The Journal of Computing
Sciences in Colleges

Papers of the 21st Annual CCSC
Northwestern Conference

October 4th-5th, 2019
Pacific University
Forest Grove, OR

Baochuan Lu, Editor Sharon Tuttle, Regional Editor
Southwest Baptist University Humboldt State University

Volume 35, Number 1 October 2019

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing Sci-
ences in Colleges. Printed in the USA. POSTMASTER: Send address changes
to Susan Dean, CCSC Membership Secretary, 89 Stockton Ave, Walton, NY
13856.

Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

Table of Contents

The Consortium for Computing Sciences in Colleges Board of

Directors 5
CCSC National Partners & Foreword 7
Welcome to the 2019 CCSC Northwestern Conference 9
Regional Committees — 2019 CCSC Northwestern Region 10
Reviewers — 2019 CCSC Northwestern Conference 11
Social Change in Open Source Software — Keynote Speech 12

Amy R. Occhialino, Intel

Computer Science in High School: Identifying and Addressing
Common Barriers 14
Yolanda J. Reimer, University of Montana

LIBRE-ary, an Open-Source, Distributed Digital Archiving
System 22

Ben Glick, Jens Mache, Lewis € Clark College

Design of a Database Graduate Course as a Leveling Class for
Non-CS Major Graduate Students 32
Xuguang Chen, Saint Martin’s University

Course Models for Teaching Data Science 44

Haiyan Cheng, Willamette University, Tammy VanDeGrift, University
of Portland

The Effect of Peer Tutoring in Reducing Achievement Gaps:

A Success Story 57
Adamou Fode Made, Abeer Hasan, Scott Burgess, David Tuttle, Nick
Soetaert, Humboldt State University

MICE: A Holistic Scorekeeping Mechanism for Cybersecurity
Wargames 66
Tristan Saldanha, Quinn Vinlove, Jens Mache, Lewis € Clark College

Mining GitHub Classroom Commit Behavior in Elective and
Introductory Computer Science Courses 76
Gina Sprint, Jason Conci, Gonzaga University

Teaching Math for Computer Science in an Open-Enrollment
College — an Applied Learning Experience 85
Baogiang Yan, Missouri Western State University

Utilizing Deep Neural Networks for Brain—-Computer Interface-
Based Prosthesis Control 93
Thomas C. Noel, Brian R. Snider, George Fox University

Introduction to Jetstream: A Research and Education Cloud
— Conference Tutorial 102
Sanjana Sudarshan, Jeremy Fischer, Indiana University

Teaching Introduction to Programming Courses to Non-Computer
Science Majors using SageMath — Conference Tutorial 105
Razvan A. Mezei, Saint Martin’s University

Applying Code Translation and Subprogram Call Graph

to Improve Programming Proficiency in CS1

— Conference Tutorial 106
Xuguang Chen, Saint Martin’s University

A Comparison of Two Hands-On Cybersecurity Frameworks

— Conference Tutorial 108
Jens Mache, Lewis & Clark College, Richard Weiss, The FEvergreen State
College

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:

Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.

Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umbkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.

Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkec.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.

David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.

Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.

Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bedixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:

Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.

Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.

John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.

Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.

Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.

Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.

Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft
Google for Education
GitHub
NSF — National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology
Teradata
Mercury Learning and Information
Mercy College

Foreword

The following five CCSC conferences will take place this fall.

Midwestern Conference October 4-5, 2019
Benedictine University in Lisle, IL

Northwestern Conference October 4-5, 2019
Pacific University, Forest Grove, OR

Rocky Mountain Conference October 11-12, 2019
University of Sioux Falls in Sioux Falls, SD

Eastern Conference October 25-26, 2019
Robert Morris University in Moon Township, PA

Southeastern Conference October 25-26, 2019

Auburn University in Auburn, AL

The papers and talks cover a wide variety of topics that are current, excit-
ing, and relevant to us as computer science educators. We publish papers and
abstracts from the conferences in our JCSC journal. You will get the links to
the digital journals in your CCSC membership email. You can also find the
journal issues in the ACM digital library and in print on Amazon.

Since this spring we have switched to Latex for final manuscript submission.
The transition has been smooth. Authors and regional editors have worked
hard to adapt to the change, which made my life a lot easier.

The CCSC board of directors have decided to deposit DOIs for all peer-
reviewed papers we publish. With the DOIs others will be able to cite your
work in the most accurate and reliable way.

Baochuan Lu
Southwest Baptist University
CCSC Publications Chair

Welcome to the 2019 CCSC Northwestern
Conference

The 2019 Northwest Steering Committee is very pleased to welcome every-
one to the Twenty First Annual CCSC Northwestern Conference hosted this
year by Pacific University in Forest Grove, Oregon.

Many individuals and groups have helped to coordinate and support this
year’s conference and we want to thank them for all of their time and effort.
We especially thank the authors who submitted papers, workshops, and tutori-
als. This year we have nine papers, four tutorials, student lightning talks, and
student posters. The Steering Committee accepted nine out of twelve papers
through a double-blind review process. We had colleagues across the region
serve as professional reviewers and we recognize their generous efforts in pro-
viding time and guidance in the selection of our conference program. We are
extremely grateful to have Amy Occhialino, Director of Software Engineering
at Intel, begin our conference with her keynote address on Intel’s contribution
to Open Source Development.

A final thank you goes out to you the attendees whose participation is
essential not only to the continuance of conferences such as this, but also for
the continued communication and collegiality you provide between all of us
involved in the advancement and promotion of our discipline. We hope you
enjoy the conference.

Shereen Khoja
Pacific University
Conference Chair

Razvan Alexandru Mezei
Saint Martin’s University
Papers Chair

2019 CCSC Northwestern Conference Steering

Committee

Shereen Khoja, Conference Chair Pacific University, Forest Grove, OR
Chris Lane, Site Chair Pacific University, Forest Grove, OR
Bob Lewis, Program Chair Washintgon State Universtity Tri-Cities,

Richland, WA
Razvan Mezei, Papers Chair Saint Martin’s University, Lacey, WA
Nadra Guizani, Panels & Tutorials Chair . Gonzaga University, Spokane, WA
Tammy VanDeGrift, Speakers & Partners Chair University of Portland,

Portland, OR
Brian Snider, Student Posters Chair ... George Fox University, Newberg, OR

Regional Board — 2019 CCSC Northwestern Region

Brian Snider, Regional Representative . George Fox University, Newberg, OR

Dan Ford, Treasurer Linfield College, McMinnville, OR
Sharon Tuttle, Editor Humboldt State University, Arcata, CA
Kelvin Sung, Past Conf. Chair University of Washington Bothell Bothell, WA
Shereen Khoja, Next Conf. Chair Pacific University, Forest Grove, OR
Clint Jeffery, Registrar University of Idaho, Moscow, 1D
David Hansen, Webmaster George Fox University, Newberg, OR

10

Reviewers — 2019 CCSC Northwestern Conference

Carter, Addam Humboldt State University, Arcata, CA
Chen, Xuguangc.ooevnnn.. Saint Martin’s University, Lacey, WA
Davis, Janetl Whitman College, Walla Walla, WA
Guizani, Nadraoooooin. Gonzaga University, Spokane, WA
Khoja, Shereen Pacific University, Forest Grove, OR
Lewis, Robert R. ... Washington State University - Tri-Cities, Richland, WA
Mezei, Razvan Saint Martin’s University, Lacey, WA
Smith, Adam University of Puget Sound, Tacoma, WA
Snider, Brian R., George Fox University, Newberg, OR

11

Social Change in Open Source Software*

Keynote Speech
Amy R. Occhialino

Director of Software Engineering
Intel

You may know Intel only as a hardware company, and in many ways this is
true. Intel’s core business is semiconductor design and manufacturing. What
may be news to you is that Intel has spent close to two decades working in
the open source software community, collaborating on projects that enhance
Intel Architecture and advocating for the beauty, elegance, and possibilities
that exist within open source software development.

Here are a few facts that you may find interesting:

e Intel is the #1 contributor to Linux kernel, with
key industry leaders comprising our software de-
velopment team.

e Intel is #2 in Linux kernel maintainers.

e Intel has gone from sponsoring 12 open source
projects to 200 open source projects, spanning
cloud, edge, and device growth, over the past
decade.

e Finally, Intel leaders hold over 300 software stan-
dards and leadership positions. This equals 10%
of Intel’s overall software employee workforce.

Open source software development is an enormous
commitment and investment at Intel. This feeds into my second point of why
Social Change in Open Source Software is an area where I am passionate.

Leading in the future will require a wide range of perspectives, backgrounds,
and ideas to effectively solve the world’s toughest challenges. We at Intel have
the momentum, and the vision, to shape technology’s future. And our role
is expanding in an increasingly data-driven world, with significant prospects
for growth. But we are bound to fail if we do not demonstrate a commitment

*Copyright is held by the author/owner.

12

and passion to increasing and achieving full representative diversity within the
open source software industry.
Our success will be threatened in three ways:

e Market Failure: Without diversity-fueled creativity, innovation is stifled.
The same perspective and thoughts are generated and reinforced, pre-
venting new solutions from emerging.

e Customer Failure: We will lose customers because we do not listen to
them, engage with them, understand them, and learn from them in a full
perspective of ways.

e Talent Failure: We will lose top talent because individuals with diverse
backgrounds feel out of place in our culture and environment.

Intel is committed to achieving an inclusive and diverse environment in
the open source software community and will lead conversations on how the
industry can best achieve this vision. Change does not happen all at once,
it’s incremental, one person doing one thing every day. I personally increase
diversity in my own teams through my hiring practices. I have spent a decade
creating support systems through my leadership of women groups, and I ac-
tively advocate for social change within Intel and my tech community. Open
source software gives us the potential conditions, but we must actively engage
with it, and monitor it, for it to be what we want it to be.

Biography: Amy Occhialino has spent 20 years in high tech, primarily
working for Intel Corporation. She started as a process engineer focused on
chemical engineering in the late ’90s and spent 18+ years working in all aspects
of Intel’s semi-conductor manufacturing, from high-volume lean manufacturing
to silicon design. In 2017, Amy took the leap to the other side of Intel and
began working in open source software. She is currently a Director of Soft-
ware Engineering, designing and delivering a real-time operating system called
Zephyr (https://www.zephyrproject.org/). Amy is the head of the board of
directors that oversees the open source governance and strategic direction for
the project, hosted at The Linux Foundation. She has also spent over a decade
founding and leading women’s organizations within Intel, advocating for in-
clusion and equity. In her personal life, Amy lives in North Portland with her
husband and 8-year old twin boys, who currently believe that they are budding
Timbers players, and is the PTA president of her awesome local James John
Elementary School.

13

Computer Science in High School:
Identifying and Addressing Common
Barriers®

Yolanda J. Reimer
Department of Computer Science
University of Montana

yolanda.reimer@umontana. edu

Abstract

Improving participation and diversity in computer science is an is-
sue that continues to demand the attention of the educational research
community, and providing better opportunities to high school students
is critical in helping to resolve it. One bottleneck to improving CS offer-
ings at the high school level is the lack of qualified teachers, but there are
numerous additional barriers that must also be acknowledged and dealt
with. This paper documents the results of a focus group activity whereby
we engaged a cohort of high school teachers to better understand what
those common barriers are and how we might begin to address them.
We learned that teachers face serious limitations in student numbers,
student interest, scheduling, support from administrators, and access to
resources. We studied the ways in which high school students are drawn
into computer science and discuss the recommendations teachers have for
expanding on those efforts as well. The broader impact of this work is
that it will help teachers and schools across the nation recognize similar
issues in their own communities and develop new strategies for alleviating
them.

1 Introduction

Improving participation and diversity in computer science (CS) is an issue
that continues to demand the attention of the educational research community.

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

14

Many believe that the place to broaden student access to CS is in high school
and by providing better experiences at that point in a student’s education,
more will opt to study CS in college and ultimately choose a computing related
career path (e.g., [5]). Research data bears this out by indicating that students
who take computer science courses in high school are six times more likely to
major in it in college, with women being ten times more likely [3].

As with much of the nation, computer science opportunities in Montana
high schools remains low despite a strong market. Based on data compiled by
code.org [3], in Montana:

e There are open computing jobs at a rate of 1.5 times the average demand,;

e The salary for a computing occupation is about 50% higher than state
average;

e Only 40% of all public high schools teach computer science.

A significant bottleneck to offering more CS classes in high schools is the
lack of qualified teachers. Ome approach to dealing with this is providing
professional development opportunities and resources, which our NSF CS10K
grant has allowed us to do at the statewide level beginning in the summer
of 2017. To-date we have trained thirty Montana high school teachers in the
Joy and Beauty of Computing (JBC) curriculum [2], and fourteen in Mobile
Computer Science Principles (Mobile CSP) [4]. While working with this cohort
of teachers over the past two years, many of who returned from one summer
to the next, we began to understand that they face numerous other challenges
in offering CS at their high schools beyond becoming proficient in new areas
of computational thinking and programming.

This paper documents barriers that high school teachers from around the
state regularly encounter, including the difficulty of acquiring new skills for a
subject area they have not been formally trained in. During a fall 2018 weekend
workshop with eleven teacher participants who attended from communities
ranging in size from 200 to over 70,000, we engaged in a focus group activity
to understand these barriers and discuss possible ways to address them. Much
of what we learned from our teacher cohort parallels findings of other related
research, particularly in regard to access and understanding of computer science
[7, 8]. In our study we also sought to learn more about how students in these
high schools become engaged in computer science, and what recommendations
teachers have for expanding on those efforts as well. The broader impact of
what we report is that teachers and schools across the nation, whether rural
or otherwise, will recognize similar issues in their own communities, and will
develop some new strategies for alleviating them.

15

2 Methodology

In November 2018, we held a weekend workshop for high school teachers who
participated previously in one of our summer CS professional development
classes [6]. Eleven teachers from locations around the state attended. A pri-
mary goal of this workshop was to keep the community of educators meeting
regularly so that we could continue to share new topics, skills, ideas, and ex-
periences. On the second day of the meeting, we arranged for a focus group
activity to understand more about the barriers these teachers face in offering
computer science classes in their schools, and ways in which we might help
address those barriers.

The focus group activity was organized as follows, including intended time
allotments for each step:

1. After an introductory talk about the activity, the group is divided into
two smaller groups for phase 2. Each group is moved to separate rooms
or corners. (3-5 minutes)

2. Individuals write answers on post-it notes for each of the questions posed
(see below) and paste them up on the wall under headings that identify
the questions (for each question there is a large sheet of paper on the
wall to receive the post-its). (5-10 minutes.)

3. Each of the questions is discussed with the group to clarify what people
meant and how many people agree with each of the points. Facilitator
adds notes on the wall as needed to clarify any handwriting issues, am-
plify notes based on the discussion, re-categorizes notes into themes as
necessary, and annotates points that received strong group agreement or
conversely were the subject of disagreement, etc. (10-15 minutes.)

4. Each facilitator makes photos of the resulting wall to preserve their
group’s notes.

5. Entire group reconvenes for a final discussion. Facilitators bring their wall
sheets to the main room so all sets of answers to each question can be
viewed and discussed together. Further clarifications or notes are added
to the wall or otherwise recorded as needed to capture useful ideas from
the whole group discussion. (15-30 minutes).

Each focus group was asked to answer the following questions as per the
procedure outlined above:

1. What have been the major barriers you’ve faced in offering Computer
Science classes in your school?

2. How could this CS10K project help you address those barriers?

3. How have you or your school publicized or “marketed” computer science
classes, to invite and encourage students to participate?

16

4. What are some good ways to help students of different backgrounds to en-
gage with computer science as a potential college major or career choice?

5. How could we make the CS10K workshops or the educational materials
and resources more useful? Things we could add or change?

3 Barriers and Ways to Address Them

During the focus group activity, teachers were first asked about barriers to
offering computer science classes in their schools. Their comments are grouped
thematically and discussed below. The follow-on question of how best to ad-
dress these barriers resulted in numerous suggestions that are also described
within related themes.

3.1 Limited numbers of students in the school, limited student in-
terest, and scheduling issues that reduce the number of students
who can participate in a computer science elective course.

The largest number of comments from teachers fall under this theme, marking it
as the biggest barrier we identified. Some aspects of this issue are shared by all
high schools — such as finding time in already busy schedules to fit in computer
science courses that compete with other electives. Rural communities, however,
feel the additional strain of small school sizes and competing among a limited
number of students who might even consider taking CS.

During the group discussion portion of the focus group activity, teachers
noted that if student interest in computer science can be improved, it can drive
class availability (scheduling), especially if requests are made in spring while
schedules are being created for the following year. An 8-period day could allow
for more elective class offerings, or figuring out ways to offer computer science
as an independent study might also be a way to alleviate scheduling issues and
bring more students into CS.

3.2 Limited support from administrators, other stakeholders.

The second most frequently mentioned barrier is that school administrators
and counselors need be made aware of what’s available and what computer
science is; they need to understand the benefit of coding as a basic skill for
all students and one that can lay the foundation for many career choices; and
they need to offer more support for these classes. One teacher also suggested
that there needs to be community support for changing perceptions about CS.

To address this problem, participants recommended providing enhanced in-
formation to school administrators and stakeholders about the importance of
computer science education. There has to be an increase in the awareness and

17

understanding of superintendents, school boards, administrators, counselors,
students, and communities about the importance of CS education. Some sug-
gested that this might be achieved via targeted letters or meeting presentations,
and that national trends and job statistics could be included in informational
materials.

3.3 Limited number of qualified teachers.

The third major barrier mentioned is the lack of qualified teachers willing and
able to offer CS classes. During group discussion, participants said that other
routes to becoming certified to teach computer science in high schools must
become available. They also noted that teachers with degrees in other areas,
such as business, may not really be qualified to teach computer science.

To help address this issue, teachers suggested looking to the Office of Public
Instruction to make changes that would encourage student participation and
increase the number of available, qualified computer science teachers. Teacher
participants also appreciated and wanted continued professional development
opportunities such as the one we offer. One noted that by “training us, then
we spread the word, generate enthusiasm.”

3.4 Limited access to hardware, software, online resources, curricu-
lum materials.

Even if all other barriers are resolved, limited access to necessary computing
resources remains an issue. While this problem is perhaps felt more acutely in
rural communities, it is also true in many of the larger towns and cities across
the state as well.

To address this issue and assist schools in widening their access to resources,
participants heavily promoted the idea of using online tools to share teaching
and recruiting strategies, knowledge, and curriculums. They also wanted en-
hanced collaboration opportunities and noted the possibility of applying for
grants to help with hardware and software needs. Many teachers acknowledge
that resource sharing has to be inexpensive for it to be practical.

4 Engaging Students in Computer Science Education

To determine how students find out about computer science opportunities in
their schools, we asked teachers how those classes are publicized or marketed.
Many teachers mentioned that they have individual conversations with students
or give presentations in classes, at club meetings, pep rallies, etc. Written and
video advertising to students and families is also incorporated in the form of
blogs, Facebook, newsletters, hallway displays, and letters. Some teachers use

18

the Hour of Code event [1] to promote programming. Assistance is frequently
sought from school counselors and flexible requirements and scheduling is ap-
preciated. Word of mouth by students currently taking CS courses also helps
communications.

In terms of recommending ways to help students of different backgrounds
better engage with computer science as a potential college major or career
choice, themes from focus group comments emerged as follows:

4.1 Provide guest speakers, field trips, job shadowing, experiences
with computer science people and applications in the commu-
nity.

The most frequent recommendation for engaging more students from different
backgrounds in CS was inviting guest speakers to come talk with students.
Perhaps the most effective guest speakers would have backgrounds in higher
education, culturally-relevant areas, and local businesses that are tech related.
Others mentioned providing opportunities for students to visit companies, job
shadow, and engage in internships. Breaking down possible stereotypes by
introducing students to the multiple career opportunities available to computer
scientists is also key. One suggestion was to connect college CS students with
high school students in a mentoring type relationship.

4.2 Change course requirements or course components.

Teachers felt strongly that computer classes should be made a requirement in
high school, perhaps instead of or combined with keyboarding/word process-
ing classes. Others noted that coding could be integrated into other existing
classes. Participants noted that the earlier students can be engaged the bet-
ter, including at the elementary and middle school levels, and that professional
development opportunities for K8 teachers should be made available as well.
Lastly, some suggestions for improving student engagement involved high-
lighting national networked events and organizations that promote coding. One
teacher said the “hour of code” could be a school event, perhaps with pizza,
and another wanted to find ways to promote women in coding. Teachers also
thought that if hardware and software resources could be provided to schools
and students with low budgets and access, that would also help spark interest.

5 Discussion and Future Work

After offering multiple professional development (PD) classes and workshops
for high school teachers from Montana, we recognize the value of this experi-
ence for teachers and believe real progress is being made towards addressing

19

many of the barriers discussed during our recent focus group activity. In par-
ticular, the sense of community we are building along with sharing resources
and experiences extends well beyond teaching new CS skills. Participants place
high value on becoming part of the network of fellow teachers who they can
learn from and reach out to long after the PD classes are over.

We also realize, however, that more work needs to be done to help teachers
with the additional challenges they face integrating CS in their schools. Both
major public universities in the state now offer a CS teaching minor where one
did not exist a couple of years ago. We continue to work with high schools
on dual credit options for the CS classes they are able to offer. Being able
to earn college credit provides significant motivation for students and now, in
Montana, the first six dual enrollment credits are free, making this option even
more attractive to students. Providing credits for high school teachers that take
a professional development class is also very helpful. Many teachers use these
earned credits for lane changes (i.e., moving to a higher level of education) and
to increase their salary. As a direct result of their feedback, we also printed
out and sent completion certificates to all teachers that attended our most
recent workshop. We did this so they could help educate and explain their
participation in our PD to local administrators and other teachers.

