
The Journal of Computing
Sciences in Colleges

Papers of the 40th Annual CCSC
Eastern Conference

October 18th-19th, 2024
Mount St. Mary’s University

Emmitsburg, MD

Abbas Attarwala, Editor George Dimitoglou, Regional Editor
California State University, Chico Hood College

Volume 40, Number 3 October 2024

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 11

CCSC National Partners 13

Welcome to the 2024 CCSC Eastern Conference 14

Regional Committees — 2024 CCSC Eastern Region 15

10, 23, 81 — Stacking up the LLM Risks: Applied Machine Learn-
ing Security 17

Gary McGraw, Ph.D., Berryville Institute of Machine Learning

Transforming Grading Practices in the Computing Education Com-
munity 19

Adrienne Decker, Ph.D., University at Buffalo, NY

AI Intersections: Ethics, Education, and Technological Philoso-
phy 21

Michael J. Reno, University of Mary Washington; Victoria Russell,
University of Mary Washington; Taylor J. Nutter, Mount St. Mary’s
University; P. Anand Rao, University of Mary Washington; Jennifer
Polack (Moderator), University of Mary Washington

Using a Distinctive Curricular Design Process for Liberal Arts
Computing Programs 24

Jakob E. Barnard, University of Jamestown; Grant Braught, Dickin-
son College; Janet Davis, Whitman College; Amanda Holland-Minkley,
Washington & Jefferson College; David Reed, Creighton University;
Karl Schmitt, Trinity Christian College; Andrea Tartaro, Furman Uni-
versity; James Teresco, Siena College

Standards-Based Grading in a Wide Variety of Courses 27
Brian Heinold, Ph.D., Mount St. Mary’s University

Neurodiversity and Computer Science: Working with Neurodi-
verse Students to Accomplish Their Education Goals 28

Andrea Wentzell, Chestnut Hill College

3

Teaching Software Engineering Concepts while Using AI Tools
for Programming in Intro Computer Science 29

Jeffrey Bush, Moravian University

Persistent Homology Detects Bifurcation in Dynamical Systems 31
Chase Demick, Skidmore College

Enhancing Academic Insight: Leveraging Web of Science Data
with Large Language Models for Comprehensive Faculty and Ar-
ticle Analysis at Salisbury University 32

Spencer Presley, Salisbury University; Cole Barbes, Salisbury University

Detecting and Analyzing Tennis Ball Movements with AI, Deep
Learning, Computer Vision and Large Multimodal Models 34

Hunter Liao, Hagerstown Community College

Building a Voice-Activated RAG Chatbot with Generative AI and
LLMs 35

Tyler Wills, Shepherd University; Cara Burgan, Shepherd University

Unveiling the Nexus: AI, Environmental Impact, and Cost 37
Vageesh Hegde, Frostburg State University; Supreetha Bolar, Frostburg
State University

An Analysis of the Default Security Postures of Common Linux
Distributions 39

John M. Roy, Marymount University

Be There or Be Square: Finding the Perfect Shape With a Ge-
netic Algorithm 41

Shawn Patrick Harriet, Mount St. Mary’s University; Avery Lamprecht,
Mount St. Mary’s University

Automating Server Deployments with Ansible: Utilizing Automa-
tion in DevOps 42

Blake Douglas Hatcher, Mount St. Mary’s University

Modern State Marijuana Legislation and its Effect on Crime 44
Joseph Paul Jacobs III, Mount St. Mary’s University

Creating a Jguardrail Plugin for IntelliJ IDEA 45
Mackenzie Swain, University of Mary Washington

4

Exploring the Architecture and Application of Transformer Mod-
els in Natural Language Processing and Media Generation 47

Zhairui Shen, Arcadia University; Tianwei Wang, Arcadia University;
Vitaly Ford, Arcadia University

A Shortcut to Parallel Programming in Java 49
Connor Hairfield, University of Mary Washington

Trends and Privacy Challenges in Mental Health Apps: A Data-
Driven Analysis 50

Xingyu You, Arcadia University; Wang Wang, Arcadia University; Yanxia
Jia, Arcadia University

SightAssist: Mobile App for Object Recognition and Navigation
for the Visually Impaired 52

Tarron Montgomery, Bowie State University; Brandon Wiggins, Bowie
State University; Malachi Gray, Bowie State University; Staphord Ben-
gesi, Bowie State University; Md Kamruzzaman Sarker, Bowie State
University

Evaluating Stigma: Experiences Modifying the Assembly Code
of Closed-Source Android Apps 53

Shokhinabonu Tojieva, Franklin & Marshall College; Chelsea Rao, Franklin
& Marshall College; Ed Novak, Franklin & Marshall College

Cost-Effective Detection of Invasive Ductal Carcinoma Using CNNs
and Explainable AI on Histology Images 54

Dylan Jayabahu, Laurel Heights Secondary School

A Sample Lecture at College-Level for Optimizing Linear Search
Algorithm 56

Penn Wu, Cypress College

Leveraging ChatGPT for SQL Learning: An Interactive Approach 58
Ching-yu Huang, Kean University; Paolien Wang, Kean University

Approaches to Identifying Preteen Suicide Risk and Protective
Factors 60

Osei Hyiamang, Marymount University

Enhancing Undergraduate Computing Education with LMMs and
ChatGPT-4o 62

5

Weidong Liao, Shepherd University; Osman Guzide, Shepherd Univer-
sity

Evaluating the Pedagogical Impact of Large Language Models on
Programming Skills in Data Science Programs in Higher Educa-
tion 63

Giancarlo Crocetti, St. John’s University; Seonwoo Bak, St. John’s
University; Daena D. Vautor-Laplaceliere, St. John’s University; Naqib
A. Noory, St. John’s University

Innovative Career-Focused Curriculum for Computer Science and
Information Technology 65

Ching-yu Huang, Kean University

Introducing First-year Students to Computing through Class OSSD 67
Lily Liang, University of the District of Columbia

Understanding Immediate Weekend Hits and Cult Classics using
Natural Language Processing Script Analysis 69

Heather Cassel, West Chester University of Pennsylvania; An N. M.
Pham, Highschool of Education and Sciences, Ha Noi, Vietnam; Hung
T. Nguyen, Ly Thai To Highschool, Bac Ninh, Vietnam; Linh B. Ngo,
West Chester University of Pennsylvania

Inclusive by Design: How Accessibility Regulations are Shaping
the Future of Software Development 71

Peter A. Hartnett, Frostburg State University

Big Interview, Big Deal: Connecting Academic Experiences to
Careers with Interview Practice 72

Karen Anewalt, University of Mary Washington; Jennifer Polack, Uni-
versity of Mary Washington

Malware Detection using Deep Learning 73
Roxan Rockefeller, Bowie State University

Implementing a FashionBot Curriculum in High School Class-
room to Improve Student Engagement and Motivation in Com-
puting 74

Onyinye Ukeneru-Steve, University of the District of Columbia; Lily
Liang, Ph.D., University of the District of Columbia

6

Investigating Deepfake Detection using LIME 76
Sandra L. Delancy, University of the District of Columbia; Lily Liang,
Ph.D., University of the District of Columbia

Multi-Party Computation in a United States-based E-Voting Sys-
tem 77

Ephraim N. Govere, Queen’s University; Syed Rizvi, The Pennsylvania
State University

Unveiling the Deception: Understanding the Urgent Need to
Combat Deep Fake Videos 78

Jada A. Danner, Bowie State University

An Analysis of Blockchain Approach in AI & Cyber-Physical Sys-
tems 80

Jared Robinson, Bowie State University

Malware Detection in Android Phone 81
Dawn Marshall, Bowie State University; Md Kamruzzaman Sarker,
Bowie State University

Mobile Application for Object Recognition for Visually Impaired
People 82

Isha Salma Renner, Bowie State University; Omobolanle Favour Niyiowo-
eye, Bowie State University; Christopher Miller, Bowie State Univer-
sity; Maysha Fahmida, United International University; Md Kamruzza-
man Sarker, Bowie State University

Designing and Prototyping a Parking Space Monitoring System
with Generative AI and Large Multimodal Models 83

Rachael Poffenberger, Shepherd University; Chaz Cornejo, Shepherd
University; Weidong Liao, Shepherd University

Demystifying the RSA Algorithm: An Intuitive Introduction for
Novices in Cybersecurity 85

Zhengping Jay Luo, Rider University; Ruowen Liu, Rider University;
Aarav Mehta, Rider University; Md Liakat Ali, Rider University

Design and Development of the FlexBEWebUI with Introductory
Tutorials 100

Samuel Raymond, Christopher Newport University; Grace Walters, Christo-
pher Newport University; Josh Luzier, Christopher Newport University;
David C. Conner, Christopher Newport University

7

Stigma: A Tool for Modifying Closed-Source Android Applica-
tions 113

Ed Novak, Franklin and Marshall College; Shaamyl Anwar; Saad Mah-
boob; Shokhinabonu Tojieva; Chelsea Rao, Franklin and Marshall Col-
lege

Addressing the Gap Between How Students and Professionals
Read Code 128

Matthew Woerner, University of Washington Bothell; David Socha, Uni-
versity of Washington Bothell; Mark Kochanski, University of Washing-
ton Bothell

Improving Introductory Java Programming Education Through
ChatGPT 140

Jingnan Xie, Millersville University of Pennsylvania

Studying Financial Data with Macroeconomic Factors using Ma-
chine Learning 151

Sai Sravya Anem, West Chester University; Md Amiruzzaman, West
Chester University; Ashik Ahmed Bhuiyan, West Chester University

English to American Sign Language: An AI-based Approach 164
James May, West Chester University; Kyle Brennan, West Chester Uni-
versity; Stefanie Amiruzzaman, West Chester University; Md Amiruz-
zaman, West Chester University

Enhancing Learning of Matrix Transformations through Immer-
sive Virtual and Augmented Reality Interfaces 176

Kantida Nanon, New Jersey Institute of Technology; Margarita Vin-
nikov, New Jersey Institute of Technology; Mathew Schwartz, New Jer-
sey Institute of Technology; Michael J. Lee, New Jersey Institute of
Technology

An Ontology for Social Determinants of Education (SDoEd) based
on Human-AI Collaborative Approach 191

Navya Martin Kollapally, Kean University; James Geller, New Jersey
Institute of Technology; Patricia Morreale, Kean University; Daehan
Kwak, Kean University

Enabling Blind and Low-Vision (BLV) Developers with LLM-
driven Code Debugging 204

Clark Saben, University of Mary Washington; Jessica Zeitz, Univer-
sity of Mary Washington; Prashant Chandrasekar, University of Mary

8

Washington

Decoding SPAM: A Comprehensive Exploration of Unsolicited
Messages 216

Nooh Bany Muhammad, Frostburg State University; Tamer Alghamaz,
Al-Albayt University; Luma Alghamaz, Al-Albayt University

The Impact of Changing a Course to Follow Equitable Grading
Practices: A Case Study of Incremental Changes to Grading in
Computer Science III 228

David G. Cooper, West Chester University

Ad-hoc Ensemble Approach for Detecting Adverse Drug Events
in Electronic Health Records 238

Saurav K. Aryal, Howard University; Howard Prioleau, Howard Uni-
versity

Finiteness Considerations in Machine Learning 250
Jeffrey C. Jackson, Duquesne University

FACE: A Framework for AI-driven Coding Generation Evalua-
tion 263

Bao Ngo, Oberlin College; Jack Formato, Loyola University Maryland;
James J. May, West Chester University; Nguyen Ho, Loyola University
Maryland; Hoang Bui, Loyola University Maryland; Linh B. Ngo, West
Chester University

Strengthening Financial IoT Systems Against Bank Fraud: Inte-
grating Data Backup and Recovery Solutions 277

Syed Rizvi, Steven McKimm, Jonathan Bush, Lukas Rhyner, Christian
Diaz, Pennsylvania State University

Programming and Control of Physical Autonomous Robots via
ROS 2 294

Lili Ma, Christian Rosa, Xiaohai Li, Yu Wang, Benito Mendoza, Andy
S. Zhang, CUNY-New York City College of Technology

Comparing K-8 Computing Education Implementations Between
South Africa and Sweden 309

Michael J. Lee, New Jersey Institute of Technology; Annie Lang, Jönköping
University; Bruce Ferwerda, Jönköping University

9

Jguardrail: A Framework for Identifying Possible Errors in Stu-
dent Java Code 322

Ian Finlayson, University of Mary Washington; Stephen Davies, Uni-
versity of Mary Washington

Teaching Bioinformatics Students to Lead Reproducible Research334
Miranda Malouf Darby, Hood College

Reviewers — 2024 CCSC Eastern Conference 347

10

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Bryan Dixon, President (2026),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.
Shereen Khoja, Vice
President/President-Elect (2026),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Abbas Attarwala, Publications Chair
(2027), aattarwala@csuchico.edu,
Department of Computer Science,
California State University Chico,
Chico, CA 95929.
Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).
Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative (2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Ben Tribelhorn, Northwestern
Representative (2027), tribelhb@up.edu,
School of Engineering, University of
Portland, Portland, OR 97203.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Mika Morgan, South Central
Representative (2027),
mikamorgan@wsu.edu, Department of
Computer Science, Washington State
University, Pullman, WA 99163.
Karen Works, Southeastern
Representative (2027),
kworks@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

11

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Computer Science
and Information Systems, Park
University, Parkville, MO 64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of
Computer Science, Hood College,
Frederick, MD 21701.

Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Ed Lindoo, UPE Liaison,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

12

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

Code Grade
GitHub

CodeZinger
ACM CCECC
Local Vendors

Evapco
Jones and Bartlett Learning

13

Welcome to the 2024 CCSC Eastern Conference
Welcome to the Consortium for Computing Sciences in Colleges (CCSC)

Eastern’s 40th Annual Regional Conference, hosted this year by Mount Saint
Mary’s University in Emmitsburg, MD. We are so happy to welcome all of you
to Mary’s Mountain for this important anniversary in CCSC Eastern’s history.

On behalf of the CCSC Eastern Region and the program committee, we
greatly appreciate all the submissions for papers, posters, workshops, tutorials,
and nifty ideas. We’ve been working since the beginning of the year to prepare
for the conference. We have participants coming from at least 30 different
organizations, including a national publisher and a local business.

While the CCSC committee assessed the materials to ensure the highest
quality of the materials selected for presentations and demonstrations, the
Mount faculty, staff, and students worked to prepare the locations for the
event. We hope you enjoy the activities planned in our brand-new extension
to our building as well as the paper sessions throughout the first floor of Coad.

It is also a great honor to have Dr. Adrienne Decker, previous chair of
SIGCSE, as the conference’s keynote speaker, and Dr. Gary McGraw, co-
founder of the Berryville Institute of Machine Learning, as our banquet speaker.
We are so pleased to have both of them share their experiences and thoughts
for the future with us.

This year, the conference’s steering committee received tremendous inter-
est in paper submission, and the committee members assembled in person at
the Mount this past summer to finalize acceptance decisions. We received 27
faculty papers and 20 were accepted (74%) after double blind peer review. We
also have 10 faculty posters. Student submissions are at 10 papers and over
16 posters. We also accepted 1 panel on multidisciplinary approaches to AI, 1
workshop on curricular design for liberal arts computing programs, and 3 Nifty
Ideas/Lighting Talks. We’re excited about the wide variety of topics covered
at the conference.

Lastly, as co-chairs of this year’s conference, we are very grateful and hon-
ored to work alongside the committee and the Mount team to ensure this
prestigious regional forum for computing sciences is a productive experience.
We look forward to meeting you at the Mount and greatly appreciate your
participation and attendance.

Ruth Lamprecht
Scott Weiss

Conference Co-Chairs and Hosts

14

2024 CCSC Eastern Conference Committee
Co-Chairs
Ruth Lamprecht .Mount St. Mary’s University
Scott Weiss .Mount St. Mary’s University

Papers
George Dimitoglou, Regional Editor . Hood College
Gregory Liu . Bay Atlantic University
John Wright . Juniata College

Posters
Ian Finlayson . University of Mary Washington
Karen Anewalt .University of Mary Washington
Pranshu Gupta . DeSales University

Panels, Workshops, and Tutorials/Nifty Ideas
Nooh Bany Muhammad .Frostburg State University
Jennifer Polack .University of Mary Washington

Speakers
Melissa Stange . Laurel Ridge Community College

Programming Contest
Steven Kennedy .Frostburg State University
David Hovemeyer . Johns Hopkins University
TJ Highley . La Salle University
Jorge Silveyra . Lafayette College

ConfTool Registration and Submission System
Pranshu Gupta . DeSales University

Regional Board Representative
Michael Flinn . Frostburg State University

Regional Treasurer
Nathan Green . Marymount University

15

Web Site
John Wright . Juniata College

16

10, 23, 81 — Stacking up the LLM Risks:
Applied Machine Learning Security∗

Banquet

Gary McGraw, Ph.D., Berryville Institute of Machine Learning

I present the results of an architectural risk analysis (ARA) of large lan-
guage models (LLMs), guided by an understanding of standard machine learn-
ing (ML) risks previously identified by BIML in 2020. After a brief level-set, I
cover the top 10 LLM risks, then detail 23 black box LLM foundation model
risks screaming out for regulation, finally providing a bird’s eye view of all 81
LLM risks BIML identified. BIML’s first work, published in January 2020
presented an in-depth ARA of a generic machine learning process model, iden-
tifying 78 risks. In this talk, I consider a more specific type of machine learning
use case—large language models—and report the results of a detailed ARA of
LLMs. This ARA serves two purposes: 1) it shows how our original BIML-78
can be adapted to a more particular ML use case, and 2) it provides a detailed
accounting of LLM risks. At BIML, we are interested in “building security in”
to ML systems from a security engineering perspective. Securing a modern
LLM system (even if what’s under scrutiny is only an application involving
LLM technology) must involve diving into the engineering and design of the
specific LLM system itself. This ARA is intended to make that kind of detailed
work easier and more consistent by providing a baseline and a set of risks to
consider.

Speaker’s Bio

Gary McGraw is co-founder of the Berryville Institute of Machine Learning
where his work focuses on machine learning security. He is a globally recog-
nized authority on software security and the author of eight best selling books
on this topic. His titles include Software Security, Exploiting Software, Building
Secure Software, Java Security, Exploiting Online Games, and 6 other books;
and he is editor of the Addison-Wesley Software Security series. Dr. McGraw

∗Copyright is held by the author/owner.

1 17

has also written over 100 peer-reviewed scientific publications. Gary serves on
the Advisory Boards of Calypso AI, Legit, Irius Risk, Maxmyinterest, and Red
Sift. He has also served as a Board member of Cigital and Codiscope (ac-
quired by Synopsys) and as Advisor to CodeDX (acquired by Synopsys), Black
Duck (acquired by Synopsys), Dasient (acquired by Twitter), Fortify Software
(acquired by HP), and Invotas (acquired by FireEye). Gary produced the
monthly Silver Bullet Security Podcast for IEEE Security & Privacy magazine
for thirteen years. His dual PhD is in Cognitive Science and Computer Science
from Indiana University where he serves on the Dean’s Advisory Council for
the Luddy School of Informatics, Computing, and Engineering.

218

Transforming Grading Practices in the
Computing Education Community∗

Keynote

Adrienne Decker, Ph.D., University at Buffalo, NY

It is often the case that computer science classrooms use traditional grading
practices where points are allocated to assignments, mistakes result in point
deductions, and assignment scores are combined using some form of weighted
averaging to determine grades. Unfortunately, traditional grading practices
have been shown to reduce achievement, discourage students, and suppress
effort to such an extent that some common elements of traditional grading
practices have been termed toxic. Using grades to reward or punish student
behavior does not encourage learning and instead increases anxiety and stress.
These toxic elements are present throughout computing education and com-
puter science classrooms in the form of late penalties, lack of credit for code that
doesn’t compile or pass certain unit tests, among others. These types of met-
rics, that evaluate behavior are often influenced by implicit bias, factors outside
of the classrooms (e.g., part-time employment), and family life situations (e.g.,
students who are caregivers). Often, students in these situations are dispro-
portionately from low-socioeconomic backgrounds and predominantly students
of color. In this talk, I will present a case for adoption of equitable grading
practices in computer science classrooms and issue a call for additional support
in classroom and teaching technologies as well as support from administrations
both at the department and university level. I will explain the community of
practice approach we are taking to both encourage adoption and to study the
impact of these practices on students.

Speaker’s Bio

Adrienne Decker, PhD, is an Associate Professor in the Department of En-
gineering Education at the University at Buffalo. She has been studying the
teaching and learning of computing concepts for over 20 years. Her work strives

∗Copyright is held by the author/owner.

1 19

to enrich and improve the student experience in computing education, including
work in broadening participation. She has secured $3M in funding for her schol-
arly work in computing and has authored over 50 publications in computing
education. Her currently funded work includes, a 5-year grant to help integrate
more equitable computing practices into computer science classrooms, a grant
to help develop additional classroom tool support for adoption of equitable
grading practices in computer science, a grant to study threshold concepts for
intermediate computer science students, a grant to continue the development
and dissemination of subgoal labels in the introductory curriculum, and a grant
to help prepare faculty to manage neurodiversity in their classrooms. Active
in the computing education community, she is currently serving on the ACM
Special Interest Group on Computer Science Education (SIGCSE) board as
past chair (2022-2025) and was SIGCSE board chair (2019-2022), and board
treasurer (2016-2019), program co-chair in 2014 and general co-chair in 2015
for the SIGCSE Technical

Symposium on Computer Science Education and sits on the ACM SIG
Governing Board Executive Committee as SIG Viability Advisor. She has been
actively involved with the Advanced Placement Computer Science A course
since 2011, first serving as a reader, and as part of the development committee
for the CSA exam from 2015-2021, serving as higher ed co-chair 2018-2021, and
is one of the principal authors of the current Course and Exam Description for
CSA. She has also served on various other program and review committees.

220

AI Intersections: Ethics, Education, and
Technological Philopsophy∗

Panel Discussion

Michael J. Reno1, Victoria Russell2 Taylor J.
Nutter3, P. Anand Rao4 and
Jennifer Polack (Moderator)

1Classics, Philosophy, and Religion
2Center for Teaching

4Department of Communication & Digital Studies
University of Mary Washington

Fredericksburg, VA 22401
{mreno, vrussel3, arao}@umw.edu

4Theology Department Mount St. Mary’s University
Emmitsburg, MD 21727

t.j.nutter@msmary.edu

1 Summary

This panel explores the multifaceted intersections of artificial intelligence with
ethics, education, and philosophical perspectives on technology. As AI contin-
ues to reshape our world, it becomes increasingly crucial to examine its impli-
cations across various disciplines. Our panelists will present diverse viewpoints,
ranging from innovative pedagogical approaches using AI to philosophical in-
quiries into the nature of intelligence and technology. The panel will address
critical questions surrounding AI explainability, the integration of AI in educa-
tion, the historical context of AI research, and the ethical considerations that
arise from these technological advancements. By bringing together experts
from computer science, philosophy, religious studies, and digital humanities,
this panel aims to foster a rich, interdisciplinary dialogue on the present and

∗Copyright is held by the author/owner.

1 21

future of AI in academia and society. In the spirit of the panel topic, this
abstract was created using Anthropic’s Generative AI platform, Claude.

2 Dr. Michael J. Reno

Classics, Philosophy, and Religion : Using a GPT to Facilitate Student Un-
derstanding of Difficult Texts in the Humanities

In this paper, I summarize my work on “Heidegger-bot” using OpenAI’s
“Create a GPT.” I describe a bot designed to advance student understanding
of a difficult philosophical piece. I highlight elements from the instructions
used in its creation, describe student reactions and feedback, and offer some
notes for further development of these sorts of “tutor-bots” in the context of
Humanities education.

3 Dr. Victoria Russell

The Soul of Teaching: Harmonizing Relationship-Rich Education with A.I.
Innovations

In an era when technology is rapidly transforming education, Dr. Russell
will explore the delicate balance between artificial intelligence and the ‘human
touch’ in the classroom. From how we educate and learn about A.I. as faculty
to the ways we use it in our classrooms and beyond, this presentation will
consider how we innovate while keeping essential human elements of empathy,
creativity, and connection in teaching and learning.

4 Dr. Nutter

Will survey the history of the ideas that are presupposed in AI research and
cognitive science. This includes discussing the idea that intelligence is a matter
of computation over representations, how this has impacted our understanding
of what learning and, therefore, education is, and what questions regarding
justice are caught up in the history of these ideas.

5 Dr. P. Anand Rao

Communication and Digital Studies: Promoting AI Pluralism: A Debate Model
Approach to AI Explainability

This paper proposes a novel approach to AI explainability through the pro-
motion of AI pluralism using a debate model. By leveraging diverse AI agents
in structured argumentative exchanges, I aim to enhance the transparency and

222

interpretability of AI systems. This framework draws upon computational and
rhetorical argumentation techniques to facilitate more natural human-AI com-
munication and provide clearer explanations of AI decision-making processes.
The debate model not only serves as an explainability tool but also offers an
innovative method for in-class assessment, allowing educators to evaluate stu-
dents’ understanding of AI concepts through their participation in and analysis
of AI-driven debates. This approach addresses the growing need for explain-
able AI in educational settings while fostering critical thinking skills essential
for navigating an AI-driven world.

3 23

Using a Distinctive Curricular Design Process
for Liberal Arts Computing Programs

Conference Tutorial

Jakob E. Barnard1, Grant Braught2, Janet Davis3,
Amanda Holland-Minkley4, David Reed5, Karl Schmitt6,

Andrea Tartaro7, James Teresco8

1University of Jamestown, Jamestown, ND 58405
Jakob.Barnard@uj.edu

2Dickinson College, Carlisle, PA 17013
braught@dickinson.edu

3Whitman College, Walla Walla, WA 99362
davisj@whitman.edu

4Washington & Jefferson College, Washington, PA 15317
ahollandminkley@washjeff.edu

5Creighton University, Omaha, NE 68178
DaveReed@creighton.edu

6Trinity Christian College, Palos Heights, IL 60463
Karl.Schmitt@trnty.edu

7Furman University, Greenville, SC 29690
andrea.tartaro@furman.edu

8Siena College, Loudonville, NY 12211
jteresco@siena.edu

Abstract
As part of its forthcoming article in the Curricular Practices Vol-

ume with the new ACM/IEEE-CS/AAAI Computer Science Curricula
guidelines (CS2023)1, the SIGCSE Committee on Computing Educa-
tion in Liberal Arts Colleges (SIGCSE-LAC Committee) has developed
guidance, informed by its sessions at recent CCSC and SIGCSE confer-
ences, to help with the design and/or revision of CS curricula in liberal

1https://csed.acm.org

124

arts contexts [1]. The committee’s earlier work found that liberal arts
and small colleges approach the design of their computing curricula in
unique ways driven by institutional mission or departmental identity.
This impacts how faculty at these colleges adopt curricular guidelines.
Curricular guidelines like CS2023 inform curriculum design but are bal-
anced with the vision for a program, departmental strengths, locale,
student populations, and unique academic experiences. The desire to
craft distinctive curricula, combined with the size of curricular recom-
mendations, requires an assessment of trade-offs between achieving full
coverage of curricular recommendations and a school’s other priorities.
SIGCSE-LAC’s guidance encourages faculty to reflect on their programs
and the role of CS2023, beginning with their institutional and depart-
mental priorities, opportunities, and constraints.

This session will introduce participants to SIGCSE-LAC’s guidance
to consider curricular development in the context of the unique features of
their programs and institutions. Following an overview and brief discus-
sion of CS2023, participants will be guided through an abbreviated design
process using the latest version of the committee’s reflective assessment
process. This process is framed by a series of scaffolding questions that
begin from institutional and departmental missions, identities, contexts,
priorities, initiatives, opportunities, and constraints. From there, partic-
ipants will be led to identify design principles for guiding their curricu-
lar choices, including the CS2023 recommendations. Examples gathered
from the committee’s previous CCSC and SIGCSE sessions will be avail-
able to help articulate identity and program design principles, which will
then be used to identify distinctive program-level learning outcomes. A
spreadsheet tool that is being developed to aid in the shaping of curricu-
lar choices will be demonstrated. Participants will leave the session with
a better understanding of how CS2023 can impact their programs and
instruction on how to use the SIGCSE-LACS Workbook outlining our
curriculum design process with their departments. Participant feedback
will be gathered and used to refine the committee’s guidance.

References

[1] Amanda Holland-Minkley, Jakob Barnard, Valerie Barr, Grant Braught,
Janet Davis, David Reed, Karl Schmitt, Andrea Tartaro, and James
D. Teresco. 2023. Computer Science Curriculum Guidelines: A New
Liberal Arts Perspective. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2023). As-
sociation for Computing Machinery, New York, NY, USA, 617–623.
https://doi.org/10.1145/3545945.3569793

2 25

Presenter Biographies

One or two of this session’s eight co-authors will serve as presenter(s)/facilitator(s).
Jakob E. Barnard is an Associate Professor, Chair of the Computing,

Design, & Communications Department, and Director of Online Technology
Programs at the University of Jamestown. He is a facilitating member of the
SIGCSE-LAC Committee, and his research involves how curricula have been
integrated into Liberal Arts Computing programs. Grant Braught is a Pro-
fessor of Computer Science at Dickinson College. He is a facilitating member
of the SIGCSE-LAC Committee. He has organized committee events focused
on curricula and published widely on CS education issues, particularly within
the liberal arts. Janet Davis is Microsoft Chair and Professor of Computer
Science at Whitman College, where she serves as the department’s founding
chair. She co-organized SIGCSE pre-symposium events in 2020 and 2021 on
behalf of the SIGCSE-LAC Committee. Amanda Holland-Minkley is a
Professor of Computing and Information Studies at Washington & Jefferson
College. Her research explores novel applications of problem-based pedago-
gies to CS education at the course and curricular level. She is a facilitating
member of the SIGCSE-LAC Committee. David Reed is a Professor of Com-
puter Science and Chair of the Department of Computer Science, Design &
Journalism at Creighton University. He has published widely in CS education,
including the text A Balanced Introduction to Computer Science, and served
on the CS2013 Computer Science Curricula Task Force. Karl Schmitt is
Chair and Associate Professor of Computing and Data Analytics at Trinity
Christian College. He has served on the ACM Data Science Task Force and
various Computing, Technology, and Mathematics Education committees for
the MAA, ASA, and SIAM. His interests explore data science education, and
interdisciplinary education between computing, mathematics, data, and other
fields. Andrea Tartaro is a Professor of Computer Science at Furman Uni-
versity. Her computer science education research focuses on the intersections
and reciprocal contributions of computer science and the liberal arts, focusing
on broadening participation. She is a member of the SIGCSE-LAC Commit-
tee, and has published and presented in venues including the CCSC and the
SIGCSE Technical Symposium. Jim Teresco is Chair and Professor of Com-
puter Science at Siena College. He has been involved in CCSC Northeastern
for over 20 years and currently serves as board chair, and has been involved
with the SIGCSE-LAC Committee for 5 years. His research involves map-based
algorithm visualization.

