and inter-
institution cooperation.

This poster provides an overview of the creation of the LibreFoodPantry
community who is developing a suite of projects that support on-campus food
pantries. It describes instances of using LibreFoodPantry projects in various
classroom settings over three semesters, the lessons learned from these experi-
ences, and the resulting discussions and decisions made by the LibreFoodPantry
Coordinating Committee. This process has led to a community dedicated to
easing the on-ramp for faculty who want to help their students contribute to
an HFOSS project.

The LibreFoodPantry website (http://librefoodpantry.org) has links to the
vision, mission, and code of conduct for the community, as well as documenta-
tion on tools, development processes, and workflows. The site also has links to
the constituent projects’ codebases, issue trackers, and communication chan-
nels.

287

Student Reflections on Learning
in HFOSS∗

Poster Abstract

Gregory W. Hislop1, Heidi J. C. Ellis2, Becka Morgan3

1Department of Information Science
Drexel University

Philadelphia, PA 19104
hislop@drexel.edu

2Computer Science and Information Technology Department
Western New England University

Springfield, MA 01119
ellis@wne.edu

3Computer Science Division
Western Oregon University

Monmouth, OR 97361
morganb@wou.edu

Humanitarian Free and Open Source Software (HFOSS) projects provide a
rich learning context for students with the additional motivation of developing
software to help solve societal challenges and improve the human condition.
HFOSS projects also provide the benefit of allowing students to establish a
professional portfolio of contributions while still in school. Student involve-
ment in HFOSS has been shown to provide opportunity for learning software
engineering, technology, and business skills as reported in [1, 2]. These studies
used a quantitative approach based on results of Likert surveys. This poster
presents an effort to expand and confirm these results via a qualitative inves-
tigation into student experiences in participation in HFOSS in three different
undergraduate courses at three different academic institutions.

The instructors all have several years of experience involving students in
HFOSS projects. All three courses employed student reflective writing about
their class experiences. These writings were used as a source to gather unstruc-
tured observations about student learning. The writings utilized no specific

∗Copyright is held by the author/owner.

288

prompting about experience with an HFOSS project and one goal was to see
which topics became apparent and were common across the students’ reflec-
tions. The qualitative investigation focused on the following three research
questions:

1. What types of knowledge and skill do students report developing by work-
ing on an HFOSS project?

2. Do students indicate that HFOSS participation provides motivation or
affects confidence about pursuing computing careers?

3. What impact does it have on students to interact with the development
community of an HFOSS project?

The poster will provide an overview of the classes and HFOSS projects, re-
port on student observations, and summarize the themes that emerge from stu-
dent reflections. These themes include knowledge and skill, motivation and con-
fidence, community interactions, and student contributions. The poster will also
outline suggestions for adoption for instructors who are interested in explor-
ing student participation in HFOSS. Suggestions include starting with small
involvements, collaborating with the HFOSS community, considering extracur-
ricular opportunities and connecting with the community of instructors who
are supporting student involvement in HFOSS.

ACKNOWLEDGMENT

This material is based on work supported by the National Science Founda-
tion under Grant Nos. DUE-1525039, DUE-1524877, and DUE-1524898. Any
opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

References

[1] Heidi JC Ellis, Gregory W Hislop, Stoney Jackson, and Lori Postner. Team
project experiences in humanitarian free and open source software (hfoss).
ACM Transactions on Computing Education (TOCE), 15(4):1–23, 2015.
DOI=http://dx.doi.org/10.1145/2684812.

[2] Gregory W Hislop, Heidi JC Ellis, S Monisha Pulimood, Becka Mor-
gan, Suzanne Mello-Stark, Ben Coleman, and Cam Macdonell. A multi-
institutional study of learning via student involvement in humanitarian free
and open source software projects. In Proceedings of the eleventh annual
International Conference on International Computing Education Research,
pages 199–206, 2015.

289