Our research group will continue offering professional development oppor-
tunities to teachers around the state for the near future and we have recently
secured additional funding to do so. The initial cohort of teachers who started
with us in 2017 has expressed interest in continuing their education by tack-
ling additional topics within CS. Our immediate plan is to extend our Python
course to include specialized units such as Python programming with Raspberry
Pis, to integrate more advanced topics like data structures, and to reach out
to middle school teachers so we can start the training even earlier.

6 Acknowledgements

Thank you to Michael Coe and David Levine for helping organize and facilitate
the focus group activity describe in this paper, and all the high school teach-
ers who participated and offered such sound advice. This material is based
upon work supported by the National Science Foundation under Grant No.
CNS-1639841. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

20

References

[1]
2]

13]

[4]

[5]

16]

7]

18]

Hour of Code. https://hourofcode.com/us, retrieved May 13, 2019.

Joy and beauty of computing. http://ou.montana.edu/t2cs10k/jbc/
lectures/index.html, retrieved May 10, 2019.

Support K-12 computer science education in Montana. https://code.
org/advocacy/state-facts/MT.pdf, retrieved May 15, 2019.

Mobile CSP, 2018. https://course.mobilecsp.org/mobilecsp/, re-
trieved May 10, 2019.

J. Cuny. Transforming high school computing: a call to action. ACM
Inroads, 3(2):32-36, 2012.

Y. J. Reimer, M. Coe, L. M. Blank, and J. Braun. Effects of professional
development on programming knowledge and self-efficacy. In Proceedings
of the IEEE Frontiers in Education Conference, FIE, 2018.

C. Stephenson, A. Derbenwick Miller, C. Alvarado, L. Barker, V. Barr,
T. Camp, C. Frieze, C. Lewis, E. Cannon Mindell, L. Limbird, D. Richard-
son, M. Sahami, E. Villa, H. Walker, and S. Zweben. Retention in Com-
puter Science Undergraduate Programs in the U.S.: Data Challenges and
Promising Interventions. ACM, New York, NY, 2018.

J. Wang, H. Hong, J. Ravitz, and S. H. Moghadam. Landscape of K-12
computer science education in the U.S.: Perceptions, access, and barri-
ers. In Proceedings of the 47th ACM Technical Symposium on Computing
Science FEducation, SIGCSE 16, pages 645-650, 2016.

21

LIBRE-ary, an Open-Source, Distributed
Digital Archiving System*

Ben Glick, Jens Mache
Lewis € Clark College
Portland, OR

{glick, jmache}@lclark. edu

Abstract

As the amount of data we rely on every day has increased expo-
nentially, the problem of digital archiving is becoming more and more
important. People increasingly depend on having ready and easy access
to the data they need to carry out their everyday lives. With this in-
creased focus on data in everyday life comes a drastic increase in the
amount of data people are responsible for. A corollary to this increasing
dependence and scale is a problem we would define as digital clutter.
Much like physical clutter, digital clutter can lead to confusion, complex
data-management strategies, and often, unfortunate loss of important
data and documents. In this paper, we present LIBRE-ary, our solution
to the digital clutter and archiving problem.

1 Introduction, Related Work, and Motivation

As the world becomes more and more data-dependent, new problems of digital
object storage have arisen. A corollary to this increasing dependence and scale
is a problem we would define as digital clutter. Much like physical clutter,
digital clutter can lead to confusion, complex data-management strategies, and
often, unfortunate loss of important data and documents. In this paper, we
present LIBRE-ary, our solution to the digital clutter and archiving problem.

One of these new data-related problems is what we call the “digital archive
problem.” People and organizations have a need to keep track of a huge amount

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

22

of data and in very specific ways [8]. They are often required by data manage-
ment plans to keep specific versions of specific objects or certain objects may
simply be very important. It is easier now than it ever has been to lose track
of the data we depend on every day.

There has been a significant amount of work on the problem of computer
backup systems [5, 6, 13, 12], and there has been some work on special, single-
purpose digital archives [14, 3, 16, 15], but surprisingly little work has been
done on a truly general-purpose digital archive system. This project is able
to utilize some of the advancements of other digital backup systems which
have been created and operated for some time now, through the digital object
storage adapter outlined in the “distributed architecture” section of this paper.
We believe that LIBRE-ary is unique among existing digital archive systems in
that it is general purpose, completely configurable, fully distributed, sufficiently
fault-tolerant, and scalable.

1.1 A Note on the Name

The name LIBRE-ary is not (yet) an acronym. It’s inspired by the word Li-
brary (as the product is both meant to serve as a library and also was designed
initially for use in a library), and incorporate the word “libre,” meaning “free-
dom,” which is also a common word used in the open-source community. This
word is incorporated because of how important the open-source vision is to the
design, implementation, use, and future of LIBRE-ary. The name LIBRE-ary
will be used as follows: the noun LIBRE-ary refers to the project itself, while
when we refer to “a LIBRE-ary,” we are referring to an instance of LIBRE-ary.
For example, we may refer to files as being stored in “a LIBRE-ary,” while we
would discuss design of LIBRE-ary itself.

1.2 Archiving vs Backups

The problems of digital archiving and digital backups are often erroneously con-
flated. Digital backups provide a solution for the problems that occur when a
person’s computer is damaged or lost [7]. Digital backups provide “insurance”
against hard drive failures but do not help at all with the problem of digital
clutter. In fact, digital backups increase the amount of digital clutter that users
are responsible for managing. Often, even people who have extensive backups
of their devices can still lose important data after their devices fail, simply
because navigating all of the backups can be incredibly difficult. Creating dig-
ital backups is the process of indiscriminately making copies of every single file
[7]. We define archiving, on the other hand, as a completely different prob-
lem. Building a digital archive, similar to building a physical archive, requires
storing very specific documents along with metadata for those documents, so

23

that archivists always know exactly what they have in their archive, where it’s
stored, and how secure it is. Building a digital archive can be extremely valu-
able in the situation where a user is either creating data or otherwise depends
on having access to the same specific data. While backups focus on indiscrim-
inately keeping many copies of many different files and even entire systems,
digital archives focus on saving only important files, and keeping close track of
how and where the files are stored, as well as keeping track of how to quickly
recover them when copies are lost.

One example of a situation where digital backups are simply not enough to
solve the problems at hand is in libraries. Libraries often have projects that
require not just keeping many copies of digital objects but also require keeping
complex indices on what the digital objects represent, what other objects they
may be related to, where and how they were generated, and how important
they are. These challenges cannot be solved by digital backup systems. In-
stead of simply keeping many copies of anything, it is important when digitally
archiving to keep many copies stored in many different locations along with
an index of why each object is important and where it came from. With that
feature set being considered, we can then move on to thinking about how users
might want to interact with an archive system.

2 Design

The key to LIBRE-ary’s architecture is twofold: first, there is an approach of
generality and abstraction that is able to make LIBRE-ary sufficiently applica-
ble to many situations dependent on digital archives, and second, LIBRE-ary
is designed to be inherently distributed and fault-tolerant, in order to ensure
reliability and resilience. Additionally, we have designed LIBRE-ary to be both
configurable and accessible. It is intended to be able to be used by people with
any level of computational experience, intuitive for users of all experience levels
- from users with only knowledge of basic, GUI-based computer use, to expe-
rienced programmers and other power-users. It is designed to be able to store
any kind of digital object, taking into account any necessary considerations
which may influence the way said objects are stored.

2.1 Distributed Architecture

LIBRE-ary’s architecture is inherently distributed [11]. There is no component
of LIBRE-ary which is meant to only run on a single machine. In theory, an
instance of LIBRE-ary could be both fully distributed and fully redundant,
with a copy of each component each running in concert on separate devices
connected over a network. This distributed design is reminiscent of Google’s
Kubernetes container orchestration system [1]. Each component of LIBRE-ary

24

is designed by contract [4]: there’s an interface which instances of each com-
ponent must conform to, but there’re no specific requirements for how each
component should operate. The main components of LIBRE-ary are as follows:
the metadata manager and associated databases, the various user interface ele-
ments (known as “endpoints”), the scheduler, the agent, and a configurable and
extensible list of file storage adapters. Each component has a single responsi-
bility and is designed by contract to interact nicely with other components in
order to carry out transparent distributed archiving. An architecture diagram
of the LIBRE-ary can be found in Figure 1.

Endpoinis Agents ——
Can intaract and decide —- Scheduler(s)
which agent responsible

Endpoint 1 for what requests
P API @
ython Agent 1 R

Local Machine

Adapters

Endpoint 2

.~ U
Agent 2 Adapter 1
AWS a Local Storage

Endpaint 3

Web

Adapter 2

Amazon 53

Adapter 3

Metadata ——
Manager Agent Server | Google Drive
\
- J Responds as 1
agent

Figure 1: LIBRE-ary architecture including all required components.

The LIBRE-ary agent is the main “manager” of the application. It is re-
spomnsible for processing user rules, managing configuration, storing metadata,
and interacting with object storage adapters. The agent is the only part of
LIBRE-ary which must always be running. It is constantly monitoring and
synchronizing various shards of the metadata database, managing scheduled
data integrity checks, and ensuring that the correct copies of the correct ob-
jects are all stored in the right places. It is also responsible for starting the
ingestion process of a new digital object into the database. The ingestion
process is outlined further in the “Archive and Retrieval Process” section. The
agent is designed to be able to operate in concert with other agents, though this

25

has never been tested to our knowledge. When running with multiple agents
distributed across several computers, an instance of LIBRE-ary will be able
to continue running through the failure of one of the instances. When a dig-
ital object is ingested, the agent is responsible for deciding how to best store
the digital object, taking into account users’ specified options and available
resources.

The metadata manager is responsible for keeping track of what is stored
in the instance of LIBRE-ary and where those digital objects are stored and
can be retrieved. When first starting this project, we knew that we would
need to store metadata about each item in the archive, and so we initially
thought to use a structured relational database. However, we realized that the
metadata database would have to be equally as resilient as the data stored
in the archive itself. We decided it was necessary to utilize a fault-tolerant,
distributed database to accomplish this. The metadata manager is responsible
for orchestrating the distributed nature of the metadata storage. This is user-
configurable: users are able to state where they want the metadata to be
stored. Any metadata manager backend must be able to support either SQL-
style [10] relational querying or key-value querying. Up to this point, only
SQL databases have been used, but there is no reason that a different system,
like MongoDB or other NoSQL [2] databases couldn’t be used. There is only
one instance of the metadata manager running in a LIBRE-ary, though it
can store the actual metadata in any number of locations. The metadata
manager, perhaps counterintuitively, controls not only metadata about the
actual digital objects in the LIBRE-ary, but also stores metadata about the
LIBRE-ary itself. The main example of this kind of data are the descriptions
of digital objects’ importance levels. More about these levels is described in
the “Archive, Integrity Check, and Retrieval Procedure” section of this paper.

The LIBRE-ary scheduler is, rather intuitively, responsible for scheduling
integrity checks, planned backups, and periodically ensuring that required re-
sources are available. It is invoked by the agent, and is told the frequency with
which various checks must be run, and is responsible for orchestrating said
checks and invoking resources required. If the scheduled checks find something
which is not as it should be, the scheduler is responsible for reporting to the
agent that it needs to be fixed. The scheduler needs to communicate with the
metadata manager, so that it can access information about the levels that dig-
ital objects fit into and what tasks need to be scheduled. There can be several
schedulers in a LIBRE-ary, each scheduling tasks for either various subsets of
the digital objects in the archive, or objects which belong to different criticality
levels. If a scheduler ever fails, another scheduler in the LIBRE-ary can take
on its role. The number of schedulers in a LIBRE-ary can be chosen by the
user.

26

In order to provide a user interface which is usable by many types of users
with varying levels of computational skill and experience, we define the notion
of an “endpoint.” An endpoint is a generalization of a user interface as a
contract [4]. These endpoints can all look and feel very different, but all satisfy
the interface which is exposed by the LIBRE-ary agent. LIBRE-ary comes
with several endpoints built in, including a python interface, a command-line
client, and a simple web interface. These endpoints all behave very differently
and are easily accessible to different types of users, but all comply with the
LIBRE-ary agent’s interface and interact nicely with the agent. Because the
agent’s interface is an open standard, it is easy to design endpoints which
comply with the interface. It is also easy to incorporate similar endpoints into
a LIBRE-ary. Endpoints do not need to run on the same machine as any
other part of the LIBRE-ary. As long as the endpoint is able to communicate
with the agent, whether it’s through being on the same system or over the
network, the endpoint will be able to carry out its function. Because of this,
an endpoint could be used as an ingress controller - the LIBRE-ary runs in
a private network, which is connected to a gateway machine on the public
network. On that gateway machine is the ingress endpoint. An architecture
like this allows for close control of who has access to the data stored in the
archive, and could be used to create a secure enclave for protected data.

Finally, and most importantly, each LIBRE-ary has one or more digital ob-
ject storage adapters. In order to allow for storage of digital objects in as many
ways as possible, we provide an open interface for a “digital storage adapter.”
An adapter is a representation of a data storage provider that LIBRE-ary can
interact with. The motivation for providing such an interface is for maximum
configurability and extensibility. Instead of directly building in support for a
few data storage backends, we wanted to build an interface which can easily be
used by developers to build out their own connections to specific data storage
providers. Defining this interface also allows us to formalize exactly what our
adapters’ responsibilities are. We define this contract in terms of “verbs,” that
the adapter must be able to perform. Specifically, each adapter must have the
ability to do four things: store, retrieve, update, or delete any object which is
currently stored in said adapter. This contract is very general, on purpose, so
as to support a wide variety of different storage services as potential adapters.
Adapters can range from storage services like AWS S3 or Google Drive to local
storage on a computer to SMB fileshare to SQL databases, and many more
options.

The overall architecture of LIBRE-ary is designed to depend on no single
computer. Because the entire point of an archive is to ensure long-term sta-
bility, it would be a mistake to create a design which is too dependent on any
one piece of hardware, when computer hardware is notorious for being prone

27

to failure after just a few years. To solve this problem, we have been inspired
by the Kubernetes project, which is a distributed container orchestrator that
shares these distributed properties. An unfortunate side effect of this design
choice is that it makes it difficult to make complete architecture diagrams of all
of the possible arrangements of services. The diagrams in this section represent
common use cases.

2.2 Generality of Digital Objects

LIBRE-ary generalizes the concept of a digital object. There may be any
number of different types of objects that need to be stored, including but not
limited to text documents, images, videos, composite files like TAR or ZIP
archives, and binary files. Some of these object types have preferred storage
methods. The LIBRE-ary agent is responsible for inferring types of data which
is ingested to LIBRE-ary and deciding how to store them. For example, text-
based documents can easily have their lengths in lines evaluated. The number
of lines in a file can then be saved as an extra integrity check. On the other
hand, because binary files do not have a notion of “length,” this information is
not kept. Another example is with composite files such as archives. As their
name suggests, archives store more than one file, by bundling them together.
It is possible that one or more object inside the composite file may be more
important than another. In this case, the agent is able to treat those files inside
the archive differently, storing copies of each file using different digital storage
adapters. It is important to note that even with this type inference, LIBRE-ary
can still store any digital object, even if it has not encountered that specific
digital object type before, because it can treat any unknown digital object as
a binary file.

2.3 Archive, Integrity Check, and Retrieval Procedure

The archive and retrieval procedure for LIBRE-ary maximizes resilience and
fault tolerance. When a file is first ingested, a “canonical copy” of the file
is created. The canonical copy is stored through an adapter which has been
specified in configuration to be the “canonical adapter.” All objects in the
canonical adapter (thus, canonical copies of all objects) are automatically set
at the highest configured level of importance, ensuring that they will be checked
for integrity as frequently as possible. Checksums [9] are taken of the canonical
copy, and saved to the metadata database as part of the ingestion process.
Then, copies of the canonical copy are stored through the adapters configured
for the importance level of the adapter. All copies have their checksums taken
and stored in the metadata database as well. If the checksum of a copy does
not match that of the canonical copy, the mismatched copy is deleted and a

28

new copy is created.

After ingestion is over, on a schedule, integrity checks take place. In an
integrity check, the following process happens. First, a new checksum of the
canonical copy is taken and compared to the checksum on file. If there is a
mismatch, a recovery is attempted. The recovery process is to iterate through
all copies of a digital object, retrieve all with checksums that match the initially
saved canonical checksum, and replace the canonical copy with a copy which
has the same checksum as the initial copy. After the canonical copy is checked,
the integrity check continues to all other copies of the object in the LIBRE-
ary. Essentially the same process is repeated on every copy of the object
being checked. During retrievals, the canonical copy is preferred over “satellite”
copies, when all other parameters are identical. Upon a failed retrieval, other
files stored on the same adapter will be checked for integrity and have retrievals
attempted.

In order to make the LIBRE-ary archive process work for a broad variety
of applications, we designed a configuration system which allows for various
“importance levels” of digital objects. Levels define how important objects are,
controlling what adapters they are stored in and how frequently integrity checks
are run on them. Levels are completely user-defined, while their enforcement is
handled by LIBRE-ary. One common use case we have seen is three importance
levels: low, high, and critical. Objects stored at the “Low” level are stored on
two adapters (plus a canonical copy), while objects stored at the “high” and
“critical” levels are stored in four adapters. Objects at the “low” and “high”
levels are checked for integrity weekly, while objects at the “critical” level are
checked for integrity daily. Depending on applications, any integrity check
frequency or adapter set is possible.

3 Conclusion

As the world becomes more and more data-dependent, new problems of digital
object storage have arisen. In this paper, we present LIBRE-ary, our solution to
the digital clutter and archiving problem. There has been a significant amount
of work on the problem of computer backup systems, and there has been some
work on special, single-purpose digital archives, but surprisingly little work has
been done on a truly general-purpose digital archive system. We believe that
LIBRE-ary is unique among existing digital archive systems in that it is general
purpose, completely configurable, fully distributed, sufficiently fault-tolerant,
and scalable. The problems of digital archiving and digital backups are often
erroneously conflated. Digital backups provide a solution for the problems that
occur when a person’s computer is damaged or lost. Archiving, on the other
hand, is a completely different problem. Building a digital archive, similar

29

to building a physical archive, requires storing very specific documents along
with metadata for those documents, so that archivists always know exactly
what they have in their archive, where it’s stored, and how secure it is.
LIBRE-ary’s design has taken an approach of generality and abstraction
that is able to make LIBRE-ary sufficiently applicable to many situations
dependent on digital archives, and LIBRE-ary is also designed to be inher-
ently distributed and fault-tolerant, in order to ensure reliability and resilience.
LIBRE-ary’s architecture is inherently distributed. There is no component of
LIBRE-ary which is meant to only run on a single machine. In theory, an in-
stance of LIBRE-ary could be both fully distributed and fully redundant, with a
copy of each component each running in concert on separate devices connected
over a network. This distributed design is reminiscent of Google’s Kubernetes
container orchestration system. The “distributedness” of the LIBRE-ary design
ensures maximal fault tolerance and recoverability. It is designed to depend
on no single computer or piece of computer hardware. LIBRE-ary generalizes
the concept of a digital object. There may be any number of different types of
objects that need to be stored, including but not limited to text documents,
images, videos, composite files like TAR or ZIP archives, and binary files. The
archive and retrieval procedure for LIBRE-ary maximizes resilience and fault
tolerance, and ensures that documents stored in LIBRE-ary are properly repli-
cated and kept up to date. All of these features and design considerations
make LIBRE-ary a useful solution to the problem of digital clutter and digital
archiving. There is currently an instance of LIBRE-ary running at the library
of a liberal arts college, where it helps to ensure library digital assets are kept
track of. It is continually being monitored to ensure it runs as it should.

A Appendix A

LIBRE-ary is an open-source project, and the source code is available here:
https://github.com/benhg/libreary. We encourage people interested in
working on LIBRE-ary to fork our repository and submit pull requests.

References
[1] David Bernstein. Containers and cloud: From Ixc to docker to kubernetes. I[EEE
Cloud Computing, 1(3):81-84, 2014.

[2] Jing Han, E. Haihong, Guan Le, and Jian Du. Survey on NoSQL database. In
Sizth international conference on pervasive computing and applications, pages
363-366. IEEE, 2011.

30

3l

(4]
5]

[6]

(7]

(8]
(9]

[10]
1]
12]
113]
14]

[15]

[16]

Shahram Izadi, Abigail J. Sellen, Richard M. Banks, Stuart Taylor, Stephen E.
Hodges, and Alex Butler. Archive for physical and digital objects, U.S. Patent
8,199,117, June 12, 2012.

J-M. Jazequel and Bertrand Meyer. Design by contract: The lessons of Ariane.
Computer, 30(1):129-130, 1997.

Nadav Kedem. Mass storage subsystem and backup arrangement for digital
data processing system which permits information to be backed up while host
computer (s) continue (s) operating in connection with information stored on
mass storage subsystem, U.S. Patent 6,076,148, June 13, 2000.

Gregory Kenley, George Ericson, Richard Fortier, Chuck Holland, Robert Mas-
tors, James Pownell, Tracy Taylor, John Wallace, and Neil Webber. Digital data
storage system with improved data migration, U.S. Patent 5,276,867, January
4, 1994.

Catherine C. Marshall, Sara Bly, and Francoise Brun-Cottan. The long term
fate of our digital belongings: Toward a service model for personal archives.
Archiving Conference, 2006(1):25-30, 2006.

Viktor Mayer-Schénberger and Kenneth Cukier. Big data: A revolution that will
transform how we live, work, and think. Houghton MifHin Harcourt, 2013.

Loic Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A
comparison of hash function types and querying mechanisms. Pattern Recogni-
tion Letters, 31(11):1348-1358, 2010.

Michael Stonebraker. SQL databases v. NoSQL databases. Communications of
the ACM, 53(4):10-11, 2010.
Andrew S. Tanenbaum and Maarten Van Steen. Distributed systems: principles

and paradigms. Prentice-Hall, 2007.

Keith Walls. File backup system for producing a backup copy of a file which
may be updated during backup, U.S. Patent 5,163,148, November 10, 1992.

Kristen J. Webb. Method and system for backing up digital data, U.S. Patent
6,675,177, January 6, 2004.