326

Standards-Based Grading in a Wide Variety of
Courses∗

Lightning Talk

Brian Heinold, Ph.D.
Department of Mathematics & Computer Science

Mount St. Mary’s University
heinold@msmary.edu

Last academic year, I switched all my classes over to a standards-based
grading scheme. This was for a variety of classes, specifically, CS 1, The-
ory of Computation, Operating Systems, Computer Security, and Algebraic
Structures. This lighting talk will cover the grading scheme I used, what the
assessments looked like, and how it all worked out.

∗Copyright is held by the author/owner.

1 27

Neurodiversity and Computer Science: Working
with Neurodiverse Students to Accomplish

Their Education Goals∗

Nifty Idea

Andrea Wentzell
Computer Science Department

Chestnut Hill College
Philadelphia, PA 19118

wentzella@chc.edu

The transition to college is a significant change for all incoming students,
but it can be a bit more complicated for neurodivergent students. Chestnut Hill
College’s (CHC) Neurodiversity Program recognizes this and works to ensure
student success in college through an inclusive environment. Building upon
the CHC value and mission of the “Dear Neighbor.” Over the last year, the
CSIT department has been actively engaged in working with students in the
neurodiversity program. This idea will delve into some of the teaching tech-
niques and feedback gathered from students in our program, highlighting our
department’s commitment to supporting neurodiverse students in their educa-
tional journey.

Intended Audience: Faculty members working with neurodiverse students
Material Provided: PowerPoint

∗Copyright is held by the author/owner.

128

Teaching Software Engineering Concepts while
Using AI Tools for Programming in Intro

Computer Science∗

Nifty Idea

Jeffrey Bush
Department of Mathematics abd Computer Science

Moravian University
Bethlehem, PA 18104

bushj@moravian.edu

With the explosion of the usage of AI-assisted tools in programming, both
in the professional world and among learners, the approach to teaching stu-
dents how to use these tools appropriately is of utmost importance. There is
little point in denying students access to these tools, as professionals use them
and students will seek them out regardless. However, teaching students to use
them properly from the very start will allow them to move away from focusing
on specific details and nuances of a programming language to be able to focus
on larger applications, good design choices, and other aspects of software de-
velopment besides programming. This means that many software engineering
concepts can be introduced earlier in the curriculum, even in a first-semester
computer science course, including functional decomposition, data structure
decisions, testing, qualitative aspects of programming, stepwise refinement and
refactoring, and basic use cases and user stories coupled with software inspec-
tions and code reviews. Having students focus on program design, testing,
code quality, and building on previous assignments gives students numerous
opportunities to develop programming skills. To ensure students are learning
a programming language as well, they have to be able to read their own code
and other code samples along with being able to research and explain any un-
familiar code generated by an AI tool.

∗Copyright is held by the author/owner.

1 29

Intended Audience: Introductory CS educators, academic program planners
Material Provided: Example outline and in-class and homework assignments

230

Persistent Homology Detects Bifurcation in
Dynamical Systems∗

Poster Session

Chase Demick
Skidmore College

Saratoga Springs, NY
chasedemick@skidmore.edu

Faculty Advisor: Junyi Tu, Salisbury University
jxtu@salisbury.edu

Topological Data Analysis(TDA) is a fast growing research field in data
science combining both pure mathematics and computer science. Topology
often deals with the overall properties of a space, while the study of dynam-
ical systems deals with the overall behavior of a system without necessarily
being preoccupied with numerical details. Key in the study of global behavior
is the analysis of bifurcations, which are quantifiable changes to the system’s
behavior with respect to some set of parameters. We use the tool of persistent
homology in TDA to develop a procedure to analyze dynamical systems by
comparing the homologies of their trajectories, known as orbits, to those of
circles approximating the orbit’s long-term behavior. We implement the pro-
cedure in open source library in Python, and studies the Hopf bifurcation in
FitzHugh-Nagumo (FN) system from neuroscience.

∗Copyright is held by the author/owner.

1 31

Enhancing Academic Insight: Leveraging Web
of Science Data with Large Language Models

for Comprehensive Faculty and Article Analysis
at Salisbury University∗

Poster Session

Spencer Presley and Cole Barbes
Salisbury University

Salisbury, MD
{spresley1,cbarbes1}@gulls.salisbury.edu

Faculty Advisor: Junyi Tu, Salisbury University
jxtu@salisbury.edu

Our project leverages the Web of Science academic database (WoS) along-
side Large Language Models (LLMs) to aggregate article metadata and catego-
rize articles. We conducted this process on the last 5 years of Salisbury Univer-
sity (SU) article data, the raw article metadata was exported from WoS. From
the raw metadata, we aggregate and extract features on a per-category ba-
sis, for each category we construct the following features: Number of faculty,
number of articles, number of departments, total citation count across each
article, average citations per article, individual article citation count, each fac-
ulty members total and average citations, influential faculty, influential articles.
Alongside this, we also associate the faculty with the articles they’ve written or
helped write. This project provides a comprehensive analysis of the expertise
held by each SU faculty member. The data is made available via an intuitively
designed Excel spreadsheet as well as a publicly accessible website. Moreover,
this approach is designed to work for any University whose article metadata
is available via WoS, not just SU. Future updates will see the addition of ad-
ditional data features and visualizations. Along with the additional features
and visualizations, we will ensure fresh data is always available by empowering

∗Copyright is held by the author/owner.

132

users to trigger manual updates as well as allow for automatic updates with
user-specified time frames.

2 33

Detecting and Analyzing Tennis Ball
Movements with AI, Deep Learning, Computer

Vision and Large Multimodal Models∗

Poster Session

Hunter Liao
Technology and Computer Studies Division

Hagerstown Community College, Hagerstown, MD
hliao@student.hagerstowncc.edu

Faculty Advisor: Dr. Osman Guzide, Shepherd University
oguzide@shepherd.edu

In competitive sports like tennis, analyzing gameplay videos to improve
strategies and player performance is crucial. However, tracking the ball’s tra-
jectory in tennis poses unique challenges due to the small size of the ball, its
high speeds that often exceed 100 miles per hour, and the frequent low quality
and pixilation of video footage. These factors complicate the accurate detec-
tion and tracking of tennis balls, impacting the effectiveness of traditional video
analysis techniques.

The research presented here begins with a comprehensive review of exist-
ing methodologies for sports video analysis, mainly focusing on the unique
challenges presented by tennis. We then introduce an innovative approach
employing Artificial Intelligence, specifically Deep Learning and Large Mul-
timodal Models (LMMs), designed to detect, track, and analyze fast-moving
tennis balls with high precision. Our proposed software system aims to surpass
current capabilities in sports analytics by providing more accurate identifica-
tion of tennis ball trajectories and delivering actionable recommendations and
feedback directly to players and coaches. This system not only enhances train-
ing efficiency but also helps players refine their techniques based on reliable,
AI-enhanced visual data.

∗Copyright is held by the author/owner.

134

Building a Voice-Activated RAG Chatbot with
Generative AI and LLMs∗

Poster Session

Tyler Wills and Cara Burgan
Department of Computer Science, Mathematics and Engineering

College of STEM
Shepherd University

Shepherdstown, WV 25443
{twills02@,cburga02}@rams.shepherd.edu

Faculty Advisors:
Dr. Osman Guzide and Dr. Weidong Liao

{oguzide,wliao}@shepherd.edu

We have developed a voice-controlled Retrieval-Augmented Generation (RAG)
chatbot application at Shepherd University that utilizes Generative AI and
Large Language Models (LLMs) to transform how students interact with their
student handbook. This application combines cutting-edge natural language
processing and voice recognition technologies to create a more dynamic and
user-friendly experience. The chatbot leverages LLMs to understand and
respond to diverse queries, delivering detailed, contextually appropriate re-
sponses directly sourced from the handbook. The RAG methodology ensures
responses are not only generated by the AI but also precisely retrieved from
relevant handbook sections, preserving response integrity and accuracy.

Designed to enhance user experience substantially, this chatbot offers hands-
free access to essential information, facilitating increased engagement and ease
of use. Students can voice their questions and receive instant, accurate, and
concise answers, eliminating the need to manually navigate the handbook. This
advancement streamlines information access and supports an inclusive educa-
tional environment by catering to various learning preferences and needs. The
implementation of this AI-powered chatbot marks a significant progression in

∗Copyright is held by the author/owner.

1 35

integrating modern educational technologies, contributing to a more connected
and well-informed student community.

236

Unveiling the Nexus: AI, Environmental
Impact, and Cost∗

Poster Session

Vageesh Hegde, Supreetha Bolar
Department of Computer Science & Information Technologies

Frostburg State University
Frostburg, MD

vhegde0@frostburg.edu,supreethabolar61@gmail.com

As we move into 2024, the global landscape is experiencing a significant
increase in the adoption of artificial intelligence (AI), which is revolutionizing
industries and societies. AI, powered by machine learning (ML) and other ad-
vanced programming techniques, represents non-human intelligence capable of
learning from large datasets. This transformative technology presents unpar-
alleled opportunities, but also significant challenges, particularly with regards
to its environmental impact and economic feasibility. This paper explores the
two sides of AI development: Generative AI requires a lot of processing power,
leading to high energy consumption and substantial CO2 emissions, affect-
ing its cost-effectiveness and environmental impact. It meticulously examines
the complex components contributing to the operational costs of AI models,
including computational resources, data storage, energy consumption, and in-
frastructure requirements. It rigorously analyzes factors influencing these costs,
such as model complexity, data volume, and technological infrastructure, to
provide a comprehensive framework for cost analysis in AI. Furthermore, the
paper explores methodologies for evaluating and quantifying these operational
costs, which are essential for calculating return on investment (ROI) in AI
initiatives. Real-world case studies illustrate the practical applications of AI,
comparing different models to determine their cost-effectiveness and ROI. The
paper discusses emerging trends in AI development focused on reducing en-
vironmental impact, including green AI initiatives and energy-efficient strate-
gies. It concludes with insights into future research directions, advocating for

∗Copyright is held by the author/owner.

1 37

advancements in cost analysis methodologies and sustainable AI practices to
promote responsible AI innovation. In summary, his paper offers a compre-
hensive analysis of the economic and environmental aspects of AI deployment,
providing valuable insights for stakeholders navigating the complexities of AI
implementation in a rapidly evolving technological landscape.

238

An Analysis of the Default Security Postures of
Common Linux Distributions∗

Poster Session

John M. Roy
Marymount University

Arlington, VA
john.roy.2197@gmail.com

Linux is best-known for being a free and open-source operating system that
also has the incredible versatility to be installed on multiple platforms using
minimal system requirements.

In the cybersecurity realm, Linux is also often considered to have superior
hardening capabilities when compared to the much more dominant Windows
and Mac OS operating system families. With Linux becoming an increasingly
attractive option around the world to replace these more mainstream oper-
ating systems, understanding the vulnerabilities associated with the OS and
how to mitigate them is imperative. Unlike Windows and Mac OS however,
the open-source nature of Linux has led to the development of multiple dis-
tinct distributions with their own purposes and configurations. This can yield
wildly different default security postures among similar generation Linux re-
leases. While different Linux distributions have a common core, each variant is
developed independently by either a community collective or commercial entity
with a certain purpose in mind.

The main purpose of this article is to test the theory of security-by-design
by analyzing and comparing the vulnerabilities present in the security config-
urations across several commonly used distributions of Linux.

Using a collection of vulnerability assessment tools, these Linux distribu-
tions are examined on a collection of different hardware platforms at a freshly
installed state as well as a fully updated state. While this process does not
give a full picture as to how secure each distribution can be when fully con-
figured for operational use, it does help to gain a deeper understanding of the

∗Copyright is held by the author/owner.

1 39

prioritization of security in their development and deployment.

Keywords: Linux, Security-by-design, Vulnerabilities

240

Be There or Be Square: Finding the Perfect
Shape With a Genetic Algorithm∗

Poster Session

Shawn Patrick Harriet and Avery Lamprecht
Mount St. Mary’s University

Emmitsburg, MD
{s.p.harriett,j.lamprecht}@email.msmary.edu

This project explores the use of a genetic algorithm to learn to generate a
square. The program starts with a list of shapes with four randomly-generated
vertices. It then uses a method of scoring each generated shape to determine
closeness to a square, crossing over and randomly mutating into new genera-
tions until a square is found (or a user-set generation cap is reached). In this
program, it was discovered that a larger number of members per generation
was more valuable than a higher number of generations, though both were
important. This application of a genetic algorithm was created while learning
about types of problem-solving algorithms, and displays one in a way that can
be easily demonstrated and understood.

∗Copyright is held by the author/owner.

1 41

Automating Server Deployments with Ansible:
Utilizing Automation in DevOps∗

Poster Session

Blake Douglas Hatcher
Mount St. Mary’s University

Emmitsburg, MD
b.d.hatcher@email.msmary.edu

Automation is increasingly becoming a focal point for analysts and busi-
nesses that utilize IT infrastructure. The International Data Corporation pre-
dicts that by 2027, 90% of organizations will incorporate automation or AI into
operational roles, leading to a projected 30% increase in worker efficiency [1].
Red Hat Ansible is one such automation tool, and in this case, it was used to
expedite server deployment. According to a study conducted by the Interna-
tional Data Corporation, the Red Hat Ansible Automation Platform achieved
a 67% reduction in the time required to manage network resource configura-
tions [2]. This poster outlines the integration of Red Hat Ansible for Elas-
ticsearch and analytics engine clusters. It highlights the benefits, challenges,
and applications for both test and production servers within the Security Op-
erations Center and disaster recovery capabilities for the Mount St. Mary’s
University network. The Mount Security Operations Center has utilized Red
Hat Ansible to reduce the deployment time of a new three-server Elasticsearch
stack, complete with appropriate plugins capable of interfacing with existing
infrastructure, from an average of three days to approximately two hours. In
addition to reducing deployment time, the Security Operations Center now
benefits from consistent and shareable standards, ensuring that all changes to
server deployment are always reflected in Red Hat Ansible Playbooks. This
rapid deployment capability also serves as a disaster recovery system, enabling
the Security Operations Center to quickly redeploy servers in the event of an
emergency, ensuring minimal disruption and maintaining operational continu-
ity. This poster demonstrates how Red Hat Ansible has significantly decreased

∗Copyright is held by the author/owner.

142

overall server deployment time, providing robust support for the Security Op-
erations Center’s critical infrastructure.

References
[1] Jensen, J. (2024, March). The Business Value of Red Hat Ansible Au-
tomation Platform. Signapore; IDC. https://www.redhat.com/rhdc/managed-
files/cl-idc-business-value-ansible-automation-analyst-material-1049194-202403-
en.pdf

[2] Shanbhag, P. (2024, May). Automation: The Key to Enterprise Operations
Transformation. Singapore; IDC. https://www.redhat.com/rhdc/managed-files/ma-
idc-enterprise-automation-transformation-analyst-material-1250246-202406-en.pdf

2 43

Modern State Marijuana Legislation and its
Effect on Crime∗

Poster Session

Joseph Paul Jacobs III
Mount St. Mary’s University

Emmitsburg, MD
j.p.jacobs@email.msmary.edu

Faculty Advisor: Dr. Jonathan McCurdy

A prominent political struggle in the 21st century has been centered around
state marijuana decriminalization and its potential impact on crime rate. The
purpose of this project was to use statistical analysis to determine if decriminal-
ization between 2015 and 2019 impacted property and/or violent crime rates.
States were partitioned into decriminalized and non- decriminalized groups and
paired t-tests were performed to determine if a significant statistical difference
in violent or property crime rates presented themselves. Analyzing the data
across 5 years and comparing the groups, there was evidence to suggest a sta-
tistically significant difference in crime rates between the two groups, where
crime rates in decriminalized states tended to be lower than those in states
that had not been decriminalized. Additional testing was performed to deter-
mine if states that decriminalized marijuana in 2016 saw a change in crime
rates by looking at the 2015 and 2017 years. Based on this testing, there was
a difference in property crime rates (lower in decriminalized states) but no
difference in violent crime rates for states which decriminalized marijuana in
2016. Further analysis showed that the national average for property crime
decreased after 2016, lining up with what we saw for states that decriminalized
marijuana in 2016. Overall, the extensive testing done in this project seems
to indicate that marijuana decriminalization can be correlated to a decrease or
static movement in violent and property crime rates nationally.

∗Copyright is held by the author/owner.

144

Creating a Jguardrail Plugin for IntelliJ IDEA∗

Poster Session

Mackenzie Swain
Department of Computer Science

University of Mary Washington, Fredericksburg, VA
mswain2@mail.umw.edu

Faculty Advisor: Dr. Ian Finlayson
ifinlay@umw.edu

The jguardrail program was created “. . . to provide more warnings for po-
tentially incorrect code than the javac compiler does, even with warnings en-
abled.”[1] The plugin for IntelliJ IDEA was created to allow more access to
this program across different code editors. IntelliJ IDEA is a popular IDE
among beginning computer science students and debugging is a particularly
difficult skill for beginning programmers. Having this plugin to highlight errors
is preferable to the program behaving differently than the programmer expects
and allows students to recognize those errors and find the proper solutions.

The goal of this project was to create a plugin for IntelliJ IDEA that im-
plements jguardrail, a program that provides more warnings for potentially
incorrect Java code. Jguardrail identifies common mistakes that beginning
computer science students make that are not identified by the traditional Java
compiler or IntelliJ IDEA. Jguardrail analyzes code to identify these errors,
but it cannot be used directly with an Integrated Development Environment
(IDE), a code editor where programs are written, compiled, and run. A plugin
is a software addition that can be installed on an app to add new features,
providing a way to allow jguardrail to run on the IntelliJ IDE. The plugin
aims to run jguardrail to identify errors, visually highlight them, and prevent
projects from compiling when such errors are present. Research and testing
were conducted to develop a plugin with this specific implementation that also
integrated with the IntelliJ IDEA visual interface. The resulting plugin suc-
cessfully runs jguardrail to identify ten different errors, highlight them in the
editor, and prevent the project from compiling when these errors are detected.

∗Copyright is held by the author/owner.

1 45

This plugin identifies and highlights common beginner errors that IntelliJ alone
does not catch allowing students to recognize the errors and find the appropri-
ate solutions.

Works Cited
[1] JGuardrail GitHub Page, https://github.com/IanFinlayson/jguardrail.

246

Exploring the Architecture and Application of
Transformer Models in Natural Language

Processing and Media Generation∗

Poster Session

Zhairui Shen, Tianwei Wang, and Vitaly Ford
Department of Computer Science

Arcadia University
Glenside, PA

{zshen_01,twang_05,fordv}@arcadia.edu

This project investigates the detailed architecture of Transformer mod-
els, including components such as self-attention mechanisms, multi-head at-
tention, and positional encoding. The research further explores the appli-
cation of Transformers in text processing, covering tasks like tokenization,
stemming, and word embedding. Additionally, the project examines the use
of Transformer models in generating images and videos from textual descrip-
tions, specifically through the integration of Generative Adversarial Networks
(GANs) with Transformers. The expected outcome of this research is a compre-
hensive analysis that illustrates the significant impact of Transformer models
(and their enhancements) on both natural language processing and AI-driven
content creation.

By thoroughly optimizing the Transformer architecture—focusing on at-
tention mechanisms, positional encoding, and multi-head attention—we plan
to achieve more precise and contextually accurate visual outputs. Our work
also concentrates on accelerating the training process of Transformer models
without sacrificing accuracy via:

1. Mixed Precision Training: speeding up model training while maintaining
numerical stability.

2. Distributed Training: model training in multi-GPU or multi-node envi-
ronments.

∗Copyright is held by the author/owner.

1 47

3. Learning Rate Adjustment: exploring dynamic learning rate adjustment
strategies and comparing optimization algorithms (e.g., AdamW, LAMB)
to enhance training efficiency.

Additionally, this research will explore various model improvement strategies:

4. Model Architecture Optimization: applying pruning, quantization, and
knowledge distillation to enhance the model structure.

5. Attention Mechanism Refinement: investigating techniques like sparse
attention and low-rank approximations to optimize the attention mech-
anism.

6. Pre-training and Fine-tuning Strategies: exploring advanced pre-training
strategies and fine-tuning methods to improve downstream task perfor-
mance.

We plan to continue contributing to AI-driven content generation and lay-
ing a foundation for further advancements, where improved Transformer mod-
els can be applied to a wider range of tasks, leading to more sophisticated
and accurate AI-generated media. Through these efforts, we aim to push the
boundaries of what is possible in text-to-image and text-to-video generation.

248

A Shortcut to Parallel Programming in Java∗

Poster Session

Connor Hairfield
Department of Computer Science

University of Mary Washington, Fredericksburg, VA
chairfie@mail.umw.edu

Faculty Advisor: Dr. Ian Finlayson
ifinlay@umw.edu

While modern computer processing units rely on multiple cores to gain ef-
ficiency, the parallel programming required to utilize these efficiencies is less
widely used than it should be. With increases in single-core performance di-
minishing, manufacturers are placing more cores in their chips in response.
However, writing programs that utilize multi-core performance is less common
largely because of the heightened awareness required from developers and the
increased difficulty for beginners to learn. In Java, one of the most popular
programming languages, writing parallel programs requires the developer to
add a considerable amount of code to an existing program. Aside from the
integral sections that give a program a distinct function, much of this code is
similar between different parallel Java programs. Eliminating the need to type
out the shared structure of parallel programs in Java is one step to encourage
increased use of parallel programming. To achieve this, a new front end to
Java is introduced that adds syntax to specify concise parallel blocks. Using
parsing, the Java code containing the new parallel syntax is transformed and
expanded into traditional Java code which is then compiled and run. This re-
moves the requirement to write fixed parallel Java code, relieving much of the
burden for the developer and making parallel programming easier to learn for
beginners. This shortcut to writing parallel programs can encourage greater
use of parallel programming in Java.

∗Copyright is held by the author/owner.

1 49

Trends and Privacy Challenges in Mental
Health Apps: A Data-Driven Analysis∗

Poster Session

Xingyu You, Wang Wang, Yanxia Jia
Department of Computer Science

Arcadia University
Glenside, PA

{xyou,wwang_04,jiay}@arcadia.edu

According to the National Alliance on Mental Illness (NAMI), an estimated
48.3 million adults in the U.S. deal with some type of mental health condition
each year. In recent years, the number of mental health apps available to con-
sumers has grown significantly. These apps can help address various mental
health issues, such as stress, depression, and anxiety, particularly for individ-
uals with milder symptoms. However, several challenges remain, including
low user engagement, inconsistent quality, and concerns over data privacy and
security.

In this study, we utilize data science techniques to analyze a dataset of
mental health-related mobile apps. App data was collected through the Apple
Store API, and privacy document content was extracted through python tools.
We performed exploratory analysis and clustering analysis to derive insights
from general app data, and ChatGPT was employed for an initial analysis of
privacy policy documents.

Our findings reveal a consistent rise in the number of mental health apps
since 2009, with a significant increase beginning around 2020. This suggests
heightened awareness of mental health-related issues in the post-pandemic pe-
riod. Among the different categories of mental health apps, Health and Fitness,
Education, Lifestyle, Medical, and Games are the most prevalent. A compari-
son of apps released before and after the COVID-19 pandemic shows a marked
increase in user ratings in the post-pandemic period. Cluster analysis identifies
four distinct clusters, each characterized by differences in app ratings, pricing,

∗Copyright is held by the author/owner.

150

release years, update frequencies, and user engagement levels. Lastly, a prelim-
inary examination of app privacy policies was conducted to assess compliance
with privacy policy requirements and awareness of privacy laws and regulations,
such as GDPR and HIPAA.

2 51

SightAssist: Mobile App for Object Recognition
and Navigation for the Visually Impaired∗

Poster Session

Tarron Montgomery, Brandon Wiggins, Malachi Gray,
Staphord Bengesi, Md Kamruzzaman Sarker

Bowie State University
Bowie, MD

{montgomeryt0919,wigginsb006,graym0830}@students.bowiestate.edu,
{sbengesi,msarker}@bowiestate.edu

Visually impaired individuals face significant challenges navigating due to a
lack of visual cues, relying on auditory and tactile input, which can make even
simple tasks difficult. Hazards like clutter or changes in layout can further com-
plicate navigation. While traditional aids such as canes and guide dogs provide
some assistance, they have limitations. Advancements in assistive mobile tech-
nology, such as navigation and object recognition apps, are helping to increase
the independence of visually impaired individuals. These apps offer real-time
data and audio feedback, reducing reliance on others and boosting confidence
in various environments. To address these needs, we developed SightAssist,
a user-friendly mobile application designed to recognize objects in the user’s
surroundings and assist with navigation. SightAssist uses advanced technolo-
gies like the YOLO (You Only Look Once) object recognition framework and
a real-time camera feed via a Raspberry Pi to deliver accurate, timely read-
ings of the environment. The app also includes text-to-speech functionality
to convert visual data into audio cues, enhancing usability and enabling easy
interaction. The live feed from the external camera is broadcast to the user’s
smartphone through the app, ensuring seamless navigation. The SightAssist
prototype has shown promising results in experimental testing. By combining
text-to-speech and real-time object recognition, the app significantly improves
the user experience, offering accurate and reliable navigational assistance for
the visually impaired.

∗Copyright is held by the author/owner.

152

Evaluating Stigma: Experiences Modifying the
Assembly Code of Closed-Source Android Apps∗

Poster Session

Shokhinabonu Tojieva, Chelsea Rao, Ed Novak
Franklin & Marshall College

Lancaster, PA
shokhinatojieva@gmail.com, {crao,enovak}@fandm.edu

A difficult but potentially powerful advanced software engineering concept
is to modify existing, compiled, closed-source applications to identify and po-
tentially remedy security and privacy issues. This technically challenging con-
cept is very applicable to the Android ecosystem, as users have little insight on
the possible vulnerabilities in these app designs. However, existing approaches
are bespoke, use-case specific implementations. In this poster we present the
evaluation of Stigma, an open-source software tool which can make modifi-
cations to commodity Android applications. Our tool allows researchers and
skilled users to define their own desired modifications for a range of purposes
such as security and privacy analysis, improving app functionality, removing
unwanted features, debugging, proling, and others. We evaluate Stigma in
terms of compatibility, efficacy, and efficiency on approximately 100 commod-
ity Android applications. This involved measuring the LOC, memory, and
CPU overhead. Stigma could potentially be used in the future for various
tasks, including detecting app usage of sensitive information, identifying secu-
rity vulnerabilities, fixing bugs, and even enhancing app functionality without
requiring the original developer’s involvement

∗Copyright is held by the author/owner.

1 53

Cost-Effective Detection of Invasive Ductal
Carcinoma Using CNNs and Explainable AI on

Histology Images∗

Poster Session

Dylan Jayabahu
Laurel Heights Secondary School

Waterloo, Ontario, Canada
dylanjayabahu@gmail.com

Invasive Ductal Carcinoma (IDC) is the most prevalent form of breast can-
cer, making its early and accurate detection crucial for patient prognosis and
treatment. Traditional deep learning approaches for IDC detection often rely
on expensive imaging techniques such as CT scans and X-rays, which can be
inaccessible in resource-limited settings. This study addresses this challenge
by exploring a method that utilizes affordable optical microscope images to
achieve competitive accuracy.

Our study aimed to develop and evaluate a cost-effective deep learning
model for detecting IDC in breast histology images. We sought not only to
surpass existing accuracy benchmarks but also to enhance the interpretability
of the model through the integration of explainable AI (XAI) techniques.

We used a dataset of 277,524 histology image patches (198,738 IDC-negative
and 78,786 IDC-positive) obtained from Andrew Janowczyk’s research. Several
convolutional neural network (CNN) models were trained using this dataset,
with data augmentation employed to boost model generalizability. Addition-
ally, XAI techniques such as saliency maps were implemented to visualize IDC-
affected areas both at the individual patch level and across full histology slides.

Our approach achieved a minimum testing accuracy of 86.2%, outperform-
ing existing methods, which generally achieve around 84%. The model was
able to generate detailed heatmaps that highlighted IDC-affected regions at a
granular level using only histology images, eliminating the need for more costly
imaging technologies.

∗Copyright is held by the author/owner.

154

This study demonstrates that CNN models, combined with data augmen-
tation and XAI, can achieve state-of-the-art accuracy for IDC detection using
cost-effective optical microscope images. The enhanced transparency provided
by XAI methods offers valuable insights into model predictions, making this
approach a viable and accessible alternative for breast cancer diagnosis, par-
ticularly in settings where advanced imaging technologies are not available.

2 55

A Sample Lecture at College-Level for
Optimizing Linear Search Algorithm∗

Poster Abstract

Penn Wu
Cypress College

Cypress, CA 90630
pwu@cypresscollege.edu

When searching for a value in an unsorted list, the fastest approach is to
sequentially iterate through the list to find the target. Although there are
techniques that can potentially improve the searching efficiency on unsorted
data, optimizing a linear search is not commonly discussed in a college-level
course of data structure and algorithm.

The presentation will describe how to integrate methodologies, such as par-
allel search with sharding, to possibly optimize linear searches. In the class-
room, students often experience different execution results. They are: (1) the
optimized versions run faster than the simple linear search, (2) an O(n2) algo-
rithm run quicker than an O(n) algorithm on the same input, (3) the simple
linear search runs faster than the optimized versions. These deviations are
results of selected algorithms with a few relevant factors: (1) hardware related
issues, (2) properties of dataset, (3) implementation of algorithm, (4) testing
condition, and (5) code complexity.

The provide graphs and visual aids will show how the optimization ef-
forts affect linear searches. Simple sharding, odd-even sharding, and remainder
sharding, with the arranged mechanisms of parallelization, show the potential
to shorten the searching time. The in-class testing of programs also confirms
that the speed of execution is closely tied to the efficiency of the algorithm be-
ing used. Well-designed algorithms can minimize execution time by optimizing
resource usage such as CPU cycles, memory, and I/O operations. The quality
of the code, compiler optimizations, and parallelization techniques affect exe-
cution time. After the lecture, students generally show a better understanding

∗Copyright is held by the author/owner.