A. W. Wong, H. K. Huang, Ronald L. Arenson, and Joseph K. Lee. Digital
archive system for radiologic images. Radiographics, 14(5):1119-1126, 1994.

Albert WK Wong, Ricky K. Taira, and H. K. Huang. Implementation of a digital
archive center for a radiology department. Medical Imaging VI: PACS Design
and Evaluation, 1654:182-191, 1992.

Filip Jay Yeskel. High volume document image archive system and method, U.S.
Patent 6,115,509, September 5, 2000.

31

Design of a Database Graduate Course as
a Leveling Class for Non-CS Major
Graduate Students”

Xuguang Chen
Computer Science Department
Saint Martin’s University

Lacey, WA 98503

zchen@stmartin. edu

Abstract

This paper describes the design of a new graduate computer science
course. CSC210 Database Fundamentals is a fundamental course in Saint
Martin’s University (SMU) for the Bachelor of Science in computer sci-
ence and Bachelor of Science in information technology. Many applicants
to the Master of Science in Computer Science in SMU are from non-
computer majors. They are usually required to successfully complete
several undergraduate courses as their leveling classes, before officially
starting their graduate courses. One of such leveling classes is CSC210.
However, such a solution has some limitations during the implementa-
tion, so several new graduate courses focusing on those applicants are
proposed, one of which is about database fundamentals and primarily
in accordance with CSC210. This new graduate course introduces the
topics covered in CSC210 plus additional knowledge and skills required
in graduate studies. Other than the coursework such as assignments,
midterm exams and quizzes, the new design has incorporated a second
term project helping students better familiarize themselves with vari-
ous research methods and skills. The lecture arrangement of this new
course is divided into two phases. The first phase applies the traditional
teacher-centered method discussing the main topics from CSC210, while
the second phase is more similar to a graduate course, focusing on class-
room discussion, self-study, and research project. The new course will be

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

32

tried in the summer of 2019 as a pilot, still using CSC210 as the course
number.

1 Introduction

Computing is one of the fastest growing industries in the United States; the
demand for qualified computing professionals is high [2, 1]. Recognizing such
a high demand for training in computer science, Saint Martin’s University
created master’s program in computer science in April 2018. Like other uni-
versities [2, 6, 7, 1, 4], many applications in SMU are from the applicants
with non-computer majors. For these applicants, a usual solution is to condi-
tionally accept them, and then require them to successfully complete several
designated undergraduate or graduate computer science courses (as leveling
classes), before officially starting their master program. According to the grad-
uate academic catalog of SMU [5], one of leveling courses is CSC210 Database
Fundamentals.

CSC210 is offered by the Department of Computer Science in Saint Mar-
tin’s University (SMU), which is a fundamental course for Bachelor of Science
in computer science and Bachelor of Science in information technology. The
author has taught database-related courses at several universities and taught
CSC210 at SMU in 2016 and 2017.

However, according to the students’ feedback and the performance of the
students who have completed the leveling classes, this solution has some lim-
itations. Thus, several new graduate courses are specifically designed for the
graduate students with non-computer majors, one of which is about database
fundamentals. These graduate courses are based on the corresponding under-
graduate courses for example CSC210, which not only introduce the topics of
those undergraduate course but also cover the knowledge and skills that are
required in graduate studies.

In this paper, the background and motivation of designing the new graduate
course of database fundamentals is in the second section. The third section
is about the detail of the course design, such as the topics to be discussed,
coursework, and teaching method. A short discussion about this new design is
in the fourth section. Finally, a brief summary and future work is provided.

2 Background and Motivation
For the applicants with non-computer majors, a usual solution [2, 6, 7, 1, 4]

is to conditionally accept them, and then require them to successfully com-
plete several designated undergraduate or graduate courses as leveling classes.

33

However, based on our experience, such a solution is not always helpful for the
applicants to make up their expertise.

At first, all these applicants to MSCS already have had a bachelor degree
in non-computer majors and certain computer-related work experience in their
original fields. Therefore, many topics discussed in an undergraduate course
(as a leveling class) are often easy or simple for them, and correspondingly
cannot better help them to strengthen their education background in computer
science.

Secondly, the leveling classes must be able to help the students acquire the
knowledge, meanwhile developing the skills that the students should possess
when they are pursing their master degree, for example, the skills of managing
research projects, collecting materials and data, conducting experiments and
analyzing the results, writing research report, and introducing research projects
in presentations. Because undergraduate courses usually do not fully require or
cover these skills, although they can help students learn the lack of computer
knowledge, they are not very helpful for the students to acquire the skills
needed in MSCS.

In response to the above limitations, we decided to switch to another so-
lution having been adopted by some universities [6, 7], which requires the
students to take graduate courses specifically designed as the leveling classes.
But, the design of such graduate courses can have some limitations too. For
example, the coursework mainly consists of assignments, exams, quizzes, and
tests, and lacks the work like term projects [6]. Although such a course design
can help the students better understand the techniques and skills discussed in
class, they often can not provide the students with an opportunity to com-
prehensively apply these techniques and skills to a specific application. So,
correspondingly, the application experience the students can get from such a
course will be limited. Moreover, the grade [6] is primarily determined by the
work related to assignments and exams rather that by those required in a grad-
uate course such as group discussion, literature review, research report, and
presentation. As the result, because the students have to spend most of time
on their assignments and exams so as to keep a high score, the research skills
and experience the students can learn will be limited.

Hence, in order to overcome the limitations, we decided to design some grad-
uate courses as level classes having the dual characteristics of undergraduate
and graduate courses. They cover the main topics of the corresponding under-
graduate course, and meanwhile contain a certain number of topics a graduate
course to be said. In their coursework, it focuses more on the work such as
term projects, helping students to gain more practical application experience
and research experience.

According to the admission requirements [5], if an applicant with a non-

34

computer major has not taken a databases course, then they must complete
CSC210 as a leveling class. A sample is listed in Table 1 and Table 2. Because
many applicants with non-computer majors already have acquired database
operation experience from their work, many topics in this course become too
easy for them. Thus, designing a graduate course (CSC5xx) about the funda-
mentals of database as a leveling class becomes necessary.

Table 1: Topics Covered in CSC210 and in new course

CSC210 Topics in Summer 2017

New course in Summer 2019

Module Relational model and relational language | Database Operations
. SQL « Introduction to databases
. Constraints . Introduction to SQL
« Relational algebra and relation
calculus
Module Database design Database Design
« Entity Relationship Diagram « Database development lifecycle
e Enhanced Entity Relationship « Relational model
Diagram « Data modeling and entity relational
e Database Normalization modeling
« Functional dependency and
normalization
Module Selected topics for database issues Database Programming Techniques
e Database Programming Techniques e Introduction to SQL programming
e Architecture of various database techniques, such as communicating
systems with a relational database via a
« Relationship between databases and program in C#
users
Module Selected Topics in Databases

Introduction to Relational Algebra
and Relational Calculus
Architecture of various database
systems

Relationship between databases and
users

Security issues related to database
systems

Data warehousing and mining
NoSQL database

Papers and other publications related
to databases

35

Table 2: Sample Coursework and Grade

CSC210 in Fall 2016 New Course in Summer 2019
Assignments 20% Assignments 20%
Coursework for Participation 5% Coursework for Participation 10%
Midterm Exam 20% | Midterm Exam 30%
Project 15% | Term project I - academic project 20%
Final Exam 40% Term project II - research project 20%
Total 100% | Total 100%

3 Course Design

3.1

General Principle of Course Design

When designing the new database course, the following factors are mainly
considered.

3.2

Although it is a graduate course, it must embed the characteristics of
both the undergraduate and graduate courses but with a more emphasis
on the side of undergraduate.

In addition to the topics covered in CSC210, topics in a regular graduate
course should be embedded.

Other than the coursework usually used an undergraduate course such
as assignments, quizzes, and exams, it should included the work widely
used in a graduate course such as independent research projects, group
discussions, research reports and presentations.

During the lecture time, because many students have had database op-
eration experience, the hours assigned to the topics from CSC210 will be
compressed so that the remaining hours are allocated to the newly added
ones.

When discussing the topics from CSC210, pedagogic methods is similar
to the teacher-centered method, and when working on other topics, the
student-centered approach will be applied, such as in the form of group
discussions, self-study, research presentations, and so on.

Topics in Each Module

The topics from CSC210 are primarily scheduled in the first three modules, as
shown in Table 3. The new additions are in the last module.

36

Table 3: Topics and learning objectives covered in summer 2019

Module 1 Database Operations
Topics « Introduction to databases
. Introduction to SQL
Learning + Comprehend the basic architecture of the database system
Objectives « Compose working SQL statements for various queries, such as
= Create a database and its tables using SQL
= Insert and modify data using SQL
= Retrieve data using SQL
. Learn to use a specific database, such as Microsoft SQL Server
Assessments Assignments, midterm exam, and course project
Module 2 Database Design
Topics « Database development lifecycle
. Relational model
« Data modeling and entity relational modeling
+ Functional dependency and normalization
Learning Applying Entity-Relationship Diagram to model data relevant to a database
Objectives task, given a written description, reports and/or other information from a user
s Transform the entity-relationship model into a database design, following the
relational approach
o Normalize a given set of tables to third normal form
Assessments Assignments, midterm exam, and course project
Module 3 Database Programming Techniques
Topics Introduction to SQL programming techniques, such as
» Communicating with a relational database via a program in C#
Learning Understand how to communicate with a database via a program
Objectives
Assessments Assignments, midterm exam, and course project
Module 4 Selected Topics in Databases
Topics « Introduction to Relational Algebra and Relational Calculus
+ Architecture of various database systems
+ Relationship between databases and users
e Security issues related to database systems
« Data warehousing and mining
. NoSQL database
* Papers and other publications related to databases
Learning e Know how to apply Relational Algebra and Relational Calculus to specify
Objectives various retrieval requests
+ Extensively learn database-related topics to gain sufficient expertise in
databases
e Learn and cultivate the academic research methods and skills in computer
science
Assessments Search project, coursework for participation

Module 1. Database Operations

Because many graduate students with non-computer majors have extensively
operated databases before taking the leveling class, the lecture will start from

37

database operations, helping the students further understand the architectures
of a relational database system and how to create SQL queries to communicate
with a database. Moreover, some concepts such as primary key, foreign key,
super key, and relationship among the data in different tables are covered
here, which will be applied in the next module to the topics such as entity-
relationship diagram (ER diagram) and enhanced entity-relationship diagram
(EER diagram), database normalization, and database development.

Module 2. Database Design

This module has three stages. At first, the database development lifecycle and
relational model are covered, helping students:

e Understand that a database can not be developed randomly or by directly
writing SQL queries.
e Learn the procedure and steps involved when developing a database.

Next, the topics related to relational model, data modeling, entity rela-
tional modeling, and especially entity relation diagram are followed, helping
the students:

e Understand the meaning and application of each symbol needed to create
an ER or EER diagram.

e Learn how to draw an ER or EER diagram for a particular scenario,
when designing a database.

Finally, functional dependencies and database normalization are discussed,
helping the students:

e Understand the concepts of functional dependencies and database nor-
malization.
e Learn how to normalize a database to the 3rd normal form (3NF).

Module 3. Database Programming Techniques

This module introduces the students how to use a computer program to com-
municate with a database system, performing the operations such as retrieving
information for a database, creating a database, and modify a database. Con-
sidering the fact that the students are from non-computer majors, the primary
purpose of this module is to help students understand the procedure of database
programming rather than learning the skills of database programming.

38

Module 4. Selected Topics

This module has two stages. Firstly, it provides students an extensive knowl-
edge of databases especially the following aspects:

e Understand the job responsibilities of various personnel working for a
database, such as database administrators, database designers, and tool
developers.

e Understand the topics related to database architectures, like three-schema
architecture, DBMS component modules, database system utilities, and
centralized and client /server architectures.

e Know the security issues related to databases.

Then, the students will be provided various papers, books, technical reports
and perform literature review about databases, helping students:

e Know the classification of databases and the unique features of each type
of database

e Acquiring the experience of operating different database systems

e Carrying out research activities in certain areas of computer science to
accumulate research experience and learn various research techniques and
skills required for graduate studies.

3.3 Coursework

The coursework is listed in Table 2. As shown in the Table, the final exams
have been removed in the new course so that the students can spend more time
on their two projects. In addition, quizzes via coursework for participation and
written in class are added.

Coursework for Participation

The coursework for participation includes the activities such as mini quizzes,
exercises in class, reading assigned papers, attendance check, group discussion
and presentation. The size of such a work is small and provided flexibly. The
purposes are to evaluate the performance of each student and help students
review/understand the basic idea or application of a particular topic. For
instance, after explaining the Entity Relationship diagram (ERD), a mini quiz
asking the students to write down the name and meaning of each symbol can
be provided immediately. After a group discussion in class, a mini presentation
can be scheduled.

39

Assignments and Midterm Exam

The first a few assignments and midterm exam are mainly used together to
evaluate the performance of each student working on the topics of database
fundamentals. The assignment are close to those in an undergraduate course,
focusing on practicing each skill and technique discussed in class, and on the
other hand, the midterm exam focuses on the comprehensive application of all
techniques and skills practiced in the assignments. The rest of assignments will
be more close to graduate assignments, requiring the students, for instance, to
read the specified papers or other materials, then conduct research to find the
answers, and finally report or summarize their results as the answers.

Term project I - Academic Project

The academic project is semester-long (15 weeks) and completed by 2 to 3
students as a team. It helps the students better understand the techniques
and skills discussed in class by comprehensively applying them to a specific
application, meanwhile acquiring real working experience in database develop-
ment. The project usually was either a prototype or if available, a real one
from industry. The whole project will be completed in two iterations. Firstly,
applying what they have learned in Module 1, the students collect the data,
design the database, and created a database in SQL. The techniques in Module
2 such as ER/EER diagrams and database normalization are encouraged but
not mandatory. Then, when introducing database design and programming
technique, the students revise their databases by:

e Creating or if having created, revising ER/EER diagrams of their
database.

e Normalizing their database to 3NF in SQL.

e Creating other documents such as system architecture, user manual, and
tutorials.

e Creating a C or PHP program communicating/manipulating the
database.

In each iteration, the students need to finish the corresponding paperwork
(for example weekly report or progress report). In the end, each group will
have a final presentation and report, comprehensively introducing what they
done and their achievements in their project.

Term project II - Research Project

Similar to the academic project, the research project is also semester-long and
completed by 2 to 3 students as a team. Different from the academic projects,

40

the project is selected from the instructor’s research area, but tailored for
this class. When the project is employed, the students act as the research
assistants and the instructor is their client and advisor. Under the supervision
of the instructor, the students manage the whole project and conduct various
research activities. The purpose of this project is to help the students learn
various research methods and skills useful for their future graduate studies and
accumulate practical research experience. Based on the number of students
enrolled, several projects will be prepared and provided to the students at
the beginning of the semester so that each student team can choose the most
interested one.

4 Implementation and Discussion

The new course will be tried in the summer of 2019 as a pilot, using CSC210 as
the course number. The effectiveness will be measured by different methods,
such as:

Course evaluation

At the end of each semester, students in every class will complete a course
evaluation. We will compare the evaluations from this course to the previous
evaluations to find out if this design is more helpful to students.

Student survey

At the end of the summer semester, students taking this course will be re-
quired to complete a survey specifically drafted for the course design, helping
to identify the strengths and weaknesses of the design and how to improve.

Performance in coursework

Some coursework used in previous semester (such as assignments and projects)
will be selected and used in this summer. The student’s answers will be com-
pared to the previous answers to determine the effectiveness of the course
design.

In author’s opinion, compared to CSC210 and other graduate courses used
as leveling classes [7], the design in this paper can potentially have several
advantages.

Firstly, by taking this course, the students can learn the knowledge of com-
puter science (especially database-related knowledge) that they lack. Mean-
while, the course project can provide the students with an opportunity to
comprehensively apply a variety of knowledge and skills learned in class to
a specific application, thereby helping students gain practical experience in

41

database operations and development. Additionally, when completing the re-
search project, the students can learn the methods and skills needed in graduate
program through various research activities, thereby helping them gain some
practical research experience and laying a foundation for their research in the
future.

Moreover, this approach can contribute to the instructor’s career develop-
ment, closely combining teaching and research. Universities in the primarily
undergraduate category are usually smaller in size and offer fewer graduate
programs. The faculty in such a university has to teach more courses and of-
ten have no research assistants. In this design, when working on the research
project, the student can act as research assistants, helping the instructor em-
ploy research projects that cannot be done alone and thus providing support
to the faculty career development.

5 Summary and Future Work

This paper introduces the design of a new graduate computer science course
related to database fundamentals in Saint Martin’s University (SMU). Recog-
nizing such the high demand for training in computer science, master’s program
in computer science (MSCS) was created in SMU in April 2018. Many appli-
cants to MSCS are from non-computer majors, so they are usually required to
successfully complete several undergraduate courses as their leveling classes,
before officially starting their graduate courses. One of such leveling classes is
CSC210 which is a database fundamental course for undergraduate students.

However, such a solution has some limitations during the implementation,
so several new graduate courses as leveling classes are proposed, one of which
is about database fundamentals and primarily in accordance with CSC210.

This new graduate course not only introduces the topics covered in CSC210
but also has additional knowledge and skills required in graduate studies. Other
than the coursework such as assignments, midterm exams and quizzes, a second
term project [3] is incorporated helping students better familiarize themselves
with various research methods and skills. The lecture arrangement of this
new course is divided into two phases. The first phase applies the traditional
teacher-centered method discussing the main topics from CSC210, while the
second phase is more similar to a graduate course, focusing on classroom dis-
cussion, self-study, and research project.

As the future work, the new course will be tried in the summer of 2019 as
a pilot, still using CSC210 as the course number during the trail. Then, based
on the feedback collected from the students, this new course will be further
modified and submitted for approval in the fall of 2019. If approved, it will
be officially listed in the SMU’s undergraduate academic catalog as a 500-level

42

course and offered in 2020-2021 academic year.

References

[1]

2]

3]

[4]

5]

16]

7]

University Of South Alabam. Masters program for non-majors.
https://www.southalabama.edu/colleges/soc/masters-program-
for-non-majors.html.

Kristin Burnham. How to get a Master’s in computer science without
a CS background, October, 2017. https://www.northeastern.edu/
graduate/blog/how-to-get-masters-in-computer-science-without-
cs-background/.

Xuguang Chen. Redesign of a senior software engineering course with dual
projects. Journal of Computing Sciences in Colleges, 33(1):194-201, 2017.

The University of Texas at San Antonio. M.S. degree. https://cs.utsa.
edu/students/graduate/masters-degree.

Baylor University. Graduate leveling. https://www.baylor.edu/csd/
index.php?id=94628.

Brandeis University. Master of Science in Computer Science for non-
majors. https://www.brandeis.edu/computer-science/graduate/12-
course-masters.html.

Kennesaw State University. Computer Science, MS. http:
//catalog.kennesaw.edu/preview_program.php?catoid=39&poid=
4925&returnto=3082.

43

Course Models for Teaching
Data Science”

Haiyan Cheng' and Tammy VanDeGrift®
IComputer Science Department

Willamette Unwversity
Salem, OR 97501
hcheng@uwillamette. edu
?Donald P. Shiley School of Engineering
Unwversity of Portland
Portland, OR 97203

vandegriQup. edu

Abstract

This paper describes two models for data science courses offered by
computer science programs at two different universities. At both insti-
tutions the data science course serves as an elective course for computer
science majors. The paper presents course outlines, topics, labs, and
projects associated with the courses, so that others can adopt and adapt
these models. The course topics and the projects are similar at both
institutions. One institution has more frequent lab-based assessments
and the other has fewer more open-ended assignments. Both courses
have been offered once and the instructors are satisfied with the student
learning outcomes.

1 Introduction

Data Scientist was considered the best job in 2018 by Glassdoor’s rankings
[5]. Preparation for this career comes in several forms. People with mathe-
matics, statistics, and computing backgrounds can get on-the-job experience or

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

44

complete masters degrees in data science. Another option is to complete data
science bootcamps on-line or in person [16]. The job titles vary just as much
as the preparation — data analyst, data scientist, data engineer, or sometimes
a more general database administrator. While the College of Charleston has
offered a degree in Data Science for over ten years [3], other universities are
just starting to offer courses and programs in this area. This paper describes
recently offered data science courses at two private universities in the Pacific
Northwest. Both serve as elective courses for CS majors and minors and are
designed to provide exposure to foundational topics in data analysis, statistics,
model-building, machine learning, data visualization, and ethics.

2 Data Science Courses

2.1 Background & Development

Both authors developed data science courses to serve as elective courses for
computer science majors. Neither computer science program had an existing
course in data science or big data analytics. For the purpose of this paper, the
institutions will be referred to as UnivA and UnivB. Both UnivA and UnivB
are semester-based private institutions on the west coast that offer degrees in
computer science. UnivA has around 50 computer science majors across four
cohorts. UnivB is slightly larger with 180 computer science majors across four
cohorts; The curricula at both institutions are similar with an introduction to
computer science course followed by a data structures course. Table 1 contains
information about both courses, based on their initial offerings.

Table 1: Data Science Course Information

UnivA UnivB
Course Name Intro to Data Science Intro to Big Data Analytics
Name in Paper DS 400 BD 400
Prerequisites One Junior-level CS course Data Structures & Statistics

beyond Data Structures

No. of Students 32 of max 24 24 of max 25
First Offering Spring 2018 Spring 2019
Rotation Every other year Every other year
Languages R, Python and Tableau R

Since BD 400 was offered one year after DS 400, the UnivB faculty member
used the UnivA course materials in developing BD 400, in addition to other
on-line materials [9, 12, 7]. The author from UnivA has background in compu-
tational science and predictive modeling, and already has experience using R,

45

Python and Tableau in research. The author has prepared the course by partici-
pating collaborative research projects for a consecutive three summers, working
on various data projects including anomaly detection, predictive policing, and
DNA hotspots binding prediction. The hands-on collaborative nature of data
science projects inspired the author to design and offer a data science course
to further explore individual CS student’s potential and prepare students bet-
ter for job opportunities. In order to prepare for the course, the author from
UnivB completed on-line courses through EdX for Microsoft’s Data Science
certificate program [12]. Since that author already knew Python and Python
is used in the curriculum at UnivB, the author elected to learn R and use R
in BD 400, so that students developed skills in a new programming language.
The motivation for offering a course in Big Data Analytics came from UnivB’s
computer science industrial advisory board; members of the board indicated
that more people need exposure to this area.

Table 2 includes topics covered in the courses. The X in the column indi-
cates the topic was covered in the corresponding course. The table, however,
does not necessarily indicate the order in which topics were presented. As the
reader can see, most topics were consistent across both courses.

The main textbook for DS 400 was Doing Data Science, Straight Talk from
the Frontline by Cathy O’Neil and Rachel Schutt [13]. Other textbooks for
recommended reading in DS 400 include these: [17, 15, 11]. The required text-
books for BD 400 were Data Science and Big Data Analytics and An Introduc-
tion to Statistical Learning with Applications in R [14, 9] with recommended
reading as [13]. DS 400 used RStudio for R to perform exploratory data anal-
ysis (EDA), Anaconda Jupyter notebook [1] for Python machine learning and
Tableau for visualization. BD 400 used RStudio as the development environ-
ment for R and the Shiny application platform for data visualization [2].

2.2 Course Assessments

Both instructors focused on student learning through hands-on labs, homework
assignments, and projects. Both instructors used similar grading schemes (93+
A, 90-92 A-, 87-90 B+, 83-87 B, 80-83 B-, etc.). Table 3 shows the weights of
the course assessments toward the final grades.

2.3 DS 400

The instructor for DS 400 organized the course on a weekly basis for the total of
15 weeks. The lectures are 90 minutes long on Tuesdays and Thursdays. Each
lecture has an associated 90 minutes lab. The lecture time include powerpoint
presentation, hands-on code demonstration and students interactive code de-
veloping, as well as watching videos and general discussions. The instructor

46

Table 2: Course Topics
DS 400 BD 400

Intro to Data Science
Intro to R

Intro to Python

Intro to Tableau

Statistics & Probability
Exploratory Data Analysis
Linear Regression
Classification

Logistic Regression
Decision Trees
Unsupervised Learning
Clustering

Data Wrangling

Data Visualization
Platforms: Spark and Hadoop
Ethics

<

Il I el i e R S e I il

PP R K K KA

also assigns weekly required reading and exercises, which include background
reading for relevant research papers, textbooks, software installation, mini-
exercise, tutorial for R, Python and Tableau.

Topics: The class topics were broken down into weekly chunks, with rele-
vant required tasks:

1.
2.

P

© XN

10.
. Pandas and data wrangling with examples.
12.
13.

Intro to data science, data science life cycle.

Exercise on personal data science profile, practice asking questions about
data, R intro and exploratory data analysis using R.

Probability distributions and data science algorithms.

R linear regression and multiple regression through examples.
Supervised learning, classification, logistic regression, K Nearest Neigh-
bors, K-mean in R.

Hierarchical clustering in R.

Tableau introduction and tutorials.

Python introduction, environment setup and tutorial.

Python data projects case study through examples.

Numpy basics

Pandas plotting and visualization.
Pandas generalized models and scikit-learn classification algorithms.

47

Table 3: Weights and Deliverables

DS 400 BD 400

Homework/Labs 40% (2 assignments) 21% (6 labs)
Exam or Quizzes 20% (1 midterm) 15% (6 quizzes)
Project 30% 25%
Participation 10% 10%
Research Paper 15%
Personal Data Project ™%
Presentation %

14. Data science ethics

Homework: The instructor for DS 400 designed two collaborative open-
ended group assignments. FEach homework assignment was done in teams of
three to five students. Each homework submission includes a written summary
report, the source code, and an in-class presentation. Here are the descriptions
of the assignments:

1. Exploratory Data Analysis with R, with a focus on various visualizations
and pattern finding: Using New York Times ads and clicks information
from May 2012, perform exploratory data analysis and make visual and
quantitative comparisons. Some guidelines and suggested steps were pro-
vided to help students get started. For this homework, eight teams were
formed to work on the same dataset.

2. Linear and Multiple Regression with R, learn how to analyze the quality
of the models. For this homework, eight teams were formed. This home-
work has two parts, in part 1, all teams were required to work on the
same fake dataset. In part two, three real datasets were provided, team
1, 2, 3 worked on dataset 1, teams 4, 5, 6 worked on dataset 2, and teams
7, 8 worked on dataset 3. For each dataset, a series questions were asked
to give students hint on what needs to be done.

Group project brought out students creativity in visualizing data from dif-
ferent angles and encouraged them to explore various interesting facts. The
in-class presentation provided students opportunities to learn from others, es-
pecially those teams that work on the same datasets. Students were required
to form their own team. Each team has a leader who is responsible for al-
locating, coordinating tasks, submitting deliverables and reporting individual
contributions. Different teams were formed for the two homework, so that the
students have opportunities to work with various classmates and learn about

48

each other’s strength, weakness, as well as personal interests to prepare for
their final project team formation.

Project: Students worked in teams on a culminating final project of their
interest. Teams chose a relatively large dataset to explore. In doing the project,
students learned about the data domain, how the data is organized, conducted
exploratory data analysis, generated models, generated a visualization, and
communicated the results through a final in-class presentation. Each team
is also required to make a poster to present at the university’s annual SSRD
(Student Scholarship Recognition Day) event.

Each team discussed their proposal and obtain approval from the instructor,
who helped each team to set their project goal. Team formation and project
proposals were due three weeks prior to the final presentations. A proposal
template was provided for students to report the following information:

1. Project title

2. Team members (first person is the leader)

3. Data and its description: source, number of files, format, number of
record in each file.

4. Proposed project goal and tentative algorithms and approaches.

5. Research questions planning to answer or hypothesis planning to test.

6. Forecast or model techniques.

Nine final team projects were produced with the contents:

Statistical analysis of Movies from 1980-2017
Analysis of CS degree conferred in OR and CA
Whale identification challenge

Chocolate bar ratings

Crime analysis of Portland Oregon

Federal employee public policy research
NCAA college basketball analysis

Pokemon data science

Analysis of noise complaints in New York City

© 00N Ok Wi

The UnivB instructor used this project as a model for the project in the
BD 400 course. Some differences were that in DS 400 students completed the
project with a combination of R, Python and Tableau, then presented the final
results through a formal in-class presentation and a poster. In BD 400, only R
is used.

Student Presentations: Two 90-minute class sessions were scheduled for stu-
dents to present homework 1 and 2 results. Critiques, feedback and discussions
followed each presentation. The 3-hour final exam time was used for the final
project presentation.

49

2.4 BD 400

The instructor for BD 400 organized the course around six two-week modules,
with each module including three lecture days, two lab days, one-half day for
student presentations, and one-half day for a culminating quiz. The course met
Mondays, Wednesdays, and Fridays for 55 minutes per session. An example
two-week block is presented in Table 4. Lectures focused on the theory and
algorithms for data science and labs focused on using R packages to apply the
algorithms on example datasets. Student presentations focused on contempo-
rary research papers that utilized the techniques studied in the module.

Modules: The class topics were organized into six modules with associated
labs, student presentations, and quizzes:

1. Intro to data science, statistics, data life cycle, and programming in R

(a) Lab: Making projects in RStudio, Exploratory Data Analysis, Plot-
ting, Cleaning Data

2. Data models, linear regression, and multiple regression
(a) Lab: Regression, Multiple Regression, Non-Linear Transformations

3. Supervised learning, classification, logistic regression, datasets: training,
validation, test, K Nearest Neighbors

(a) Lab: Logistic regression, training models, KNN, gradient descent
for coefficients for logistic regression coefficients

4. Tree-based models, Bayes classifier

(a) Lab: Classification trees, Bayes classifier, Regression trees, Bagging,
Boosting, Random Forests

5. Clustering, unsupervised learning, principal component analysis
(a) Lab: Principal component analysis, k-means, hierarchical clustering

6. Association rules, recommendation systems, data visualization, data pre-
sentation, ethics

(a) Lab: Association itemsets and rules, data visualization with Shiny

Labs and Pre-labs: Students worked with assigned partners to complete the
labs. The assigned partners rotated every lab, so each student worked with six
different students in the class. Each lab had a pre-lab assignment based on
readings that were completed individually and due at the beginning of the first
lab session. Most labs were designed from the labs and datasets provided in
[9]. The instructor created six to eight checkpoints for the two-session labs and
student work was graded on completion of the checkpoints.

50

Table 4: Two-week Block in BD 400

Monday Wednesday Friday
Quiz on Previous Module / Lecture Lab Day
Lecture Student Presentations / Lecture Lab Day

Lecture / Review Quiz on Module & Lab Due

Project: A semester-long project was assigned the first week of the semester.
Students chose teammates based on shared interests in domains outside com-
puter science. The eight project topic areas that emerged from students’ in-
terests included the National Basketball Association, video game sales, global
workforce participation of women, carbon emissions in the USA, free/reduced
lunch and the CPI, gun ownership and mortality, grocery store access and in-
come, and mathematical sequences. To ensure that students made progress
outside of class, project deadlines happened throughout the semester:

e Team Formation: Upload team member names (due beginning of third
week)

e Project Proposal: Upload proposed project domain, dataset the team
plans to explore, and a preliminary exploratory data analysis (due begin-
ning of sixth week)

e Project Demos: Present models created from data (due middle of 13th
week)

e Project Code and Dashboard: Final code and Shiny dashboard complete
(due middle of 15th week)

e Letter: Teams chose a recipient and wrote a letter about the models and
data (due middle of 15th week); this was in place of a formal paper to
give students a substitute for a formal customer/client who would be
interested in the results of the data analysis

e Presentation: Teams did a formal oral presentation during the final exam
timeslot

Research Paper: Students completed individual research papers of 2000 to
2500 words about how data and analytics have transformed a domain. The
paper included the types of data that are collected, how the data is analyzed,
and models built from the data. This was due at the end of the ninth week of
the semester. Students chose a wide range of domains: food and agriculture,
weather forecasting, sports, military, shopping, and prediction systems.

Personal Data Project: Students completed personal data projects through-
out the semester. The assignment asked them to choose a personal, measurable
goal and keep a data diary about progress to the goal. For example, they could
choose a goal of applying to ten jobs or studying at the library for at least one

51

hour per day or practicing a musical instrument at least three timers per week.
A reflection about their goal, the data collected, how collecting and using data
helped inform them about personal decisions, and what they learned about
themselves was due at the beginning of the 13th week of the semester. Stu-
dents chose personal goals in exercise habits, practicing music, maintaining a
budget, applying for jobs or internships, and calorie consumption.

Student Presentations: Seven 30-minute sessions were scheduled for student
presentations that happened every other week. In the middle of each two-
week module, a group of three to four students presented results from research
papers that used the data modelling techniques in that part of the module.
The instructor deliberately chose research papers from authors around the
world, so students could expand their understanding of global issues. The
instructor chose three to four papers for each student presentation session, so
students typically divided the presentation by one paper per presenter. The
students were asked to do the presentation, do some active learning activity
with the class, and submit a quiz question based on the presentation. After the
presentation, the instructor posted students’ slides to the course management
system, so they had access to this material when studying for quizzes. Example
papers from around the world include the following: [10, 8, 4].

3 Results, Conclusions and Proposed Future Changes

Both courses emphasized the placement of data science within the domains
of programming skills, math/statistics, and domain knowledge, as shown in
Drew Conway’s venn diagram [6]. DS 400 included more lectures on statistics,
Python and Tableau. Because BD 400 had a prerequisite of a course in statistics
and probability, just one lecture reviewed this material. Python and Tableau
were not part of the course. Both courses required students to do background
research about the domain in which they collected data for projects. The
instructors of the courses are satisfied with the first offerings of the courses.
UnivB benefited from having materials and resources developed at UnivA.
Considering various students background, the instructor at UnivA designed
the course with both R and Python to give students exposure for two languages.
Together with statistics background introduction and Tableau software, the in-
structor feels the course has breadth, but may lack depth for a limited time
span. To get students’ feedback, the instructor designed an online evaluation
form, 10 students responded with the following results. For the time spent be-
tween R and Python, five students prefer to spend more time on Python, four
students prefer more time on R, and one prefers 50-50 split. For language pref-
erence on exploratory data analysis (EDA), five students prefer using Python,
three students prefer using R, and two has no strong preference. Eight students

52

prefer spending more class time to learn Tableau, two students prefer not. In
terms of specific skill growth in the scales of 0 to 10, (0 indicates a specific skill
does not grow, 10 indicates the skill has grown significantly), students reported
growth shown in figure 1. Students wish to grow more in the following areas in
order of importance: Python, data analysis, computer science, statistics and
data visualization. Students also reported the most frequently used learning
resources beside class material are: R and Python tutorial, stackoverflow, other
books and resources, other data science students and youtube. For struggling
contents, students reported statistics background and debugging with R and
Python. The answers for whether they have any interest in declaring a data
analytic minor if it were offered, five said yes, four said maybe, and one said:
"T would, but will likely graduate before I get the opportunity".

Skill Growth (0-10)

70
60
50
40
30
20
10

0

cs Data DataVis Effective Math Python R Statistics
Analysis ualizati.. teamwo..

Value

Figure 1: Skill growth (0-10) after taking DS 400 (sum of total 10 students).

After teaching the course for the first time, the instructor at UnivA plans
to revise the course in the following ways: split the DS 400 course into a two
sequence courses: CS-300 Fundamental of Data Science, and CS-400 Applied
Data Science. Both courses will use Python. Statistics and R will be taught
in the Mathematics department, Math-200 Statistical learning with R, and
will be the pre-requisite for the CS-300. This design will also help to support
the planned data science major and minor. With this revision, more smaller
homework and exercises in Python will be designed and more advanced content

53

can be added to the upper level course. All students feel the data science
course is valuable, especially in helping students to secure summer internships
and REU research experience. Five students completed data science-related
projects as their senior capstone project. Several students decided to continue
Master’s degree in data science. This course also resulted two faculty-student
collaborative research projects: one with a psychology professor, the other with
a public policy professor. The instructor feels data science has its advantages
of being hosted in the Liberal Arts setting, where students can combine their
diverse background and work across disciplines. The instructor at UnivA also
thinks that Ethics in Data Science topics can be developed into a full-fledged
course in collaboration with another department.

After the first course offering, the UnivB instructor would change the
weights of assessments in the next offering by increasing the weight of the
quizzes and reducing the weights of the labs and personal data project. Because
the labs and personal data assignment were primarily graded on completion,
most students earned high marks in those categories. The quizzes, research
paper, and project demonstrated a greater distribution of students skills. Labs
were based on those in [9] that included sample code. The instructor provided
sample code for labs, but some students thought that was too much scaffold-
ing and wanted less starter code. In future offerings, the labs will include
more open-ended coding challenges. Students in the courses completed end-
of-semester evaluations about the courses. At UnivB, all twenty-two students
that completed the evaluation agreed or strongly agreed that the course was
a valuable experience. All twenty-four students showed engagement through
consistent attendance and submission of labs, pre-labs, and the project. The
instructor for BD 400 invited two recent alumni who work as data scientists to
give guest presentations on their work and the techniques and tools they use
in their jobs; both presenters encouraged skill development in R and python,
data exploration, model-building, and visualizations. One of the students re-
ported that the guest lectures and the class itself provided insight into the data
scientist profession and now has data scientist as a career goal.

This paper presented two variants of an elective course in data science.
With the rise in data collected by individuals, corporations, and institutions
comes the need to manage, use, and protect data. Data Scientist has been
named as the best job for three consecutive years [5]. Institutions may want
to consider how to prepare students for this career, through elective courses,
minors, or designed majors. Because the course blends computing, statistics,
and domain knowledge, faculty may want to consider offering a data science
course for students across disciplines. Hopefully, these models are helpful for
other faculty who want to design data science courses. The reader is welcome
to contact the authors for more information and course materials.

54

References

[1]
2]
3]

4]

5]

16]

7]

18]

19]

[10]

Anaconda, 2019. https://www.anaconda.com/.
R studio, 2019. https://www.rstudio.com/.

Paul Anderson, James Bowring, Renée McCauley, George Pothering, and
Christopher Starr. An undergraduate degree in data science: curriculum
and a decade of implementation experience. In Proceedings of the 45th
ACM technical symposium on Computer science education, pages 145 —
150, 2015.

Arthur T.E. Capozzi, Giancarlo Ruffo, Viviana Patti, and Cristina Bosco.
A data viz platform as a support to study, analyze and understand the
hate speech phenomenon. In Proceedings of the International Conference
on Web Studies, 2018.

Louis Columbus. Data scientist is the best job in America ac-
cording Glassdoor’s 2018 rankings. Forbes, January 28 2018.
https://www.forbes.com/sites/louiscolumbus/2018,/01,/29/data-
scientist-is-the-best-job-in-america-according-glassdoors-2018-
rankings/3dba9e7a5535.

Drew Conway. The data science venn diagram, 2015.
http://drewconway.com/zia,/2013/3 /26 /the-data-science-venn-diagram.

Vasant Dhar. Data science and prediction. Communications of the ACM,
56(12):64 — 73, December 2013.

Lasantha Fernando, Sriganesh Lokanathan, Aparna Surendra, and Thav-
isha Gomez. Predicting population-level socio-economic characteristics us-
ing call detail records (CDRs) in Sri Lanka. In Proceedings of DSMM’18:
Data Science for Macro-Modeling with Financial and Economic Datasets,

2018.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning with Applications in R. Springer, 2017.
http://www-bcf.usc.edu/ gareth/ISL/index.html.

Preecha Khakham, Narumol Chumuang, and Mahasak Ketcham. Isan
dhamma handwritten characters recognition system by using functional
trees classifier. In Proceedings of the 11th International Conference on
Signal-Image Technology and Internet-Based Systems, pages 606 — 612,
2015.

55

[11]
[12]

[13]
[14]
[15]

[16]

[17]

56

Wes McKinney. Python for Data Analysis. O’Reilly, 2012.

Microsoft. Microsoft professional program in data science, 2019.
https://www.edx.org/microsoft-professional-program-data-science.

Cathy O’Neil and Rachel Schutt. Doing Data Science, Straight Talk From
the Frontline. O'Reilly, 2014.

EMC Education Services. Data Science and Big Data Analytics. John
Wiley and Sons, Inc., 2015.

Jake VanderPla. Python Data Science Handbook. O’Reilly, 2016.

Alex Williams. Data science bootcamps, May 30 2019.
https://www.coursereport.com/blog/data-science-bootcamps-the-
complete-guide.

Nina Zumel and John Mount. Practical Data Science with R. Manning,
2014.

The Effect of Peer Tutoring in Reducing
Achievement Gaps: A Success Story”*

Adamou Fode Made!, Abeer Hasan?, Scott Burgess!,
David Tuttle!, Nick Soetaert!
IComputer Science Department
{adamou. fode, scott.burgess, david. tuttle,nes239}Chumboldt. edu
2Department of Mathematics
{abeer.hasan}C@humboldt. edu
Humboldt State University
1 Harpst Street
Arcata, California 95519

Abstract

We describe the effects of three semesters of a newly implemented
peer tutoring program at Humboldt State University, which is classified
as a Hispanic-Serving Institution. The peer tutoring program narrowed
the gap between Under-Represented Groups (URGs), Pell Grant recip-
ients, Females and First-Generation students versus the overall student
population. Statistical methods were used to test whether tutoring has
helped to reduce this gap. Our results suggest that tutoring not only
shrunk the achievement gap but it reduced the failure rate over 50%.

1 Introduction

Student success is a widely studied problem in computer science education.
Much of that research has focused on the overall student success rate while
ignoring traditionally Under-Represented Groups (URGs). At our institution,
California State University, women and minorities remain under-represented
groups whose success requires urgent attention.

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

57

Our University is one of 23 campuses in the California State University
(CSU) system. Unlike the research-focused University of California system, the
CSU focus is on teaching and educational access. Most campuses in the CSU
have only a handful of master’s programs, hence they are typically classified
as Carnegie ITA institutions [4]. The CSU comprises almost half a million
students and is one of the most diverse student bodies in the United States [8].
Our University in particular is classified as a Hispanic-Serving Institution, and
first-generation students also are well-represented in our classrooms.

Like many institutions, our computer science program has gateway courses
which impede progress of URG students. Our MATH 253: Discrete Mathemat-
ics course has traditionally been such a gateway course. In an effort to address
this, we decided to start a peer tutoring program not only for this course but
for all our bottle-neck and gateway courses. Peer tutoring is known to help
increase the student retention rate [6] as well as the overall passing grade [1].

As reported by Hart [2] peer tutoring increases student motivation towards
learning. But merely making tutoring available does not necessarily guarantee
success [7]. Success also requires mentorship for the tutors, dedication from
the students requesting assistance, and possibly adjustments to the tutoring
format. We hypothesized that a more carefully structured implementation of
peer tutoring could help close the achievement gap.

Figure 1 describes the distribution of URG students in the CS program over
the past five academic years. We see a growing proportion of URG students
over time. As our student population becomes more diverse there is greater
need for programs such as peer tutoring to help close the achievement gap.
Here we report on a comparison of student performance across three sections
of Discrete Mathematics offered by different faculty with a combined total of
87 students. We aim to answer the following question: “Can peer tutoring help
reduce the achievement gap between URGs and non-URG students?”