156

that the quality of the code, compiler optimizations, and parallelization tech-
niques affect execution time.

The pedagogy could engage students in critical thinking about code opti-
mization, fostering efficient problem-solving strategies, and preparing them for
real-world scenarios. Students can also seek opportunities to improve scalabil-
ity, such as handling larger datasets or more complex problems.

2 57

Leveraging ChatGPT for SQL Learning: An
Interactive Approach∗

Poster Abstract

Ching-yu Huang and Paolien Wang
Department of Compute Science and Technology

Kean University, Union, NJ 07083
{chuang, pawang}@kean.edu

In today’s data-driven world, SQL proficiency is essential for data analysts,
software developers, and database fields. However, traditional SQL learning
methods often rely heavily on classroom lectures and textbooks, resulting in
repetitive activities where students tackle the same exercises and questions.
This approach can be inefficient, hindering student learning as instructors must
individually address syntax errors and runtime issues, limiting their ability to
assist all students effectively. Additionally, student engagement and compre-
hension may suffer, particularly for those with weak foundations who heavily
depend on instructor guidance.

To address these challenges, we propose an innovative approach to SQL
learning utilizing ChatGPT, a state-of-the-art natural language processing
model developed by OpenAI. ChatGPT provides an interactive platform where
users can engage in natural language conversations to ask questions, seek ex-
planations, and practice SQL queries in a simulated real-world environment.
It fosters a conversational learning experience, allowing users to ask questions
and receive immediate responses, practice SQL queries, and get instant feed-
back to refine their skills. Additionally, ChatGPT adapts to the user’s pace,
offering tailored explanations and examples.

The instructor can provide real-world questions, allowing students to uti-
lize ChatGPT to find answers and comprehend explanations. For instance,
students can ask ChatGPT to generate SQL queries to create an employee
table with primary and possible foreign keys, including several records, and
another query to display the name and salary of the highest-paid individual.

∗Copyright is held by the author/owner.

158

Additional SQL questions related to this employee table can also be given
within the same session. By leveraging conversational AI with ChatGPT for
SQL learning, students won’t rely solely on the instructor, empowering them
to study new topics independently after the class. This self-learning skill is
crucial for their transition into the workforce.

2 59

Approaches to Identifying Preteen Suicide Risk
and Protective Factors∗

Poster Abstract

Osei Hyiamang
Marymount University
Arlington, VA 22201
ohyiaman@marymount.edu

Preteen suicide has become a concerning issue in recent years, necessitating
a concerted effort to identify the factors that contribute to this menace while
also exploring potential protective factors. Drawing from a comprehensive lit-
erature review and analysis of existing studies, this paper identifies key factors
that contribute to preteen suicide risks, such as mental health disorders, adverse
childhood experiences, social isolation, and personality traits. This research
provides a comprehensive understanding of approaches to identify preteen sui-
cide risks and protective factors. The research identifies protective factors that
could be developed to change the risk trajectory, both proximal and distal. The
study also identifies intervention targets and timing, as well as scalable assess-
ment approaches that would have clinical utility for characterizing both risk or
protective factors and suicide risk status and outcomes. The study finally uses
a comprehensive method to identify suicide risks and protective factors associ-
ated with preteen. Assessment instruments like self-report questionnaires can
be employed in educational institutions, healthcare facilities, and community
groups to recognize individuals who are potentially vulnerable. The study iden-
tifies intervention targets and timing, as well as scalable assessment approaches
that would have clinical utility for characterizing both risk or protective factors
and suicide risk status and outcomes. The first section of this paper discusses
the current prevalence of preteen suicide and highlights the importance of early
intervention and prevention strategies. It then delves into the various methods
that can be employed in identifying risk factors, ranging from psychological
assessments, behavioral observations, and social analyses to genetic and neu-
robiological explorations. The strengths and limitations of each approach are

∗Copyright is held by the author/owner.

160

critically evaluated to determine their effectiveness in accurately identifying
preteen suicide risk. The subsequent section focuses on the investigation of
protective factors that mitigate suicide risk among preteens. A wide range
of protective factors, including strong social support systems, adaptive coping
skills, and resiliency are examined to understand their role in reducing the risk
of suicide in this vulnerable population. The study seeks to underscore the im-
portance of interdisciplinary collaborations among psychologists, psychiatrists,
educators, and community stakeholders to develop comprehensive prevention
programs that address both risk and protective factors effectively. The study
uses three models and mixed method approach, and the findings to contribute
to the existing knowledge offering valuable insights for policymakers, mental
health professionals, and researchers. Ultimately, the outcomes of this study
inform the development of evidence-based strategies that can prevent preteen
suicide and promote mental well-being among this vulnerable population.

Keywords: preteen suicide, protective factors, suicide risk status, outcomes,
risk trajectory, proximal and distal, scalable assessment

2 61

Enhancing Undergraduate Computing
Education with LMMs and ChatGPT-4o∗

Poster Abstract

Weidong Liao, Osman Guzide
Department of Computer Science, Mathematics and Engineering

College of STEM
Shepherd University Shepherdstown, WV 25443

{wliao,oguzide}@shepherd.edu

Large Language Models (LLMs) and ChatGPT have significantly impacted
programming practices and computer science education. The rapid advance-
ments in natural language processing, recurrent neural networks, and Trans-
former architectures have captured the attention of students and educators
alike. These tools aid students in brainstorming, coding, analyzing code, and
writing reports. Although concerns about cheating and plagiarism persist,
these tools also provide educators with novel ways to create and assess assign-
ments. Despite some hesitancy among educators to integrate these AI tools
into the classroom, the advert and development of Large MultiModal Models
(LMMs), the enhancement of LLMs that can deal with multimedia inputs and
outputs, illustrates a significant evolution in generative AI capabilities.

This poster explores our use of LMMs and ChatGPT-4o in educating un-
dergraduate students across various computing disciplines, including computer
science, engineering, and technology. LMMs’ ability to handle multimedia in-
formation makes them applicable in diverse fields like web design and robotics.
ChatGPT-4o, enriched with new features from LMMs, enhances both teaching
and learning. Our approaches include integrating LMM-related concepts into
classrooms and utilizing ChatGPT-4o to improve educational outcomes.

∗Copyright is held by the author/owner.

162

Evaluating the Pedagogical Impact of Large
Language Models on Programming Skills in
Data Science Programs in Higher Education∗

Poster Abstract

Giancarlo Crocetti, Seonwoo Bak,
Daena D. Vautor-Laplaceliere, Naqib A. Noory

St. John’s University, Jamaica, NY
crocettg@stjohns.edu,

{seonwoo.bak21,daena.vautorlaplaceliere20,naqib.noory22}@my.stjohns.edu

The integration of GenAI (GenAI), such as large language models (LLMs),
in education has raised the question of how it will alter the students’ training
and learning outcomes. To better understand the phenomenon, this empirical
study explores whether college students find GenAI tools helpful in advancing
their skills, particularly Python programming proficiency.

Throughout a graduate-level course in data science, students were taught
the concepts of intelligent web systems, formally trained to use large language
models like ChatGPT and Gemini, and encouraged to use them during the
execution of a project assignment. The pretest-posttest methodology was em-
ployed to investigate the changes in students’ self-assessment of programming
ability for a data science application using a paired measurement in the form
of a survey taken before and after the execution of the project. Factors such as
students’ prior knowledge, familiarity with other programming languages, and
experience with online Python classes were considered to ensure the reliability
of the findings.

The results support the positive pedagogical impact of LLMs in improv-
ing students’ ability to write quality code, analyze data with Python libraries,
and build complex applications like web scraping. However, there were no
significant changes in students’ understanding of Python’s basic syntax and
constructs or their comfort level in using Python. GenAI tools specifically en-
hanced more advanced and practical aspects of programming rather than basic

∗Copyright is held by the author/owner.

1 63

knowledge, suggesting that fundamental programming knowledge is rooted in
the student’s understanding, which LLMs cannot implant.

264

Innovative Career-Focused Curriculum for
Computer Science and Information Technology∗

Poster Abstract

Ching-yu Huang
Department of Compute Science and Technology

Kean University, Union, NJ 07083
chuang@kean.edu

Undergraduate students from disadvantaged backgrounds often lack guid-
ance when it comes to selecting college majors and exploring career paths. As
a result, they may be unprepared for internships or job searches during their
freshman or sophomore years. Many choose majors like computer science or
information technology because of the promising job market, but they may not
fully understand the types of jobs, roles, and skills required in these fields.

While attending ACM or IEEE club activities and seminars can help stu-
dents gain career insights and develop skills, those from disadvantaged families
often need to work 20 or more hours per week. As a result, they leave campus
after classes and miss out on valuable extracurricular opportunities. Therefore,
it is crucial to offer a free elective course in Career Education for CS/IT stu-
dents, helping them explore the field, understand various job functions, identify
the necessary skills, and prepare for job interviews early on. This course would
enable them to earn credits toward their degree while learning how to craft
strong resumes, prepare for job searches, and succeed in interviews.

This paper presents a comprehensive curriculum for career education in
computer science, covering topics such as academic and industry roles, the
alignment between coursework and job functions, an overview of research op-
portunities in CS/IT, a four-year study plan, building a professional resume and
e-portfolio using course projects, mock interview practice, job search strategies,
work ethics, NSF REU programs, graduate study options (MS and Ph.D.), and
job offer negotiations. Students will participate in peer review of resumes, con-
duct research, and receive constructive feedback from the instructor. Addition-
ally, they will learn how to effectively use online resources such as ChatGPT,

∗Copyright is held by the author/owner.

1 65

YouTube, Glassdoor, Indeed, Monster, and Levels.fyi to stay updated on job
requirements, roles, and salary ranges.

266

Introducing First-year Students to Computing
through Class OSSD∗

Poster Abstract

Lily Liang
Department of Computer Science & Information Technologies

University of the District of Columbia
lliang@udc.edu

We developed a Minecraft Open Source Software Development (OSSD)
project for the Computer Science I class, leveraging the experiential learning
of OSSD to engage first-year computing students. Participants built upon a
Minecraft game for teaching K-12 students programming, which an upper-class
student team had previously developed. We then investigated the project’s im-
pact on the student participants’ sense of community and motivation to pursue
their disciplines. The students reported positive experiences during the end-
of-semester interviews.

We chose this Minecraft game because of the following:

1. Many first-year students aspire to become game developers;

2. No special knowledge is needed except knowledge of Minecraft, which
many first-year students already have due to the popularity of Minecraft
games;

3. Practicing block-based programming and developing course software re-
inforces what is learned in the first-year programming course;

4. Block-based programming of Minecraft lowers the bar for OSSD partici-
pation, allowing legitimate peripheral participation (LPP) in a program-
ming community;

5. The Minecraft education platform is freely available to programmers and
gamers;

∗Copyright is held by the author/owner.

1 67

6. There’s a large population of potential users of the software developed.

Participation in the project was voluntary and was encouraged with extra
credit. We created learning activities that simulate programmers’ community
of practice and developed not only students’ programming skills but also their
team communication, project management, and leadership.

The project provided situated learning in a traditional decontextualized
curriculum and prepared students to participate in professional organizations,
computing communities, and internships as they advance in their disciplines.
We plan to expand this OSSD group to a larger community in the department,
which works with the Computer Science I class each semester on this and
additional OSSD projects.

268

Understanding Immediate Weekend Hits and
Cult Classics using Natural Language

Processing Script Analysis∗

Poster Abstract

Heather Cassel1, AnNM. Phaml2,
HungT. Nguyenl3, Linh B. Ngo1

1Computer Science Department
West Chester University of Pennsylvania

West Chester, PA
{hc946859, Ingo}@wcupa.edu

2Highschool of Education and Sciences
Ha Noi, Vietnam

Ngocminhanp@gmail.com
3Ly Thai To Highschool

Bac Ninh, Vietnam
kin.sit2k6@gmail.com

There are different ways of measuring a movie’s successes, including box
office performance, critical acclaim, cultural impact, online reviews, and fran-
chise potential. These measurements of successes could be completely in con-
tradiction with one another. For example, a movie could fail financially during
the opening weekend but eventually become a classic (e.g. Blade Runner in
1982). On the other hand, a movie could be harshly criticized but ended up
making millions (e.g. the Sharknado series). Even online reviews, including
both critics and users, have demonstrated to have no relationships with movie
success. In other words, being liked is different from being talked about and
doing well in the box office. It is therefore not appropriate to use one measure
of success to directly predict another. Instead, a different measure of success

∗Copyright is held by the author/owner.

1 69

would be understanding the actual creative content of the movies, expressed
via script analysis. A similar process was proposed in the movie production
green-lighting process, where prospective scripts are evaluated using natural
language processing. Subsequent literature has focused mainly on the script
generation process itself rather than measuring and predicting movies’ success.
In this work, we will investigate this gap by utilizing natural language process-
ing to study movie scripts to identify possible relationships between language
attributes and other measures of success. Our work will start with acquiring all
relevant data, including manual data downloading activities (box office results),
automated mining (using libraries to mine movie scripts), and large-scale data
processing (mining online user reviews from Reddit’s movie subreddits). Next,
data mining techniques are applied to consolidate these various data sources
using strings of predefined movie titles as the keys. Statistical and textual
analysis using natural language processing will be applied to the acquired data
to identify related patterns between movies’ metrics of success.

270

Inclusive by Design: How Accessibility
Regulations are Shaping the Future of Software

Development∗

Poster Abstract

Peter A. Hartnett
Department of Computer Science & Information Technologies

Frostburg State University, Frostburg MD, 20882
phartnett0@frostburg.edu

Faculty Advisor: Professor Michael B. Flinn
mflinn@frostburg.edu

This presentation aims to illustrate the importance of the Americans with
Disabilities Act (ADA) as it intersects with software development. It explores
the legal, historical, and technical implications of compliance with ADA regu-
lations in web and application development. Approximately 30% of the U.S.
population has a disability. The CDC estimates 6 million Americans have
vision loss and 15.5% of adult Americans have hearing loss. The risk of de-
veloping these conditions increases with age. However, many existing websites
and applications lack basic accessibility tools. As the population of computer
users ages, the need for accessibility tools in technology – and education on
how to implement them effectively – will continue to expand.

The 2024 Final Rule for Title II of the ADA requires all state and local gov-
ernment websites and applications to comply with Web Content Accessibility
Guidelines 2.1 level AA. Legal scholars believe that Title III of the ADA will
soon extend these requirements to commercial websites and applications, re-
sulting in a massive demand for accessibility solutions. This research highlights
the implications of expanding legal requirements for ADA compliance, as well
as exploring the universal benefits of accessible design. The findings contribute
to the growing discourse on the importance of integrating accessibility features
from the outset of software development to foster inclusive digital experiences.

∗Copyright is held by the author/owner.

1 71

Big Interview, Big Deal: Connecting Academic
Experiences to Careers with Interview Practice∗

Poster Abstract

Karen Anewalt and Jennifer Polack
Department of Computer Science
University of Mary Washington

Fredericksburg, VA 22401
{anewalt,polack}@umw.edu

Colleges are increasingly facing pressure to assist students in transitioning
to careers after graduation. We explored the use of assignments requiring stu-
dents to practice interview skills while reflecting on experiences in completing
coding assignments in undergraduate courses. Using an online mock interview
tool, students in a CS1 course and a senior-level software engineering course
were required to film video responses to interview-style questions related to
course programming assignments. Data was collected from 24 CS1 students
and 29 software engineering students. The survey data provides insights into
how mock interview practice can bridge the gap between academic experiences
and career readiness, enhance students’ interview skills, and increase their con-
fidence in discussing their work.

The data collected in the initial semester of this assignment shows that most
students reported a satisfactory experience and found the mock interview tool
to be user-friendly. Approximately 45% of students said that completing the
assignment improved their confidence in discussing a coding project in a pro-
fessional manner. Approximately 47% said the assignments helped them to
improve their interview skills. And 53% said that the mock interview expe-
rience made them feel more prepared for future interviews. Students shared
several suggestions for future consideration including having an option to an-
swer questions and receive feedback in person, which they felt would also be
beneficial.

∗Copyright is held by the author/owner.

172

Malware Detection using Deep Learning∗

Student Research Paper

Roxan Rockefeller

Department of Computer Science
Bowie State University

Bowie, MD 22030
rockefellerr0515@students.bowiestate.edu

Malware requires complex detection techniques because it poses serious
hazards to both individual systems and networks. In order to demonstrate
how well deep learning can adapt to new threats by learning from a variety of
datasets, this research investigates the effectiveness of deep learning for static
malware detection. When machine learning and deep learning methodologies
are compared, it can be seen that deep learning produces malware classification
results with more accuracy.

The paper trains a neural network model improved with k-nearest neigh-
bors (k-NN)for preprocessing and ensemble techniques using the SoReL-20M
dataset, which consists of around 20 million samples. This method makes use
of k-NN’s advantages in local trend analysis and data augmentation to enhance
the model’s performance. The findings highlight deep learning’s benefits for
cybersecurity, especially its resilience and versatility in detecting and catego-
rizing malware.

∗Copyright is held by the author/owner.

1 73

Implementing a FashionBot Curriculum in High
School Classroom To Improve Student

Engagement and Motivation in Computing∗

Student Research Paper

Onyinye Ukeneru-Steve and Lily Liang, Ph.D.†

Department of Computer Science and Information Technology
University of the District of Columbia

Washington DC 20016
onyinye.ukenerusteve@udc.edu

Computing often involves abstract concepts that can be difficult for stu-
dents to grasp, leading to disengagement if not adequately contextualized or
related to real-world applications. We implemented a Socio-Cultural STEM
curriculum that uses FashionBots to engage and motivate underrepresented
minority high school students in computing. FashionBots is a low-cost and
easy-to-program robot that integrates fashion into robotics. The curriculum
is part of a manual script that will be published in a book chapter on socio-
cultural STEM education written by the second author.

We implemented the FashionBot curriculum successfully in the first au-
thor’s classroom. The students researched the history, tradition, and culture
of FashionBots’ clothing and learned programming. The highly interactive and
hands-on instructions allowed the students to build, program, and experiment
with the FashionBots. The students were taught the parts of the robot, how
they work together to create the movements, and the Fashionbots’ source code.
Then, students were asked to identify a change they could make to the code
so that the Fashionbots moved differently. Students felt welcomed, celebrated
culture, and made real-world connections to their learning.

We observed that the FashionBot socio-cultural STEM curriculum addressed
students’ challenges regarding grasping the abstract concept of computing,

∗Copyright is held by the author/owner.
†Advisor - lliang@udc.edu

174

which led to disengagement. The students were more engaged and motivated
in computing. We found that this curriculum empowered underrepresented
minority students and enhanced their sense of community and shared learning
experiences, broadening computer science participation.

2 75

Investigating Deepfake Detection using LIME ∗

Student Research Paper

Sandra L. Delancy and Lily Liang, Ph.D. †

Department of Computer Science and Information Technology
University of the District of Columbia

Washington DC 20016
sandra.delancy@udc.edu

The proliferation of deepfake images and videos has progressed exponen-
tially in the past decade. Detecting deepfakes is more important than ever
due to the potential damage these images can cause in medical, political, and
social settings. Deepfake detectors typically flag an image or video as fake, but
they may not explain how the prediction was achieved, which is important in
establishing trust in the prediction. In this paper, we investigated Local Inter-
pretable Model-agnostic Explanations (LIME), an open-source objects classifi-
cation explainer, in detecting deepfake images of individuals. We found that we
can effectively detect deepfakes by tuning LIME’s parameters to highlight facial
regions of an individual that positively or negatively contribute to a prediction.
We configured LIME with nine classification and segmentation algorithm com-
binations and compared their performance in identifying deepfakes. We used
the following classification algorithms: Basic Convolution Neural Network, In-
ception V3, ResNet50, and the following segmentation algorithms: Quickshift,
Simple Linear Iterative Clustering (SLIC), and Felzenswalb. The ResNet50
classification algorithm using transfer learning and the Simple Linear Iterative
Clustering (SLIC) segmentation algorithm outperforms others in this task.

∗Copyright is held by the author/owner.
†Advisor - lliang@udc.edu

176

Multi-Party Computation in a United
States-based E-Voting System∗

Student Research Paper

Ephraim N. Govere1, Syed Rizvi2
1School of Computing
Queen’s University

Kingston, ON K7L 3N6
ephraim.n.govere@queensu.ca

2College of Information Sciences and Technology
The Pennsylvania State University

State College, PA 16802
srizvi@psu.edu

Electronic voting (e-voting) has become an efficient method to process
votes securely and maintain voting confidentiality, integrity, and availability.
Although e-voting provides fair, fast, and private votin, the vulnerabilities
associated with e-voting systems raise concerns about current digital voting
landscapes, specifically the premature release of votes. Multi-Party Compu-
tation (MPC) offers a solution to e-voting concerns by securing the vote tally
and ensuring results remain confidential until the election closes. This paper
aims to create an MPC-based e-voting environment, showcasing its ability to
secure the vote tallying process and prevent the premature release of voting re-
sults. Additionally, this study will evaluate the scalability and time efficiency
of the MPC-based environment compared to an environment without MPC.
This study found that an MPC-based environment is an effective method to
help secure voting results and prevent the release of those results before they
are authorized to be viewed by the public. Although a non-MPC-based en-
vironment is faster at tallying the voting results, the difference between the
two environments is minimal, even while increasing voting participants; this
shows the effectiveness of an MPC-based environment to scale itself effectively
against a significant increase in participants without sacrificing computational
speed.

∗Copyright is held by the author/owner.

1 77

Unveiling the Deception: Understanding the
Urgent Need to Combat Deep Fake Videos∗

Student Research Paper

Jada A. Danner

Computer Science Department
Bowie State University

Bowie, MD, USA
DANNERJ0901@students.bowiestate.edu

The exponential growth of deep fake technology presents a profound threat
to the fabric of modern society, undermining trust in digital content and erod-
ing the foundations of truth and authenticity. In this study, we delve into the
motivations driving the creation and dissemination of deep fake videos, rec-
ognizing the urgent imperative to address this pressing global challenge. By
dissecting the intricate web of incentives behind deep fake production, includ-
ing political manipulation, fraud, and misinformation campaigns, we elucidate
the farreaching consequences for democratic processes, public discourse, and
individual privacy. The proliferation of deep fake videos exacerbates existing
societal fissures, perpetuating disinformation, and sowing discord in an already
polarized world. Moreover, we underscore the critical need for proactive mea-
sures to counteract the pervasive influence of deep fakes, advocating for inter-
disciplinary collaborations between policymakers, technologists, and civil soci-
ety. Through the development of robust detection algorithms, enhanced media
literacy initiatives, and regulatory frameworks, we can safeguard the integrity
of digital content and fortify societal resilience against emerging threats. This
study serves as a clarion call to action, highlighting the imperative of collective
vigilance and concerted efforts to mitigate the deleterious impacts of deep fake
videos. By fostering a deeper understanding of the motivations driving this
phenomenon, we pave the way towards a more resilient and trustworthy digital
ecosystem, preserving the integrity of information in an increasingly intercon-

∗Copyright is held by the author/owner.

178

nected world.

Keywords – Deep fake technology, Digital trust erosion, Disinformation cam-
paigns, Detection algorithms, Media literacy initiatives

2 79

An Analysis of Blockchain Approach in AI &
Cyber-Physical Systems∗

Student Research Paper

Jared Robinson

Computer Science Department
Bowie State University

Bowie, MD, USA
RobinsonJ0627@students.bowiestate.edu

As the implementation of Artificial Intelligence grows, the potential vulner-
abilities associated with these innovations have increased. Application of AI
and Deep Learning have permeated through various avenues including Con-
nected and Autonomous Vehicles (CAVs), Smart Cities, and other Cyber-
Physical Systems (CFS). Integration of networking, computation, and physical
processes are all regulated and communicated using sensors. The communi-
cation between these sensors opens the door for various threats and we seek
to investigate the Blockchain (BC) approach and if its impact can reinforce
exploitations presented within a CPS.

Keywords – Cyber-Physical Systems, Artificial Intelligence, Deep Learning,
Smart Cities, ICRS, Blockchain.

∗Copyright is held by the author/owner.

180

Malware Detection in Android Phone∗

Student Research Paper

Dawn Marshall, Md Kamruzzaman Sarker

Computer Science Department
Bowie State University

Bowie, MD, USA
marshalld1126@students.bowiestate.edu, ksarker@bowiestate.edu

Malware is defined as software that is specifically intended to disrupt, dam-
age, or gain unauthorized access to a computer system. Malware detection
aims to detect and prevent the harmful effects of malware using different tech-
niques. Among different detection techniques Machine Learning is one of the
most efficient because of its pattern recognition capability. Machine learning is
the process of machine learning itself using algorithms and models to produce
a prediction-based output for users. We propose a Machine Learning Model to
detect Malware in Android Phones.

∗Copyright is held by the author/owner.

1 81

Mobile Application for Object Recognition for
Visually Impaired People∗

Student Research Paper

Isha Salma Renner1, Omobolanle Favour Niyiowoeye1,
Christopher Miller1, Maysha Fahmida2, Md Kamruzzaman

Sarker1

1 Computer Science Department
Bowie State University

Bowie, MD, USA
2 Department of Computer Science and Engineering

United International University
Dhaka, Bangladesh

Mobile applications for object recognition have become increasingly popu-
lar in recent years. These apps use image recognition technology to identify
objects in images taken with a smartphone camera. They have a wide range
of potential applications, from helping the visually impaired to assisting with
inventory management in retail settings. Research on mobile applications for
object recognition on smartphones is still ongoing.The widespread adoption of
smartphones globally has created unparalleled opportunities for connectivity
and communication. However, the elderly population and visually impaired
individuals have been relatively underserved in terms of mobile app devel-
opment. Object recognition technology uses computer vision algorithms to
analyze images and classify objects based on their features, which is helpful to
these populations. We propose developing an Android app to assist visually
impaired individuals in recognizing and verbally identifying nearby objects as
they navigate.

∗Copyright is held by the author/owner.

182

Designing and Prototyping a Parking Space
Monitoring System with Generative AI and

Large Multimodal Models∗

Student Research Paper

Rachael Poffenberger, Chaz Cornejo, Weidong Liao

Department of Computer Science, Mathematics and Engineering
Shepherd University

Shepherdstown, WV 25443
wliao@shepherd.edu

In recent years, Generative AI and Large Multimodal Models have demon-
strated significant advancements in image recognition, detailed responses, and
complex reasoning. Our project harnesses these capabilities to monitor parking
space occupancy by placing a camera above a parking lot and using Generative
AI to assess the number of cars present. This system aims to provide real-time
information to users, helping them determine if they should seek alternative
parking. Additionally, with sufficient data, the system could predict peak hours
and busy days for the parking lot.

Despite their potential, current models sometimes struggle to produce ac-
curate and consistent vehicle counts. This study focuses on improving the
reliability and accuracy of the parking space monitoring system by employing
various designs, prototypes, and prompt engineering techniques with Genera-
tive AI and large multimodal models.

In this research, we have investigated the feasibility of using Generative AI
and Large Multi-modal Models to develop a parking space monitoring app. As
part of our investigation, a comparative study has been done to evaluate the
accuracy of a variety of LMM models in the aspect of vehicle detection and
counting. Our future research will focus on testing more open-source LMM
models, especially small LMM models because we plan to deliver the final ap-
plication on tiny computers such as Raspberry Pi. In addition, we plan to test

∗Copyright is held by the author/owner.

1 83

the responsiveness of LMM models in vehicle detection and counting.

References

1. Cameron Vu, Daria Panova, Josiah Kowalski, W. Liao, O. Guzide. Smart
Parking Space Detection with Generative AI and Large Language Models.
Poster presented at West Virginia Academy of Science; April 6th, 2024; Glenville,
WV.

284

Demystifying the RSA Algorithm: An Intuitive
Introduction for Novices in Cybersecurity∗

*Zhengping Jay Luo1, Ruowen Liu2,
Aarav Mehta1 and Md Liakat Ali1

1Department of Computer Science and Physics
2Department of Mathematics

Rider University
Lawrenceville, NJ, 08648
{zluo,rliu,mdali}@rider.edu

Abstract

Given the escalating importance of cybersecurity, it becomes increas-
ingly beneficial for a diverse community to comprehend fundamental se-
curity mechanisms. Among these, the RSA algorithm stands out as a
crucial component in public-key cryptosystems. However, understand-
ing the RSA algorithm typically entails familiarity with number theory,
modular arithmetic, and related concepts, which can often exceed the
knowledge base of beginners entering the field of cybersecurity. In this
study, we present an intuitively crafted, student-oriented introduction to
the RSA algorithm. We assume that our readers possess only a basic
background in mathematics and cybersecurity. Commencing with the
three essential goals of public-key cryptosystems, we provide a step-by-
step elucidation of how the RSA algorithm accomplishes these objectives.
Additionally, we employ a toy example to further enhance practical un-
derstanding. Our assessment of student learning outcomes, conducted
across two sections of the same course, reveals a discernible improve-
ment in grades for the students.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 85

1 Introduction

The three most widely accepted security goals of cybersecurity are shorted as
“CIA triad”, which stands for Confidentiality, Integrity and Availability. Cryp-
tographic algorithms play a pivotal role in achieving confidentiality through
private-key and public-key cryptographic algorithms. Public-key cryptographic
algorithms, exemplified by the RSA algorithm, also contribute significantly to
attaining another vital security goal—non-repudiation, particularly crucial in
scenarios like electronic mail, where digital signatures are employed. Remark-
ably, the RSA algorithm was originally designed to address both confidentiality
and non-repudiation goals in electronic mail [11, 16].

Developed by Ron Rivest, Adi Shamir, and Leonard Adleman at the Mas-
sachusetts Institute of Technology (MIT) in 1976, the RSA algorithm stands
as a pioneering implementation of the public-key cryptosystem, conceptualized
by Diffie and Hellman [3]. Operating with two keys—a private key and a public
key—the RSA algorithm facilitates secure communication. For instance, when
two parties, Alice and Bob, aim to exchange messages covertly, Alice encrypts
the message M using Bob’s public key, creating ciphertext C. This cipher-
text is then sent to Bob, who decrypts it with their private key to retrieve the
original plaintext M .