2 Methodology

Our peer tutoring program was the first offered for Discrete Mathematics and
the other courses it supported. Tutoring services were offered on a first-come
first-served basis for Discrete Mathematics. The experiment ran for three con-
secutive semesters (Spring 2018, Fall 2018 and Spring 2019). The three courses
were taught by three different instructors and the courses combined had 87 stu-
dents. Students had the option of attending free peer tutoring services when
they needed help and were encouraged to do so by all three instructors. Tutor-
ing was offered Monday through Thursday in the evening for a total of 20 hours
per week. Tutoring attendance data were tracked. Only 19 students chose to
take advantage of the tutoring services. There is no indication that only weak

58

ETH_URG_DESC

11% e 12% 13% 10% O Unknown
[Not URG
B URG
49%
540 51%
59% 5206

Figure 1: Student Enrollments

students participated in the program, but rather a mixture of students with
different experiences, backgrounds and skills. The CS program has on average
180 students.

The tutor helps only one student at a time and restricts the contact to
no more than 5 minutes when the center is busy. The tutor is instructed
how to guide students to solutions through the questions and similar examples
without solving the homework for them. Tutors do not just review homework,
but help students develop confidence in reaching their answer and becoming
independent learners. On average each tutor is trained 16 hours over a period
of 2 to 3 days. This is a paid mandatory training. The training was conducted
by experts at our Center of Teaching and Learning in collaboration with the
university Learning Center. Currently the tutors are expected and scheduled
to be able to help with more than 3 courses, including all of the 100-200 level
CS department courses. All of the tutors are selected after completing our
gateway courses (CS 2 and Discrete Mathematics) which are often taught by
the peer-tutoring program creator. Prospective tutors must earn an A grade
on their overall homework and at least an A- on their course grades. Those
who display good communication skills are invited to apply for the position
after a brief interview. We started with 4 tutors the first semesters (All males,
1 URG) and now we have 8 (5 males, 3 females) with a combined 4 LatinX
students (URG) and one female non URG.

Since instructor approaches could account for substantial variance in suc-
cess rates, all three instructors agreed to teach using the same text, Discrete

59

Mathematics with Applications by Susanna Epp, and kept materials handed out
(including syllabi, assignments, and study guides for exams) as similar as rea-
sonably possible given their teaching styles. Exams were crafted with an effort
to keep problems at similar difficulty levels and content mixes (reuse of exams
was impossible since failing students would reappear in the later semesters).
Final grade formulae were kept similar, though differences necessarily existed
due to components graded and slight percentage weighting differences. One in-
structor taught the Spring 2019 semester as a new preparation while the other
instructors were more experienced with the course, but this was not detected
in the data. Likewise, the small adjustment from the 4th Edition of Epp’s text
to the 5th Edition for the third semester does not seem to have affected data
appreciably.

There were some noteworthy differences between the instructors’ offerings.
The Fall 2018 instructor used in-class worksheets to increase student engage-
ment, but the other two did not. And the Spring 2019 instructor was unable
to complete the final chapter of the outlined course owing to time lost due to
both illness and inexperience with the class. We remain uncertain how these
differences may have affected the data.

We used the following formula to compute the students’ success rate based
upon counts of final grades assigned:

Success _Rate = |A, B,C|/|A,B,C,CR,D,F, NC,W,WU, |

Hence a “success” in this view is that the student passed the course at a
level adequate to continue on in the computer science program.

3 Results and Statistical Data Analysis

We obtained institutional data on student demographics and compared success
rates for specific groups of students. Tables 1, 2, 3 and 4 summarize success
rates for students who declared themselves members of Under-Represented
Groups, First Generation, Legal Sex or Pell Grant versus the rest of the stu-
dents. Figures 2, 3, 4, and 5 illustrate the success rates for these partitions.

We used Fisher’s exact test to check if the observed differences in the success
rates are statistically significant (all of the p-values are above 0.05). Table 5
shows the p-values obtained by applying Fisher’s test to each of the contingency
tables. We used Fisher’s exact test because the sample size is small.

We conclude that after applying peer tutoring, there is no statistically sig-
nificant achievement gap. It is interesting that only 19 students out of 87
attended tutoring at least one tutoring session during the semesters given that
students are always asking for help. Table 6 summarizes the characteristics of
those students.

60

Table 1: URGs Table 2: First Generation

Fail Pass Fail Pass
URG 7 27 First Gen 11 35
Not URG 8 32 Not First Gen 7 25
Unknown 6 7 Unknown 3 6
Total 21 66 Total 21 66
Table 3: Legal Sex Table 4: Pell Grant
Fail Pass Fail Pass
Female 5 17 Pell Grant 15 38
Male 16 49 No Pell Grant 6 28
Total 21 66 Total 21 66

Success Rate by
Minority Group

1:: To.4 2y

53.8

[=]

SuccessRae %

H URG ® NotURG Unknown

Figure 2: Success Rate by Minority Classification

The failure rate among the non-URG students is 20% (one of the lowest
failure rate groups) whereas the failure rate among those who attended at least
one hour of tutoring is 10% even though the majority of those who participated
in tutoring were at risk students. So students who attended at least one hour
of tutoring had less than half the failure rate of all other student groups.

Figure 6 was obtained from institutional data that shows the achievement
gap between URGs and non-URGs before and after the peer tutoring was
established in spring 2018. It is hard to interpret the graph given the fluctuation
in the number of enrolled students and the fact that some students chose to
not disclose their URG status. However, we note that the achievement gap

61

62

Success Rate by Generation

76.1 78.1
BO 66.7

20
5 I
SuccessRate %

m Firstgen m Motfirstgen m Unknown

Figure 3: Success Rate by Generation Status

Success Rate by Legal Sex

773 75.4

SuccessRae %

m Female m Male

Figure 4: Success Rate by Legal Sex

Success Rate by Income

100 824
7Ly

SuccessRae %

m Grant Recpient m MNoPell Grant

Figure 5: Success Rate by Financial Need

Table 5: Test of Statistical Significance
P-value for Fisher’s Exact Test

Under-Represented Group 0.152
First Generation 0.817
Legal Sex 1.000

Pell Grant 0.311

Table 6: Student Demographics and Tutoring Participation
Percentage Who Participated in Tutoring

Pell Grant Recipient 90%
First Generation 74%
Females 53%

URG 47%

URG Status Not Declared 15%
All Students 22%

between URG and non-URG students is closed in the final semester. We will
gather further data to see if this continues. We also note that students who
choose not to disclose their URG status generally fare less well than either
URG or non-URG students.

SUCCESS RATE

—+—Not URG —a—URG Unknown

ATE

T
) 3ok
c '
c i
& o o

o
[T R P e
o 70.00%

3 po Nl

2013-14 2014-15 2015-16 2016-17 2p17-18 2018-1%9
ACADEMICYEAR

LICCE

Figure 6: Achievement Gap

63

4 Conclusions and Future Work

We note that our peer tutoring study suffers from limitations common to re-
search in small computer science programs. In particular:

1. The data did not come from a randomized experiment so the effect of
lurking factors could not be accounted for.

2. The courses were taught by three different instructors who used slightly
different grading weights, so the effect of the instructor and the grading
weights could not be separated from the effect of tutoring.

3. The students themselves differed between offerings. In particular, we have
no control over or adequate student representation for ethnic or cultural
differences, which are known to affect success in STEM disciplines [3].

4. The fact that tutoring was available does not imply that every student
utilized it. Students who chose to seek help benefited from this service
while others did not.

5. Only 22% of the students enrolled in the three sections of this class par-
ticipated in tutoring program. Instructors should promote tutoring and
encourage students to utilize it to maximize the benefit.

Despite this, we are confident we have demonstrated that peer tutoring may
have a positive impact on success rates of URGs. But why might this be so?

Our approach to peer tutoring may have created a sense of normalcy for
URGs who have fewer college graduates in their social networks. Faculty en-
couragement may have led some to attend sessions and not feel awkward doing
so. Some may have persisted because of the one-on-one environment, where
dominance or competition with other students no longer existed. A success
with this likely would increase self-efficacy. Simon et al demonstrated through
motivational modeling that this could contribute to student success in a quan-
tifiable manner [5]. It is worth noting that Figure 6 showed students who don’t
declare URG status are particularly susceptible to failure. We hypothesize that
these students in particular lack self-efficacy and that interventions targeting
this may help.

Hence, we are considering further data gathering and analysis of our results
in light of this research to see if motivational models predict success. If so, we
believe it may be possible, through short questionnaires, to identify students
likely to fail Discrete Mathematics at the start of the course, and redirect
them through peer tutoring and other compensatory pedagogy to improve their
success rates.

64

References

[1]

2]

13l

4]

5]

[6]

7]

18]

Rolando Garcia, Juan C. Morales, and Gloribel Rivera. The use of peer
tutoring to improve the passing rates in mathematics placement exams of
engineering students: A success story. American Journal of Engineering
Education, 5(2):61-72, December 2014.

Gail Hart. Peer learning and support via audio-teleconferencing in contin-
uing education for nurses. Distance Education, 11(2):308-319, 1990.

Gary Huang, Nebiyu Taddese, and Elizabeth Walter. FEntry and persis-
tence of women and minorities in college science and engineering education
(NCES 2000-601). National Center for Education Statistics, Washington,
DC: U.S. Department of Education, 2000. Project Officer, Samuel S. Peng.

American Association of University Professors. The annual report on the
economic status of the profession, 2017-18. Academe, 104(2), March-April
2018.

Rebecca Simon, Marc Aulls, Helena Dedic, Kyle Hubbard, and Nathan
Hall. Exploring student persistence in stem programs: A motivational
model. Canadian Journal of Education, 38(1):1-27, 2015.

Vincent Tinto. Research and practice of student retention. Journal of
College Student Retention, 8(1):1-19, 2006-2007.

K. J. Topping. The effectiveness of peer tutoring in further and higher
education: A typology and review of the literature. Higher Education,
32(3):321-345, October 1996.

The California State University. The california state university 2019
fact book. https://www2.calstate.edu/csu-system/about-the-csu/
facts-about-the-csu/Documents/facts2019.pdf. Retrieved 6/7/2019.

65

MICE: A Holistic Scorekeeping
Mechanism for Cybersecurity Wargames*

Tristan Saldanha, Quinn Vinlove, Jens Mache
Lewis € Clark College, Portland, OR 97219

{tristansaldanha, quinnvinlove, jmache}@lclark.edu

Abstract

Cybersecurity wargames are some of the best tools for teaching se-
curity skills to groups of students, but the computational complexity of
these games has increased disproportionately with the ability to measure
the progress of the game. This paper introduces “Mice”, a new way of
assessing security skills such as detecting malware, network intrusion,
and network defense, which will allow for complex games to be scored
and tracked in a way that traditional score keeping can not. Mice are
adaptable to any kind of simulation and are easy to use for students
and educators, promising more effective learning from a wide range of
security exercises.

1 Introduction

Network Wargames are highly complex tools for teaching offensive and defen-
sive cybersecurity. In Wargame-like simulations, security students are placed
together on a network and told to attack other hosts or defend from attacks
from other players. However, the complexity of these simulations is often paired
with a scoring system that can’t keep up with the nuances of the game as it
evolves. Players can tell when this mismatch occurs, and the result is that play-
ers will play the game at the level of the scoreboard, rather than at the higher
level of the environment. This can leave overhead in the form of aspects of the
virtualized environment that are not utilized by players; these unutilized parts
of the environment resulting in the lost benefit to students and wasted effort

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

66

(and money) of educators. Limited grading schemes for wargames can defeat
the purpose of simulating a real network. simple point markers like flags can
be focused in on, allowing students to disregard the real system administration
work of seeking out security problems as they appear. Wargames need a better
scoring system that allows for a more realistic simulation that doesn’t give stu-
dents a short list of places to look for hackers, but rather encourages them to
identify the signs of breach and work backwards to find malware. The system
introduced in this paper, called Mice scorekeeping, is a new way of evaluating
these kinds of wargames. The Mice solution is adaptable to any imaginable
type of wargame; it can be used alongside other scorekeeping systems of an
administrator’s choosing, and can measure aspects of network control in a way
that is fundamentally unique and currently unmeasurable by the flag or up-
time based systems in use today. Mice, short for Miner-Imitating Counting
Executables, are small programs that will add to a player’s score for their
time kept running and the amount of computing power they are allocated. A
given singular “Mouse” will search for solved hashes, in the style of a Hashcash
proof-of-work system [1], similar to how cryptocurrency mining works. Upon
finding a solved hash, the Mouse will send proof of this solution to the score-
board, thus incrementing a player’s score proportionally to the approximate
computing time needed to solve an average hash.

2 Capture the Flag Competitions and Current Scoring
Mechanisms

CTFs, or Capture The Flag competitions, are potentially powerful vehicles
for cybersecurity training [2, 4, 6, 3]. CTFs are usually built on task-specific
challenges. Example problems in a CTF may be to reverse-engineer a password
verification program, or to decrypt a specific conversation encrypted with an
unknown algorithm. These simple tasks can be reasonably proven completed
with a simple flag or text file at the end of the process- if a user can submit a
plaintext string from an encrypted communication, this demonstrates that the
student must have decrypted the conversation. Task-specific challenges like
this can be easily proven completed because the task itself is straightforward;
there are a small number of ways to complete the challenge. As more training
scenarios have evolved to become more complex, assessing the state of the
game has become more challenging . The CTF style flag-based proof of solution
system does not translate well to a large scale live environment like a virtualized
network with many hosts.

67

3 The Evolution of Live Testing Environments and Prob-
lem of Assessing Complex Security

Thanks to advancements in cloud computing, entire networks of computers can
be virtualized to raise the bar of a capture the flag like exercise [5]. Instead
of competition challenges being limited to working with small files like packet
captures or individual programs, whole applications, hosts, and group of hosts
can be virtualized and accessed over a web interface to engage students in
more complex simulations and teach deeper skills. Examples of this new higher
capacity simulation include websites like Hackthebox [9], EDURange [11], and
OverTheWire [10], which let students test their penetration testing and system
administration skills in a way that would be impossible in a file-specific exercise
like classic capture the flags. These modern environments are more complex
to evaluate than their simpler predecessors. Assessing the security of a host
machine or the degree of intrusion and stealth on a network is difficult due to
the variety of possible ways to engage with a host. A check that relies on looking
for specific malware will miss newly discovered exploits, and measuring system
uptime would disregard attackers who have exfiltrated data and locked in their
own remote access, to name just a few possibilities. There is simply no one-size-
fits-all solution to measuring the overall integrity of a network under attack.
A grading system that lists specific criteria for a defending team will always
result in a set of priorities being established and, by extension, designate a wide
swath of network activity that can be ignored until something goes grossly
wrong. This is presenting a misinformed view of security to students, who
should instead be taught to seek out intrusion before the signs of it are obvious.
Redesigning the scoring system for network wargames will result in better, more
valuable exercises for students to learn from. The CCDC Competition [2] is a
well known blue teaming exercise. The game is scored using primarily service
uptime as the metric of a well-secured network, along with injects and writing
incident reports to a lesser extent. Keeping services up and running is an
aspect of network security, but this grading scheme identifies a list of services
that allow blue teams to focus on a handful of tasks, while leaving the scoring
system blind to whether an attacker has gained access to the network or not.
A common scenario that occurs in these kinds of games is that the attacking
team will take some time to establish their persistence and elevate privileges
in host machines, before attacking scored objectives. This phase of the attack,
when nothing has visibly gone wrong to the untrained sysadmin’s eye, is being
ignored by modern score systems, which is a disservice to both teams playing
the game. Mice can fill this gap. Mice are less ambiguous in terms of detection
- simple process monitoring commands will show the majority of mice running
on a system. This limits the amount of stealth that the red team can use,

68

and gives blue teams more to look for. Speeding up the silent intrusion and
elevation of privilege phase of the red team’s gameplay improves the experience
for both teams.

4 The MICE System

We present a new way of evaluating network security during live testing envi-
ronments, using what we call Mice (henceforth referred to as a single Mouse
program or several Mice programs, for readability). Students will be given
small python programs that will add points to their score while running, called
Mice. These Mice can be run on any machine on the given exercise network to
add points to a player or team’s score. The Mouse program is undergoing con-
tinuous active development [7], to keep the software as simple as possible while
including all necessary functionality to be used effectively. The two variables
that matter to a Mouse include the Mouse’s ownership and it’s speed. Each
Mouse has an “owner”, which is the player or team who receives the points
that the Mouse generates while running. A player would want as many mice
as possible to be running under their own ownership. The “Speed” of a Mouse
is the rate at which it gains points. The more system resources a Mouse is
given, the faster it will gain points. This incentivises players to be mindful of
how hard they push their Mice; an unrestrained Mouse may utilize too many
system resources and cause a user’s machine to slow down or even crash. A
hostile Mouse placed on an opponent’s machine would have the same effect,
which could result in detection of foreign Mice. This adds a level of complexity
to a player’s Mouse strategy; a quiet, undemanding Mouse may avoid detection
and garner points slowly, while a Mouse taking lots of system resources to gain
points fast may lead to its detection and removal.

5 Blockchain-inspired Mouse Design for Realism in Threat
Modeling

While the Mouse scoreboard system itself does not maintain a complete
blockchain, much of its design is owed to the proof-of-work mining process
that makes Blockchains secure, or, colloquially, “mining”. Mice measure their
speed and contribution to player’s score by computing hashes, such that the
main objective is to keep as many of your Mice running as possible with as
many system resources obtainable so as to mine the most hashes. The “points”
that mice generate are measured in hashes. While a mouse is running, the
work it does is search for a proof-of-work “solved” hash- that is, a hash of a
random string that ends in an arbitrary number of zeroes. In practice, these
solved states are called "solves" or "solved hashes". Since each character in

69

a SHA256 hash has a 1/16 chance of being any character, the probability of
generating a hash ending in n many zeros is (1/16)™. For a difficulty 5 hash,
the MICE default, this is approximately one per million hashes, or one per
megahash. When any mouse finds one of these solved hashes, it will send
this solution to the scoreboard, and that mouse’s team will be awarded one
megahash of points. The blockchain style of the Mouse program has several
benefits:

5.1 Realistic Threat Landscape

With the rising value of cryptocurrencies in the last few years, “Cryptojacking”
is a very real threat to modern networks [8]. So-called Cryptojacking attacks
involve attackers placing mining malware on remote servers to steal computing
power for financial gain. Identifying and removing this kind of cryptocurrency
mining malware is a real task that modern system administrators have to deal
with. Building a network defense simulation around finding and destroying
unwanted Mice on a host is a relevant primer for the current threat landscape
experienced by network security professionals.

5.2 More Ways to Play

Using more complex programs as objects of the game, as opposed to finding
text files on one another’s machines, allows students to play their games in
more nuanced ways. For example, rather than simply deleting a hostile Mouse
found on one’s machine, why not change its owner and make it gain points
for your own team? Or better yet, modify a well performing player’s Mice to
belong to you, and let other players infect one another with your mice to build
your own personal botnet. Using these programs in a more complex game
allows players to utilize elements of reverse engineering, and grapple with the
overlap between offensive and defensive security skills.

5.3 Simple Code

A priority during Mouse development is to keep the code simple enough that
users can feasibly make modifications to the code during an ongoing exercise.
The Mouse program is written in Python, which can be edited without needing
to be recompiled, and is a high enough level language that modifying simple
variables and methods can be done without necessitating an unreasonably high
level of programming expertise. At the time of writing, the open-source Mouse
program is receiving regular updates and improvements on its GitHub page,
linked below.

70

5.4 Compatibility with Other Scorekeeping Mechanisms

The Mouse system is not perfect for some teaching objectives. The way that
Mice go about incrementing points for a user is highly dependent on the hard-
ware of the host they run on. In reality, the true value of an arbitrary machine
may not directly correlate with its hash-solving potential. This is why the Mice
system is made able to run alongside other, more traditional flag or service-
uptime based systems. Nothing about the Mouse system limits educators from
layering Mice on top of other systems that may better reflect the specific goals
of a lesson- for a course in Windows Administration, a service-uptime score-
keeping style may be more effective than in a general pentesting simulation,
while a Mouse system running on the side can also be in place to subtract stu-
dent’s points based on discovered remote code execution vulnerabilities. The
ultimate purpose of the Mice is to aid educators in creating better simulations;
to that end, flexibility and adaptability have been the main priorities through
the development and design of the system.

6 Different Uses of Mice Scorekeeping

The rules for how to use the Mice can change to best suit the kind of war game
being played. Mice are lightweight, simple, and their usage can be adapted
based on the nature of the simulation they are applied to. Here, we will outline
some ways that the Mice scoring system can be put to use in many different
types of network security simulations.

6.1 Player versus Environment Simulation

For a player vs. environment simulation, like a firewall exercise, players may
have Mice that they have to keep running against an incoming, possibly auto-
mated attack. In this case, a user would have only their own Mouse or Mice
under their own ownership, and would have to keep their Mouse safe and run-
ning while defending from an incoming intruder looking to disable their Mice.
This type of game may teach skills on the more defensive side of security, like
obfustication of critical processes and host hardening. A player would also
need to be able to detect intrusion as fast as possible, since any time with their
mouse not running would cost them points.

6.2 Blue Team Versus Red Team Simulation

In a blue team / red team simulation, a blue team tries to keep the red team’s
score as low as possible while the red team tries to run their Mice on blue
team machines. There may be only a single team of Red Mice, or for a more

71

complex game, a Blue and Red team of Mice. The blue team may be responsible
for finding and stopping as many Mice as they can while having no Mice of
their own to run, while the red team can only run Mice on the blue team’s
network. Or, if the simulation is desired to be more complex, there may exist
both blue and red mice on the network, while Mice are only allowed to run on
blue team hosts, thus making the players of both teams search for enemy mice
on the limited number of hosts and disable them. This teaches the red team
network intrusion and, more uniquely, stealth tactics, as the red team needs
their Mice to go undetected for as long as they are able. This game would also
be providing a valuable exercise for the blue team to practice identifying the
signs of malware running on their workstations, with time being a factor in
their response abilities.

6.3 Player versus Player Simulation

In a player vs. player scenario, players may be allowed to sabotage the other
player’s Mice and attempt to install their own Mice on other machines. This
kind of simulation allows for the greatest range of creativity for students. This
exercise teaches a huge range of skills, including workstation hardening, pene-
tration testing, intrusion detection, reverse engineering, and more. It teaches
the balance of offensive and defensive tactics in a way that is utterly unique to
other forms of scoring, and allows a live network security simulation unparal-
leled by artificial tools and limited evaluation metrics.

6.4 More Possible Use Cases and Abstractions

More ways to use the Mouse system are discovered as the idea is shared with
more educators with different experiences and expertise. Below are some ideas
of ways to put the Mice system to work in a variety of more abstract types of
simulations.

6.4.1 Firewalls

Imagine a networking game being played on a network with many hosts. Each
host could have a mouse server running on it, but each behind different fire-
walls configured in different ways; an exercise could be made of “unlocking”
these firewalls so that these scoreboard could be reached by Mice, with points
representing uptime that the scoreboard was reachable.

6.4.2 Network Mapping / PING Sweeping

Another possible exercise could place scoreboards on many different ports of a
given machine, encouraging students to learn to use tools like Nmap to discover

72

hidden scoreboards or mice. The score at the end of the game could in some way
reflect the amount of mice that were linked to the right scoreboards; perhaps
some mice would be best fit to certain boards, being locked to broadcast on
a specific port within the python script. The possible implementations to
the Mice system are truly limitless. The simple code makes the programs
adaptable, and the uses of the hash-based scorekeeping are the perfect way
of measuring time, persistence, and compute resources managed by a single
player.

7 Classroom Tests

To simulate what a real world applications might look like, a group of research
assistants played a sample game with the Mice programs. We played a free-for-
all style of game; each of us had our own client machines on the same subnet.
We played with 4 players, each of us given a machine on the same subnet. A
scoreboard was set up on a fifth machine, and we agreed to leave it alone from
tampering.

7.1 Software Sabotage
7.1.1 Hardcoded Variables

The Mouse program sets its team ownership through a command line argument.
If this argument is altered, the mouse runs for a different team. One player
modified an opponents mouse program to immediately discard this argument
variable, and hardcoded their own team name inside the program.

7.1.2 Slowed Mining

Other software changes were made to other teams to damage their mice. One
was slowed down by adding some extra work to the hash searching function.
In this case, the variable “fish” was created, assigned the value “glub glub”, and
then discarded every time a hash was checked. This didn’t affect the program
in any other way than to roughly double the hash searching loop, slowing down
opponent’s point scoring.

7.1.3 Tampered Debug Outputs

Another change removed the debug outputs from one mouse program, requiring
the student to spend time downloading a fresh copy of the Mouse program to
understand what was going wrong with it as it was failing to run. One student
went a step further by locking the debug outputs to show that a mouse was

73

running correctly, while all it was actually doing was printing the expected
outputs and submitting no points.

7.2 Propogating Faulty Mice

This is the behavior that was most anticipated in the early phases of designing
this mouse system. All four students attempted in some way to run their mice
using the hosts of other machines. On the lab machines this test run was carried
out on, all players knew all other user’s credentials (username and password
student), and both SSH and FTP were enabled on all machines. Some students
copied their mice to other machines, while others just ran copies of the other
player’s mice under their own name.

7.3 Player Secured Mice

Given the above examples of players tampering with each other’s mice, one
player bypassed this risk by modifying his mouse and compiling it to a .pyc
file before using it. The player hardcoded his own team name into that mouse
and made sure that it was working properly, then played the game with his
compiled mouse rather than the stock python file. Using the compiled version
hardened his mice from attack, and he was able to use them without having
to check if they had been modified while he wasn’t watching.

8 Codebase

The code for the Mice system is being developed and is openly available in this
github repository: https://github.com/kh3dron/mice-scoreboard. The code is
still undergoing development at the time of this writing, but mainly feature
updates; the current version of the system is ready to be put to use. Two
Python scripts are involved in the Mice: the Mouse client, called mouse.py,
and the scoreboard, called server.py. The client is a short program, at the time
of writing only about 60 lines long. The program will search for a proof of work
hash solution until one is found, at which point it will send the solve to the
server, wait for positive confirmation of reception, then go back to searching
for a new solve. The simplicity of the Mouse client introduces some fairly
large security holes, which either team can exploit to their own advantage,
or possibly repair to make the Mouse run more securely. While the Mouse
development is ongoing, the goal is not to make the program immune from
abuse. The simple and imperfect nature of the Mice introduces yet another
nuance to their usage, encouraging a baseline of scripting knowledge as a way
to give players an extra edge on one another during an exercise.

74

9 Upcoming Features

The Mouse and Scoreboard programs are both complete enough to be used
as they are, but more updates are coming primarily to improve the data from
the server. Some planned updates include: server-side difficulty requirement
broadcasting to manage traffic and server logs/a proper administrator dash-
board. A more detailed account of upcoming software additions can be found
at the GitHub repository for the project, as linked above.

10 Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under grant numbers 1723705, 1723714, 1516100 and 1516730. We would
like to thank Lewis & Clark students Alex Lotero and Kris Gado, as well as
professor Richard Weiss from the Evergreen State College.

References

[1] Adam Back. Hashcash - a denial of service counter-measure. http://www.hashcash.
org/papers/hashcash.pdf.

[2] CCDC. CCDC competition rules and guidelines, 2019. https://www.nationalccdc.
org/index.php/competition/competitors/rules.

[3] Andy Davis, Tim Leek, Michael Zhivich, Kyle Gwinnup, and William Leonard. The fun
and future of CTF. In 2014 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 14), 2014.

[4] Patrick Hulin, Andy Davis, Rahul Sridhar, Andrew Fasano, Cody Gallagher, Aaron
Sedlacek, Tim Leek, and Brendan Dolan-Gavitt. AutoCTF: Creating diverse pwnables
via automated bug injection, 2017.

[5] George Louthan, Warren Roberts, Matthew Butler, and John Hale. The Blunderdome:
An offensive exercise for building network, systems, and web security awareness, 2010.

[6] Cheung R. S., Cohen J. P., Lo H. Z., Elia F., and Carrillo-Marquez V. Effectiveness of
cybersecurity competitions, 2012.

[7] Tristan Saldanha. MICE scoreboard codebase. https://github.com/kh3dron/mice-
scoreboard.

[8] Symantec. What is Cryptojacking? how it works and how to help prevent it. https:
//us.norton.com/internetsecurity-malware-what-is-cryptojacking.html.

[9] Hack the Box. Hack the box, 2019. https://www.hackthebox.eu/.
ver the Wire. Wargames, . https://overthewire.org/wargames.
10] O he Wire. W 2019 // /

[11] Richard S. Weiss, Stefan Boesen, James F. Sullivan, Michael E. Locasto, Jens Mache,
and Erik Nilsen. Teaching cybersecurity analysis skills in the cloud. Proceedings of the
46th ACM Technical Symposium on Computer Science Education - SIGCSE 15, 2015.

(0]

Mining GitHub Classroom Commit
Behavior in Elective and Introductory
Computer Science Courses”

Gina Sprint and Jason Conci
Department of Computer Science
Gonzaga University

Spokane, WA 99258

sprint@gonzaga. edu, jconcti@zagmail.gonzaga.edu

Abstract

Git and GitHub are the industry standard tools used for version con-
trol today. Consequently, integrating Git and GitHub into CS curricu-
lums is of increasing importance for educators. With GitHub Classroom,
students can submit their programming assignments via GitHub instead
of via a traditional learning management system. In this paper, we
present our experience using GitHub Classroom in two elective courses
and in a CS1 course. We also present our results from mining student
commit behavior from programming assignments submitted via GitHub
Classroom in these courses. While we found a weak correlation between
commit behavior and grades at the group level, we did find individual
students exhibited strong correlations. Furthermore, our data analysis
indicated that students responded to a small amount of graded points
being allocated for quantity and quality of commit messages by improv-
ing their use of version control. Lastly, based on student responses, we
conclude that introducing version control in CS1 is not too early and we
encourage educators to consider adopting GitHub Classroom for assign-
ment submission as early in the curriculum as possible.

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

76

1 Introduction

Version control systems are industry standard tools used for several purposes,
including tracking file changes, for team collaboration, and for bug/issue man-
agement. Consequently, educators have long been teaching version control
tools like Git, CVS, Subversion, and Mercurial in upper-division computer sci-
ence and software engineering courses. Students typically learn these tools in a
software engineering course during their sophomore or junior year, then apply
these tools and skills on a team-based senior design project. Because of the
importance of version control for industry, educators have recognized a need
to push version control earlier in the curriculum, some as soon as introductory
computer science courses (CS1) [5, 1].

Recently, the most popular version control system being taught in higher ed-
ucation is Git [1]. GitHub is a web-based platform for managing code projects
under Git version control. When used in computer science education, GitHub
has been shown to predict better learning outcomes and classroom experiences
[4]. In fact, for computer science courses, GitHub is often a preferred alterna-
tive to a learning management system (LMS) for hosting instructor example
code and for student programming assignment (PA) submission, collabora-
tion on group projects, and for receiving feedback on work. In 2015, GitHub
recognized the need for educators to use GitHub as an LMS alternative when
they released GitHub Classroom, a Git and GitHub-based assignment manage-
ment and submission system. To submit assignments via GitHub Classroom,
students are required to learn the basic stages of Git version control usage, in-
cluding creating a repository, adding files to the staging area, committing files
with messages, and pushing files to a remote repository (e.g. GitHub). In this
paper, we present results from mining student use of GitHub Classroom for
programming assignment collection in three different courses. We also present
our results of implementing an intervention to motivate students to commit
code changes with higher quantity and quality. Finally, we present commit
behavior and perception of GitHub Classroom from CS1 students who were
exposed to Git, GitHub, and GitHub Classroom for the first time.

2 Related work

Researchers have focused on using version control systems in educational set-
tings to monitor and/or mine student use of version control systems [5], [4, 2,
6, 8, 9], predict student grade performance using machine learning techniques
[8], [3], motivate students to commit more via gamification [10], characterize
teamwork [9, 7], and investigate the relationship between commits for coding
and testing [6]. Common features extracted from version control repositories

7

include number of commits, size of commits (file size, number of files modified,
or quantity of insertions/deletions), lines of code added, and timing of com-
mits (hour of day of commit, spacing of commits, commit streaks of committing
regularly for several days, or relationship to a deadline and/or milestone).

Around 2004, literature emerged that investigated using version control
systems to monitor and/or mine student programming behavior. Liu and col-
leagues analyzed student CVS repositories to investigate student interaction
in teams [7]. Mierle and colleagues correlated grades with CVS repository
features, such as number of revisions per file, number of operations, time of
submission, etc [8]. Using machine learning techniques, they concluded that
such features could not be used to accurately predict grades. Glassy used
Subversion commit logs to investigate when students worked on assignments
relative to a deadline, finding that while students did perform “mega-commits”
of changes, students did not tend to do a single “mass-commit” of changes
for their submission [2]. Notable results related to our work include number
of commits was not correlated with grade [8], students with vague commit
messages generally had lower grades [2], number of code lines was strongly cor-
related with higher grades [8], and students increased their commits over time
(and start committing earlier) as they became more comfortable with version
control and appreciated its value [5].

3 Methods

In this paper, we analyzed student use of GitHub Classroom to answer the
following three research questions:

1. What are the relationships between commit features and grades (overall
and PA)?

2. Can we motivate students to commit code with higher quantity and qual-
ity?

3. What are CS1 students’ initial perceptions of Git and GitHub Classroom?

We utilized GitHub Classroom for programming assignment collection in
three courses, all of which were taught by the same instructor: an iOS app
development elective (Swift, Fall 2018, N=34), a data mining (DM) elective
(Python, Spring 2019, N=31), and a CS1 course (C++, Spring 2019, N=27).
Thirteen of the students enrolled in the iOS course were also enrolled in the DM
course. We refer to this group of students as i0S/DM (iOS DM intersection).
The prerequisite for iOS and Data Mining was CS2 (C++), though the majority
of each of theses courses were seniors (27/34 and 23/31, respectively). We
formally teach Git/GitHub starting in the student’s sophomore year, after
they have solidified their command line and programming skills in their CS1

78

and CS2 courses. Therefore, the majority of students in these two elective
courses did have prior exposure to Git/GitHub, but this was not the case
for all students. In order to prepare students to use GitHub Classroom, the
instructor provided a crash course on Git/GitHub in these courses. In the
crash course, the motivation and intuition of version control technology was
covered, then the following Git commands (with relevant options/switches)
were introduced via a hands-on lab: init, add, commit, push, pull, status, log,
branch, and config. In iOS, students were also taught how to use the Xcode
Git/GitHub user interface tools.

While there were no prerequisite courses for CS1, our CS1 served as a
CS0/CS1 hybrid for both CS and engineering majors (14/27) and non-majors
(13/27). In this course, we introduced algorithmic problem-solving techniques
using C++ in a virtual Linux environment. From the beginning of the semester,
students were learning basic command line skills, which enabled the instruc-
tor to briefly introduce the necessary skills for students to use GitHub Class-
room to submit their final PA (PA9) at the end of the semester. Command
line skills that were covered in CS1 included working with paths, file system
navigation, file/directory creation/removal/renaming, launching text editors,
compiling source code using g+, and executing programs. For the CS1 crash
course, we covered a subset of the aforementioned Git/GitHub crash course
in one 50-minute class. Specifically, we covered limited information about the
motivation for using version control, basic Git commands to push to GitHub,
and one hands-on "Hello World" GitHub repository exercise. The students
were also provided detailed instructions on how to set up a GitHub Classroom
repository. Four bonus points (of 100 points for PA9) were offered to students
who submitted PA9 via GitHub Classroom instead of via the LMS.

From GitHub repository log data, we summarized student assignment repos-
itory commit information using quantity (number of commits) and quality (av-
erage number of changes per commit and average number of words per commit
message). For these features, we then computed the average, coefficient of vari-
ation (CV), and Pearson correlation with grades for each assignment repository.
The coefficient of variation was computed by dividing the standard deviation
by the mean and multiplying by 100. For our second research question, we
introduced an intervention in the DM course to improve students’ use of com-
mit messages. There were eight PAs in this course: PA1 and PA2 allocated
0 graded points for quantity and quality of commit messages, PA3 and PA4
allocated 2 points, PA5 and PAG6 allocated 4 points, and PAS allocated 0 points
(PA7 was a bonus PA and we omitted it from analysis). For our last research
question, we asked CS1 students to fill out a survey about their experience
learning Git and GitHub in the crash course and if applicable, using GitHub
Classroom to submit their final PA.

79

4 Results and Discussion

In total, we analyzed 3,922 commit messages from GitHub Classroom repos-
itory logs. For all groups, we include the average, CV, correlation with PA
grade (rp4), and correlation with overall course grade (reourse) for each fea-
ture in Table 1. To provide more details about the commit behavior in Table
1, Figure 1 shows the average number of commits as a function of PA for the
i0OS/DM group.

Table 1: Summary of feature results in the form: mean (CV). * denotes corre-
lations (r) at p<0.05.

Group name Number of com- Average changes Average words
mits per assign- per commit per commit
ment message

i0S 9.04 (90.55%) 578.37 (306.83%) 5.07 (70.82%)

(1,845 commits) 7rpa=0.10 rpa—0.06 rpa— 0.12
Tcourse=— 0.80 Tcourse:‘0~05 Tcourse™— -0.20

DM 9.35 (77.41%) 995.48 (136.58%) 4.74 (76.01%)

(2,030 commits) rpa=0.31 rpa=0.04 rpa—0.16*
Tcourse=0.36™ Tcourse= -0.29 Tcourse=0.01

i0S/DM 10.87 (74.57%) 811.88 (241.56%) 5.11 (68.91%)

(1,837 commits) rpa=0.21%* 7pa=—0.08 rpa—0.18
Tcourse:N/A Tcourse=— N/A rcourse:N/A

CS1 3.92 (109.55%) 292.00 (72.51%) 3.00 (46.01%)

(47 commits) rpa—0.26 rpa—0.53 rpa—-0.04
Teourse=0.23 Teourse= 0.37 Tcourse=0.28

Similar to prior work [8], we found weak correlations between student com-
mit behavior and student grades for both PAs and overall course grade; how-
ever, we did find several strong relationships for individual students. For ex-
ample, one iOS student had rp4=0.95, rp4=-0.84, and rp 4=0.73 for commits
per assignment, changes per commit, and words per commit when correlated
with PA grade. This student earned an average of 90.67% on their iOS PAs,
but not all high performing students had similar grade correlations. A differ-
ent i0S student with average PA grade of 91.5% had opposite correlations for
the same features, with rp4=-0.80, rp4=0.81, and rp4=-0.47. This suggests
further analysis is needed to categorize types of GitHub user commit styles. As
expected, we observed fewer commits, changes, and message words for begin-
ning Git users (CS1) compared to the upper division elective students. Lastly,
all groups exhibited high feature variability and students in the i0S/DM group

80

mE 05 = DM“
—_—

= = N N
o v o «

Average Number of Commits
»

=)

PA3 PA4 PA5 PA6 PA7 PA8 PA1 PA2 PA3 PA4 PA5 PA6 PA8
Assignment

Figure 1: Figure 1. Average number of commits for each programming assign-
ment (PA) of the iOS/DM group with iOS on the left and DM PAs on the
right. Standard deviations are shown as error bars.

committed more frequently and with more descriptive commit messages than
the other groups.

Table 2 shows more specific results for the DM group, specifically pertaining
to the applied intervention. We include DM feature values for pre-intervention,
intervention (2 points and 5 points allocated), and post-intervention. Be-
cause these PAs became increasingly long and complex over the course of the
semester, we also investigated normalizing our features by dividing by the
number of code lines. From pre to post-intervention, students increased their
number of commits 18.42% (36.59% normalized) and increased their number
of words per commit message 38.88% (64.64% normalized). Interestingly, stu-
dents also increased their number of changes per commit 76.15% (278.64%
normalized), despite increasing their commits. This could be due to stu-
dents frequently editing their code in the larger PA and/or the differences
in the PA structures. We also compared iOS/DM to non-iOS/DM students
for pre-intervention PAs to measure the practice effect of an extra semester
with GitHub Classroom. The iOS/DM group compared to the non-iOS/DM
group had 9.19 vs. 5.33 average commits (p<0.02), 697.73 vs. 869.96 average
changes per commit (p=0.43), and 3.73 vs. 3.20 average words per commit
message (p=0.31). These results suggest that an extra semester of practice
with GitHub Classroom improved student commit behavior without the need
for an explicit intervention.

For our last research question, we collected qualitative feedback about CS1
student perception of version control. Out of 27 total students, 25 students
attended the Git/GitHub day. Of those 25, 2 students had worked with

81

Table 2: Summary of feature results for each group in the form: mean (CV).

PA Set Number of com- Average changes Average words
mits per assign- per commit per commit
ment message message

Pre- 6.95 (91.29%) 797.73 (107.55%) 3.42 (60.43%)

intervention

2-point Inter- 10.07 (64.86%) 1470.62 (141.82%) 5.96 (79.74%)

vention

5-point Inter- 11.61 (75.98%) 513.25 (98.33%) 4.84 (73.70%)

vention

Post- 8.23 (56.49%) 1405.18 (74.52%) 4.75 (48.37%)

intervention

Git/GitHub before and 12 students submitted their final PA via GitHub Class-
room for bonus points on the assignment. The mean and standard deviation
for the 25 CS1 student responses to the survey are provided in Table 3. The
survey also prompted the student for any comment he/she would like to make
regarding the crash course and/or the version control tools. For brevity, we
have included the following quotes we found representative of the dataset:

1. "Always wondered how GitHub works and how programmers use it, now
I have a better idea of that"

2. "Github sounds useful for coding projects!"
3. "I wish had more than one day to practice and learn about GitHub"

4. "Stress the way that git makes it possible to collaborate on code with
others"

5. "I found the GitHub day valuable, but I do think we covered maybe a
little too much information for 1 class period, and perhaps spreading it
over 2 days would be better"

Overall, CS1 students reported that they enjoyed learning version control
and all but one student clearly saw the value of Git/GitHub for software devel-
opment. Interestingly, both the Likert and free response results demonstrate
that CS1 students would have liked to learn Git/GitHub earlier in the semester
(all students answered a 3, 4, or 5 to this question) and to have learned more,
as demonstrated by student responses #3 and #4 above. We often think CS1
is too early to cover version control; however, these CS1 students challenged

82

the tradition of waiting until a sophomore or junior-level software engineer-
ing course. It is important to note that our particular CS1 students worked
with the command line all semester, which enabled us to teach command line
Git/GitHub towards the end of the course. For CS1 courses that are not as
command line-focused, graphical tools for version control like GitHub Desktop
would be a viable alternative. Lastly, another reason to cover Git/GitHub
earlier in the curriculum and in a CS1 course is to help students’ knowledge
become comprehensive enough that they can solve their own problems related
to the tool. For example, one student commented, "The only problem I had
with GitHub was attempting to upload after deleting files from the GitHub
website. After a deletion happened I would get all these funky upload errors
on the terminal that I couldn’t figure out. But that is out of your control.
Overall I did enjoy using GitHub for PA9."

Table 3: CS1 student responses to Likert questions on a scale from 1 (com-
pletely disagree) to 5 (completely agree) in the form: mean + standard devia-
tion.

I enjoyed learning about Git/Github for file version control. 4.04 + 1.08.

I see the value of Git/Github for software development 4.72 £ 0.54

I would have liked Git/Github to be covered earlier in the 4.12 + 0.86
semester.

I plan to use Git/Github in the future. 3.96 £ 1.34

5 Summary and Future Work

In this paper we analyzed nearly 4,000 commit messages from GitHub Class-
room repositories to investigate student commit behavior. Similar to prior
work, we found weak correlations between student commit behavior and stu-
dent grades at the group-level. We also found that students did respond to
a small amount of graded points being allocated for quantity and quality of
commit messages. Lastly, based on student responses, we concluded that intro-
ducing version control in CS1 is not too early. To the contrary, we encourage
other educators to consider adopting GitHub classroom for programming as-
signment submission as early as CS1. For future work, we plan to explore the
effects of different approaches to motivate students to commit early and often,
such as gamification. We also plan to integrate version control more in our CS1
curriculum while still maintaining the success of our one day “crash course” on
the subject.