While this process may appear straightforward, generating the public and
private keys involves intricate mathematical concepts such as number theory
and modular arithmetic. These topics often pose challenges for beginners in
cybersecurity, especially undergraduate students. In our work, we offer an
intuitive and accessible perspective on understanding the RSA algorithm. Be-
ginning with the three primary goals the RSA algorithm aims to achieve, we
employ a student-oriented approach to elucidate the step-by-step design of the
system. We acknowledge the potential lack of background knowledge in read-
ers regarding number theory, modular arithmetic etc., and hence, we aim to
simplify the mathematical rigor to make the content more approachable.

Additionally, we provide a practical toy example of the RSA algorithm to
enhance readers’ understanding. Towards the end of the paper, we present a
real-world student learning outcome assessment conducted on students from
two different sections of the same course. Our results demonstrate that the
proposed student-oriented approach outperforms the traditional method of ex-
plaining the RSA algorithm in terms of assignment grades.

The paper is organised as follows: the necessary foundational information of
the RSA algorithm is provided in Section 2. Then the detailed student-oriented
style introduction of the algorithm is elaborated in Section 3. In Section 4 we
employed a specific toy example to demonstrate how to encrypt and decrypt
the message in RSA from a practical perspective. We concluded the paper in
Section 6.

286

2 Background and Preliminaries

In this section, we provide necessary background that gives the context and
mathematical foundations of the RSA algorithm. Readers can also skip this
section and use this section as a reference while reading Section 3.

(a) Symmetric-key cryptography (b) Public-key cryptography

Figure 1: The information flow when Alice sends a message to Bob using
symmetric and public key cryptography.

2.1 Symmetric-key and Public-key Cryptosystems

One of the major challenges modern cryptographies want to address is how to
ensure two end users, let’s say Alice and Bob, could secretly exchange messages
M in an open and potentially unsafe environment. We have two strategies to
tackle this challenge[7].

The first strategy is to let both Alice and Bob share a secret key Kshared

and make sure any one of them can encrypt the plaintext M into ciphertext
C using Kshared, while the other can recover M from C using the same key
Kshared. This strategy is also known as symmetric-key cryptography [1]. It
is similar with a real-world padlock example in which we use a key to lock
a cabinet. When someone wants to open the cabinet, they need to get the
same key to unlock the padlock. The process of Alice using the symmetric-key
cryptography to send a message to Bob is shown in Fig. 1(a).

One of the major problems with the symmetric-key cryptography is that
end users have to share the same key in advance, which is often impractical in
modern communication systems such as computer networks due to: :

• In computer network systems, communication connections are usually
random and instantaneously. Requiring a shared key among all the com-
munication connections would be costly;

• Any information of the shared key sent over the open environment could
be intercepted by malicious attackers, which will put the encryption out
of work. Therefore, it is unrealistic to require all end users to share the
same secret key in advance when they want to exchange information.

3 87

In 1976, Diffie and Hellman [3] proposed the second strategy named as
public-key cryptosystems to tackle these challenges. The basic idea is that
both Alice and Bob will still share the same cryptograhic algorithm, but they
no longer need to share the same secret key. Instead, the system will maintain
two keys: a private key and a public key. The private key is only known
to the owner while the public key can be accessed by anyone who wants to
communicate with the owner.

Every time if Alice wants to send a message to Bob, Alice will use Bob’s
public key K(Bob,public) to encrypt the message M . On Bob’s side, the cipher-
text C can be decrypted using Bob’s private key K(Bob,private). Since only Bob
has K(Bob,private), thus no one else could recover M . The process of Alice using
the public-key cryptosystem to send a message to Bob is shown in Fig. 1(b).

In this system, the two communication entities no longer need to com-
municate a shared key in advance, which addresses the major problem in
symmetric-key cryptography. However, one of the major disadvantages is
the public-key cryptography algorithms is usually more computationally costly
than symmetric-key cryptography algorithms [8, 5, 9].

The public-key cryptosystem is similar with our self-service drop box mech-
anism used in shipping industry. Anyone can put an envelope or a package
(messages) into a public drop box (public key) provided by the shipping com-
pany (anyone could use the receiver’s public key to encrypt the message in
public-key cryptosystems). However, only authorised personnel (receiver) from
the shipping company that has the key (private) could open the drop box to
get the mails/packages.

Using public-key cryptosystems, two end users will no longer be required to
share a secret key in advance when they need to exchange information. All the
sender needs to know is the public key of the receiver and the cryptographic
algorithm the receiver used, both of which are public information. The RSA
algorithm is an implementation of the public-key cryptosystem concept.

2.2 Modular Arithmetic

Modular arithmetic is a branch of arithmetic for integers, where numbers “wrap
around” when reaching a certain value. If we have a modulus n, which is an
integer larger than 1, a mod n is the remainder of a divided by n. For example,
7 mod 3 = 1. The result of a mod n for any number a will always be less than
n and greater than or equal to 0, i.e., 0 ≤ a mod n < n. In our 7 mod 3 = 1
example, obviously 1 < 3. If a < n, then a mod n will always equal to a itself.
For example, 5 mod 9 = 5. In the case where integers a and b have the same
remainder when divided by n, i.e., a mod n = b mod n, we have the following
definition:

488

Definition 2.1. If a and b are integers and m is a positive integer, then a is
congruent to b modulo m if m divides a−b. We use the notation a ≡ b(mod m)
to indicate that a is congruent to b modulo m.

For example, as 24 and 14 have the same remainder when divided by 5,
we call 24 and 14 are congruent modulo 5, which can be represented as 24 ≡
14(mod 5). In modular arithmetic, we use "≡" rather than "=" to denote the
equivalence of modulo results. There is an important theorem of congruence
that we will use in explaining the RSA algorithm:

Theorem 2.1. If a ≡ b(mod m) for integers a, b and m, then ak ≡ bk(mod m)
and ak ≡ bk(mod m) for any integer k.

Proof. This can be proved by the definition of congruence. Since a ≡ b(mod m),
then a mod m = b mod m, i.e., a− c1m = b− c2m for integers c1 and c2. Fur-
ther this can be written as a− b = cm for an integer c. We multiply both sides
by an integer k to get ak − bk = ckm, and perform modulo m on both sides
will get ak mod m = bk mod m, i.e., ak ≡ bk(mod m), which completes the
proof. We can use similar strategies to prove ak ≡ bk(mod m) for any integer
k.

Another important theorem that we will use in proving the RSA algorithm
is Bézout’s theorem,

Theorem 2.2 (Bézout’s theorem). If a and b are positive integers, then there
exist integers s and t such that the greatest common divisor of a, b, i.e., gcd(a, b),
can be represented as gcd(a, b) = sa+ tb.

The detailed proof of this theorem can be found in [13]. The pair of s
and t could be found using the Extended Euclidean Algorithm. For example,
gcd(24, 14) = 3 × 24 + (−5) × 14. Now we give the definition of modular
multiplicative inverse.

Definition 2.2. If there exist integers a, b such that ab ≡ 1(mod m), then b is
said to be an inverse of a modulo m and vice versa.

Based on this definition of modular multiplicative inverse and Bézout’s
theorem, we can derive the following theorem:

Theorem 2.3. An inverse of a modulo m is guaranteed to be existed whenever
a and m are relatively prime.

Proof. As a and m are relatively prime, gcd(a,m) = 1. According to Bézout’s
theorem, there are integers s and t such that gcd(a,m) = sa + tm = 1. This
implies that sa + tm ≡ 1(mod m). As tm ≡ 0(mod m), it follows that sa ≡
1(mod m). Consequently, s is an inverse of a modulo m.

5 89

To simplify the readability, we leave the proofs of these properties, such as
the Extended Euclidean Algorithm in modular arithmetic, to the reader’s in-
terest. For those who wish to explore modular arithmetic and related theorems
and proofs in greater depth, please refer to [12] for a detailed explanation.

2.3 Prime Factorisation

Prime factorization means the decomposition, if possible, of a positive integer
into a product of prime integers. For example, the prime factorization of 15
is 3 × 5, in which both 3 and 5 are prime numbers. Prime factorization is an
important problem in number theory because still no efficient enough way has
been discovered to find the prime factorization of an extremely large integer
with existing classical computer systems.

The RSA algorithm embeds prime factorization in its design to ensure there
exists no efficient way to decipher the ciphertext in non-quantum computing
systems. However, it does not mean that we would not find an efficient way to
perform prime factorization in the future based on nowadays computer tech-
nology (a lot of mathematicians are still working on this problem); it also does
not mean that we would not find an efficient way on future computers, such
as quantum computing [14, 6, 4]. In fact, an efficient way to perform prime
factorization on quantum computers has already been found [15]. The problem
is that a workable quantum computer is still estimated to be at least decades
away [2]. Therefore, we can safely say the RSA algorithm is secure at least for
the time being.

2.4 Euler’s Theorem

Before introducing Euler’s theorem, let’s first provide the definition of Euler’s
totient function:

Definition 2.3. The Euler’s totient function ϕ(.) is the number of positive
integers that are less than and relatively prime to this integer, i.e., ϕ(n) =
the number of integers in{1, 2, 3, . . . , n− 1}which are relative prime to n.

For example, given an integer 8, there exist four integers 1, 3, 5, 7 that are
relatively prime to 8, thus Euler’s totient function value ϕ(8) = 4. You might
have already realised that Euler’s totient function value for a prime number n
is always n− 1, i.e., ϕ(n) = n− 1, as all the n− 1 positive integers less than n
are relative prime to n. An important mathematical property of Euler’s totient
function is that:

Theorem 2.4. If m and n are relatively prime integers, then ϕ(mn) = ϕ(m)×
ϕ(n).

690

For example, ϕ(6) = ϕ(2)×ϕ(3) = 1× 2 = 2. We’ll skip the proof here and
the detailed proof of this theorem can be found in [13]. This property offers
a convenient way to calculate Euler’s totient function value if an integer can
be factorized into the product of two prime numbers m and n. In this case
ϕ(mn) = ϕ(m)×ϕ(n) = (m−1)(n−1) as m,n are also relatively prime to each
other, which we will use later in proving the RSA algorithm. The challenge
here is that no efficient way has been found on modern computers to do prime
factorization (as discussed in Section 2.3).

It is worth noting that the complexity of prime factorization and computing
the Euler’s totient function is equivalent for arbitrary integers. Essentially,
both require evaluating whether the integer is relative prime to all the positive
integers less than it. Therefore, it is also computationally difficult to calculate
Euler’s totient function for large enough integers. Now we’re ready to introduce
Euler’s Theorem.

Theorem 2.5 (Euler’s Theorem). If two integers a and n are relatively prime,
i.e., gcd(a, n) = 1, and n > 0, then aϕ(n) ≡ 1 (mod n).

For example, let a = 3 and n = 4, then they are relatively prime and we
have ϕ(4) = 2. Further we have 3ϕ(4) = 32 = 9, thus, 3ϕ(4) ≡ 9 ≡ 1 (mod 4).
We leave the proof of Euler’s theorem to the readers due to the abundance
of online resources on this topic [13]. It is worth noting that Euler’s theorem
provides a fast way to calculate aϕ(n) mod n when a, n are relatively prime.
This property plays a significant role in the RSA algorithm as we will see in
the following section.

After all the background information introduction, now we’re ready to start
the introduction of the RSA algorithm, which is an implementation of the
public-key cryptosystem.

3 The RSA algorithm

The RSA system was introduced in 1976. Now it is one of the most widely
used public-key encryption methods in computer networks. To materialise a
public-key cryptosystem, as we introduced in Section 2.1, we want to achieve
the following three basic goals [11]:

1. Efficiency: The encryption and decryption process should be easy to
compute for legitimate users who have the required key information.

2. Plaintext recovery: We should be able to get the original plaintext M
through decrypting the ciphertext C.

3. Computational difficulty: Without the private key information, there
is no known efficient way to perform the decryption process.

7 91

These three goals are critical in the success of the public-key systems. With
these three goals in mind, we introduce the core encryption and decryption
process of the RSA algorithm. The corresponding ciphertext C of the plaintext
M is computed from

C ≡ Me (mod n). (1)

e and n is the public key information of the receiver. The decryption process
is similar, which is

M ′ ≡ Cd (mod n). (2)

The private key information consists of d and n. We use M ′, not M directly in
Eq. (2) because we want to highlight that this is the result we obtained from
the decryption process. We will ensure M ′ = M in the plaintext recovery goal.

Suppose Alice wants to send a secret message M = 2 to Bob using the RSA
algorithm. Bob’s public key (e, n) is (113, 143) and the corresponding private
key (d, n) is (17, 143), which means that the ciphertext C ≡ Me (mod n) ≡
2113 (mod 143) ≡ 19. Alice will send out C = 19 to Bob. Bob can then
decrypt the ciphertext to recover the plaintext through M

′ ≡ Cd (mod n) ≡
1917 (mod 143) ≡ 2, which achieved the goal of M

′
= M . The detailed en-

cryption and decryption process of the RSA algorithm is shown as follows in
Algorithm 1.

Algorithm 1 The encryption and decryption process of the RSA algorithm.
1: The Receiver:
2: Choose two large random prime numbers p and q privately.
3: Obtain n and ϕ(n) through n = p · q and ϕ(n) = (p− 1)(q − 1), then

keep p and q in private or destroy them.
4: Choose a large number e that is relatively prime to ϕ(n).
5: Compute d such that ed ≡ 1(mod ϕ(n)).
6: Release (e, n) to the public and keep (d, n) as the private key.
7: The Sender:
8: Encrypt the message M using the receiver’s public key (e, n), C ≡

Me (mod n), and send the ciphertext C to the receiver.
9: The Receiver:

10: Decrypt the received ciphertext C using their own private key (d, n)
to recover M ′ ≡ Cd (mod n).

We now need to understand what conditions must be satisfied and how this
process could achieve the three goals mentioned above. We will explain each
goal with the associated conditions as follows.

892

3.1 Goal 1: Efficiency

Both encryption and decryption procedures are identical from an implementa-
tion perspective, making them straightforward to implement in practice. Addi-
tionally, private and public keys can be determined using standard and efficient
methods on modern computers [10].

We also need to be able to find Me (mod n) and Cd (mod n) efficiently
without using an excessive amount of memory given that e, d, n are all large
numbers. Directly computing the exponentiation operation of Me or Cd is
impractical, as their results can be very extremely large and require significant
memory to store. Fortunately, this problem can be addressed using the fast
modular exponentiation algorithm, which reduces the computational complex-
ity to a logarithmic level. The detailed algorithm is provided in [12].

However, despite the RSA algorithm’s careful design for efficiency, it is
generally accepted that public-key cryptosystems are usually less efficient than
symmetric-key cryptosystems. Therefore, in real-world scenarios, the RSA
algorithm is primarily used for delivering the pre-shared key in symmetric-
key cryptosystems, which is often a short message. When encrypting large
amounts of information, symmetric-key cryptosystems are still preferred for
their efficiency [8].

3.2 Goal 2: Plaintext Recovery

The second goal is to guarantee the accurate recovery of original plaintext M
from ciphertext C using receiver’s private key (d, e), i.e., to ensure M ′ = M .
Substituting C in the encryption process as shown in Eq.(1) to the decryption
process as shown in Eq.(2), it yields

M ′ ≡ [Me (mod n)]d ≡ Med (mod n). (3)

As we know from Section 2.2, M could also be written as

M ≡ M (mod n), if M < n. (4)

Therefore, the goal can be reinterpreted as finding the conditions to guarantee

Med ≡ M (mod n),with M < n. (5)

As long as M < n, the above equation will hold. According to Euler’s theorem
(Section 2.4), if M and n are relatively prime, then Mϕ(n) ≡ 1 (mod n). By
the modular arithmetic properties (Section 2.2), we can raise both sides to the
k-th power, with k being a positive integer, to get Mkϕ(n) ≡ 1k ≡ 1 (mod n).
Multiplying both sides by M yields,

Mkϕ(n)+1 ≡ M (mod n). (6)

9 93

Comparing Eq.(3) to Eq.(6), to ensure the correct recovery M ′ = M , we would
now require

Med (mod n) = Mkϕ(n)+1(mod n) (7)

i.e., we need
ed = kϕ(n) + 1 , k is a positive integer. (8)

Up until now, we found that we have two conditions need to be satisfied in
order to make above equations hold: (1) M < n and (2) M and n are relatively
prime. As long as these two conditions are satisfied, the above derivation from
Eq.(3) to Eq.(8) will hold. To satisfy the first condition, in real world, after
choosing the large positive number n, we need to break long messages into
small blocks such that each block can be represented as an integer M that is
less than n. We will explain how to ensure the second condition in Section 3.3.

We now know that if we could find a pair of e, d such that ed = kϕ(n)+1,k
is a positive integer. The two conditions for M and n are satisfied, then we’re
confident that the original plaintext M could be recovered from C. In the
next section, we’ll see how these conditions are met and at the same time the
computational difficulty goal is also achieved.

3.3 Goal 3: Computational Difficulty

Now the challenge is reduced to a problem of finding appropriate values of e and
d, which are the major components of the public and private key respectively.
The only clue we have now is ed = kϕ(n) + 1, where k is a positive integer.

To achieve the third goal of computational difficulty, we will start with the
challenge of how to choose e and d. Let’s first manipulate the equation a little
bit. Given that ed = kϕ(n) + 1, when the modulus is ϕ(n), we have

ed ≡ kϕ(n) + 1 ≡ 1 (mod ϕ(n)), (9)

where the last congruent relation comes from the fact that k is a positive inte-
ger. The congruence we get from the above manipulation ed ≡ 1 (mod ϕ(n))
reveals that if e and ϕ(n) are relatively prime, then d is an inverse of e modulo
ϕ(n) and the existence of d is guaranteed according to the Bézout’s theorem
(Section 2.2).

Now we just need to find a number e that is relatively prime to ϕ(n), and
the corresponding inverse modulo n, denoted by d. Finding a number e that
is relatively prime to ϕ(n) should not be a difficult problem if given ϕ(n).
Finding the corresponding inverse d of e modulo ϕ(n) could be done through
the Extended Euclidean Algorithm efficiently as gcd(e, ϕ(n)) = 1.

We have successfully found a way to find an appropriate e and d. However,
this does not conclude the problem. In the third goal of public-key cryptosys-
tems, it requires that there exists no known efficient way to calculate d given

1094

the information of e and n. Obviously, we still have not reached that goal. If n
is not chosen carefully, an attacker might be able to easily figure out the value
of ϕ(n) and further efficiently figure out d based on e.

Achieving the last goal of the public-key cryptosystems is one of the most
elegant parts of the RSA algorithm. We know that there exist no known
efficient method to perform prime factorisation(Section 2.3). If the receiver can
first find two large random prime numbers p and q privately and let n = p · q,
then there will exist no efficient way to reverse this process to get p and q from
only n. Further, it will be computationally difficult to get the value of ϕ(n) as
stated in Section 2.4.

However, it will be super easy for the valid receiver to calculate ϕ(n) as
ϕ(n) = (p− 1)(q− 1). This is also known as the “trap-door one-way function”,
which is similar with how our shipping drop box works.

Finally we have achieved all the three goals mentioned at the beginning.
The receiver just needs to first choose two large enough prime numbers p and
q, and get n = p · q and ϕ(n) = (p− 1)(q − 1). Then p and q can be destroyed
to prevent potential leaks. The receiver can further get the public key (e, n) by
choosing a large enough e that is relative prime to ϕ(n) and then the private key
(d, n) could be computed based on ed ≡ 1(mod ϕ(n)). As there’s no efficient
way to compute ϕ(n) based on n as it requires a prime factorization, thus the
third goal of computation difficulty will be achieved.

We still have one last question left unanswered from Section 3.2. How can
we ensure n and M to be relatively prime? Unfortunately, we cannot ensure
it directly. However, we know that n = p · q with p, q being prime, which
means n will be relatively prime to all numbers less than n except p, q and
their multiples. The only case in which M and n are not relatively prime is
when M is a multiple of p or q or both, which has an extremely low chance in
terms of probability considering we also require M < n in Goal 2.

Up until this point, all the requirements to achieve the three goals of public-
key cryptosystems are satisfied. In the following section we provide a toy
example to sort out the process.

4 A Toy Example

The detailed implementation specifications of the RSA algorithm in real world
can be found in [10]. Suppose Alice wants to send a message “Tue 7PM” to
Bob secretly using the RSA algorithm. First, Bob needs to decide his private
key (d, n) and public key (e, n) for the communication. Bob will choose two
large random prime numbers p and q. Let’s assume p = 1721 and q = 1801. In
real world, these two numbers should be much larger such that it is unrealistic
for modern computers to obtain the prime factors p and q from n. n can be

11 95

computed as n = p · q = 3099521. We can also obtain Euler’s totient function
of n as ϕ(n) = (p− 1)(q − 1) = 3096000.

The next step for Bob is to choose a public key e, which is a number
relatively prime to ϕ(n). For example, the standard sizes for RSA keys starts
from 512 bits. To get a very high-strength key, the key size requires 4096 bits.
Here in our toy example we choose e = 1012333. Now Bob needs to compute
the private key d. Based on the equation ed ≡ 1 (mod ϕ(n)), we could get the
inverse of e modulo ϕ(n) as d = 997 using the Extended Euclidean Algorithm.
After e and d are determined, p and q can be destroyed or hidden for the sake
of security. Bob can release his public key (e, n) to the public while keep d
private.

From Alice’s perspective, Alice needs to first obtain Bob’s public key (e, n),
then she could convert the message she wants to send into its numerical rep-
resentations. Here we use ASCII (American Standard Code for Information
Interchange) to convert “Tue 7PM” into numerical representation as: 084 117
101 032 055 080 077.

If the message is too long, Alice could divide the message into smaller
blocks, then encode each block separately. Here we divide the message into
blocks that has 3 digits in each of them. There are seven blocks in the mes-
sage including the space. With the public key (e, n) = (1012333, 3099521),
Alice could obtain the ciphertext through Me (mod n) to get 0841012333 ≡
469428(mod 3099521), 1171012333 ≡ 547387(mod 3099521), The com-
plete ciphertext C is shown as "0469428 0547387 2687822 1878793 0330764
1501041 1232817". When Bob receives the ciphertext, he will decrypt the ci-
phertext using his own private key (d, n) = (997, 3099521) to get 0469428997 ≡
84(mod 3099521), 0547387997 ≡ 117(mod 3099521), , 1232817997 ≡ 77
(mod 3099521). Finally he recovers the original message by looking up the
ASCII table to get the plaintext message “Tue 7PM”.

5 Student Learning Outcome Assessment

To study the effectiveness of the proposed student-oriented approach in ex-
plaining the RSA algorithm, we conducted a comparative analysis with the
traditional method outlined in [12]. In the traditional method, the encryption
and decryption process are presented upfront to the students, followed by the
corresponding proof utilising number theory knowledge to enhance comprehen-
sion of the algorithm. The explanatory style from [12] presents the conventional
approach to teaching the RSA algorithm.

The comparison involved two sections of the same course, namely CSC 140
Discrete Structures at Rider University. These sections comprised 24 and 26
undergraduate students, respectively, all majoring in computer science or cy-

1296

(a) "Grades Without RSA" refers to the
average grades of assignments unrelated
to the RSA algorithm, which are taught
in the same manner; "Grades of RSA"
represents the average grades related to
the RSA algorithm, which are taught dif-
ferently.

(b) "First Grades of RSA" represent the
averaged grades of the assignment re-
lated to the RSA algorithm for the two
sections; "Second Grades of RSA" refer
to the averaged grades students received
after the alternative way is offered.

Figure 2: Students learning outcome comparison in terms of assignment grades
from two sections of the same course.

bersecurity. Given that this is a 100-level course and a prerequisite for several
higher-level courses, the majority of students are either freshmen or sopho-
mores, aligning with the target readership of this paper.

In these two sections, all course content, excluding the RSA algorithm sec-
tion, followed the same instructional format. Equal lecture time was allocated
to each topic in both sections. Student performance was compared based on
related assignment grades. Both sections were presented with identical assign-
ment problems and grading criteria.

The study involved initially employing the proposed student-oriented method
outlined in this work for students in Section I and the traditional method from
[12] for students in Section II. Subsequently, a related assignment was adminis-
tered. Following this, both sections were exposed to an alternative introduction
method—Section I students were presented with the traditional explanation,
while Section II students were introduced to the proposed student-oriented ap-
proach. Finally, a makeup opportunity for the assignment was extended to all
students. Detailed results are presented in Fig. 2.

In Fig. 2 (a), we initially compared two categories of student grades:
"Grades Without RSA" and "Grades of RSA." The former represents the av-
eraged grades for all assignments throughout the semester, excluding the one
related to the RSA algorithm. With a total of 9 assignments for the entire
semester, all topics pertaining to these assignments are taught in the same
way. Our analysis revealed that students from Section I performed, on aver-
age, 4 points higher than those from Section II (each assignment is out of 100

13 97

points).
On the other hand, "Grades of RSA" focuses solely on the assignment re-

lated to the RSA algorithm, considering a single assignment. Our findings
indicated that students in Section I outperformed those in Section II by an
impressive average margin of 14 points. If the effectiveness of the teaching
methods were equal for both sections, we would anticipate a much smaller av-
erage grade difference than the observed 14 points. Consequently, these results
underscore the effectiveness of the student-oriented approach in explaining the
RSA algorithm compared to the traditional method.

Upon offering both sections the alternative teaching method, we observed
an improvement in grades for both groups (Fig. 2 (b)). However, the gap in
grades between the two sections narrowed from 14 points to 6 points. This
reduction further validates the efficacy of the student-oriented teaching ap-
proach.

6 Conclusion

As the significance of cybersecurity continues to rapidly increase across vari-
ous facets of society, comprehending the fundamental logic behind widely used
security mechanisms becomes essential not only for cybersecurity students but
also for a broader audience. In this study, we present a self-contained and
student-oriented interpretation of the RSA algorithm, a cornerstone in public-
key cryptosystems. Beginning with three goals of public-key cryptosystems, we
guide readers through a step-by-step explanation of how the RSA algorithm
satisfies and implements each of these three goals. Our student learning out-
come assessment, conducted across two different course sections, demonstrated
the effectiveness of our approach, with an average grade difference of 14 points
compared to the traditional method of teaching the RSA algorithm.We envi-
sion this work serving as a more approachable channel for readers to grasp the
intricacies of the RSA algorithm.

References

[1] R Anusha et al. “Symmetric Key Algorithm in Computer security: A
Review”. In: 2020 4th International Conference on Electronics, Commu-
nication and Aerospace Technology (ICECA). IEEE. 2020, pp. 765–769.

[2] Daniel J Bernstein and Tanja Lange. “Post-quantum cryptography”. In:
Nature 549.7671 (2017), pp. 188–194.

[3] Whitfield Diffie and Martin E Hellman. “New directions in cryptogra-
phy”. In: Democratizing Cryptography: The Work of Whitfield Diffie and
Martin Hellman. 2022, pp. 365–390.

1498

[4] Chuck Easttom. “Quantum computing and cryptography”. In: Modern
Cryptography: Applied Mathematics for Encryption and Information Se-
curity. Springer, 2022, pp. 397–407.

[5] Reza Fotohi, Somayyeh Firoozi Bari, and Mehdi Yusefi. “Securing wire-
less sensor networks against denial-of-sleep attacks using RSA cryptogra-
phy algorithm and interlock protocol”. In: International Journal of Com-
munication Systems 33.4 (2020), e4234.

[6] Jack D Hidary and Jack D Hidary. Quantum computing: an applied ap-
proach. Vol. 1. Springer, 2019.

[7] Raza Imam et al. “Systematic and critical review of rsa based public
key cryptographic schemes: Past and present status”. In: IEEE Access 9
(2021), pp. 155949–155976.

[8] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography
CRC Press. 2020.

[9] Dwi Liestyowati. “Public key cryptography”. In: Journal of Physics: Con-
ference Series. Vol. 1477. 5. IOP Publishing. 2020, p. 052062.

[10] Kathleen Moriarty et al. PKCS# 1: RSA cryptography specifications ver-
sion 2.2. Tech. rep. 2016.

[11] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for
obtaining digital signatures and public-key cryptosystems”. In: Commu-
nications of the ACM 21.2 (1978), pp. 120–126.

[12] Kenneth H Rosen. Discrete mathematics and its applications. The Mc-
Graw Hill Companies, 2019.

[13] Kenneth H Rosen. Elementary number theory. Pearson Education Lon-
don, 2011.

[14] Engineering National Academies of Sciences, Medicine, et al. “Quantum
computing: progress and prospects”. In: (2019).

[15] Peter W Shor. “Algorithms for quantum computation: discrete loga-
rithms and factoring”. In: Proceedings 35th annual symposium on foun-
dations of computer science. Ieee. 1994, pp. 124–134.

[16] Osama Fouad Abdel Wahab et al. “Hiding data using efficient combina-
tion of RSA cryptography, and compression steganography techniques”.
In: IEEE access 9 (2021), pp. 31805–31815.

15 99

Design and Development of the FlexBE WebUI
with Introductory Tutorials∗

Samuel Raymond, Grace Walters, Josh Luzier, David C. Conner

Capable Humanitarian Robotics and Intelligent Systems Lab
Department of Physics, Computer Science and Engineering

Christopher Newport University
Newport News, VA 23606

{samuel.raymond.21, grace.walters.21, joshua.luzier.19,

david.conner}@cnu.edu

Abstract

Hierarchical Finite State Machines (HFSMs) continue to be a pop-
ular strategy for high-level behavioral control in robotics. Within the
Robot Operating System (ROS) ecosystem, the Flexible Behavior Engine
(FlexBE) provides an easy to use Python implementation with an intu-
itive user interface for runtime monitoring and ‘‘collaborative autonomy.’’
In this paper, we describe the latest evolution of the FlexBE UI, that
leverages FastAPI to provide a Python-based native ROS node interface,
to a web-based user interface. Additionally, the paper describes a ‘‘quick-
start’’ introductory tutorial to state machines using FlexBE. This system
provides a natural introduction to HFSM-based techniques.

1 Introduction

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1100

(a)

(b)

(c)
Figure 1: FlexBE UI showing Turtlesim demon-
stration. (a) Loading a predefined behavior
from the FlexBE behavior dashboard. (b) The
behavior editor view. (c) The FlexBE runtime
monitor view overlaid with the ROS Turtlesim
window. In Full Autonomy mode, as shown
here, the EightMove (sub-)state machine is re-
peatedly activated.