83

References

1]

2]
13

4]

1]

16]

7]

18]

19]

[10]

84

M. A. Angulo and O. Aktunc. Using GitHub as a teaching tool for pro-
gramming courses. In Proceedings of the 2018 ASEE Gulf-Southwest Sect.
Annu. Conf., pages 1-4, 2018.

L. Glassy. Using version control to observe student software development
processes. Journal of Computing Sciences in Colleges, 21(3):99-106, 2006.

A. M. Guerrero-Higueras, N. DeCastro-Garcia, V. Matellan, and M. A.
Conde. Predictive models of academic success: A case study with version
control systems. In Proceedings of the Sixzth International Conference on
Technological Ecosystems for Enhancing Multiculturality, pages 306-312,
2018.

C. Hsing and V. Gennarelli. Using GitHub in the classroom predicts
student learning outcomes and classroom experiences: Findings from a
survey of students and teachers. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE 19, pages 672—678,
2019.

J. Isacson and E. Lindblom. Correlation of User Behaviour Patterns and
Assignment Supplements in KTH-GitHub Repositories. 2017.

L. Baumstark Jr. and M. Orsega. Quantifying introductory CS students’
iterative software process by mining version control system repositories.
Journal of Computing Sciences in Colleges, 31(6):97-104, 2016.

Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS historical in-
formation to understand how students develop software. In Proceedings of
the 2004 International Workshop on Mining Software Repositories, pages
32-36, 2004.

K. Mierle, K. Laven, S. T. Roweis, and G. Wilson. Mining student CVS
repositories for performance indicators. ACM SIGSOFT Software Engi-
neering Notes, 30:1-5, 2005.

W. Poncin, A. Serebrenik, and M. van den Brand. Mining student cap-
stone projects with FRASR and ProM. In Proceedings of the ACM Inter-
national Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, pages 87-96, 2011.

L. Singer and K. Schneider. It was a bit of a race: Gamification of version
control. In 2012 Second International Workshop on Games and Software
Engineering: Realizing User Engagement with Game Engineering Tech-
niques, GAS, pages 5-8, 2012.

Teaching Math for Computer Science in
an Open-Enrollment College — an
Applied Learning Experience*

Baogiang Yan
Computer Science, Mathematics and Physics
Missouri Western State University

Saint Joseph, MO 64507

byan@missouriwestern. edu

Abstract

Computer science majors need considerable mathematical background
to understand important topics such as token recognition in scanning,
cryptography, graphics and simulation among others. Regular math
courses may cover relevant abstract concepts without a specific computer
application context, leaving students puzzled about why they are needed
and where they are applied in computer science. This issue may get even
more challenging in an open-enrollment college where many students tend
to be less-prepared academically. This paper describes the author’s ex-
perience of employing applied learning to bridge the gap between math
concepts and their applications in computer science. The selected math
topics are all programmable with various tools, and students are exposed
to more tangible program exercises with limited theoretical discussion.

1 Introduction

It is a common understanding that many computer science (CS) topics have
a deep link to mathematics under the hood. According to ACM Computer
Science Curricula 2013 [3], mathematics for CS can be divided into foundation
mathematics and those that serve a specific CS area. The author believes that

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

85

this two different mathematics in CS should be taught differently. Further-
more, students without significant prior mathematics background should not
be prohibited from pursuing a major in CS. This is especially important for a
CS program in an open-enrollment college like us because many students tend
to be less-prepared in mathematics.

To alleviate the concern of mathematics being a hurdle in our CS pro-
gram while trying to stick with the ACM CS Curriculum Guidelines for fu-
ture ABET accreditation, we have incorporated in our curriculum a special
mathematics course named “Computational Methods for Computer Science”.
Different from the traditional math courses that do not take into consideration
how abstract math concepts are applied in computer science applications, this
course is designed to tie all covered topics with specific computer programs
and explains why they are needed and how they are applied with limited theo-
retical discussion. The immediate tangible outputs from these programs after
the corresponding math concepts are applied really help bridge the student’s
understanding gap between concepts and applications. Students engage them-
selves in hands-on learning of math and computer science and gain a sense of
accomplishment for having successfully written a computer program. It is an
example of practicing the mission of applied learning that is strongly advocated
by our university. After taking this course successfully, students build a solid
background for other major courses that we offer such as Compiler Theory,
Simulation, Graphics, Cryptography. Therefore, we view this math course as
a gateway towards these major courses.

2 Course Structure

This course covers four math topics as described in the following subsections.
In a 16-week semester, each topic takes about four weeks. Students are as-
sessed via on-line quizzes, programming assignments and exams. Each topic is
explained with carefully selected tools and applied in a closely relevant com-
puter application.

2.1 Automata Theory for Token Recognition

Token recognition is the first step of compiling a computer program written in
certain language and done via a program scanner. The scanner can be either
written from scratch or created automatically through a scanner generator.
The former method could be rather challenging for most of our junior students
and not realistic to finish in a four-week period, given that they need to learn
the concepts and get familiar with the tools first. Therefore, the second strategy
is employed, and JFlex is chosen as the scanner generator since it uses Java,
the main programming language we teach.

86

[£] JFiex 170 - O X

Quit
Lexical specification
‘D ‘Teaching\Class Matertials\CSC289 Computational Metho Browse Generate
! Options
Qutput directory: = =
‘D ‘Teaching\Class Matertials\CSC289 Computational Metho Browse
Messages:
[Reading "D:\Teaching\Class Matertials\CSC289 Computational Methods For CS\2019Spring\C-Program\src\specs\lexzer.flex" -

IConstructing NFA : 126 states in NFA

IConverting NFA to DFR :

&0 states before minimization, 53 states in minimized DFA

Writing code to "D:\Teaching\Class Matertials\C5C289 Computaticnal Methods For C5\201%Spring\C-Program\src\specs\Lexer.java"

0 errors, 0 warnings.

|Generation finished successfully.

Figure 1: GUI of JFlex generating a scanner for C Minus

As shown in figure 1, the working mechanism of JFlex is briefly revealed in
the bottom messages window. Automata play a major role in scanner gener-
ation. The input to JFlex is a .flex file that contains the lexical specification
for the tokens allowed in the language. The output is a Java class that serves
as the scanner. Besides explaining what regular expressions are and how they
are represented as macros in the .flex specification file, there are additional
steps in the scanner generation process that need to be demystified to the stu-
dents, including how to construct Non-Deterministic Finite Automata (NFA)
from regular expressions, why and how NFA should be converted to Determin-
istic Finite Automata (DFA), and how to further minimize the states in that
DFA before it is used for table-driven implementation of the scanner. Each of
these key points is discussed with at least two general examples in class. Then
students are asked to apply what they learn to create a scanner for a simple
language called C Minus [5] or C—. It is a stripped subset of C language with a
very simple set of allowed token patterns, making it an ideal candidate to use
in teaching automata for token recognition.

2.2 Elementary Number Theory for RSA

Cryptography is a critical topic in computer science and different ciphers may
involve different mathematics [6]. We choose RSA as the cipher to discuss
because of two reasons. First, RSA is a strong and popular public-key cryp-
tosystem most students have heard of. Second, its algorithm can be broken
down into pieces that can be described elegantly using elementary number
theory.

Typical discussion on a cipher includes key generation/scheduling, encryp-

87

tion/decryption, why it works, computing efficiency and security level. As for
RSA’s key generation, students need to understand basic modular arithmetic
first. Calculation of inverse, especially multiplicative inverse, plays a crucial
role. Students need to know when a number has a multiplicative inverse and
if so, how to compute it efficiently. For the first issue, students need to under-
stand what coprime means, how to check if two numbers are coprime through
Greatest Common Divisor (GCD) algorithm and why we typically pick prime
numbers as the integer ring size although that is not required in RSA. For
the second question, students need to understand that Extended GCD not
only checks if the public key e has an inverse that serves as the private key
but also what it is if there is one. Extended GCD is efficient than relying on
the multiplication modular table for inverse search which is not realistic for
big numbers. RSA uses exponentiation modular for encryption with public
key and decryption with private key. Fermat’s Little Theorem, closely related
to exponentiation modular, helps students understand why RSA algorithm
works and can simplify exponentiation modular calculation with large expo-
nents. To understand why RSA is secure, students need to understand that
the factorization of an integer is a process of finding a set of prime numbers
whose product gives back the original number. Though small numbers can be
used for demonstration purpose, it should be pointed out to the students that
factorizing extremely large numbers is not possible given current computing
technology. This helps students understand why RSA requires two large prime
numbers in the first place.

2 Compase Emil - o x
Compose Email @ Enter a Posaword | Maiivelope - o x
5] Enter key password
Bacqlang Yan <byan@missouriwestern.edu

| o

Prease

k

Rememix d I il

o sl il b2 signe aigraly

Figure 2: Mailvelope Email Encryption and Decryption using RSA

The instructor uses small numbers to manually explain how to generate
keys for RSA and how to encrypt/decrypt in class. Cryptool [2], instead, is
employed for demo with large keys. Mailvelope [4], a plugin to Chrome that
provides cryptographic service for many webmail clients, is a handy tool for
students to gain real world experience of enhancing their email security with
RSA. User can have their public key distributed via a public centralized key

88

server and keep the private key local. As shown in figure 2, when composing a
new message, the recipient’s email turns green if found registered on the same
server. When the recipient receives the encrypted email, the local private key
is password protected to add another layer of security.

2.3 Matrix Math for Computer Graphics Transformation

Matrices are widely used in computer
graphics calculations one of which is
transformations. We focus on the basic
reversible linear transformations such as
scaling, shearing, translation, rotation in
both 2D and 3D spaces, all done through
multiplication with some homogeneous
transformation matrix. Complex trans-
formations can be realized through a se-
Figure 3: Rotation matrix demo in ries of basic ones.
Rhino 3D and Grasshopper Before dabbling in matrix operations,
students need to understand vectors and
their operations such as addition, subtraction, dot and cross products, espe-
cially their geometric meanings. The instructor uses Rhino 3D and Grasshop-
per for that purpose and to demonstrate the visual effects of different transfor-
mations such as rotation as shown in figure 3. Each transformation’s parameter
is configurable meaning the user can change the values in the transformation
matrices by dragging bars. For example, in figure 3, user can change the ro-
tation angle and the transformation matrix is updated correspondingly. The
same transformation matrix can be applied to multiple visual objects.

After students get familiar with the re-
lation between matrix math and graphics
transformations, they are given an oppor-
tunity to put matrix operations in code us-
ing Easel [7]. Easel is a simple 3D graph-
ics pipeline implementation written in Java
targeted toward undergraduate Computer
Graphics education. The instructor takes
out some code about matrix operation to
create an enticing assignment that, if stu-
dents fill in the missing parts successfully, Figure 4: Animated 3D Objects
will show animated triangulated objects as
shown in figure 4.

in Easel

89

2.4 Probability Distribution Models for Queuing Simulation

Discrete event simulation of queuing system can help with resource optimiza-
tion in many fields. There may be various random events involved in the
simulation that we need to pick a Probability Distribution Model (PDM) for
so that random values can be drawn for these events. There are two ways of
determining which PDM to use, either by researching the features of different
distribution models to see which types of events they are suitable for or by
observing the histogram of actual collected event data to see which PDM’s
theoretical density function it resembles most. After the distribution model
is selected for a random event, the required parameters need to be specified.
They are normally based upon the tally results of the real collected data for
the simulated event.

R studio comes in handy to help students better understand different PDMs
and their relations. We start with Uniform Distribution and generalize to
Bernoulli Distribution, Geometric Distribution, Binomial Distribution, Poisson
Distribution, Exponential Distribution, Gamma Distribution. For each distri-
bution, the instructor demonstrates the corresponding R functions to draw
random values and their expected parameters. The Borel’s law of large num-
bers is also verified for each PDM by comparing the actual simulated random
drawing’s histogram with theoretical probabilities.

SimStudio with SimScript IIT [1]
is used to show students how PDMs
can be used in the simulation of a
real-world queuing system — check-
ing out at Kroger, a popular gro-
cery store in southern states. Though
having a relatively high learning
curve, SimStudio I1I can visualize the
whole simulation process as shown in
figure 5. This makes study of simu-
lation more enticing.

9 The goal of Kroger checkout sim-

Served ulation is to figure out the ideal num-

Krogor Auto Cheikout cimutation ber of auto checkout stations besides
a regular cashier. The ideal number

would bring the maximum utilization

Figure 5: Simulation of Checkout at :
Kroger with SimStudio ITT rate — percentage of time when these
auto stations are in use. Every time

the simulation starts, user can spec-
ify how many auto checkout stations to test. Based upon the tally results of the
actual data observed at Kroger, customer interarrival time is determined to fol-

90

low exponential distribution and the service time follows Gamma distribution
with a shape parameter k that can be specified accordingly. Each customer is
equally likely to use the cashier or an auto checkout station. This simulation
can be run multiple times with different numbers of auto stations. The one
that has the highest utilization rate and does not prolong the average waiting
time would be the best to choose.

3 Assessment Results

Assignment
1 81% 100% 40% 1 75% 100% 40% 1 86% 100% 55%
2 74% 98% 35% 2 81% 100% 30% 2 80% 100% 56%
3 81% 100% B0% 3 93% 100% 40% 3 92% 100% S50%
4 82% 100% 50% 4 34% 100% 40%
5 89% 100% 60% 3 91% 100% 50%
(5] J7% 100% 40%

Table 1 Overall Assessment Results via Quizzes, Assignmenis ond Exams

Final Scores
100
a0
B0
70
a0
50
40
30
20
10
0
1 2 3 4 5 B 7 8 9 i 11 12 13 14 15

M Individual Student Scores on a 100.0 Scale

Figure 6: Final Score Distribution

As mentioned earlier, students are assessed via quizzes, assignments and
exams. Quizzes are typically given about one week after a new topic is intro-
duced to check student’s understanding of the basic math concepts. Each quiz
is given online and composed of ten multiple choice questions, short answer
questions and essay questions. Assignments are given after the instructor talks
about how the math concepts can be used in the corresponding CS applica-
tions mentioned in section 2. These assignments allow students to show their
programming skills by implementing applications with the learned concepts
based upon the samples demonstrated in class. Students can gain a sense of
accomplishment for having successfully written a computer program. Exams

91

are given when a topic is completely covered. The problems in the exams are
comprehensive and closely related to the practical applications as well.

Table 1 shows the averages, high and low scores in all quizzes, assignments
and exams. Though there are one or two students out of totally 15 students
failing in some quizzes, assignments or exams, there are also some students
getting 100%. The averages in table 1 and the distribution of individual final
scores in figure 6 imply that this course was overall successful in conveying key
math concepts while integrating them with applications.

4 Conclusion

This paper discusses the author’s experience of teaching math for computer
science at an open-enrollment university that has a mission statement of ap-
plied learning. To smooth the transition in student’s mind from abstract math
concepts to their inspiring applications, our CS program offers a special math
course with four topics that are tied with well-crafted applications in computer
science. The author discusses why the selected applications are useful in real
world and how the math concepts in each topic are used in those applications.
Finally, the assessment results of student’s performance reveal that this course
was overall successful.

References

[1] CACI. SIMSCRIPT III Programming Manual. CACI Products Company,
2007.

[2] Ctyptool. Ctyptool 2. https://www.cryptool.org/en/cryptool?2.

[3] ACM Computing Curricula Task Force (Ed.). Computer science curricula
2013: Curriculum guidelines for undergraduate degree programs in com-
puter science. ACM, New York, NY, USA, 2013.

[4] Mailvelope GmbH. Mailvelope. https://www.mailvelope.com/en/.

[5] Kenneth C. Louden. Compiler Construction: Principles and Practice. PWS
Publishing Co., Boston, MA, USA, 1997.

[6] Christof Paar and January Pelzl. Understanding Cryptography: A Textbook
for Students and Practitioners. Springer, 2010.

[7] Philip J. Rhodes and Baogiang Yan. Easel: A Java based top-down ap-
proach to 3D graphics education. Furographics, 2009.

92

Utilizing Deep Neural Networks for
Brain—Computer Interface-Based
Prosthesis Control*

Thomas C. Noel and Brian R. Snider
Department of Electrical Engineering & Computer Science
George Fox University
Newberg, OR 97132

{tnoellb,bsnider}@georgefozx. edu

Abstract

Limb amputations affect a significant portion of the world’s popu-
lation every year. The necessity for these operations can be associated
with related health conditions or a traumatic event. Currently, pros-
thetic devices intended to alleviate the burden of amputation lack many
of the premier features possessed by their biological counterparts. The
foremost of these features are agility and tactile function. In an effort to
address the former, researchers here investigate the fundamental connec-
tion between agile finger movement and brain signaling. In this study
each subject was asked to move his or her right index finger in sync with
a time-aligned finger movement demonstration while each movement was
labeled and the subject’s brain waves were recorded via a single-channel
electroencephalograph. This data was subsequently used to train and
test a deep neural network in an effort to classify each subject’s inten-
tion to rest and intention to extend his or her right index finger. On
average, the employed model yielded an accuracy of 63.3%, where the
most predictable subject’s movements were classified with an accuracy
of 70.5%.

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

93

1 Introduction

Every year approximately 185,000 limb amputations occur in the United States
of America [11]. The loss of a limb can be life changing; once menial activities
quickly become laborious and nontrivial. Limb loss can also be accompanied
by mental health issues. Those who have recently lost a limb often report
depression associated with the new impairment of mobility [8]. The loss of a
limb can drastically change one’s lifestyle and can be extremely discouraging.

The difficulty with adjustment to life after limb loss is directly related to
loss of capability, both agile and tactile. What an amputee’s lost arm was
once able to feel and achieve through the intricacies of the biological brain-arm
network is lost. The once unacknowledged, seamless tie between the arm and
the brain becomes something mourned, especially in light of the sensation of the
limb’s persisting presence. Many amputees report feeling the limb’s continued
presence even after the limb is gone [8]. This sensation is an artifact of the
brain’s neuronal mapping associated with limb movement. These sensations
can be painful or painless and can include sensations such as perception of
movement, touch, temperature, pressure, vibration, and itch [15]. So the brain
still possesses a capacity to process these stimuli that were once associated with
the limb even after it is gone. This phenomenon seems to suggest that brain still
possesses the toolkit necessary to re-establish connection with a limb, organic
or not, in the place of the lost limb, given that the limb possesses compatible
sensing and actuating mechanisms.

Efforts to develop such a device could be established by first developing
rudimentary technologies that accurately interpret user intent. An attempt
is here made to procure and investigate the viability of such a technology
capable of detecting user intent to rest and extend his or her right index finger
through the use of single-channel electroencephalograph (EEG) and intelligent
classification of intention via a deep neural network (DNN).

2 Background

2.1 Brain—Computer Interfaces

There currently does not exist a prosthesis that can accurately and precisely
report sensations and execute actions to the same functional degree as an or-
ganic human appendage. This is largely because of the limitations of today’s
brain-computer interfaces (BCI). The human brain possesses approximately
100 billion neurons, a number that makes the prospect of reading from each
individual neural pathway in parallel daunting [6]. There has been a notable
trend in BCI development over the past few decades, specifically, every seven
years, the number of neural pathways that can be simultaneously monitored

94

using a brain-computer interface doubles. Even with this exponential growth,
progress is still currently slow; according to this model, reaching a point where
all 100 billion neural pathways can be read simultaneously will take electro-
physiologists nearly 220 years [16]. While this does provide hope for the am-
putees of tomorrow, it does beg the question of whether or not an alternative
is currently in reach for amputees today. If such an alternative to total neural
monitoring does exist it would surmount one of the biggest obstacles on the
path to a more “seamless” prosthesis that senses and actuates with high levels
of accuracy and precision.

Approaches toward the development of advanced prostheses and a greater
understanding of the interaction between brain and limb have been rife. One
such study sought to investigate the viability of functional electrical stimula-
tion, through multi-electrode arrays implanted in the motor cortices of two rhe-
sus macaque monkeys who underwent temporary limb paralysis. This method
worked with the monkeys being able to control the flexion of four of their fore-
arm muscles. During these trials, the monkeys effectively doubled their max-
imum voluntary wrist flexion force and were able to follow visually displayed
force targets at two-thirds the speed of an unimpaired subject [13]. Studies
such as this one support the viability of invasive BCIs (i.e., electrocorticogra-
phy, or ECoQG) for use in the prosthetics of tomorrow. Further studies utilizing
invasive BCIs have exhibited that the motor cortex can form a stable neural
representation for neuroprosthetic control, meaning that the brain exhibits a
deft capacity for adapting to and cooperating with prostheses through the use
of ECoG [5]. In one notable study, three test subjects (one with a neuropros-
thetic arm) were trained to control the amplitude of beta rhythm recorded over
the frontal areas of the brain using EEG. After six months of regular training,
subjects were able to use these controlled signals to move a cursor to targets
on a computer screen with greater than 90% accuracy. Additionally, the sub-
ject possessing a neuroprosthesis was able to use these signals to effectively
grasp objects with his prosthetic arm [7]. In contrast to the six month train-
ing period that subjects underwent in the above study, another study utilizing
EEG included the recording and power spectral analysis of neural signals from
a single subject with an implanted neuroprosthesis over a three day training
period. During this short time the subject was able to develop a stable neural
representation that allowed him to consciously switch between grasp phases of
the lateral grasp that his prosthetic provided. Using this developed ability, he
was ultimately able to move a simple object from one place to another [10].
In other studies, researchers have used EEG signal mapping to send appropri-
ate RF command signals to a prosthetic hand or have utilized support vector
machines (SVM) to accurately predict the right or left-handedness of intended
hand movement in subjects [12, 1].