Robotic systems are typically im-
plemented using distributed in-
teracting processes that require
high-level coordination to induce
the desired overall system behav-
ior. As seen in the DARPA Ur-
ban (2007) and Robotics (2015)
Challenges, hybrid architectures
that include low-level reactive
controllers with high-level delib-
erative mission planners are com-
monly used. These different com-
ponents are coordinated using be-
havioral control systems, which
are commonly implemented using
either Hierarchical Finite State
Machines (HFSM) or Behavior
Trees (BT).

In this paper we focus on
HFSM, and describe recent work
improving the user interface for
the Flexible Behavior Engine
(FlexBE1) that was first devel-
oped in the DARPA Robotics
Challenge[1, 2, 3]. Furthermore,
we introduce an accessible intro-
ductory tutorial. Figure 1 shows
views from our tutorial demon-
stration of the capabilities of
FlexBE in particular and HFSM
in general. This tutorial is being
used in our senior level Introduc-
tion to Robotics course at Christo-
pher Newport University.

Section 2 begins with an
overview of ROS and the Flexible Behavior Engine, along with related works.
Afterwards, Section 3 describes the design and development of a new user
interface for FlexBE. Section 4 presents our ‘‘quick-start’’ tutorials for FlexBE.
While the open-source distribution provides details for installing and running

1https://github.com/FlexBE

2 101

the demonstrations,2 this paper documents their relationship to key FlexBE
design features, with specific changes relevant to the FlexBE Web UI. Finally,
Section 5 concludes the paper and outlines future work for the project.

2 Background

2.1 Robot Operating System

The Robot Operating System (ROS) is a framework for writing robot software
initially released in 2007 by Willow Garage[4, 5, 6]. ROS, which is not an
operating system, provides a structured communications middleware layer
above the host operating system. In addition to this middleware definition and
messaging conventions, ROS provides an ecosystem of utilities, libraries, and
drivers to simplify the task of creating complex and robust robot behavior across
a wide variety of robotic platforms. ROS’s ecosystem of loosely coupled tools
and libraries enables software distribution and reuse of cutting edge algorithms
to facilitate robotics research and development.

The original middleware release, now called ROS 1, used TCP and UDP
broadcast communications. The final ROS 1 release, dubbed Noetic, has been
supplanted by ROS 2, which uses a Data Distribution Service (DDS) protocol
for its middleware[6].3 As of this writing, ROS 2 Jazzy Jalisco is the latest
long-term support release.4

In addition to the base ROS middleware, ROS has numerous open-source
packages for common robotic software tasks such as planning, navigation, and
control.

2.2 Behavioral Control Systems

Robotic systems are complex systems of systems most commonly implemented
with interacting asynchronous software components in a multilayer hybrid
framework that mixes slower deliberative software components with faster
reactive components[7, 8, 9]. Two common approaches to implementing the
behavioral control coordination are Hierarchical Finite State Machines (HFSM)
and Behavior Trees (BT)[10].

Starting with the latter, Behavior Trees are the newer technology initially
developed in the computer gaming industry to model non-player characters
(NPCs) [11, 12]. Like robotic systems, NPCs are complex hybrid dynamical
systems that mix continuous movement components with discrete decision

2https://github.com/FlexBE/flexbe_webui
3https://docs.ros.org/en/jazzy/Concepts/Intermediate/

About-Different-Middleware-Vendors.html
4https://docs.ros.org/en/jazzy/Releases/Release-Jazzy-Jalisco.html

3102

making components. As implied by the name, a BT is a directed acyclic graph
or tree [11, 12]. Several BT libraries, such as BehaviorTree.CPP5, py_trees6,
and ros_bt_py7 have been created for robotics and incorporated in ROS[13].

Both HFSM and BT approaches are often implicit within other ROS pack-
ages. The ROS 1 basic navigation system used HFSM to coordinate planning,
control, and recovery behaviors; the Move Base Flex navigation system used
py_trees-based BTs [14]. With the introduction of ROS 2, the navigation2
package uses BTs with BehaviorTree.CPP for task orchestration [15].8

In this paper, we focus on the use of HFSM. While HFSM are an older
technology, popularized under the State Chart formalism[16], they are widely
applicable. It has been argued that HFSM have advantages over BT in some
applications, especially for cyclical operations and as a script for supervisor/op-
erator interaction[2, 17]. The early ROS 1 package SMACH (State MACHine)
allowed users to define and execute HFSMs on a robot.9

2.3 HFSM and FlexBE - the Flexible Behavior Engine

In the DARPA Robotics Challenge, from 2012 to 2015, it was necessary for
the supervisor/operator to interact with a robot system during execution to
preempt behaviors and reconfigure the robot behaviors at runtime in an evolving
disaster response scenario; this was called collaborative autonomy [1, 2, 3]. As
SMACH was not designed to provide collaborative autonomy, Team ViGIR
developed the Flexible Behavior Engine (FlexBE) as a major extension to
SMACH. FlexBE supports adjustable autonomy, preemptive state transitions,
and online adjustments to behaviors that support collaborative autonomy. Like
SMACH, FlexBE enables the passing of user data from one state to the next.

The FlexBE Onboard Behavior Executive (OBE) runs ‘‘onboard’’ the robot
and coordinates execution of the Python-based state implementations. The
desired system behavior is induced via the invocation of specific Python state
implementation class instances that encode the HFSM according to the desired
transitions. The OBE manages how these states publish and subscribe to
various topics and invoke ROS actions and services [1, 3]. Separately on an
Operator Control Station (OCS), a desktop graphical user interface (FlexBE
UI) enables development of HFSMs and monitors their execution in real time.
The UI allows the user to edit and define behaviors as state machines, and then
write the Python script that defines the overall state machine. These Python
scripts are executed by the OBE. Meanwhile, the OCS mirror node functions

5https://github.com/BehaviorTree/BehaviorTree.CPP
6https://github.com/splintered-reality/py_trees
7https://github.com/fzi-forschungszentrum-informatik/ros_bt_py
8https://github.com/ros-planning/navigation2
9http://wiki.ros.org/smach

4 103

as an intermediary between the OBE and FlexBE UI by ‘‘mirroring’’ the status
of the OBE and reporting it to the FlexBE UI.

The FlexBE User Interface was originally written in JavaScript as a Chrome
browser application by Philipp Schillinger[1, 18]. In 2017, as Google stopped
supporting Chrome Apps,10 Schillinger developed the FlexBE App11 as a
standalone application using the NW.js runtime library.12 This library was
not part of the standard ROS setup and required a separate install step;
this prevented the flexbe_app from inclusion in the standard ROS binary
distributions.

At the time of the flexbe_app development, there did not exist a native
interface between JavaScript and ROS. As a workaround, the flexbe_app
uses custom Python scripts run as hidden subprocesses to send and receive
ROS messages, and redirects the standard output to enable processing by the
JavaScript code. This approach worked, but made debugging new messages a
challenge. The new flexbe_webui presented in this paper addresses this issue
and introduces new features.

Since its release in 2016, FlexBE has been widely used[10]. Several extension
packages support integration with ROS navigation and manipulation pack-
ages[19, 20, 21]. These aim to decouple the tightly integrated nature of existing
ROS navigation and manipulation packages with their implicit behaviors to
enable collaborative autonomy. These have the added educational benefit of
allowing students to better appreciate the multiple steps that are required for
simple navigation tasks (e.g., receiving goal, planning path, and path following).
By following the common ROS action paradigm, these extensions also allow for
flexible integration of future technologies. Recent work proposed the integration
of FlexBE-based HFSM with Behavior Trees[17].

3 FlexBE WebUI

To support the continuing work on FlexBE, over the past year our group has
developed a new FlexBE WebUI tool and has publicly released the source
code.13 The FlexBE WebUI concept was initially proposed by Schillinger
in early 2023 and transferred to our group for development. This approach
supports the standard ROS dependency model and will target a ROS 2 Jazzy
Jalisco binary release in late 2024.

The FlexBE WebUI uses native Python nodes with FastAPI14 and uvi-

10https://github.com/pschillinger/flexbe_chrome_app/issues/11
11https://github.com/FlexBE/flexbe_app
12https://nwjs.io/
13https://github.com/FlexBE/flexbe_webui
14https://fastapi.tiangolo.com/

5104

corn15 to define a web server in Python and allows the use of native ROS 2
Python nodes communicating with DDS. This also allows all of the standard
ROS 2 and Python 3 debugging tools, while retaining the existing user interface
defined by the core FlexBE App JavaScript code. As such, the interface between
the JavaScript code and ROS has been simplified. Rather than creating Python
subprocesses locally, a client browser sends HTTP requests to the web server
for specific ROS functionality. In addition to leveraging the communication
advantages of native Python nodes, transitioning to a client-server model is
beneficial for those seeking to deploy FlexBE on a network; a client can access
the FlexBE OCS software running on a separate device. This setup supports
client access via a standard web browser or as a standalone client using the
PySide6 QtWebEngine.16

We retained the basic user interface but added several enhancements. One
common issue in the original FlexBE App (flexbe_app) was overlapping
transition labels between single states. The new FlexBE WebUI now allows
the user more flexible control of the curves used to define transitions between
states, and more precise control over the position of their labels as shown in
Figure 2.

In the older flexbe_app, state-to-state transitions were auto-drawn using
a cubic-bezier S-curve. Start and end points were calculated based on the
shortest path between two states, and the transition label was automatically
placed in the middle of the curve. However, since transitions and labels were
placed automatically, they would frequently overlap, and the only potential
user solution was to rearrange their states. With many interconnected states,
this could get messy very easily.

In the new flexbe_webui, transitions are drawn using a Catmull-Rom
Spline [22]. A unique feature of the Catmull-Rom spline is that it goes through
all of its control points, which the Bezier curve did not. This allows the
transition label itself to be a control point. The initial curve still auto draws
based on shortest path when the transition is initially connected, but the
flexbe_webui user has more control over the shape of the curve. They can
move the end-points to be anywhere along the box of the start or end state.
They can also drag the transition label to change the shape of the curve.

Similarly, during runtime, distinct outcomes are now shown, where in the
original version outcome labels between common states would overlap.

Another quality-of-life issue from the FlexBE App was input validation for
state parameters. Now, input fields have color coded backgrounds based on
the input type, as shown in Figure 1b, and the UI performs additional data
validation checks prior to saving a behavior. There are additional improvements

15https://www.uvicorn.org/
16https://doc.qt.io/qtforpython-6/quickstart.html

6 105

to key stroke bindings and tab handling between edit fields. For further
information and user guide see the official documentation at https://flexbe.
readthedocs.io/en/latest/.

(a) FlexBE App (b) FlexBE WebUI
Figure 2: (a) The state transition curves and labels can overlap in the original FlexBE
App. (b) The FlexBE WebUI allows the user to modify positioning of curves and
labels.

The August 2024 official release of the WebUI coincides with the official
release of version 4.0.0 of the FlexBE Behavior Engine17.

This version of the FlexBE WebUI includes extensions to the FlexBE
Behavior Engine that improves mirroring and synchronization of concurrent
states between the onboard and OCS mirror[1, 18]. A key feature of the FlexBE
design is the ability of a remote operator to monitor and control the onboard
state machine; therefore, keeping the OCS aware of the current state of the
onboard behavior is crucial. FlexBE does this with a "mirror" state machine
that follows the discrete transitions of the onboard state machine without
the functionality; the active states and potential transitions are then shown
on the UI. A design goal was to meet this functionality while keeping the
required bandwidth low. Earlier versions of FlexBE did this with an "outcome"
message that sent the outcome label as a string. The latest 4.+ version uses
an unique 23-bit numeric hash value assigned to each state as the state_id;
the outcome of a state is encoded using an additional 8-bits. This allows a
single 32-bit number to encode the exact state and current outcome (or none)
during operation. Both the transition outcomes and status heartbeat messages
now use this state_id for consistency. In the case of rapidly changing states

17Version 4.0.0 changes the API and is no longer compatible with earlier 3.0.x versions of
the flexbe_behavior_engine and the flexbe_app. Pre-release versions of flexbe_webui are
available that are compatible with the 3.0.x versions.

7106

that may be nested in hierarchical containers, inconsistencies arising due to
out of order messages can be quickly identified and corrected to keep the OCS
"mirror" synchronized with the onboard behavior.

4 ROS 2 FlexBE Turtlesim Tutorials

To demonstrate FlexBE’s capabilities, we have developed a set of simple
introductory tutorials based around the ROS 2 release of FlexBE. Complete in-
stallation and operation directions are available open-source.18 Here we provide
an overview and motivation for each demonstration of FlexBE’s capabilities.

The distribution includes four basic examples built using a simple text-
based LogState. These examples only require a basic ROS installation with
the FlexBE Behavior Engine and user interfaces (whether the classic FlexBE
App or the new FlexBE WebUI). Example 3 is shown in Figure 3; the other
examples are not pictured but can be viewed and run from the open-source
distribution.

Example 1 includes the ‘‘hello world’’ equivalent with FlexBE. This simple
state machine includes a LogState to display a message and a WaitState that
delays before completing the state machine execution. The Example 1 behavior
demonstrates the use of the FlexBE Behavior Dashboard to load pre-existing
behaviors, define specific variables, and provides a minimal demonstration of
state transitions. The Example 1 documentation describes the structure of the
Python state implementations.

Example 2 demonstrates the use of a custom ExampleState implementation
with multiple outcomes. This demonstrates how to construct new customized
state implementations.

Example 3 constructs a new state machine that includes two Concurrency-
Containers that each contain simple state machines using the ExampleState.
The first concurrency container demonstrates an OR behavior where either
ExampleState instance in the ConcurrencyContainer returning an outcome
will cause the container to transition. The second demonstrates an AND behavior
where all states in the ConcurrencyContainer tied to a specific outcome must
have an outcome transition before the ConcurrencyContainer returns that
specific outcome. Example 4 demonstrates a BehaviorContainer where the
container invokes the Example 3 behavior. The BehaviorContainer can invoke
entire behaviors that are defined and written by the FlexBE UI (whether the
classic FlexBE App or the new FlexBE WebUI). These examples describe the
impact of varying autonomy levels.

18https://github.com/FlexBE/flexbe_turtlesim_demo

8 107

(a)

(b)

(c)
Figure 3: Example 3: (a) The FlexBE dashboard, (b) Example 3 behavior sub-state
machine, (c) Runtime monitoring view of a high level state machine during execution

9108

The main example uses the classic ROS Turtlesim19 and demonstrates
a more complex HFSM that includes an OperatorDecisionState that al-
lows operators ‘‘collaborative autonomy’’ with user defined inputs, as well as
StateMachineContainer, ConcurrencyContainer, and BehaviorContainer.
Figure 1 shows the Turtlesim-based demonstration in action.

These demonstrations will continue to evolve, for the latest see https://
github.com/FlexBE/flexbe_turtlesim_demo and the official documentation
at https://flexbe.readthedocs.io/en/latest/.

5 Conclusion

This paper presents the design and development of a new web-based UI for
the Flexible Behavior Engine (FlexBE) based on FastAPI and uvicorn within
native Python ROS nodes. Additionally, the paper describes a set of ‘‘quick-
start’’ tutorials that allow new users an accessible introduction to FlexBE
and hierarchical finite state machine-based control of robotic systems. The
tutorials start with simple text-based outputs and then include a simple ROS
Turtlesim-based interactive tutorial; this provides an easy to install and start
simulation without the complexity of full navigation simulations.

The new FlexBE WebUI is designed to be extensible and future improve-
ments to the UI are planned. These include upgrades to the FlexBE synthesis
interface; see [23] for an introduction to synthesis of FlexBE state machines.
Further planned enhancements include support for automated layout of the
state machine, as well as more intuitive pan and zoom behaviors.

Acknowledgments

This work was supported by US Navy contract N00174-23-1-0018. The views
expressed are those of the authors.

References

[1] P. Schillinger, S. Kohlbrecher, and O. von Stryk. ‘‘Human-robot collab-
orative high-level control with application to rescue robotics’’. In: 2016
IEEE International Conference on Robotics and Automation (ICRA).
May 2016, pp. 2796–2802. doi: 10.1109/ICRA.2016.7487442.

19https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/
Introducing-Turtlesim/Introducing-Turtlesim.html

10 109

[2] Stefan Kohlbrecher et al. ‘‘A Comprehensive Software Framework for
Complex Locomotion and Manipulation Tasks Applicable to Different
Types of Humanoid Robots’’. In: Frontiers in Robotics and AI 3.31 (2016).
issn: 2296-9144. doi: 10.3389/frobt.2016.00031.

[3] Alberto Romay et al. ‘‘Collaborative Autonomy between High-level Behav-
iors and Human Operators for Remote Manipulation Tasks using Different
Humanoid Robots’’. In: Journal of Field Robotics (2016), pp. 333–358.
issn: 1556-4967. doi: 10.1002/rob.21671.

[4] Morgan Quigley et al. ‘‘ROS: an Open-source Robot Operating System’’.
In: ICRA Workshop on Open Source Software. Vol. 3. May 2009, p. 5.

[5] Morgan Quigley, Brian Gerkey, and William D. Smart. Programming
Robots with ROS: A Practical Introduction to the Robot Operating System.
Sebastopol, CA: O’Reilly Media, 2015. isbn: 9781449323882.

[6] Steven Macenski et al. ‘‘Robot Operating System 2: Design, architecture,
and uses in the wild’’. In: Science Robotics 7.66 (2022), eabm6074. doi:
10.1126/scirobotics.abm6074.

[7] Michael Montemerlo and et al. ‘‘Junior: The Stanford Entry in the Urban
Challenge’’. In: The DARPA Urban Challenge: Autonomous Vehicles in
City Traffic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 91–
123. isbn: 978-3-642-03991-1. doi: 10.1007/978-3-642-03991-1_3.

[8] Charles Reinholtz and et al. ‘‘Odin: Team VictorTango’s Entry in the
DARPA Urban Challenge’’. In: The DARPA Urban Challenge: Au-
tonomous Vehicles in City Traffic. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2009, pp. 125–162. isbn: 978-3-642-03991-1. doi: 10.1007/978-
3-642-03991-1_4.

[9] Chris Urmson and et al. ‘‘Autonomous Driving in Urban Environments:
Boss and the Urban Challenge’’. In: The DARPA Urban Challenge:
Autonomous Vehicles in City Traffic. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 1–59. isbn: 978-3-642-03991-1. doi: 10.1007/978-
3-642-03991-1_1.

[10] Razan Ghzouli et al. ‘‘Behavior Trees and State Machines in Robotics
Applications’’. In: IEEE Trans. Softw. Eng. 49.9 (Sept. 2023), pp. 4243–
4267. issn: 0098-5589. doi: 10.1109/TSE.2023.3269081.

[11] Michele Colledanchise and Petter Ögren. ‘‘How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Composi-
tions, the Subsumption Architecture, and Decision Trees’’. In: IEEE
Transactions on Robotics. Apr. 2017, pp. 372–389. doi: 10.1109/TRO.
2016.2633567.

11110

[12] Michele Colledanchise and Petter Ogren. Behavior Trees in Robotics and
AI: An Introduction. July 2018. isbn: 9781138593732. doi: 10.1201/
9780429489105.

[13] Georg Heppner et al. ‘‘Distributed Behavior Trees for Heterogeneous
Robot Teams’’. In: 2023 IEEE 19th International Conference on Au-
tomation Science and Engineering (CASE). 2023, pp. 1–8. doi: 10.1109/
CASE56687.2023.10260300.

[14] Sebastian Pütz, Jorge Santos Simón, and Joachim Hertzberg. ‘‘Move Base
Flex A Highly Flexible Navigation Framework for Mobile Robots’’. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2018, pp. 3416–3421. doi: 10.1109/IROS.2018.8593829.

[15] Steve Macenski et al. ‘‘The Marathon 2: A Navigation System’’. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2020, pp. 2718–2725. doi: 10.1109/IROS45743.2020.9341207.

[16] David Harel. ‘‘Statecharts: a visual formalism for complex systems’’.
In: Science of Computer Programming 8.3 (1987), pp. 231–274. issn:
0167-6423. doi: https://doi.org/10.1016/0167-6423(87)90035-9.

[17] Joshua M. Zutell, David C. Conner, and Philipp Schillinger. ‘‘Flexible
Behavior Trees: In search of the mythical HFSMBTH for Collaborative
Autonomy in Robotics’’. In: (2022). eprint: 2203.05389 (cs.RO). url:
https://arxiv.org/abs/2203.05389.

[18] Philipp Schillinger. ‘‘An Approach for Runtime-Modifiable Behavior Con-
trol of Humanoid Rescue Robots’’. Master’s Thesis. Darmstadt, Ger-
many: Technische Universität Darmstadt, 2015. url: https://www.sim.
informatik.tu-darmstadt.de/publ/da/2015_Schillinger_MA.pdf.

[19] David C. Conner and Justin Willis. ‘‘Flexible Navigation: Finite State
Machine-based Integrated Navigation and Control for ROS Enabled
Robots’’. In: IEEE SoutheastCon 2017. Mar. 2017, pp. 1–8. doi: 10.
1109/SECON.2017.7925266.

[20] David C. Conner et al. ‘‘Flexible Manipulation: Finite State Machine-
based Collaborative Manipulation’’. In: SoutheastCon 2018. 2018, pp. 1–8.
doi: 10.1109/SECON.2018.8478933.

[21] Joshua M. Zutell, David C. Conner, and Philipp Schillinger. ‘‘ROS 2-Based
Flexible Behavior Engine for Flexible Navigation’’. In: SoutheastCon 2022.
2022, pp. 674–681. doi: 10.1109/SoutheastCon48659.2022.9764047.

[22] Soroosh Tayebi Arasteh and Adam Kalisz. ‘‘Conversion Between Cubic
Bezier Curves and Catmull--Rom Splines’’. In: SN Computer Science 2.5
(July 2021), p. 398. doi: 10.1007/s42979-021-00770-x.

12 111

[23] Josh Luzier and David C. Conner. ‘‘Solving the Farmer’s Dilemma with
FlexBE Using GR(1) Synthesis’’. In: SoutheastCon 2024. 2024, pp. 1189–
1196. doi: 10.1109/SoutheastCon52093.2024.10500189.

13112

Stigma: A Tool for Modifying Closed-Source
Android Applications∗

Ed Novak1, Shaamyl Anwar2, Saad Mahboob3

Shokhinabonu Tojieva4, and Chelsea Rao5

Computer Science Department
Franklin and Marshall College

Lancaster, PA 17604
1enovak@fandm.edu, 2mshaamylanwar@gmail.com, 3saadmahboob3@gmail.com

4shokhinatojieva@gmail.com, 5crao@fandm.edu

Abstract
A difficult but potentially powerful advanced software engineering

concept is to modify existing, compiled, closed-source applications to
identify and potentially remedy security and privacy issues. This tech-
nically challenging concept is very applicable to the Android ecosystem,
but existing approaches are bespoke, use-case specific implementations.
In this paper we present Stigma, an open-source software tool which can
make modifications to commodity Android applications. Our tool allows
researchers and skilled users to define their own desired modifications
for a range of purposes such as security and privacy analysis, improving
app functionality, removing unwanted features, debugging, profiling, and
others. We evaluate Stigma in terms of compatibility, efficacy, and
efficiency on approximately 100 commodity Android applications.

1 Introduction

Android smartphone applications are most commonly pre-compiled and closed-
source. This makes their functionality rigid and somewhat opaque, leading to

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 113

security concerns and contributing negatively to the general trend of concerns
about user privacy. We seek to provide tools that modify and analyze the
behavior of these closed-source applications. Such tools could one day be used
to perform a variety of tasks such as identifying app uses of sensitive informa-
tion, searching for security vulnerabilities, fixing bugs, and even improving app
functionality independently of the original developer.

Unfortunately modifying commodity Android apps is generally only done
in very limited ways via custom fit, temporary, and largely manual processes.
Although reverse engineering and “cracking” / “modding” exists in a limited
sense in the Android community, these efforts are largely disconnected and lack
big picture strategies. Many of the existing research projects in this area [16,
11, 17] do not seem to be available, and therefore cannot be feasibly replicated,
embraced, or extended. Furthermore, these legacy projects have usability and
compatibility limitations [4].

Modifying apps is difficult due to the fact that the source code is not avail-
able. Instead users and tools must operate directly on the byte-code (machine
code for a virtual machine). Writing byte-code directly is difficult due to
numerous esoteric constraints, non-obvious syntax rules, and few conveniences
most programmers take for granted (e.g., for loops). Additionally, the Android
framework, runtime environment, and build system are complex leading to
bespoke techniques and tools.

In this paper we present Stigma [13]; an open source (GPLv3), command
line, python program which can help users make modifications to Android
applications for security and privacy analysis. Users first obtain the Android
Package (APK) of an app, which is used as input. Plugins, written in python for
Stigma, determine what alterations will be made to the app. A new, modified
APK is output, which can be run on any target device that the original
APK was compatible with. No modifications are necessary to the device or
OS itself making for easier reproducibility and long term compatibility. The
contributions of this paper are as follows:

• We present the design and prototype implementation of Stigma, our open
source and extensible software tool for modifying Android apps.

• As an exemplary use of Stigma, we implement (and also distribute in
open source) two Stigma plugins. The first is a dynamic information
flow tracking (DIFT) plugin and the second is a “SharedPreferences”
extraction plugin.

• We highlight the esoteric details of the “reference pools” in the DEX file
format, which to the best of our knowledge, have not been documented
extensively elsewhere.

2114

• We evaluate Stigma and our two plugins on approximately 100 popular
Android applications. We seek to measure the compatibility of Stigma
with arbitrary Android applications as well as the overhead incurred on
the application.

2 Related Work

The most closely related works are “Dr. Android and Mr. Hide” [10], and
“SIF” [9] in which the smali assembly code of Android apps is modified directly
and automatically. “Dr. Android” makes limited modifications in the narrow
scope of implementing a more fine grained permission system. SIF asks the
user to specify their desired modification in a language called “SIFScript.” The
SIFScript includes the functionality itself as well as the general places and
times in which the functionality should be inserted (called the “workload”).
These works were published in 2012 and 2013 respectively. Due to their age, it
is very likely that they are no longer compatible with modern Android. They
seem to be orphaned and don’t appear to be readily available online.

2.1 DIFT Systems

One relevant subfield is that of dynamic information flow tracking (DIFT), in
which code is added into the target app to track and alert the user about the
use of their own sensitive and/or personal, identifiable information (PII). This
is the idea implemented by our Stigma plugin described in Section 4. Some of
the most relevant works in this area include ViaLin [1], TaintMan [16], TaintArt
[15], TaintDroid [8], AppCaulk [11], ConDySTA [18], and Capper [17].

2.2 Community Projects

Some less formal, community based efforts include the Cydia Substrate for
Android [5], the (apparently defunct) Xposed Framework, and Android DDI
[7] which allows the user to write their modifications using the Java Native
Interface (JNI). None of these projects seem to have accompanying publications
in peer reviewed conferences or journals.

2.3 Limitations of the Related Work

The existing works in this area all suffer from at least one of two critical flaws.
Either the software described was never released to the public, or the system
design has significant compatibility and usability concerns. Some projects
exhibit both problems. Compatibility and usability concerns include requiring
substantial changes to the Android OS, the Android Framework, the dex2oat

3 115

compiler, rooting, or changing other aspects of the platform / device itself
instead of the app. These approaches are difficult for others to setup, brittle,
and become outdated quickly as the Android OS is continually updated. In
contrast, our system is carefully designed to follow the semantics of smali / dex
byte-code itself, which is a standard that hasn’t changed substantially since the
introduction of Android.

3 Stigma System Design

Figure 1: Stigma system architecture.

Stigma [13] is a fully
open-source python pro-
gram that accepts an
APK file as input, and
outputs a modified ver-
sion of that APK file.
The modifications made
are specified by plug-
ins, which are written
by the user. As a
proof of concept, Stigma
comes with two pre-
written plugins. One
performs DIFT, which
seeks to track the use
of location (GPS coordi-
nate) data. The other
inserts code such that
the app prints the keys
and values of the de-
fault SharedPreferences
database when the app
is launched. Further
information about these

two plugins is given in Sec. 4 and 5. Other plugins can be imagined and
implemented that allow researchers and other power users to specify precisely
what modifications should be made to the app.

An overview of the architecture of the system can be seen in Fig. 1. First
1○ a third party tool apktool[3], is used to extract the Dalvik byte-code
(DEX1) from the application and convert it to the assembly-like smali [12,

1DEX is designed to be run on a Java Virtual Machine (JVM), but in the modern Android
ecosystem, it probably never will be. Instead, the DEX2OAT compiler is invoked at install

4116

2] language 2○. Stigma then parses these smali files into an intermediate
representation (IR) 4○. Stigma maintains in-memory representations (objects)
for smali classes, smali methods, registers, and basic data-types (32-bit, 64-bit,
and object references). Plugin logic is applied to the IR. Then in step 6○, the
code must be “re-balanced” to account for the constant pool limits as described
in Section 3.1. Finally, the modified IR is written back to smali files on disk.
The modified smali files 7○, along with any new smali classes added by the
plugin(s), are re-packed using the same third party tool apktool 8○. The end
result is an APK, digitally signed by Stigma, which can be installed on any
device for which the original, input APK was compatible.

Stigma parses and allows the user to modify the smali assembly code of
the target app. The original Java or Kotlin source code is not available, due
to most apps being distributed close-sourced. And the immediately available
DEX byte-code is not human readable, making it near impossible for users to
define plugins for DEX directly.

As mentioned previously, the smali classes, methods, instructions, registers,
and types of the original app are all represented in-memory by python objects.
Stigma also builds a control flow graph for every method in the app, and
does type analysis such that it can determine the known type of every data
value stored in every register at any point in the execution. Of course, there
are many points where the type information is unknown or undefined. For
example, at the very beginning of a method most of the temporary, general
purpose registers are empty and therefore have no type.

3.1 Reference Pools

As mentioned very briefly in the official Dalvik documentation “There are sep-
arately enumerated and indexed constant pools for references to strings, types,
fields, and methods.” [6]. This means that in a single DEX file (comprised of
many smali files) all references to (1) strings, (2) types, (3) class fields, and
(4) methods are collected into respective sets. Each set may contain at most
65,535 entries since the pools are enumerated using an unsigned short.