95

2.2 Deep Neural Networks

The first computational model for an artificial neural network was presented
by Warren McCulloch and Walter Pitts in 1943 [9]. In 1958, Frank Rosenblatt
built on top of this work to develop the perceptron, an algorithm for pattern
recognition [14]. Paul Werbos later developed a backpropagation algorithm
that allowed these perceptrons to be layered, ultimately yielding the rudimen-
tary model used for computing with artificial neural networks today [17]. A
more modern major development in this field has been the development of deep
learning, an idea first introduced in 1986 by Rina Dechter [4].

Recently there has been a resurgence of deep learning because of its uncanny
in ability to classify data such as images and speech compared to more classical
classification methods such as the SVM [3]. In an effort to capitalize on this
machinery’s ability to interpret digital signal data, methods are here employed
in an effort to isolate and detect subjective intent based on brainwave signals
collected from the subject’s scalp.

3 Methodology

3.1 Data Collection

This study utilized electroencephalograms from five right-handed subjects, four
male, one female. Each subject was connected to an EEG device, the Biopac
MP36, via a single channel and had his or her brainwaves subsequently recorded
for five trials, each three minutes in length. The electrodes were affixed to
each subject’s scalp using Elefix conductive EEG paste at Fy, C3, and Cy, as
seen in Figure 1. This configuration choice was based on existing literature
regarding optimal EEG electrode placement for the detection of subjective
hand movement [2].

During each trial, subjects were told to mimic a video displaying a moving
right index finger. The index finger executed one event per second in a pre-
defined, looping sequence of events. As the subject replicated the movements
of the right index finger on-screen, each event was automatically labeled in
time. The sequence of finger-movement events used during this experiment
was rest (R), rest to extension (RE), extension (E), extension to rest (ER),
rest (R), rest to flexion (RF'), flexion (F), and flexion to rest (FR). Because of
the apparent doubled concentration of R events, only half of these, Rs preced-
ing REs, were retained for final experimental analysis. This slight modification
ensured that all events were equally represented in the training set, discussed
in the next section. All data was collected in accordance with the collection
procedure approved by our university’s institutional review board for human
subjects research.

96

NASION

e
®0-©O®
eleleloy!

INION

Figure 1: Standard EEG electrode placement; electrodes were placed at Fyz,
Cs, and Cy.

3.2 Data Analysis

Signal data was collected at 500 Hz and events were labeled in the Biopac
proprietary data analysis software, then subsequently exported and fed into
a Python script where the signals were graphed and analyzed. Subsequently,
the power spectral density (PSD) of each was calculated and plotted for ex-
ploration. In order to eliminate unnecessary information in the PSD data, a
random forest classifier (RFC) was employed to rank PSD data points in order
of significance. Using this information, researchers found that the frequency
band that lent the most insight into subject intention was from approximately
12.76 Hz to 30.85 Hz. This information was used to inform which elements in
the PSD data vector would be retained for training and testing the learning
models.

Figure 2 depicts the retained portion of the power spectral density of both
events. This retained portion was then processed using principal component
analysis (PCA) to further reduce the data down to two dimensions, a feature
vector size that was found to yield the best prediction performance. These
labeled feature vectors were then used to train and test an SVM employing
a radial basis function, and then a DNN utilizing the topology depicted in
Figure 3. Training and testing was executed using k-fold cross validation where,
for each subject, each model was trained on four of the subjects trials and then
used to predict the held-out trial. The average accuracies of each of these
classifications can be seen in Table 1 of the results section.

97

N Rest PSD

T10

=

=z

a 0. . . i i |

L 10 20 30 40 50 60
Frequency (Hz)

~ Rest to Extension PSD

T

=10}

2

£ 0 10 20 30 40 50 60

Frequency (Hz)

Figure 2: Filtered power spectral density of the subject brain signals.

RELU

Figure 3: DNN topology with RELU input, RELU and tanh densing, and
sigmoid output layers.

4 Results

Table 1 depicts the prediction accuracies generated by the DNN and the SVM.
The average DNN classification accuracy across subjects was 63.3% and the
average SVM classification accuracy across subjects was 62.4%. The best pre-
diction accuracy across subjects was for the classification of subject B’s inten-

98

Subject Classifier
DNN SVM

Subject A 0.600 0.586
Subject B 0.705 0.714
Subject C 0.627 0.609
Subject D 0.570 0.570
Subject E 0.664 0.641

Mean 0.633 0.624

Table 1: Per-subject and mean classification accuracy by classifier type.

tions where the DNN achieved an accuracy of 70.5% and the SVM achieved an
accuracy of 71.4%. The t-value associated with these results was t = 1.52 and
the p-value was p = 0.203, so the predictive accuracies of the SVM and DNN
were not statistically significantly different from each other.

5 Conclusions and Future Work

Due to the complexity of this problem and the minimalist approach to brain
signal sensing employed, the less-than-ideal results of this project were not en-
tirely surprising. While the method of detecting subjective intention to rest or
extend one’s finger used here may not be practical, the results of this exper-
iment beckon several other approaches to be explored in future work. These
include incorporating the use of electrocardiography and oculography channels
for artefact removal, adding more EEG channels, or utilizing an action, such
as wrist flexion, that evokes a greater activation potential and repeating the
process described here once more.

The implications of EEG-based intention detection beyond basic prosthet-
ics are far-reaching. If further work reveals that non-invasive EEG monitoring
can reliably yield subject intention or specific brain activity, technologies could
be developed that support BCI-based control of mechanical and electrical sys-
tems. This would enable smart home network technology that would allow
quadriplegic individuals to be able to perform household tasks such as opening
doors, using the restroom, cooking, and cleaning without the need of human
assistance.

Further research into BCI-based detection of other parameters describing
an individual’s state could be utilized to promote human safety. For example,
driver wakefulness could be monitored to prevent traffic accidents by provid-
ing drowsiness warnings. Additionally, such a technology could be used by

99

physicians to telemetrically monitor patient health. As medicine continues to
become a more data-oriented profession, such a monitoring system could prove
to be an invaluable diagnostic tool. If this technology were to be effectively
harnessed, it would have the potential to revolutionize assistive and medical
technology and drastically impact the way that humans and machines typically
interact.

Acknowledgements

The researchers would like to thank the Paul K. Richter and the Evalyn E.
C. Richter Memorial Funds for funding this research project and providing the
opportunity to dig into this fascinating, emerging new field of research at the
intersection of artificial intelligence, digital signal processing, and neuroscience.

References

[1] Bright, D. and Nair, A. and Salvekar, D. and Bhisikar, S. EEG-based
brain controlled prosthetic arm. In Proceedings of the 2016 Conference on
Advances in Signal Processing (CASP), pages 479483, 2016.

[2] Choi, S. H. and Lee, M. and Want, Y. and Hong, B. Estimation of Optimal
Location of EEG Reference Electrode for Motor Imagery Based BCI Using
fMRI. In Proceedings of the 2006 International Conference of the IEEE
Engineering in Medicine and Biology Society, 2006.

[3] Ciresan, D. and Meier, U. and Schmidhuber, J. Multi-column deep neu-
ral networks for image classification. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

[4] Dechter, R. Learning while searching in constraint-satisfaction-problems.
1986.

[5] Ganguly, K. and Carmena, J. M. Emergence of a Stable Cortical Map for
Neuroprosthetic Control. PLOS Biology, 7(7), 2009.

[6] Herculano-Houzel, S. The Human Brain in Numbers: A Linearly Scaled-
up Primate Brain. Frontiers in Human Neuroscience, 3(31), 2009.

[7] Lauer, R. T. and Peckham, P. H. and Kilgore, K. L. EEG-based control
of a hand grasp neuroprosthesis. NeuroReport, 10:1767-1771, 1999.

[8] Maguire, P. and Parkes, C. M. Surgery and loss of body parts. The BMJ,
316:1086-1088, 1998.

100

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

McCulloch, W. and Pitts, W. A Logical Calculus of Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics, 5:111-113, 1943.

Muller-Putz, G. R. and Scherer, R. and Pfurtscheller, G. and Rupp, R.
EEG-based neuroprosthesis control: a step towards clinical practice. Neu-
roscience Letters, 382:169-174, 2005.

Owings, M. and Kozak, L. J. Ambulatory and Inpatient Procedures in
the United States. Vital and Health Statistics, 13(139):8, 1998.

Pfurtscheller, G. and Flotzinger, D. and Mohl, W. and Peltoranta, M.
Prediction of the side of hand movements from single-trial multi-channel
EEG data using neural networks. FElectroencephalography and Clinical
Neurophysiology, 82:313-315, 1992.

Pohlmeyer, E. A. and Oby, E. R. and Perreault, E. J. and Solla, S. A. and
Kilgore, K. LL and Kirsch, R. F. and Miller, L. E. Toward the Restoration of
Hand Use to a Paralyzed Monkey: Brain-Controlled Functional Electrical
Stimulation of Forearm Muscles. PLOS One, 4(6), 2009.

Rosenblatt, F. The Perceptron: A Probabilistic Model For Information
Storage And Organization In The Brain. Psychological Review, 65:386—
408, 1958.

Rugnetta, M. Phantom limb syndrome. Encyclopeedia Brittanica, Inc.,
2014.

Stevenson, I. H. and Kording, K. P. How advances in neural recording
affect data analysis. Nature Neuroscience, 14:139-142, 2011.

Werbos, P. Beyond regression: new tools for prediction and analysis in
the behavioral sciences. 1974.

101

Introduction to Jetstream:
A Research and Education Cloud*

Conference Tutorial

Sanjana Sudarshan and Jeremy Fischer
Research Technologies
Indiana University
Bloomington, IN 47401

{ssudarsh, jeremyl@iu.edu

1 Introduction

Jetstream is the first production cloud funded by the National Science Foun-
dation (NSF) for conducting general-purpose science and engineering research
as well as an easy-to-use platform for education activities. Unlike many high-
performance computing systems, Jetstream uses the interactive Atmosphere
graphical user interface developed as part of the iPlant (now CyVerse) project
and focuses on interactive use on uni-processors or multiprocessors. This in-
terface provides for a lower barrier of entry for use by educators, students,
practicing scientists, and engineers. A key part of Jetstream’s mission is to
extend the reach of the NSF’s eXtreme Digital (XD) program to a commu-
nity of users who have not previously utilized NSF XD program resources,
including those communities and institutions that traditionally lack significant
cyberinfrastructure resources. One manner in which Jetstream eases this ac-
cess is via virtual desktops facilitating use in education and research at small
colleges and universities, including Historically Black Colleges and Universities
(HB-CUs), Minority Serving Institutions (MSIs), Tribal colleges, and higher
education institutions in states designated by the NSF as eligible for funding
via the Established Program to Stimulate Competitive Research (EPSCoR).
While cloud resources won’t replace traditional HPC environments for large
research projects, there are many smaller research and education projects that
would benefit from the highly customizable, highly configurable, programmable

*Copyright is held by the author/owner.

102

cyberinfrastructure afforded by cloud computing environments such as Jet-
stream. Jetstream is a Infrastructure-as-a-Service platform comprised of two
geographically isolated clusters, each supporting hundreds of virtual machines
and data volumes. The two cloud systems are integrated via a user-friendly
web application that provides a user interface for common cloud computing
operations, authentication to XSEDE via Globus, and an expressive set of web
service APIs.

Jetstream enables on-demand access to interactive, user-configurable com-
puting and analysis capability. It also seeks to democratize access to cloud
capabilities and promote shareable, reproducible research. This event will de-
scribe Jetstream in greater detail, as well as how its unique combination of
hardware, software, and user engagement support the "long tail of science."
This tutorial will describe Jetstream in greater detail, as well as how its unique
combination of hardware, software, and user engagement support the "long tail
of science." Attendees will get a greater understanding of how Jetstream may
enhance their education or research efforts via a hands-on approach to using
Jetstream via the Atmosphere interface.

2 Tutorial Description
This tutorial requires two to three hours.

e Prerequisites: Basic Linux command line knowledge a plus (but not re-
quired)

e Required: Laptop, modern web browser (Chrome, Firefox, Safari)

e Targeting: Educators, Researchers, Campus Champions/ACI-Ref Facili-
tators, Campus research computing support staff

This tutorial will first give an overview of Jetstream and various aspects of
the system. Then we will take attendees through the basics of using Jetstream
via the Atmosphere web interface. This will include a guided walk-through
of the interface itself, the features provided, the image catalog, launching and
using virtual machines on Jetstream, using volume-based storage, and best
practices.

We are targeting users of every experience level. Atmosphere is well-suited
to both HPC novices and advanced users. This tutorial is generally aimed at
those unfamiliar with cloud computing and generally doing computation on
laptops or departmental server resources. While we will not cover advanced
topics in this particular tutorial, we will touch on the available advanced ca-
pabilities during the initial overview.

103

3 Tutorial Program

This is a sample tutorial program. Time required for this tutorial is approxi-
mately 3 hours.

e What is Jetstream?

e Q & A and what brief hands-on overview

e Getting started with Jetstream, including VM launching
e Break

e Accessing your VM, creating and using volumes

e Customizing and saving images, DOIs

e Cleaning up

e Final Q & A

104

Teaching Introduction to Programming
Courses to Non-Computer Science
Majors using SageMath*

Conference Tutorial

Razvan A. Mezei
Computer Science Department
Saint Martin’s University, Lacey, WA 98503

rmezei@stmartin. edu

In this tutorial we will demonstrate the use of SageMath in Introduction to
Programming courses for non-Computer Science majors. SageMath (which is
Python-based) is a great tool both for programming ([3]) and symbolic com-
putation ([1, 4]). Being a free open source alternative to Matlab, Mathematica
and Maple ([5]), it could be used to teach introductory programming courses
([3]), especially to students with an interest in Mathematics, Teaching Educa-
tion, and Data Science. The tutorial will cover topics such as: various ways
to access SageMath (host-based, web-based, or cloud-based), an overview of
symbolic computation in SageMath, typical topics seen in Introductory Pro-
gramming courses ([2, 6]), as well as how to program Interacts and Animations
in SageMath. We will end this tutorial with a discussion on how to help stu-
dents contribute to this open source project.

References

[1] G.V. Bard. Sage for undergraduates (online version).
http://wuw.gregorybard.com/sage.html.

[2] Tony Gaddis. Starting Out with Python (4th Edition). Pearson, 2017.

[3] R. A. Mezei. Teaching an introductory programming course to non-computer science
majors using sagemath. Turk. J. Math. Comput. Sci. 11(1)((2019)) 24-28.

[4] W.A. Stein et al. Collaborative calculation in the cloud. https://cocalc.com.
[5] W.A. Stein et al. SageMath - open-source mathematical software system.
http://www.sagemath.org/.

[6] John Zelle. Python Programming: An Introduction to Computer Science, 3rd Ed.
Franklin, Beedle & Associates, 2016.

*Copyright is held by the author/owner.

105

Applying Code Translation and
Subprogram Call Graph to Improve
Programming Proficiency in CS1*

Conference Tutorial

Xuguang Chen
Computer Science Department
Saint Martin’s University
Lacey, WA 98503

zchen@stmartin. edu

Abstract

This tutorial introduced the application of two techniques: code
translation and subprogram call graphs, helping the students, especially
those in CS1, to improve their programming proficiency. It started by
a brief introduction of each technique, followed by the examples of their
application in class, and finally the sample exercises, assignments, and
quizzes are presented.

1 Introduction

When students study a programming language, especially for CS1 students,
they can face many challenges such as:

e When reading the code, a student can encounter unfamiliar syntax, be-
cause of which the student will not be able to correctly understand the
meaning of the code.

e When reading the code of a complicated program, students often can
be confused by the meaning of the code. Therefore, they often need to
interpret the meaning of the code into human nature languages in mind,
and then understand the code according to the meaning in human nature
languages.

*Copyright is held by the author/owner.

106

e When writing the code, a student will experience the situation that what
they want to operate can be clearly expressed in a human nature lan-
guage, but they cannot find the identical expressions in a programming
language. As the result, the code to be written cannot be clearly and
concisely expressed the operations that the program is assumed to do.

e When compiling the code, though students can understand that the pro-
gram has made certain mistakes based on the error messages from the
compiler, they cannot quickly determine the reasons so as to correctly
debug.

There are many reasons for these challenges, one of which is because of
unfamiliar with the syntax of a programming language. Hence, assisting the
students thoroughly learn the syntax of a programming language and thereby
deeply understand the code become vital.

When learning a foreign language for example English, students often en-
counter challenges similar to those in learning a programming language. There
are many similarities between programming languages and human nature lan-
guages, so according to the author’s experience, the method of learning a for-
eign language, like the translation exercises, can also be applied in the program-
ming exercise, helping the students to better understand the syntax. That is,
when learning a programming language, the exercises like writing down the
meaning of each line of code in the form of comments, or writing the code
based on given comments can be extensively applied in different way.

The translation exercise are effective for the students to be familiar with
the syntax of a programming language, but it often does not work well for the
students to understand the calling sequence among the functions in a program.
A common way to comprehend an article when learning a foreign language is
to, before deeply understand the meaning of each paragraph, identify the struc-
ture of an article and the general meaning of each paragraph. Such a method
can make the students better understanding the interrelationship among para-
graphs and the meaning of the entire article. This technique, when learning
the programming language, can be implemented with a subprogram call graph
similar to a dynamic flow graph. That is, before deeply understand the code
of each function, a subprogram call graph is used to analyze and represent the
call relationships among functions, parameter passing, and return values, thus
helping the students find out the relationship between functions of a program.
Then, the translation exercise can be selected to focus on the meaning of each
line of the code in each function. In practice, these two techniques can be used
separately or together and designed as various kinds of exercises, some of which
will be introduced in this tutorial.

107

A Comparison of Two Hands-On
Cybersecurity Frameworks*

Conference Tutorial

Jens Mache! and Richard Weiss®
ILewis & Clark College
Portland, OR 97219
{jmache, author}@lclark. edu
2The Fvergreen State College
Olympia, WA 98505

{weissr,author}@evergreen. edu

Abstract

There are several different frameworks for teaching hands-on cyber-
security exercises. Faculty who want to integrate cybersecurity into their
courses may have difficulty in choosing one. In this tutorial, we will show
faculty two different frameworks so that they can understand the possi-
bilities. It is not necessary to choose only one. In our courses, we have
taken advantage of multiple frameworks, in order to benefit from their
individual strengths. We think this will lower the barrier for use.

In this tutorial, we will introduce the DeterLab and EDURange frame-
works, and present one hands-on exercise from each. Participants try
them, and discuss how they can be used in their courses.

1 Overview

Student exposure to practical, hands-on exercises is critical for cybersecurity
curricula. It helps students internalize concepts taught in class, learn to use
cybersecurity tools, and learn critical and adversarial thinking.

EDURange [1, 4, 5, 6, 7, 8] is a cloud-based framework for cybersecurity
exercises designed with three major goals. First, ease-of-use for students and
instructors. Scenarios run on VMs that are created automatically in the pub-
lic cloud. Students don’t need special software and can work anywhere with

*Copyright is held by the author/owner.

108

Internet service. Instructors can register their classes. Students can work in
groups. EDURange collects data to make assessment easier. Second, engaging
for students and faculty. Students from a variety of backgrounds can learn
practical security concepts, tools, and skills in scenarios that gamify realistic
challenges. Third, flexibility. Use simple scripts to specify exercises at a high
level and create variations. This enables instructors to tailor exercises to their
specific classes and student backgrounds and continue to modify them in order
to minimize risk of students finding the answers online.

DeterLab [2, 3] is both an educational and a research platform on a private
cloud. Once the instructor reserves resources for their class, students have
control over starting and stopping their “experiment”. Similar to EDURange,
there are scripts that install the OS and required software packages. DeterLab
has a variety of “homework” exercises, available via the education portal [2],
cover a wide range of topics including: buffer overflows, code injection and
command-injection attacks, man-in-the-middle attacks, worm modeling and
detection, botnets, router and DNS attacks, and DDoS attacks. Each of these
exercises is a packaged experiment that demonstrates one of these topics, pro-
viding students with direct observation of attacks and interaction with targets.
Students create and manipulate an instance of an experiment and follow the
instructions to demonstrate attacks and defenses, and improve their practical
cybersecurity skills. Both DeterLab and EDURange rely on the command line
interface and have the ability to capture and analyze student interactions.

2 Acknowledgements

This work was partially supported by National Science Foundation grants
1723705, 1723714, 1516100 and 1516730.

References

[1] https://edurange.org/scenarios.html, accessed July 2019.
[2] https://www.isi.deterlab.net/sharedpublic.php, accessed July 2019.

[3] J. Mirkovic and T. Benzel. Teaching Cybersecurity with DeterLab.
IEEE Security Privacy, 10(03):73-76, 2012. doi: https://doi.
ieeecomputersociety.org/10.1109/MSP.2012.23.

[4] R. Weiss, S. Boesen, J. Sullivan, M. E. Locasto, J. Mache, and E. Nilsen.
Teaching cybersecurity analysis skills in the cloud. In Proceedings of
the 46th ACM Technical Symposium on Computing Science Education,

109

[5]

16]

7]

18]

110

SIGCSE ’15. ACM, 2015. doi: http://dx.doi.org/10.1145/2676723.
2677290.

R. Weiss, M. E. Locasto, and J. Mache. A reflective approach to assessing
student performance in cybersecurity exercises. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, SIGCSE 16,
pages 597-602. ACM, 2016. doi: http://dx.doi.org/10.1145/2839509.
2844646.

R. Weiss, J. Mache, and M. E. Locasto. The EDURange framework and
a movie-themed exercise in network reconnaissance. In Proceedings of
USENIX Security: Advances in Security Education Workshop, ASE, 2017.

R. Weiss, F. Turbak, J. Mache, and M. E. Locasto. Cybersecurity education
and assessment in EDURange. IEEE Security Privacy, 15(3):90-95, 2017.
doi: http://doi.ieeecomputersociety.org/10.1109/MSP.2017.54.

R. Weiss, F. Turbak, J. Mache, E. Nilsen, and M. E. Locasto. Finding the
balance between guidance and independence in cybersecurity exercises. In
USENIX Workshop on Advances in Security Education, 2016.