As applications have grown larger and larger, it has become increasingly
common for a single Android application to exceed the 65k limit on one or
more of the pools. To alleviate this the code is distributed into multiple DEX
files (classes.dex, classes2.dex, classes3.dex, etc.) such that none of
the pools are overloaded. Normally this is done by the dx converter (from
the Android SDK) which converts Java .class files to Android .dex files.
But, Stigma modifies the code after it has been converted to DEX, and so any

time to convert the DEX code to machine code matching the architecture of the device. The
app is then run on that device via the Android RunTime (ART).

5 117

1 .class public Lcom/example/stigmatestapp/MainActivity;
2 .super Landroidx/appcompat/app/AppCompatActivity;
3 .source "MainActivity.java"
4
5 # static fields
6 .field static final GREEN_TRANSPARENT:I = 0x6600ff00
7
8 # instance fields
9 .field sputgetText:Landroid/widget/TextView;

10
11 # direct methods
12 .method public constructor <init >()V
13 .locals 0
14
15 .line 19
16 invoke -direct {p0}, Landroidx/appcompat/app/

AppCompatActivity;-><init >()V
17
18 return -void
19 .end method

Listing 1: Sample code used to demonstrate how the constant reference pools
are tabulated. This listing contains 9 string references, 5 type references, 2
field references, and 2 method references.

changes it makes that alter the amount of items in the pools may cause those
pools to overflow and for the app to fail to compile / run.

Properly organizing a collection of smali files into an appropriate number
of DEX files is not straightforward, since it is not clear how various smali
instructions impact the four pools. To our knowledge, this relationship is not
explained in any pre-existing documentation. The smali command line tool
[12] can be used to create a DEX file from a single smali file. The resulting
DEX file will likely be unable to run, since it does not even contain some of the
necessary foundation code such as the Android support libraries. But, such
a DEX file can be analyzed by the dexdump tool, from the Android SDK, to
precisely determine how the code therein contributes to each pool. Using this
tool-chain we are able to reverse engineer the relationship between smali code
and the four pools.

Consider the code sample in Listing 1. According to dexdump, the DEX file
containing only this class contains 9 string references, 5 class/type references,
2 field references, and 2 method references.

• Strings (9 total) - The class name and parent class name on lines 1
and 2 account for two strings. And, line 3 contains a literal string. These
strings are used, presumably, for debugging purposes such as stack traces,

6118

and compiler warnings as well as for Java reflection. Each of the fields
declared on lines 6 and 9 contribute two string references each (one for
the identifier, and another for the type). Finally, the method declaration
on line 12 contributes two string references, (one for the method name,
and the other for the method return type).

• Types (5 total) - The class and parent class on lines 1 and 2 are types.
The I in the field declared on line 6 is a type (integer). The TextView ref-
erenced on line 9 is a type. And, the V indicating that the <init> method
returns void, is a type. Note that the reference to AppCompatActivity
on line 16 is not counted, because it is redundant with the reference on
line 2.

• Fields (2 total) - This class references only two fields (as declarations)
on lines 6 and 9.

• Methods (2 total) - This class references only two methods. The decla-
ration of MainActivity.<init> on line 12 and the call
to AppCompatActivity.<init> on line 16.

Stigma uses this logic to distribute smali files into a number of classesX.dex
files appropriately. It is important to note that smali instructions need no
modifications or special access rights in order to reference the classes, fields,
and methods of smali files in other DEX files. Access rights are restricted only
by the traditional Java access modifiers public, private, and protected.

3.2 Extensible Plugin Framework

Without any active plugins, Stigma will not make any changes to the target
app. How should intended changes be specified? In our system, plugins specify
callback handler functions. The callback handler function itself is written by
the plugin author / user, specifying which key points it should be invoked on.
These functions return new smali code that is inserted into the app at key
point(s).

The handlers are invoked as the original application code is linearly iterated
over. They can be called or triggered at various key points in the target app.
First they can be called at the point in the app at which the app is launching.
This is similar to “the start of the main()” in a traditional program. Second
they can be called at the start of each original smali method. Finally, the
most intricate trigger is applied individually to each of the 200+ types of smali
instructions.

Stigma provides an “Instrumenter” class, which has a method sign_up().
Plugins can call the sign_up() method in order to register callbacks as shown
in Fig. 2.

7 119

Figure 2: Example of a call to sign_up() made by a plugin registering a
callback handler for the invoke-virtual smali instruction.

3.3 Other Implementation Challenges

Although smali assembly is the most user friendly form of the code to work
with, there are still several technical details that must be accounted for when
writing or modifying smali code. Stigma accounts for many of them automat-
ically. Specifically, extracting the code from an APK file and converting it
to smali, allocating and identifying machine registers that are free to use by
the plugin code, accounting for code offset value limits, avoiding unintentional
changes to control flow, correctly allocating “reference pools” among DEX files
(as discussed in Sec. 3.1), and re-packing the modified smali code back into a
usable APK with a valid cryptographic signatures.

Many of these esoteric and complex details of the smali and DEX languages
are not well documented. Interested readers can see our technical report [14].

4 DIFT Plugin

As a proof of concept, we design a plugin for Stigma that implements dynamic
information flow tracking (DIFT) of sensitive user information. Our plugin
registers a variety of handlers for many smali instructions to (1) originate, (2)
propagate, and (3) terminate tags that mark sensitive data. It also registers a
handler for the start of each method to propagate tag values from the function
parameters / inputs. The plugin essentially specifies new smali instructions,
which Stigma inserts amongst the original app instructions, to implement the
logic of sensitive information marking and tracking. Our plugin has several
limitations (it is only a prototype), which are given in our technical report
[<empty citation>].

4.1 Tag Origination

For tag origination, Stigma identifies several key functions from the Android
API that can be used to obtain sensitive data. For example,
LocationManager.getLastKnownLocation(String provider), which is one
method used to obtain the device’s GPS coordinates. When this instruc-
tion/method call is identified in the smali assembly code, our Stigma plugin

8120

interleaves instructions to store a tag value on the register used to store the
return value.

4.2 Tag Propagation

When a tag is applied to a register, that tag value should flow as the data in
that register flows. For example, if the data is copied to another register or
passed to a function, the tag should also flow. Our DIFT plugin interleaves
new smali instructions to move the tag values, triggered by roughly 85 of the
almost 250 smali instructions that move data.

4.2.1 Propagating Tags Across Function Calls

Well written Java code makes heavy use of methods. In order to track sensitive
information in and out of method calls, we split all methods into two categories:
“internal” and “external”. Internal methods are all those defined in the smali
code contained in the target APK file. External methods are those for which
their smali source code is unattainable. For example, java/lang/StringBuilder
is provided by the runtime so the code is not included in the APK.

For internal method calls, the tags for the arguments (at the call site) need
to be propagated to the parameters (at the definition / callee site). At the
call site, new instructions are added just before the function call. The tags for
the method arguments are read (e.g., public static CallingClass_foo_-
v1_TAG:F) and then written into the tag locations for the method parameters
at the callee site (e.g., public static CalleeClass_bar_p0_TAG:F).

When a method returns (keeping in mind there may be more than one
return point) the returned value may contain sensitive information. Therefore,
for every return instruction, the tag value of the returned register is copied into
the special global tag field public static return_field_TAG:F. At the call
site, the tag value is extracted from that field and propagated to the specified
destination register.

4.3 Tag Termination

For (3) tag termination, Stigma identifies certain functions which indicate data
transmission. In the current implementation this is limited to the various
write() methods of java/io/OutputStreamWriter; and java/io/OutputStream;.
These are used in network socket I/O and file I/O. When such a method
is identified, our plugin writes new instructions into the application which
retrieves the tag value associated with each of the input parameters. If the tag
value of any parameter is not zero, an entry is written to the Android system
log (logcat) alerting the user that sensitive information is being leaked.

9 121

5 SharedPreferences Extraction Plugin

“SharedPreferences” is an often used API in the Android framework. It allows
app developers to store key-value pair information. Traditionally, it is intended
to store the user’s innocuous preferences that are specific to an app (e.g.,
repeat or shuffle in a music player app). Occasionally, developers store things
that they should not, introducing security risks and vulnerabilities. Examples
include plaintext passwords, private information, booleans to control paid only
features, and encryption keys.

We wrote a plugin for Stigma that forces the app to print the entire contents
of the default SharedPreferences database when the app is launched. This
allows the user to search for suspicious or obviously improper use. Although
there are other methods of obtaining the SharedPreferences contents, ours does
not require rooting or modifying the OS / device. Additionally, our approach
operates during runtime. Which is important, since applications that have not
been run in a realistic way likely will not have added any actual values to the
SharedPreferences database.

5.1 Implementation Details

Our plugin adds roughly 50 smali assembly instructions to application that
invokes the Android SharedPreferences API. Since our code is inserted into
the app itself, it runs with same privileges that app has. We simply iterate
over the returned HashMap and print the values using the built-in Android
logging system (logcat).

Finding the starting point of the application is not straightforward since
Android applications follow an event driven architecture and there is no tradi-
tional main() function. To find the starting point of the application, Stigma
parses the associated AndroidManfiest.xml file for activity and activity
alias instances that specify the “LAUNCHER” attribute. The new code is then
inserted into those activities at the start of the onCreate() method.

6 Evaluation & Case Studies

To evaluate the compatibility across many commodity Android applications,
we acquired 100 random popular applications from https://APKMirror.com
and ran Stigma on them.

First, we selected approximately 31 applications and, for each, we processed
it with Stigma using our prototype DIFT plugin. If successful we installed and
ran that app on an Android device. We found that approximately 45% of
the apps we tested (14/31) had some sort of compatibility problem with the
3rd party depedency apktool, making it impossible to fully evaluate Stigma

10122

on that app. Of the remaining 17 apps, only 11.76% of them (2/17) had
compatibility problems with Stigma itself. Of those 15/31 apps that appeared
to be fully compatible, Stigma was able to identify and track the use of GPS
location information in 6 apps.

Similarly, for the remaining 67 random applications we processed each of
them using Stigma with our prototype SharedPreferences plugin. We found
that approximately 26% of the apps (18/67) had some sort of compatibility
problem with apktool. From the remaining 49 apps, we were able to extract
SharedPreferences data from 59% of them (29/49).

Stigma is not able to obtain GPS data or SharedPreferences data from
every app. In the vast majority of cases where it was not, the reason is simply
because the app in question doesn’t appear to utilize location data or the
SharedPreferences API at all.

6.1 LOC Overhead

To measure the overhead of the new instructions added by Stigma, we compare
the number of lines of code in an application before and after Stigma is run
with the DIFT plugin (which adds many more lines of code than our other
prototype plugin). We compiled a short list of 5 “case study” applications.
Three applications were selected from a list of popular Android applications.
One (Open Chaos Chess) was selected from the open-source FDroid application
market. And the final application is a simple, self made application used for
testing and development of Stigma. All five are listed below. The LOC analysis
is shown in Fig 3a.

1. “Weather” weather forecasts - com.macropinch.swan
version: 5.1.7

2. “GroupMe” messaging application - com.groupme.android
version: 5.54.4

3. “Open Chaos Chess” chess game - dev.corruptedark.openchaoschess
version: 1.7.0

4. “Office Documents Viewer” office suite
de.joergjahnke.documentviewer.android.free
version: 1.29.13

5. “Stigma Test App” internal test application -
version 0.1

The lines of code, both before and after modification, are measured as
any non-blank lines of smali assembly code. This includes comments, function

11 123

0 1 2 3 4
Application

0

1000000

2000000

3000000

4000000

5000000

Lin
es

 o
f C

od
e

(n
on

-b
la

nk
)

Lines of code added by Instrumentation
Orignal LOC
After Stigma

(a) Lines of code added by Stigma.

0.0 0.2 0.4 0.6 0.8 1.0
Lines of smali code 1e7

0

200

400

600

800

1000

Ti
m
e
(m

s)

Maximum number of lines
in an entire app

Lines of smali code vs. time to compute

(b) Time incurred by smali instructions.

signatures, field declarations, etc. in addition to actual opcodes / instructions.
Therefore, some lines of code added don’t incur much, if any, computational
overhead. As a byproduct of the design of Stigma, many class fields are added
to the application, which forms the bulk of the new lines of code shown in this
analysis. As is shown in Fig. 3a our implementation increases the lines of code
by about a factor of 2.5x.

6.2 Memory Overhead

We also measure the memory usage of applications on launch. For each appli-
cation, we launched and performed basic functionality (logging in, starting a
game, etc.) The top command on the Android command line (adb shell) is
used to examine the memory usage. This was done before any instrumentation
and again after. Results are shown in Table 1. VIRT represents the total size of
the virtual address space for that process. RES represents the actual physical
memory in use (“REServed”) for that process. Although there is some memory
overhead, it is relatively small. This is likely due to the fact that in-memory
data structures and code are insignificant compared with common assets such
as audio, and images that already exist in most apps and which Stigma add
none.

6.3 CPU Overhead

A significant concern of Stigma is overhead it might incur in responsiveness and
performance of the application. Empirically, this impact is imperceptible. The
computational complexity of the original app code is generally not changed,
since our prototype plugins do not introduce any loops, recursion, or new
function calls.

12124

Process VIRT before/after RES before/after
Weather 4.3 / 4.4G 130M / 173M
Weather “remote” 4.1G / 4.1G 32M / 38M
Groupme 4.2G / 4.3G 111M / 143M
Groupme “sync” 4.1G / 4.2G 56M / 69M
Open Chaos Chess 4.2G / 4.2G 135M / 135M
Document Viewer 4.4 / 4.4G 139 / 151M
Stigma Test App 4.1G / 4.1G 62M / 67M

Table 1: Memory overhead before and after instrumentation.

To estimate the CPU overhead more precisely we wrote a simple Android
application, which executes arbitrary assembly code similar to the code that
might be inserted by Stigma to perform DIFT. We executed these instructions
repeatedly in larger and larger batches, each time measuring the amount of time
it took to complete the batch. The experiment was carried out on a Nexus 5x,
which is a modest device released in 2015 running a Hexa-core CPU: (4x1.4
GHz Cortex-A53 & 2x1.8 GHz Cortex-A57). The results can be seen in Fig.3b.

Generally, smali instructions incur a negligable amount of overhead. For an
app of reasonable size of 2 million lines of (smali) code, the entire codebase could
be executed in only ∼2/10 of a second. Usually, Android app performance is
not CPU-bound, but rather I/O bound.

7 Conclusion

Modifying the code of commodity Android applications is a promising, founda-
tional technique. Unfortunately, most of the tools and systems created in this
area have a singular purpose and many are never released. Recent published
works from the literature usually don’t reveal the critical details necessary
to safely modify smali code. In this work we uncover critical concepts for
modifying smali code, highlight pitfalls that researchers will experience, and
offer an open-source prototype implementation called Stigma. Our work aims
to support and inspire future research efforts in this area.

References

[1] Khaled Ahmed et al. “ViaLin: Path-Aware Dynamic Taint Analysis for
Android”. In: Proceedings of the 31st ACM Joint European Software En-

13 125

gineering Conference and Symposium on the Foundations of Software En-
gineering. ESEC/FSE 2023. <conf-loc>, <city>San Francisco</city>,
<state>CA</state>, <country>USA</country>, </conf-loc>: Asso-
ciation for Computing Machinery, 2023, pp. 1598–1610. isbn: 9798400703270.
doi: 10.1145/3611643.3616330. url: https://doi.org/10.1145/
3611643.3616330.

[2] Android Instrumentation with Smali: A survival guide. Available At: http:
//paulsec.github.io/posts/android-smali-primer/. 2020.

[3] APKtool Project Source Code. Available At: https://ibotpeaches.
github.io/Apktool/. 2022.

[4] Fabian Berner. and Johannes Sametinger. “Dynamic Taint-tracking: Di-
rections for Future Research”. In: Proceedings of the 16th International
Joint Conference on e-Business and Telecommunications - Volume 2:
SECRYPT, INSTICC. SciTePress, 2019, pp. 294–305. isbn: 978-989-758-
378-0. doi: 10.5220/0008118502940305.

[5] Cydia Substrate for Android. Available At: http://www.cydiasubstrate.
com/. 2014.

[6] Dalvik Byte-Code Documentation. Available At: https://source.android.
com/devices/tech/dalvik/dalvik-bytecode. 2022.

[7] DDI, Dynamic Dalvik Instrumentation Toolkit. Available At: https://
github.com/crmulliner/ddi. 2022.

[8] William Enck et al. “TaintDroid: An Information-flow Tracking System
for Realtime Privacy Monitoring on Smartphones”. In: Proceedings of the
9th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI’10. Vancouver, BC, Canada: USENIX Association, 2010,
pp. 393–407. url: http://dl.acm.org/citation.cfm?id=1924943.
1924971.

[9] Shuai Hao et al. “SIF: A Selective Instrumentation Framework for Mobile
Applications”. In: Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Services. MobiSys ’13. Taipei, Tai-
wan: Association for Computing Machinery, 2013, pp. 167–180. isbn:
9781450316729. doi: 10.1145/2462456.2465430. url: https://doi.
org/10.1145/2462456.2465430.

[10] Jinseong Jeon et al. “Dr. Android and Mr. Hide: Fine-Grained Permis-
sions in Android Applications”. In: Proceedings of the Second ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices. SPSM
’12. Raleigh, North Carolina, USA: Association for Computing Machin-
ery, 2012, pp. 3–14. isbn: 9781450316668. doi: 10 . 1145 / 2381934 .
2381938. url: https://doi.org/10.1145/2381934.2381938.

14126

[11] J. Schutte, D. Titze, and J. M. de Fuentes. “AppCaulk: Data Leak
Prevention by Injecting Targeted Taint Tracking into Android Apps”.
In: 2014 IEEE 13th International Conference on Trust, Security and
Privacy in Computing and Communications. 2014, pp. 370–379. doi:
10.1109/TrustCom.2014.48.

[12] Smali Project Source Code. Available At: https://github.com/JesusFreke/
smali. 2022.

[13] Stigma Source Code. Available At: https://github.com/fmresearchnovak/
stigma. 2022.

[14] Stigma Technical Report. Available At: http://ednovak.net/documents/
stigma_tr.pdf. 2024.

[15] Mingshen Sun, Tao Wei, and John C.S. Lui. “TaintART: A Practical
Multi-level Information-Flow Tracking System for Android RunTime”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’16. Vienna, Austria: ACM, 2016,
pp. 331–342. isbn: 978-1-4503-4139-4. doi: 10.1145/2976749.2978343.
url: http://doi.acm.org/10.1145/2976749.2978343.

[16] W. You et al. “TaintMan: An ART-Compatible Dynamic Taint Analysis
Framework on Unmodified and Non-Rooted Android Devices”. In: IEEE
Transactions on Dependable and Secure Computing 17.1 (Jan. 2020),
pp. 209–222. issn: 1941-0018. doi: 10.1109/TDSC.2017.2740169.

[17] Mu Zhang and Heng Yin. “Efficient, Context-Aware Privacy Leakage
Confinement for Android Applications without Firmware Modding”. In:
Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security. ASIA CCS ’14. Kyoto, Japan: Association for
Computing Machinery, 2014, pp. 259–270. isbn: 9781450328005. doi: 10.
1145/2590296.2590312. url: https://doi.org/10.1145/2590296.
2590312.

[18] Xueling Zhang et al. “ConDySTA: Context-Aware Dynamic Supplement
to Static Taint Analysis”. In: 2021 IEEE Symposium on Security and
Privacy (SP). 2021, pp. 796–812. doi: 10.1109/SP40001.2021.00040.

15 127

Addressing the Gap Between How Students and
Professionals Read Code∗

Matthew Woerner, David Socha, Mark Kochanski
Computing & Software Systems

School of Science, Technology, Engineering & Math
University of Washington Bothell

Bothell, WA 98011
{woerner,socha,markk}@uw.edu

Abstract
This paper reports on the design and evaluation of a Canvas module

to help students learn how to do what professionals commonly have to
do: manually read and understand code by tracing calls into and through
multiple files in novel codebases in order to understand how the code ac-
tually works before modifying the code. This work was motivated by our
prior research that showed that students, but not professionals, exhib-
ited a common set of mistakes when reading novel codebases. Our goal
in this current study was to see if we could create a module that would
help students move toward professional practice in this respect. We
based the module design upon a set of lessons derived from our analysis
of the videos of ten students doing code reading exercises. Our evalu-
ation of the results of the nine students who went through the Canvas
module suggest that the module indeed improved their ability to read
novel codebases. The module is available online for anyone to use.

1 Introduction

In a prior paper [7] we uncovered three particular ways that undergraduate
computer science students and professional software developers differ in the

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1128

way that they went about understanding novel codebases. We identified three
anti-patterns exhibited almost exclusively by students but not professionals:

1. Making and not self-correcting misinterpretations of the code.

2. Not following the call stack through files.

3. Examining files not critical to the current execution and/or searching
randomly through files.

Those results led us to design a Canvas module with a scaffolded series
of lessons to teach students a structured code reading strategy so as to help
students grow closer to a professional level of code reading ability. This paper
reports on the design and evaluation of that Canvas module.

Section 2 briefly discusses the previous work and research. Section 3 de-
scribes and provides some of the design rationales behind the Canvas module
we created. Section 4 describes the three codebases we created to teach and
assess student’s knowledge and ability about how to follow the trace of code
through a codebase. Section 5 describes the Canvas module we created. Sec-
tion 6 describes how we assessed the module’s efficacy and what the assessment
revealed. Section 7 concludes by discussing possible future avenues of research
and practice, including ways that others could use the open-source Canvas
module we created.

2 Background

As described in our prior paper [7], this work emerged from a Software En-
gineering Studio course that the second and third author had co-designed to
provide an “on-campus internship-like experience” for students before mov-
ing into the workplace proper. That course was organized in a sequence of
badges that onboarded the students into teams using a common set of devel-
opment tools and an execution environment which they used to write, test,
and execute code, and then had them do progressively more complex and less
structured collaborative development of new features in a multi-year codebase.
Each badge consisted of: instructions and resources to read and refer to; a
low-stakes self-assessment quiz to ensure students understood key terminol-
ogy; a body of work for the student to complete; a portfolio that the student
constructs in order to visually show and describe the work they did for this
badge; a 30-minute badge challenge session during which the instructor met
via Zoom with each student to assess the student’s badge work, uncover gaps
in the student’s knowledge, and help fill in those gaps; and a final summative
challenge reflection the student writes to reflect upon their experience in this
badge.

2 129

The badge challenges were done as semi-structured interviews [2] during
which we faculty based our questions off what we saw in the student’s work,
ask questions to uncover gaps in the student’s knowledge, and then help the
student bridge that gap. We typically started each badge with one of a few
common questions, but each conversation was unique in the details. The format
allowed us to meet the student where they were at and revealed many surprises.

One surprise was that students did not know how to read novel codebases.
As noted in our prior paper [7], only a handful of the over 100 students were
able to successfully follow a call stack to comprehend what source code in a
novel codebase actually did. Students tended to require direct instruction and
guidance to help them fully understand the function of the codebase. The first
author noticed these same dynamics during the semi-structured interviews of
10 other students from different universities, but did not observe them in the
11 semi-structured interviews with professional software developers [7].

The existing literature suggested that experts are far more efficient in how
they read code [3, 4]. This could in part be due to more familiarity with how
codebases are typically structured, which could lead to less cognitive overload
and a faster and more comprehensive reading of the code. Some eye tracking
studies suggest that professionals engage in more complex processing of code
than novices [5]. These results hold a strong correlation to our interview find-
ings in which students spent a longer amount of time reading code and did not
understand the code as well as the professionals given the same tasks [7].

None of the professionals had taken a course that taught them how to read
novel codebases. They all had learned this on the job. Nor could we find
anyone who had developed materials to teach students how to navigate code
call stacks across multiple files. This motivated us to develop a course module
that would help students learn how to read code like professionals, which is
what this current paper covers.

3 Making sense of what we saw

Before starting to design the module, we wanted to be clear on what lessons we
wanted to teach, and we wanted those lessons to be grounded in observations of
actual issues students encountered when trying to read codebases. We wanted
to use backward design [6] to create a learning module and its codebases,
exercises, and final assessment. In particular, we wanted to help students avoid
the three anti-patterns we had observed in our prior study [7]: examining files
not critical to the current execution, not following call stacks, and making and
not correcting misinterpretations of code.

We started by reanalyzing the videos of the ten students from our prior
study. This revealed sixteen key observations of problems they exhibited re-

3130

lated to reading code, as shown in the left-most column of Figure 1. Grouping
these by affinity produced seven issues (column 2) each supported by multiple
observations. As shown in the vertical scope of the cells for O6 and O13 in
Figure 1, each of those two observations supported two separate issues.

Further thinking about those issues led to three key hypotheses or inter-
pretations (column 3) about the underlying causes of the students’ difficulty
reading code:

H1: Students appear to have trouble navigating through larger codebases,
perhaps because they are unfamiliar with the format or how to find what
they are looking for.

H2: Students end up missing and glossing over important details in code
leading to misinterpretations, perhaps because they don’t examine code
with a critical mindset.

H3: Students appear to misunderstand important segments of the code they
read, perhaps because they are unfamiliar with some computational ba-
sics.

Using all of that information, we came up with a list of six key concepts
(column 4) that we conjectured students did not understand sufficiently well
and that might relate to how well one performs in a code reading exercise.
These concepts motivated a set of twelve lessons (column 5) that we could
teach in the module. We determined that addressing hypothesis H3, that
students had a knowledge gap preventing them from understanding the code,
would be out of scope for our module as it touches more on students prior
computer science education rather than teaching them new skills to aid in the
process of code reading. This left us with nine lessons to fulfill in the learning
module, as shown in the shaded cells in Figure 1.

4 Formative and summative codebases

Knowing the set of lessons to teach, the first author designed and created a set
of three new C# codebases to use for teaching and assessing students on those
nine lessons: a Note Taking app, a Meal Planner app, and a Social Media app.
To allow us to compare the results of the learning module to the results from our
prior study, we designed the codebases to be like those used in our prior study,
in that each codebase provided an application programming interface (API)
for a simple application with multiple files spread across multiple directories
with no documentation to assist in the students reading. The codebases were
written in C#, but the lesson and codebase designs are applicable to any
object-oriented language. The code for these applications is available online,

4 131

Observations Issues Hypotheses Concepts Lessons
O1: Students not using
namespaces to find source code. I1: Students having

difficulty navigating
to and tracking
code into different
files

H1: Students appear
to have trouble
navigating through
larger code bases,
perhaps because
they are unfamiliar
with the format or
how to find what
they are looking for

C1: Navigating a
larger codebase

L1: Highlight that namespaces
can mimic folder structure of the
codebaseO2: Students randomly clicking

on files to find source code.

O3: Students not examining
subdirectories for source code.

L2: Illustrate the relationship
between class names and
filenames to students

I2: Students have
difficulty
understanding how
codebases are
structured

C2: Understanding
codebase
structure

L3: Showcase how to distinguish
between library and written
functions

O5: Students not understanding
how unit tests are structured in
the project directory and meant
to be navigated.

O6: Students not stepping down
more than one level deep in a
call stack.

L4: Provide an example of an
IDE tool that automates the
process

I4: Students do not
examine code
critically and tend to
assume the code is
100% correct

H2: Students end up
missing and
glossing over
important details in
code leading to
misinterpretations,
perhaps because
they don't examine
code with a critical
mindset

C3: Code
misinterpretations

L5: Provide examples of cases
where taking a method at face
value can lead to a massive
misinterpretation of the code

O7: Students do not think about
what the name of a method
might imply about its function.
O8: Students do not think deeply
about the connections of
methods and their implications
related to data structures (i.e.
first element in a list).

L6: Teach avoiding
misinterpretations by relating
code to the application (does
what I'm seeing make sense in
context)

O9: Students do not think deeply
about conditional return values
and what potential results from a
called method could be (i.e. null).
O10: Students do not step
through and explain every
statement of code encountered,
but instead try to make
assumptions and gloss over the
code.

I3: Students making
assumptions about
code rather than
reading it C4: Reading code

critically and
drilling down into
problems

L7: Build on prior examples of
distinguishing between library
and user written functions by
showcasing searching for online
documentationO11: Students assume the name

of a method completely
describes its functionality without
looking deeper.

O12: Students do not look up
unfamiliar outside library
functions for their purpose.

I5: Students do not
typically search for
documentation on
unfamiliar patterns
in code

L8: Emphasize the importance of
following the call stack step by
step and retaining info from
previous levels of stack

O13: Students do not look up
language syntax that is
unfamiliar to them.

L9: Work through reading and
commenting undocumented code

I6: Students lack
the background
knowledge to read
some codebases

H3: Students appear
to miss important
details about the
code they read,
perhaps because
they are unfamiliar
with some
computational
basics

C5: Lack of
knowledge

L10: Provide examples of
effective knowledge searching
strategies

O14: Students read code from
left to right (order of assignment),
not right to left (order of
execution).
O15: Students do not connect
files to disk storage and
variables to memory.

I7: Students have
difficulty
understanding
hardware
constraints on code

C6: Hardware
constraints

L11: Showcase scalable and
unscalable code

O16: Students do not connect
code to performance and
scalability.

L12: Provide examples of issues
that could lead to scalability
concerns

O4: Students not using IDE tools
to help themselves navigate.

Figure 1: Shows how our analysis of 16 observations from our video analysis
of students doing the code reading exercise led to 7 issues, 3 hypotheses or
interpretations, 6 concepts, and 12 lessons to consider teaching. The final
module addressed the nine shaded lessons, L1 through L9.

5132

and additional details about these codebases can be found in the first author’s
master’s thesis [8].

The module uses the Note Taking app’s codebase1 to instruct students in
the basics of how to trace through a codebase. It consists of 6 files and roughly
222 total lines of source code. This module was designed to get students used
to exploring files that do not contain source code as a part of their tracing.
Within the critical code path students would be required to examine a JSON
file read by the program to determine the proper flow of execution.

The module uses the Meal Planner app’s codebase2 to introduce students
to the process of looking up unfamiliar functions and navigating through a
codebase with dozens of files. It contains 51 files and 828 total lines of source
code, which is deceptively large due to 44 of the files defining small classes
with roughly 10 lines of code each. The codebase includes various code reading
pitfalls for students such as method overloads, similarly named methods, and
a liberal use of outside functions that students may not have been previously
exposed to. These gave students ample opportunities to demonstrate the anti-
patterns that the module was designed to help correct.

The module uses the Social Media app’s codebase3 for the final knowledge
check. It consists of 18 files containing 734 lines of source code, resulting in
the largest average lines of code per file of the three codebases, and has a
higher density of code reading pitfalls. To make it easier to track the progress
students made in avoiding anti-patterns, we designed the codebase to be easy
to misinterpret for readers who only “skimmed” through the code.

To help us understand what lines of code each student viewed when tracing
through the files, and how their understanding of the code changed during
their tracing, we inserted into each codebase a set of comment blocks, empty
except for a unique identifier. Each student was instructed to read though the
codebase and for every blank comment block they come across, describe what
they think the section after the comment block is doing and add it to a list of
comments that they had already filled out to show the order in which they had
done so. Figure 2 shows a portion of the Social Media app‘s commented code
and a snippet of one student’s submission. Students were instructed to not
erase any comments that they felt they may have filled in erroneously; instead
students were asked to remark within the comment that the prior comment
was made in error and give context as to why it was filled out in the first place
and how the student realized their mistake. Students then submitted their
answers in the form of an ordered list of their comments from the start of the
code path to the end, along with what they believe to be the output of the

1https://github.com/CodeReadingModule/CodeReadingNotesApp
2https://github.com/CodeReadingModule/CodeReadingMealPlannerApp
3https://github.com/CodeReadingModule/CodeReadingSocialMediaApp

6 133

codebase with the provided input.
Analyzing the student submissions helped us detect anti-patterns by iden-

tifying comments that they had filled in that were outside of the actual code
path, incorrect descriptions in comments, or errors in what the student’s pre-
diction of the final output.

The code used meaningful names for classes, methods, and variables as
per best practice for professional code [1], but did not contain any comments
beyond those blank comment blocks, since a) the goal of the code reading
exercises was to see how well the students could understand the code based
upon reading the code, not reading code comments, and b) the code design
was simple enough to not merit additional code comments.

Figure 2: Example of empty comment blocks in a codebase and a student filling
in each comment block in order of execution within the box (blocks 31 and 43
are elsewhere in the code).

5 Lesson plans and exercises

The Canvas module consists of six sections. The first section provides infor-
mation about codebase structure, naming guidelines and conventions common
in C# code or any similar object-oriented language, and ends with a short self-
assessment quiz requiring students to analyze the file structure in the Notes
codebase to answer questions on that information. The second section describes
how to find the particular files that implement an Application Programming
Interface (API), and ends with a short self-assessment quiz where students have
to analyze the file structure of the Meal Planner codebase.

The third section includes information about common pitfalls to avoid when

7134

tracing code, based upon the issues we had observed in students doing the
exercises in our first study [7]. It also includes a quiz which required students
to trace through the Notes codebase with a given input in order to fill in a
table documenting every step in the call stack. By documenting every step,
students are made to see how the code path steps through multiple classes and
utilizes outside libraries to complete its task.

Since the purpose of this Canvas module is to allow students to learn on
their own, the fourth section of the module provides text and videos that show
example solutions to the tracing exercises the students had just completed.

The fifth section is another quiz that requires students to trace through the
Meal Planner codebase to document the flow of execution with a given input.
The Meal Planner codebase contained a set of empty comment blocks that
students fill in with their best interpretation of the code segment tied to each
empty block. Students then submitted their answers in the form of an ordered
list of their comments from the start of the code path to the end, along with
what they believe to be the output of the codebase with the provided input.
Once students had completed the quiz, we present them with text and videos
that illustrate successful traces like those they were just tested on.

The sixth and final section is the final knowledge check. It is a quiz that
requires students to trace through the Social Media codebase to answer a set of
questions and to document the flow of execution through their own comments.
Students were expected to trace through the application starting at various
endpoints in the controller with different provided inputs. Much like the fifth
section, students were asked to fill in comment blocks and submit an ordered
list of comments for each endpoint they traced through. After submitting their
ordered list of comments, students were also asked to provide the response from
the endpoint they had just examined given the same input they used in their
trace, as well as answer some additional questions on the flow of execution of
each endpoint.

6 Results

To assess the code reading Canvas module, we provided it to the seventeen stu-
dents in the autumn 2023 instance of the Software Engineering Studio course.
Nine of the students completed the full module. The first author manually
graded the student responses for the two tracing exercises and the final knowl-
edge check. Responses to tracing questions started off as perfect scores and had
points subtracted when different mistakes were made. The amount subtracted
was dependent on the severity of the mistake, as defined in a rubric that listed
23 different mistakes observed. More details about the scoring and rubric are
available in the first author’s master’s thesis [8]. One student was scored for

8 135

the knowledge check, but not the two tracing exercises.
The resulting scores shown in Figure 3 suggest a general improvement across

the two Canvas self-assessment exercises and the final Canvas knowledge check.

Figure 3: Results of the eight students who completed Exercise 1, Exercise 2,
and the final knowledge check; and the one student (S4; grey point) who only
completed the final knowledge check.

To see whether the Canvas module may have helped students avoid the
three anti-patterns (non-critical/irrelevant files examined, call stacks not fol-
lowed, uncorrected misinterpretations of code) documented in our prior study
[7] we counted the number of each anti-pattern exhibited in their final knowl-
edge check trace records. Figure 4 shows these on the right side. Exercise 1
and Exercise 2 show the number of anti-patterns exhibited by the professional
software engineers and students in the prior study [7]. The correct trace path
for each test required students to navigate through a different number of call
stacks (2 for Exercise 1, 3 for Exercise 2, and 12 for the Knowledge Check);
thus, for a better comparison we normalized the “call stacks not followed”
metric to be a percentage of the total number of call stacks in the exercise.

Figure 4 shows that the number of anti-patterns exhibited by the nine
students in the current study was lower than what we observed in the students
in the prior study, though still not as good as the professionals in the prior
study.

While not definitive due to the small sample size and other possible con-
founding factors, Figures 3 and 4 strongly suggest that the new learning module
was effective at helping students learn how to read novel codebases.

Given the positive results of the assessment of the Canvas module’s impact
on student learning, we decided to package the Canvas module in a way that
other faculty would be more likely to use in their courses, or that students
could take on their own outside the context of a course. The main impediment
was the amount of effort required to assess a student’s code reading ability.
It took roughly 90 minutes to grade and evaluate each student’s responses.
Performing this process manually was essential during the development, user
testing, and evaluation of the Canvas module, but is too labor intensive to be

9136

Figure 4: The number of anti-patterns exhibited by professionals and students
in Exercise 1 and Exercise 2 of the prior study [7], and by the students in the
Knowledge Check of this current study.

done as part of teaching a course using this module.
We thus revised the module to use completely automated self-assessment

quizzes. We created a question bank for each quiz, and require students to
score at least 75% before they can proceed to the next section. We packaged
this module into its own Canvas course which is available online4 and as a
Canvas Course Export Package5. This new revision was used in the spring
2024 instance of the same course for the same related badge challenge. The
instructor found that sixteen of the eighteen students were better able to nav-
igate the code more directly without hints or help compared to prior to these
modules being available.

7 Conclusions and Future Work

The performance of students throughout the code reading Canvas module sug-
gests that the module can substantially improve students ability to read and
comprehend unfamiliar code. Integration of such modules into computer sci-

4https://canvas.instructure.com/courses/9479990
5https://drive.google.com/file/d/1zsejLAR2P6JwFWCGXOtEUJcmWoCEWikq

10 137

ence courses early in the curriculum may benefit students throughout their
undergraduate studies and into their futures.

The improved ability of students to read code may indicate that the mod-
ules were successful in lowering the cognitive load novice programmers may
experience when presented with code reading problems for complex code [2,
3]. Future neurological studies conducted with students before and after such
a module could help bolster the findings of studies like Peitek et al. [2] and
Siegmund et al. [3] if student performance improved after the module and
markers for cognitive load also decreased. Such an outcome would lend further
support to the idea that increased cognitive load is a key driver for lowered
performance in reading unfamiliar complex code for novice programmers.

We continue to use this Canvas module in our Software Engineering Studio
course, and anecdotally it continues to seem to be helping students improve
their ability to read novel codebases. Larger scale studies of the current code
reading module would help to verify the results found by this small-scale test of
the modules positive benefits. If this module was administered to a much larger
beginner computer science class, the performance of those students in future
courses throughout their curriculum could be compared to previous years for
any sign of tangible benefit brought by the addition of the module.

References

[1] Robert Martin. Clean code: a handbook of agile software craftsmanship.
Upper Saddle River NJ: Prentice Hall, 2009. isbn: 978-0-13-235088-4.

[2] Norman Peitek et al. “Program Comprehension and Code Complexity
Metrics: An fMRI Study”. In: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE). 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE). Madrid, ES: IEEE,
May 2021, pp. 524–536. isbn: 978-1-66540-296-5. doi: 10.1109/ICSE43902.
2021.00056.

[3] Janet Siegmund et al. “Measuring neural efficiency of program comprehen-
sion”. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ESEC/FSE’17: Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. Paderborn Germany: ACM, Aug. 21,
2017, pp. 140–150. isbn: 978-1-4503-5105-8. doi: 10 . 1145 / 3106237 .
3106268.

11138

[4] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. “Code com-
prehension problems as learning events”. In: Proceedings of the 17th ACM
annual conference on Innovation and technology in computer science edu-
cation. ITiCSE ’12: Annual Conference on Innovation and Technology in
Computer Science Education. Haifa Israel: ACM, July 3, 2012, pp. 81–86.
isbn: 978-1-4503-1246-2. doi: 10.1145/2325296.2325319.

[5] Yida Tao et al. “How do software engineers understand code changes?
an exploratory study in industry”. In: Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineer-
ing. FSE ’12. New York, NY, USA: Association for Computing Machinery,
Nov. 11, 2012, pp. 1–11. isbn: 978-1-4503-1614-9. doi: 10.1145/2393596.
2393656.

[6] Grant Wiggins and Jay McTighe. Understanding by Design. Association
for Supervision and Curriculum Development, Mar. 15, 2005. 383 pp. isbn:
978-1-4166-0225-5.

[7] Matthew Woerner, David Socha, and Mark Kochanski. “Code Reading:
How Students and Professionals Dier”. In: The Journal of Computing
Sciences in Colleges 39.1 (Oct. 2023), pp. 28–37. issn: 1937- 4763. doi:
10.5555/3636517.3636521.

[8] Matthew Stephen Woerner. “Identifying and Addressing the Gap Between
How Students and Professionals Read Code”. MA thesis. University of
Washington, 2024.

12 139

Improving Introductory Java Programming
Education Through ChatGPT∗

Jingnan Xie1

1 Department of Computer Science
Millersville University of Pennsylvania

Millersville, PA
jingnan.xie@millersville.edu

Abstract

The realm of introductory computer science (CS) education is swiftly
changing, as educators actively pursue inventive strategies to captivate
and empower students. This manuscript introduces a fresh methodol-
ogy for teaching CS1 or CS2 courses, concentrating specifically on the
fundamental principles of Java programming. Harnessing the capabili-
ties of ChatGPT, an AI language model, we delve into how integrating
conversational AI into the classroom milieu can foster a more dynamic
and tailored learning journey. By furnishing a platform for students to
pose inquiries, seek elucidation, and promptly receive feedback, Chat-
GPT functions as a virtual mentor, complementing conventional teach-
ing methodologies. We scrutinize the potential repercussions of this ap-
proach on student learning outcomes (SLOs) and juxtapose it with tra-
ditional classroom paradigms. Furthermore, we deliberate on the ram-
ifications of employing AI in education and its contribution to molding
the trajectory of introductory programming courses.

1 Introduction

In recent times, artificial intelligence (AI) has made remarkable strides, par-
ticularly in the domain of natural language processing (NLP). Among these

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1140

advancements stands ChatGPT, a cutting-edge language model renowned for
its ability to generate text akin to human expression based on input prompts.
ChatGPT has showcased its prowess across a spectrum of tasks, from language
translation to coherent conversation holding with users, ushering in new hori-
zons for AI integration across diverse fields, including education (for example,
see [7]).

The landscape of computer science education, especially at the introductory
level, often grapples with the challenge of student engagement and fostering
active learning [4]. Traditional teaching methods like lectures and textbooks
may not always cater to the varied learning styles and requirements of stu-
dents. Additionally, the abstract nature of programming concepts can present
obstacles for beginners. In response to these hurdles, educators are explor-
ing alternative teaching methodologies for introductory programming courses,
aiming to enhance student involvement, understanding, and retention.

This article introduces a pioneering approach to instructing CS1 or CS2
courses by harnessing the capabilities of ChatGPT to establish an interac-
tive and personalized learning atmosphere. Similar research can be seen in [6]
and [2]. Through ChatGPT integration into the classroom environment, stu-
dents gain the ability to ask questions, seek clarification, and receive immediate
feedback, thereby enriching their learning journey. The objective of this paper
is to delve into the potential advantages of this method, assess its impact on
student learning outcomes, and juxtapose it with conventional teaching tech-
niques.

This paper is organized as follows: Section 3 illustrates a a course design of a
14-week CS1 course with ChatGPT and emphasizes on the interaction between
students and AI. Section 4 shows how we can engage the students more and
get better students learning outcomes with ChatGPT. The measurement of
student successs is also provided. Section 5 demonstrates the challenges we
face and the strategies used to solve these challenges.

2 Background

Genetic AI, known as Generative Pre-trained Transformers (GPT), signifies
a significant leap forward in the realm of artificial intelligence (AI). These
models undergo training on extensive corpora of text data, mastering the art
of generating coherent and contextually relevant text based on given prompts.
Among the illustrious examples of genetic AI stands ChatGPT, an innovation
by OpenAI that has captivated widespread attention owing to its remarkable
ability to emulate human-like conversations [3].

ChatGPT finds its foundation in the Transformer architecture, renowned
for its utilization of self-attention mechanisms adept at capturing long-range

2 141

dependencies within text sequences. This architectural marvel empowers Chat-
GPT to produce fluid and contextually fitting responses across a diverse array
of prompts, rendering it highly adaptable for a multitude of natural language
processing (NLP) tasks [5].

In the educational sphere, the integration of ChatGPT introduces a plethora
of promising applications, each poised to revolutionize the learning landscape.
Personalized tutoring emerges as a prominent avenue, facilitated by ChatGPT’s
conversational prowess, enabling educators to tailor interactive learning expe-
riences tailored to the unique needs of individual students. Furthermore, the
multifaceted capabilities of ChatGPT extend to content generation and lan-
guage translation, offering invaluable support to educators in crafting diverse
learning materials and breaking down language barriers within educational set-
tings [1].

Moreover, the transformative potential of ChatGPT in education extends
beyond conventional tutoring roles. With its ability to provide instantaneous
feedback and elucidation on intricate concepts, ChatGPT transcends the lim-
itations of traditional teaching methods, serving as a virtual mentor to guide
students through their learning journey. This real-time support mechanism not
only enhances student comprehension but also fosters a dynamic and engaging
learning environment conducive to knowledge assimilation and retention [1].

3 Teaching CS1 and CS2 with ChatGPT

3.1 Course Design with ChatGPT Integration

Designing a CS1 or CS2 course with ChatGPT integration requires careful plan-
ning to ensure that students receive comprehensive instruction in programming
concepts while leveraging the capabilities of AI for enhanced learning experi-
ences. Below is a breakdown of a 14-week course outline, highlighting the role
of AI and the recommended allocation of time for student interaction with
ChatGPT:

1. Week 1: Introduction to Java Programming and ChatGPT (5% AI In-
teraction)

• Introduce students to the basics of Java programming language.

• Familiarize students with the ChatGPT interface and its capabili-
ties.

• Discuss the potential benefits of using ChatGPT as a learning re-
source.

2. Week 2-3: Basic Data Types and Variables (10% AI Interaction)

3142

• Cover fundamental data types such as int, double, boolean, and
char.

• Provide examples of variable declaration and initialization.

• Encourage students to ask questions about data types and variables
using ChatGPT.

3. Week 4-5: Control Structures: Conditionals and Loops (15% AI Interac-
tion)

• Teach if statements, switch statements, and different types of loops
(for, while, do-while).

• Illustrate the use of control structures in solving programming prob-
lems.

• Allow students to practice writing conditional statements and loops
with guidance from ChatGPT.

4. Week 6-7: Arrays and Strings (10% AI Interaction)

• Introduce arrays and strings as composite data types.

• Demonstrate array manipulation techniques and string operations.

• Assist students in understanding array indexing, traversal, and string
manipulation through ChatGPT interactions.

5. Week 8: Midterm Review and Project Proposal (5% AI Interaction)

• Conduct a review session covering topics learned in the first half of
the course.

• Guide students in formulating project proposals that demonstrate
their understanding of programming concepts.

• Offer assistance and feedback on project proposals through Chat-
GPT consultations.

6. Week 9-10: Functions and Methods (15% AI Interaction)

• Introduce functions/methods as reusable blocks of code.

• Discuss function definition, invocation, parameters, and return val-
ues.

• Provide examples of function implementation and decomposition
strategies.

• Offer personalized assistance to students in designing and imple-
menting functions using ChatGPT.

4 143

7. Week 11-12: Object-Oriented Programming (20% AI Interaction)

• Introduce the principles of object-oriented programming (OOP).

• Cover topics such as classes, objects, inheritance, polymorphism,
and encapsulation.

• Guide students in applying OOP concepts to solve programming
problems.

• Facilitate discussions on OOP principles and best practices with
support from ChatGPT.

8. Week 13: Project Development and Troubleshooting (10% AI Interac-
tion)

• Allow students dedicated time to work on their programming projects.

• Offer troubleshooting assistance and debugging support through
ChatGPT consultations.

• Encourage collaboration and peer feedback on project development.

9. Week 14: Final Project Presentation and Reflection (5% AI Interaction)

• Conduct final project presentations where students showcase their
work.

• Facilitate peer evaluation and feedback sessions.

• Reflect on the learning journey and discuss the role of ChatGPT in
improving comprehension and problem-solving skills.

Throughout the course, it is recommended that students spend approx-
imately 10-15% of their class time engaging with ChatGPT for interactive
learning activities, clarification of concepts, and assistance with assignments
or projects. This allocation ensures that students have ample opportunities
to leverage AI resources effectively while also engaging in traditional class-
room instruction and collaborative activities. By integrating ChatGPT into
various aspects of the course, educators can create a dynamic and supportive
learning environment that enhances student engagement and promotes deeper
understanding of programming fundamentals.

Incorporating ChatGPT into the teaching of CS1 and CS2 courses requires
a pedagogical approach that fosters inquiry-based learning, scaffolded instruc-
tion, formative assessment, and peer collaboration. By combining these ele-
ments with the capabilities of ChatGPT, educators can create an interactive
and supportive learning environment that promotes student engagement and
comprehension.

5144

3.2 Examples of Student Queries

Teaching students how to ask questions effectively is crucial in the design of
this course for several reasons. Firstly, it cultivates critical thinking skills
by encouraging students to articulate their uncertainties and conceptual gaps.
Secondly, it promotes active engagement and ownership of learning, as students
become proactive in seeking clarification and deeper understanding. Thirdly,
it fosters a collaborative learning environment where students can learn from
each other’s inquiries and responses. Finally, it helps students develop commu-
nication skills necessary for success in both academic and professional settings.

Student: "What are the different data types in Java?"
Response: "In Java, we have primitive data types such as int, double, boolean,
and char, as well as reference data types like String. Let me give you some
examples of how they are used..."

int age = 25;
double height = 1.75;
boolean isStudent = true;
char grade = 'A';
String name = "John";

Student: "What is the difference between int and double?"
Response: "An int stores whole numbers, whereas a double stores decimal
numbers. Let’s break it down further..."

Student: "How do I use an if statement to check if a number is positive or
negative?"
Response: "You can use an if statement with a condition to check if a number
is positive or negative. Here’s an example..."

int number = -5;
if (number > 0) {

System.out.println("The number is positive.");
} else if (number < 0) {

System.out.println("The number is negative.");
} else {

System.out.println("The number is zero.");
}

Student: "What does the ’else’ keyword do?"
Response: "The ’else’ keyword is used to execute a block of code if the condi-
tion in the ’if’ statement evaluates to false. Let me explain it further..."

6 145

Student: "How do I use nested loops to print a multiplication table?"
Response: "Nested loops are loops within loops. Here’s how you can use nested
loops to print a multiplication table..."

for (int i = 1; i <= 10; i++) {
for (int j = 1; j <= 10; j++) {

System.out.print(i * j + "\t");
}
System.out.println();

}

Student: "Can you explain how the inner loop works?"
Response: "The inner loop iterates over the numbers 1 to 10 and prints the
product of the current row and column. Let me illustrate it further..."

Student: "Can you debug this for me? int[] A = new int[5]; for(int i = 0;
i<=5; i++) A[i] = i + 5;"
Response: "The issue lies within the loop condition and the array indexing.
Here’s the problem breakdown and the corrected code:

• Array Index Out of Bounds:

In Java, array indexing starts from 0. So, if you have an array of size 5,
valid indices range from 0 to 4, inclusive. Accessing index 5 would result
in an "ArrayIndexOutOfBoundsException".

• Loop Condition:

The loop condition i <= 5 will cause the loop to iterate 6 times (0, 1, 2,
3, 4, 5). However, since the array A has a length of 5, accessing index 5
will result in an out of bounds error. Here’s the corrected code:..."

4 Student Engagement, Learning Outcomes, and Mea-
surement of Success

The integration of ChatGPT into CS1 and CS2 courses has the potential to
significantly impact student engagement, learning outcomes, and overall suc-
cess in introductory programming education. In addition to fostering active
learning and providing personalized support, it is crucial to establish metrics
for assessing the effectiveness of this approach and measuring student success.

ChatGPT facilitates interactive and personalized learning experiences, al-
lowing students to ask questions, seek clarification, and receive immediate feed-
back. By engaging in meaningful conversations with ChatGPT, students can
deepen their understanding of programming concepts, develop problem-solving
skills, and gain confidence in their abilities. Moreover, the continuous feedback

7146

provided by ChatGPT promotes a growth mindset and encourages students to
persist in their learning journey.

4.1 Measurement of Student Success

• Formative Assessments: Formative assessments play a crucial role in mea-
suring student progress and identifying areas for improvement. Educa-
tors can leverage ChatGPT to administer formative assessments, such as
quizzes or coding challenges, that assess students’ understanding of course
content. By analyzing students’ interactions with ChatGPT during these
assessments, instructors can evaluate students’ comprehension, identify
misconceptions, and tailor instruction to address individual learning needs.

• Exam Scores: Traditional summative assessments, such as exams or as-
signments, remain valuable measures of student achievement. Educa-
tors can compare exam scores of students who have access to ChatGPT
support with those who do not, providing insights into the impact of
ChatGPT on academic performance. Additionally, exam questions can
be designed to assess higher-order thinking skills and problem-solving
abilities, reflecting the objectives of the course.

• Programming Projects: Programming projects serve as practical demon-
strations of students’ mastery of programming concepts and their ability
to apply knowledge to real-world problems. By incorporating ChatGPT
into project-based assignments, educators can observe students’ use of
ChatGPT as a learning resource and evaluate the quality and complex-
ity of their solutions. Moreover, students can reflect on their experiences
working with ChatGPT and its impact on their project outcomes.

• Course Completion Rates: Course completion rates provide insights into
students’ persistence and engagement with course materials. Educators
can analyze data on student participation, interaction frequency with
ChatGPT, and completion of assignments to gauge the effectiveness of
ChatGPT in supporting student learning. Higher course completion rates
among students utilizing ChatGPT may indicate increased motivation
and satisfaction with the learning experience.

5 Challenges and Strategies

The integration of ChatGPT into CS1 and CS2 courses introduces various chal-
lenges that educators must address to maximize its effectiveness and ensure a
positive learning experience for students. These challenges encompass aspects

8 147

such as student behavior, technical limitations, and instructional design con-
siderations. Below are some key challenges and strategies for overcoming them.

1. Student Cheating and Academic Integrity: One of the primary concerns
associated with the use of ChatGPT is the potential for student cheating.
Students may attempt to misuse ChatGPT to obtain solutions to assign-
ments or exams without engaging in critical thinking or understanding
the underlying concepts. To mitigate this challenge, educators can im-
plement several strategies:

• Design assessments that require higher-order thinking skills and
problem-solving abilities, making it difficult for students to rely
solely on ChatGPT for answers.

• Clearly communicate expectations regarding academic integrity and
the responsible use of ChatGPT as a learning resource.

• Foster a culture of honesty and accountability by promoting discus-
sions on ethical behavior and the consequences of academic dishon-
esty.

2. Engaging Students in Active Learning: Engaging students in active learn-
ing activities is essential for promoting deep understanding and retention
of course material. However, integrating ChatGPT into the classroom
environment may present challenges in maintaining student engagement.
To address this challenge, educators can:

• Incorporate interactive discussions, group activities, and problem-
solving exercises that leverage ChatGPT as a collaborative learning
tool.

• Provide real-world examples and practical applications of program-
ming concepts to demonstrate their relevance and foster student
interest.

• Use ChatGPT to facilitate peer collaboration and knowledge shar-
ing, encouraging students to actively participate in class activities.

3. Monitoring and Supervising ChatGPT Usage: Ensuring that students
use ChatGPT responsibly and for educational purposes requires proac-
tive monitoring and supervision. Educators must establish mechanisms
to track student interactions with ChatGPT and intervene if necessary
to prevent misuse. Strategies for monitoring and supervising ChatGPT
usage include:

• Monitoring chat logs and analyzing student interactions with Chat-
GPT during class sessions to identify patterns of misuse or inappro-
priate behavior.

9148

• Providing guidance and support on how to effectively utilize Chat-
GPT as a learning resource, including best practices for asking ques-
tions and seeking assistance.

• Implementing periodic check-ins and discussions on responsible AI
usage to reinforce expectations and address any concerns or miscon-
ceptions.

4. Technical Limitations and Accessibility: While ChatGPT offers powerful
capabilities for generating human-like text, it may encounter technical
limitations or accessibility issues that impact its effectiveness in educa-
tional settings. Educators should be mindful of the following challenges:

• Technical constraints such as internet connectivity issues or plat-
form compatibility may hinder students’ ability to access ChatGPT
during class or while completing assignments.

• Language barriers or linguistic complexities may pose challenges for
students whose first language is not English, requiring additional
support or resources to ensure equitable access to ChatGPT.

• Ethical considerations regarding data privacy and security must be
addressed to protect students’ personal information and ensure com-
pliance with relevant regulations and policies.

6 Future Work and Conclusion

The next step involves conducting an assessment of this teaching method, com-
paring its effectiveness with traditional approaches to determine its impact on
student engagement and success. However, this evaluation remains unfinished
due to time constraints and insufficient data. This assessment aims to gauge
whether the new method can enhance both student participation and academic
achievement, providing valuable insights into its potential advantages over con-
ventional teaching methods.

In conclusion, the integration of ChatGPT into the teaching of CS1 and
CS2 courses represents a promising avenue for enhancing student learning out-
comes and fostering a more engaging and interactive learning environment. By
leveraging the capabilities of ChatGPT, educators can provide personalized
support, promote active learning, and empower students to succeed in intro-
ductory programming courses. As AI continues to evolve, its role in education
is likely to expand, offering new opportunities for innovation and improvement
in teaching and learning practices.

10 149

References

[1] Tom Brown et al. “Language models are few-shot learners”. In: Advances
in neural information processing systems 33 (2020), pp. 1877–1901.

[2] Chung Kwan Lo. “What is the impact of ChatGPT on education? A rapid
review of the literature”. In: Education Sciences 13.4 (2023), p. 410.

[3] Alec Radford et al. “Language models are unsupervised multitask learn-
ers”. In: OpenAI blog 1.8 (2019), p. 9.

[4] Nurazlina Md Sanusi, Massila Kamalrudin, and Syahida Mohtar. “Student
engagement using learning management system in computer science edu-
cation”. In: International Journal of Recent Technology and Engineering
8.2-11 (2019), pp. 743–747.

[5] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[6] Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz. “Augmented intel-
ligence in programming learning: Examining student views on the use of
ChatGPT for programming learning”. In: Computers in Human Behavior:
Artificial Humans 1.2 (2023), p. 100005.

[7] Xuesong Zhai et al. “A Review of Artificial Intelligence (AI) in Education
from 2010 to 2020”. In: Complexity 2021 (2021), pp. 1–18.

11150

Studying Financial Data with Macroeconomic
Factors using Machine Learning∗

Sai Sravya Anem, Md Amiruzzaman, Ashik Ahmed Bhuiyan
Department of Computer Science

West Chester University, West Chester, PA 19383
{MAmiruzzaman}@wcupa.edu

Abstract

This paper focuses on the prediction of stock indices through ma-
chine learning, focusing on macroeconomic factors and market sentiment
generation. It centers on major US stock index funds, notably the S&P
500, and their correlation with key economic indicators like GDP, unem-
ployment, CPI, money supply, and retail sales. Utilizing economic data
from diverse sources such as the Federal Reserve, NASDAQ, and news
websites, the study cleans and transforms datasets to estimate quarterly
fund returns. Employing tree-based algorithms, particularly XGBoost,
enables accurate predictions. Moreover, the paper evaluates index fore-
cast performance across various market cycles and geopolitical events.
It also uses traditional NLP methods and large language models to ex-
plore market sentiment generation, offering comprehensive insights. In
essence, this paper sheds light on the predictive power of macroeconomic
factors on stock indices and the nuances of market sentiment analysis,
leveraging both conventional and advanced techniques.

1 Introduction

The stock market, often known as the equity or share market, serves as a pivotal
arena where investors trade shares or ownership stakes in publicly listed compa-
nies [1]. Its performance significantly influences economic growth and stability
[11]. Macroeconomic factors, which affect the entire economy, wield profound

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 151

influence over businesses and, consequently, the stock market. These factors
are acknowledged for their ability to sway investor sentiment and impact stock
prices. For instance, GDP growth reflects a country’s overall economic health,
with robust growth correlating with higher corporate earnings and rising stock
prices [6].

Interest rates are pivotal in determining capital costs for businesses and
investors. Lower rates often stimulate economic activity and lift stock prices
[6]. Conversely, inflation erodes the value of money, with high and erratic rates
undermining consumer confidence and disrupting business, thus adversely af-
fecting stock markets [9]. Rising interest rates can elevate borrowing costs, po-
tentially reducing corporate profitability and depressing stock prices [4]. Stock
index data was sourced from the Nasdaq API, while macroeconomic indicators
were extracted from the Federal Reserve Economic Data (FRED), a compre-
hensive repository with over 816,000 economic time series [3].

This paper aims to predict stock market trends using macroeconomic fac-
tors such as GDP, unemployment, CPI, inflation rate, and interest rates. Re-
gression models employing the XGBoost algorithm predict stock index returns
for the years 2020–2024. Performance metrics like MSE, RMSE, and MAPE
validate actual versus predicted values, facilitating comparison across different
economic conditions. Additionally, specific economic settings forecast perfor-
mances are analyzed to comprehend the key macroeconomic drivers and market
consensus [7]. In addition to forecasting, understanding current market senti-
ment is crucial for informed investment decisions. Major news publishers and
media outlets play a vital role in portraying market sentiment. News articles
are analyzed using various methods to generate numeric sentiment scores and
textual summaries based on large language models to gauge sentiment.

2 Existing work

Predicting stock market trends has historically presented a challenging en-
deavor due to the multitude of factors influencing stock prices, including prod-
uct demand, sales, production, investor sentiment, government policies, and
economic conditions. Accurately forecasting stock prices holds immense po-
tential for substantial profits. One notable approach involves leveraging eX-
treme Gradient Boosting (XGBoost), renowned for its efficiency and accuracy
rates surpassing 87% for both 60-day and 90-day periods. Compared to tra-
ditional non-ensemble learning techniques, XGBoost exhibits superior perfor-
mance in forecasting stock market fluctuations, aiming to predict both upward
and downward movements.

A study by Dey et al. explores the use of XGBoost to forecast stock market
trends, employing a binary system where +1 indicates an anticipated increase
in stock valuation and -1 signifies a projected decrease in prices [2]. Another

2152

paper by Nousi Christina, titled "Stock Market Prediction using Sentiment
Analysis," focuses on Microsoft’s stock movement by analyzing historical data
and sentiment from social media platforms. The study collects approximately
90,000 tweets from Twitter and 7,440 tweets from StockTwits, alongside histor-
ical data from the Finance Yahoo website spanning a specific period. Sentiment
analysis of social media data is conducted using Python libraries TextBlob and
VADER (Valence Aware Dictionary and Sentiment Reasoner), while various
machine learning models such as KNN, SVM, Logistic Regression, Naïve Bayes,
Decision Tree, Random Forest, and MLP are implemented. Results indicate
that utilizing tweets from Twitter with VADER for sentiment analysis, SVM
yields the highest f-score of 75.9% and an Area Under Curve (AUC) of 65%
[10].

In this paper, we adopt XGBoost to model a multivariate time series for
forecasting. Beyond the model’s insights into future trends, we aim to aug-
ment our analysis with real-time market sentiment to enhance decision-making.
Leveraging natural language processing algorithms like Semi-Normalization
and VADER, we quantify general market sentiment through various media
sources such as news articles, tweets, and volatility indices. This sentiment
analysis aids in understanding the market sentiment before making investment
decisions.

3 Method

This section presents the data used for stock index and macroeconomic indica-
tors data preparation and cleaning are explained and the extraction of market
news is explained. Furthermore, the Machine Learning design is presented with
the models that help in predicting the stock index. Market sentiment score is
explained using VADAR and Semi-Normalization techniques and the normal
distribution of data is considered.

3.1 Data Extraction

To elucidate the complexities and inherent dynamics of market movements
through economic indicators, this investigation harnesses data from the Fed-
eral Reserve Economic Data (FRED), hosted by the Research Division of the
Federal Reserve Bank of St. Louis. FRED is an extensive repository, boasting
over 816,000 economic time series drawn from many sources ("FRED," 1991).
Additionally, data pertaining to alternative assets such as Bitcoin, Gold, Bonds,
and Treasuries are procured via Quandl[12], which serves as a premier publisher
for financial and economic datasets. Financial market news and geo-political
events indicate general market sentiment. News articles from leading invest-
ment research websites and news websites can be extracted using their APIs.

3 153

By leveraging these on-demand resources, we can source the most up-to-date
financial news using our analytical tools. Each piece of news from the API
comes with a bunch of information. We curate the output fields to use the
information like when it was published, the stock tickers, and the description.
Without reading the complete news article page data, we have chosen limited
fields that provide a summary. The news data retrieved through the APIs is
accompanied by extensive metadata.

Figure 1: Forecast Processing Method

Forecast Method To forecast the
market movement, we are modeling
using macro-economic indicators and
news articles and leveraging a large
language model like ChatGPT 4 or
Hugging Face for sentiment gener-
ation and ensemble to predictions.
Stock Indexes here act as labels for
back-testing the model forecasts. As
Figure 1 explains, input time series
data is decomposed to remove any
seasonality and interpolate less fre-
quent macro features to match the
daily frequency features like Indices,
Volatility index, etc. And finally,
they are merged into one data frame
operating on the same time horizon
and frequency.

3.2 Sentiment Analysis

Sentiment analysis can be a useful tool for understanding market sentiment
and identifying potential shifts, but it should not be the sole basis for making
investment decisions [8].

Sentiment analysis can help identify how the public or traders feel about
a particular stock or the market. Positive sentiment may indicate optimism,
while negative sentiment may suggest pessimism. Sentiment analysis alone is
not a reliable method for predicting stock market movements. It can provide
indications of short-term market sentiment shifts, but it doesn’t necessarily
offer predictive accuracy for longer-term trends or specific price movements.
Market sentiment can be heavily influenced by news, social media, and public
opinion. It’s essential to filter out irrelevant or biased sentiments to obtain
meaningful insights.

4154

3.2.1 Sentiment Analysis using VADER

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and
rule-based sentiment analysis tool specifically attuned to social media senti-
ments. It is unique because it is sensitive to both the polarity (positive/nega-
tive) and the intensity (strength) of emotions. VADER has been found to be
quite effective in handling text that contains emoticons, acronyms, and slang,
which are commonly found in social media content [5].

C =
vs√
v2s + α

(1)

Where C is the compound score, vs is the total score of each sentence word
with a sentiment rating according to the VADER lexicon. Each word’s score is
the sum of its valence, determined by the lexicon and modified by the heuristic
rules (such as punctuation, capitalization, degree modifiers, contrastive con-
junctions, and negation). α is a normalization parameter to balance the dis-
tribution, ensuring that the scores are proportionately scaled between -1 and
+1. This compound score is the most used metric to determine the overall
sentiment of a text. A positive compound score indicates a positive sentiment,
a negative compound score indicates a negative sentiment and a compound
score near zero suggests a neutral sentiment [5].

3.2.2 Sentiment Analysis using Semi Normalization of Positive-
Negative Words

Normalization, in the context of sentiment analysis, involves adjusting the raw
counts to account for variations in text length, intensity modifiers, or other
factors that can affect the sentiment score. Semi-normalization is a simpler
form of normalization that may adjust these counts or scores to a standard scale
or may account for text length without considering the full range of possible
modifiers [13]. In this method, we calculate the sentiment score by evaluating
the ratio of the count of positive words (P) and the count of negative words
(N) + 1. Since there is no difference in values involved, the sentiment value
will always be more than 0. Also, adding 1 in the denominator would save
“zero division error” [14].

One common approach to semi-normalization might involve calculating the
difference between the positive and negative word counts and then dividing by
the total number of words in the text to standardize the score according to text
length. The sentiment score is calculated using the counts from the positive
and negative words, often adjusted or normalized in some way. A basic formula
for a sentiment score with semi-normalization might look like this:

S =
P

N + 1
(2)

5 155

Where S is the sentiment score, P is the positive word count, N is the negative
word count.

This method is relatively simple and can be a good starting point for basic
sentiment analysis tasks. However, it may not always capture the nuances of
sentiment, such as sarcasm, negations, or intensity of emotions, which more
sophisticated NLP techniques can address [13].

4 Results and Discussion

4.1 Overall Modeling XGBoost

We used 20 years of data from 1990-2019 for the training and later used the
data from 2020-2024 for the testing. Over the 4 year of time horizon, we
have had challenging market conditions starting with COVID and followed
by quantitative easing leading to strong growth of the stocks. The market
subsequently undergone a correction due to the FED’s move to raise the interest
rates for an extended time. It could be a challenging forecasting problem to
evaluate against unlike a traditional sales inventory use-case. The prediction
horizon is tried at different frequencies, such as 7 days, 30 days, 90 days and
one year. 90 days forecast is relatively more accurate.In Figure 2 below we
have overlayed the actual SPX vs Predicted price value. The features used for
training are sometime non-stationary in nature. To address the issue, we also
tried forecasting using another XGBoost version with the transformations to
stationarize and remove any seasonality and trend factors in addition. From
Table 1, we calculated the SPX predicted value from the returns value.

Table 1: Actual vs Predicted SPY price
Date SPX SPX_future_ret_90d pred_label SPX_pred

2019-12-02 3113.87 -0.079 -0.079 2865.078
2019-12-03 3093.20 -0.105 -0.219 2415.653
2019-12-04 3112.76 -0.101 -0.086 2844.269
2019-12-05 3117.43 -0.086 -0.086 2848.536
2019-12-06 3145.91 -0.099 -0.099 2832.117

We used k-folds with 50 iterations and considered the best MAE values.
This tuning helped in generating output better compared to normal xgboost
testing. Figure 3 below explains the prediction performance in terms of %
returns. Returns can be positive or negative in percentage.

6156

Figure 2: Predicting SPY Price after 90 days

Figure 3: Predicting SPY % Returns after 90 days

4.1.1 Best Performance

After the bull-run which lasted close to 20 months from Feb 2020-Jan2022 the
stock market had seen a correction for more than 8 months. The economic
conditions like unemployment, interest rates, CPI are observed to recover and
were stable during this time. This market scenario is observed to be the best
prediction phase by the model assuming due to the market stability. From
Figure 4 , we observe a bias in the model performance due to constant negative
error (over estimation) during the interval. The average percentage error is
observed to be less than 5 % which is impressive.From the Table 2, we observe
the mean absolute percentage error (MAPE) is around 2.3% and overall, a
negative bias indicating some degree of bias.

7 157

Figure 4: SPX Actual vs 90 day forecast during a best-case scenario

Table 2: Evaluation Performance in Best Performance
Bias -90.258
MSE 8887.022
MAE 90.258
RMSE 94.271
MAPE 0.0229

4.1.2 2021-22 Market Peak (Bull Run)

Post-COVID affecting the markets, FED tried aggressive market stimulation
by providing more liquidity and lowering interest rates. This resulted in a
market recovery and further advance into a long bull run almost doubling the
SPX index value from the COVID lows (2200). Here we have selected a few
months between Dec 2021 to Feb 2022 to explain how resilient the model is
about predicting the market top. Figure 5 explains the actual SPY value vs
prediction using the model. Table 3 explains the forecast evaluation results
for this scenario using measures like mean square error, mean absolute error,
root mean square error, mean absolute percentage error. The average absolute
percentage error is close to 5%.

8158

Figure 5: Market Peak

Table 3: Evaluation Performance in Market Peak
Bias 168.492
MSE 79729.445
MAE 230.859
RMSE 282.364
MAPE 0.0492

4.1.3 COVID Downturn

The world and humanity had experienced its most difficult times starting in
early 2020 due to COVID outbreak. Asset classes like real estate and equity
market activity volume is impacted heavily resulting in a sharp downtrend. A
long-term prediction model will be uninformed to make a logical prediction in
such use cases and considered as a limitation. As per the figure it is evident
that we cannot predict the disaster which we never imagined.

Table 4: Evaluation Performance in Covid Breakout
Bias -50.846
MSE 119305.585
MAE 335.905
RMSE 345.406
MAPE 0.113

The model forecast quality is evaluated using 5 metrics to indicate reliabil-

9 159

Figure 6: Covid Breakout

ity. The calculations above are the average of each statistic during the selected
months to estimate the market behavior during key economic events. From
the above Table 4, MAPE scores of 0.113 we can conclude the mean percent-
age error increased by 2 times compared to overall prediction performance.
The model shows a bias characteristic for overestimating in this case for ob-
servations after COVID outbreak. In such market conditions it would be ideal
to gauge the market sentiment in our investment decisions in addition to the
forecast.

4.2 Market Sentiment Analysis for year 2022, 2023

Using Polygon API, we attempted to extract up to 100 news articles daily for
the year 2022, 2023. This helped us to extract more relevant information about
the stocks in SPY portfolio. Almost half of the news articles we resourced have
stocks outside SPY 500 index which are filtered out to estimate sentiment on
relevant news. The API response comes with the title and the article descrip-
tion in two columns and are combined into one column to provide a better
context. We started with estimating the sentiment scores for each news text
using Semi-Normalization and VADER methods.

From Figure 7, we are interested to understand if the news sentiment is
really contributing to the stock index moves. Our initial observation suggests
a positive correlation for Semi-Normalization method than VADER. Also, the
below Spearman correlation suggests a statistically significant correlation from
the Figure 8.

10160

Figure 7: Daily News Sentiment vs Daily SPY Returns

Figure 8: Spearsman Coefficient Relation-Semi Normalization

5 Conclusion

The U.S. stock market, encompassing exchanges like the New York Stock Ex-
change (NYSE) and NASDAQ, is a complex ecosystem where shares of publicly
held companies are traded. The S&P 500 Index, reflecting the performance of
500 large-cap U.S. equities, serves as a pivotal indicator of market health, of-
fering insights into risk and return dynamics. Machine learning applications
in finance are reshaping forecasting and risk management, providing predictive
analytics for critical decision-making. Forecasting stock market trends using

11 161

macroeconomic factors entails analyzing broad economic indicators to antici-
pate market movements and their impact on stock prices. Key factors include
GDP growth, unemployment rates, inflation, interest rates, and monetary poli-
cies. These indicators influence consumer and business spending, thereby im-
pacting corporate earnings and stock performance. However, predicting stock
market behavior accurately amidst myriad variables remains challenging. In
this study, we aimed to model these indicators to forecast S&P index perfor-
mance over a three-month horizon using machine learning techniques such as
forecasting and sentiment analysis. We utilized data from Quandl API for
S&P index performance and Federal Reserve Economic Data (FRED) for crit-
ical macro indicators. After data preprocessing, including handling missing
values and decomposing time series, we applied Random Forest and XGBoost
models, achieving a mean absolute percentage error close to 8%. We evaluated
model performance across various economic and social conditions, acknowledg-
ing limitations in adapting to future events. To augment forecasting decisions,
we incorporated market sentiment analysis. Understanding sentiment aids in
making informed investment choices; bullish sentiment may indicate an over-
valued market, while bearish sentiment may present buying opportunities. We
leveraged Polygon APIs to extract market news and applied sentiment analysis
techniques such as Semi-Normalization and VADER. Our analysis revealed a
positive correlation between market sentiment and S&P returns. In conclusion,
integrating macroeconomic indicators and live news significantly enhances the
accuracy and efficiency of index fund forecasting. By combining forecasting
models with sentiment analysis, investors can make more informed decisions,
navigating the complexities of the stock market with greater confidence.

References

[1] James Chen. What Is the Stock Market, What Does It Do, and How Does
It Work? Investopedia. 2022. url: https://www.investopedia.com/
terms/s/stockmarket.asp.

[2] Shubharthi Dey et al. “Forecasting to Classification: Predicting the direc-
tion of stock market price using Xtreme Gradient Boosting”. In: PESIT
South Campus (2016), pp. 1–10.

[3] FRED. FRED: Federal Reserve Economic Data. FRED. 1991. url: https:
//fred.stlouisfed.org/.

[4] JC Hull. “Options, Futures, And Other Derivatives.–9th ed.–Boston [etc.]”
In: Pearson Education, Inc 2012 (2015), p. 2009.

12162

[5] Clayton Hutto and Eric Gilbert. “Vader: A parsimonious rule-based model
for sentiment analysis of social media text”. In: Proceedings of the in-
ternational AAAI conference on web and social media. Vol. 8. 1. 2014,
pp. 216–225.

[6] N Gregory Mankiw and Mark P Taylor. Economics. Cengage Learning
EMEA, 2020.

[7] N.G. Mankiw. “Macroeconomics, 7th Edition”. In: Worth Publishers,
2010. url: http://www.worthpublishers.com/mankiw.

[8] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. “Sentiment analy-
sis algorithms and applications: A survey”. In: Ain Shams Engineering
Journal 5.4 (2014), pp. 1093–1113. issn: 2090-4479. doi: https://doi.
org/10.1016/j.asej.2014.04.011.

[9] Frederic S Mishkin and Stanley G Eakins. Financial markets and insti-
tutions. Pearson Education India, 2006.

[10] Christina Nousi. “Stock market prediction using sentiment analysis”. In:
(2021).

[11] Keith Pilbeam. “Finance and financial markets”. In: Bloomsbury Pub-
lishing, 2018, pp. 215–246.

[12] Quandl. Nasdq-Quandl. FRED. 2024. url: https://data.nasdaq.com/
publishers/QDL.

[13] Shipra Saxena. Tokenization and Text Normalization. 2021. url: https:
//www.analyticsvidhya.com/blog/2021/03/tokenization- and-
text-normalization/.

[14] Rahul Shah. Different Methods for Calculating Sentiment of Text. 2021.
url: https://www.analyticsvidhya.com/blog/2021/12/different-
methods-for-calculating-sentiment-score-of-text//.

13 163

English to American Sign Language: An
AI-based Approach∗

James May, Kyle Brennan,
Stefanie Amiruzzaman, Md Amiruzzaman

Departments of Languages & Cultures and Computer Science
West Chester University, West Chester, PA 19383

{SAmiruzzaman, MAmiruzzaman}@wcupa.edu

Abstract

This study presents an Artificial intelligence (AI)-based approach to
translating English to American Sign Language (ASL). It involves cap-
turing audio from a speaker (i.e., a hearing person) and translating that
into text, then translating the text into ASL sentences. The process
involves a case study and a computer vision approach. A prototype
is implemented using an audio-to-speech model, Natural language pro-
cessing (NLP) for ASL, and MediaPipe a computer vision tool. Future
work will include performance improvement and a complete framework
to translate English to ASL and ASL to English communication.

1 Introduction

American Sign Language (ASL) is a sign language that is predominantly used
by Deaf1 and Hard of Hearing (HoH) people in the USA and Canada [13].
According to an article published by Mitchell, Young, Bachelda, & Karchmer
(2006)[13], there are more than 500,000 people in the USA who use ASL as
their primary language. The statistic is over a decade old, which means that

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1Deaf people are those who knows the Deaf culture and tend to communicate in sign
language as their first language, and deaf are those who have hearing loss (not aware of Deaf
culture and not native sign language users)

1164

the number has doubled by now if not tripled. A recent article claimed that
approximately 3% of people in the USA whose primary language is ASL [12].
It would be unwise to assume that all Deaf people use English as their primary
language, which is not the case [2, 13].

Most automated solutions that are tied to reducing the communication gap
between the Deaf and hearing assume that speaking English is the way to
overcome it. The reason researchers try to use AI-based approaches to provide
solutions for this task is because of its performance in accuracy and swiftness
to produce results. The AI-based approach is not only popular in this field but
also in many fields [1, 20]. While, researchers focused on developing solutions to
establish a communication medium between Deaf and hearing world; often the
main focus was to improve the accuracy and speed. Perhaps, mostly because
the research was led by hearing researchers, and little to no research studies
involved Deaf researchers.

To the best of our knowledge, [2] included a Deaf researcher in the devel-
opment process. As most previous studies involved hearing researchers, thus
their work work did not fully capture the need of Deaf users. Most studies
tried to provide solutions that involved ASL to English and English to text
(i.e., English texts). This study focus on overcoming the gap and truly de-
velop a framework that would allow Deaf/HoH people to see a machine vision
based translation of English to ASL. This study involves a Deaf educator and
researcher in this study to ensure its true use for Deaf/HoH people.

2 Related work

There have been many attempts to automate processes so that the Deaf and
hearing world can communicate. However, this is not an easy task as the
conversion of ASL and English is not in exact grammar order. For example, in
English, we said, “I am going to the store.” In ASL, we sign, “STORE, ME GO.”
Existing works mostly focused on recognizing ASL numbers and alphabets and
tried to translate them into English [15, 4].

Over the last decade, many studies focused on automating ASL to English
communication. For example, Starner et al., used Hidden Markov Models
(HMM) [18] to recognize sign language. In their study, the authors focused
on hand gesture movement and track them using a camera; only 40-word lex-
icon was considered. Gaus and Wong’s [6] study focused on recognizing ASL
sentences by using a camera to track the user’s hands. Qutaishat et al. [14]
developed an approach that mainly focused on recognizing static signs. This
study was divided into two phases: (a) feature extraction and (b) classifica-
tion. In the feature extraction phase: from images features were extracted
using Hough Transformation. In the classification phase: these features are
then passed as input to the Neural Network classification model and recognize

2 165

signs.
Many other existing work such as [18], [14], and [8] concentrated on recog-

nizing the ASL fingerspelling, alphabets and numbers from 0 to 9 only. Other
studies, such as [9] focused on recognizing American Sign Language alphabets,
and Bellen et al. [5] focused on ASL based gestures during video conferencing.

This current study focuses on recognizing both English and ASL sentences.
This study goes beyond of recognizing just alphabets and numbers, rather
complete sentences and therefore focuses on conversations. It allows English
to ASL translation using NLP and machine vision. The process is guided
and evaluated by a Deaf educator who verified the results as the development
process continued.

3 Method

This study was done in three stages: (1) capture audio from a speaker and
convert it to text, (2) use Natural language processing (NLP) to convert the
text to ASL sentence, and (3) map the ASL sentence to MediaPipe animation.
The section 3.1 describes how the audio to text capture was done, section 3.2
explains how the language used must be processed, and section 3.3 explains
how the ASL sentence to animation was done. Fig. 1, presents the framework
of this study.

User Speech Input Speech-to-Text layer
using SpeechRecognizer Queue

Pull MediaPipe po-
sitional data from

animation dictionary

Move each VPython
object in accordance
to MediaPipe land-

marks for each frame

Gathered ASL
movement data

New words
are added

to the queue

Pop next
word off
of queue

Word pulled
from the

queue as key

Sign
positional

data

Thread 1

Thread 2

Figure 1: Framework of the entire Speech-to-ASL pipeline; processes for STT
and animation are on separate threads.

3166

3.1 Speech Collection

We utilized the “speech_recognition” and pyttsx3 Python libraries to assist
with the live translation. The speaker’s voice is taken as an input through the
default communication device of your computer, and the corresponding text is
transcribed using the Google Cloud Speech-to-Text (STT) API as the reference
framework. This text is then automatically updated into a text file (.txt) to
be extracted out, tokenized and parsed, and read into our animation database
to retrieve a prerecorded animation of the signs for each word using a custom
grammar for English to ASL translation.

Figure 2: Example of a compressed sound wave, represented as a continuous
distorted sine wave.

The way that the libraries can parse out words from speech is through
a deep understanding of how sound dynamics works. Sound waves are just
modified sine waves, having crests and troughs as their local maximums and
minimums, respectively, called the amplitude of the wave. The range of the
amplitudes in a given sound wave can be expressed by the time domain, which
is a measure of how loud each sampled part of the wave is.

To convert an audio signal into something a computer can utilize, the time
domain must be transformed into what is called the frequency domain, which
is a measure of the pitch of the produced sound when measured at a certain
sample rate. Sample rate defines the number of samples per second (in Hertz
(Hz)) taken from a continuous signal to make a discrete or digital signal that
computers are able to process. Because a sine wave is a continuous function,
there must be a transformation from the time domain to the frequency domain,
which we call the Fourier transformation.

F{g(t)} =

(∫ +∞

−∞
g(t) e−iωt dt

)
,

where the e−iωt component represents a complex exponential function which,
for the sake of this paper and simplicity, is used to represent the individual sine
waves of the entire recording. The discrete frequencies that the function will
return allow us to parse out each unique sound from the waves; each part of
the sound wave will create an individual sound which the libraries will use to

4 167

recognize what sounds go where in a sentence in order to splice together an
English phrase using the Google Cloud STT API. When we speak into a mi-
crophone, the microphone sends that audio signal to the model, then outputs
a string together sentence as a console input for the animation model (See
Section 3.3).

This model currently requires further development, as mentioned in section
5. In this study mainly focused on developing the prototype as part of our
proof-of-concept (POC); enhancement and further improvement is going to be
part of our future work.

3.2 Natural Language Processing

After processing the audio input and returning a string of English text, the
program will undergo a couple of language processing steps in order to achieve
an accurate and flexible approach to translate the texts into ASL signs. The
first transformation that we will perform before adding a word to the queue is
to check it against a list of articles we have established to not be valid words
in actual ASL structure/grammar. Words like ‘the,’ ‘a’ and ‘are’ do not get
added to the queue of words to be processed (see Fig. 3). After this step
we would have a full body text of valid words that are grammatically correct
to use in the ASL language. Later in the program runtime when searching
the dictionary for a word in the text in the queue, we have also implemented
safeguards to ensure all words are able to be communicated, even if not fully
implemented in the sign dictionary (see Fig. 3).

The program first checks to see if a word is in the dictionary before perform-
ing the sign for the user. If a sign is not present in the dictionary it will then be
broken into individual letters to be signed out to ensure that any word spoken
can be communicated to the user. In the future we plan to implement two more
NLP steps into the program. One step will focus on finding compound ASL
words like “thank you” and “how are you?” after processing the audio input
into a string. We also plan on making a final step before animating the signs in
real time that takes the spoken language and translates the English grammar
into the appropriate ASL grammar for one-to-one translation between the two
languages (see Fig. 3).

3.3 MediaPipe Framework

Our work rests heavily of utilizing the MediaPipe’s object detection framework
for use in detecting the face and hands of the person in the frame of a video
or camera stream [11]. MediaPipe (MP) is a library tool that uses Artificial
Intelligence (AI), Machine Learning (ML), and computer vision techniques to
develop live and streaming media. Specifically, MP contains 478 landmarks
for the face, 21 for both left and right hands, and 33 for the pose of the

5168

Run program Speech Input Preprocessing
(Fourier)

Feature Extraction
(Cloud API)

Parse next word
Is word an article
(a, an, the,...)?

Include in
string input

Exclude from input

Send input string
to animation model

Split string,
by spaces, into

separate phrases

Is word in .pkl?

Tokenize word
into chars

Animate from
dictionary

Animate each char
as letters/numbers

Stop

no

yes

no

yes

Figure 3: Flowchart diagram of the speech-to-text processing pipeline.

body [3]. These landmarks contain three dimensional positional data for each
keypoint. This means MP is an excellent tool for use in real-time motion-
capture animation, and keeping track of where each part of the body is in a
camera frame. In this work, we have used MP for both gathering and storing
our motion captured animation data.

3.3.1 ASL Animation Database Collection

In order to pull from a collection of animations during live translation, it is
imperative for the program to have a collection of correctly ASL signs to be
animated live for the user. In order to accomplish this, we have developed
a small database of motion-captured data stored in a key-value format to be
accessed during translation (see Fig. 4).

The data collected through motion-capture were recorded on a 720p 30fps
webcam. Signage references were collected from the image dataset, as well as
various instructive YouTube videos, to ensure the most accurate depiction of
each sign was captured for clarity. We have selected a set of basic words to
be recorded for sentence creation in our model, each of various lengths, where
keypoint tensors are saved into a pickle (.pkl) file to be replayed at a later
time. A .pkl file is a format primarily used for the serialization of vector data,
in our case, where each sign recorded has the name of the sign as a key that

6 169

can retrieve the collection of keypoint movements as an output value (see Fig.
4).

Figure 4: In program representation of four signs. Top-left: P, Top-right: 8,
Bottom-left: Why, Bottom-right: Go.

One of the primary hurdles to overcome was that some signs involved plac-
ing the hands over the face, which would interfere with the keypoint recogni-
tion on MediaPipe’s end; phrases such as “I’m sad,” for example, involve the
signer’s hands fully blocking the facial landmarks and would prevent tracking
for a short time after that, causing errors when saving the video’s keypoints to
the .pkl file. This was remedied by creating a version of the sign that did not
overlap the keypoints to prevent errors, but also these signs could not be too
similar to previously existing signs. For the “sad” example, the solution was to
move the hands slightly out of the way of the face to register as many of the
landmarks as possible. This technique was applied to several other signs. Fig.
4 exemplifies four signs that were captured and animated in our framework.

3.3.2 Utilizing VPython for Motion Captured Animation

VPython is a Python library that is made for creating scientific 3-D animations
and visualization [17]. In VPython, a user can create different shapes and
positions and add angles by utilizing several different built-in functions [16].
In this study, we used VPython to translate MediaPipe’s motion data into a
fully animated 3D model of the landmarks in the face and hands, in addition to
adding lines between many of the landmarks in the fingers. For animation use,
we decided to use all landmarks in MediaPipe’s left and right-hand landmark
groups. However, we only used a handful of the facial landmarks as using all

7170

478 landmarks leaves the animation cluttered and hard to understand. In total,
we used 146 landmarks with varied positions to properly show all of the major
facial features. We did not use any of the pose landmarks in our study.

During the runtime, after a word in the queue is being used for transla-
tion, we will retrieve the movement data that is correlated with the sign and
then animate each frame of the data by taking each keypoint’s position in 3-
dimensional space and assigning its position to a sphere in a VPython scene,
which is the space where an animation takes place. This will repeat for each
landmark from MediaPipe that was recorded and is being used in the animation
program in addition to being repeated for each frame that is in a specific ani-
mation. In addition, several lines were added between many of the landmarks
to give a skeletal look to the hand (see Fig. 4)

Figure 5: VPython Box Attributes

Creating the movement for these connecting ‘bones’ is more complicated
than the keypoints. VPython does not have a direct way to calculate and direct
shapes into different angles. Specifically, the box shape has many properties
that make orienting it 3D space difficult. A box’s position is decided by the
center, meaning changing its position means changing where the center point is.
This means when deciding where to place the box we need to use the midpoint
to place the box between the two keypoints that we intend to connect with
a bone. The position of a bone connecting landmarks at positions (xs, ys, zs)
and (xd, yd, zd) is (xs+xd

2 , ys+yd

2 , zs+zd
2).

Determining the position of an object only places the object at the desired
space, but it does not angle, or specify the size of the object. This is determined
by the axis and the length, width, and height attributes.

The width and height are predetermined before runtime as these are not
changed by axis and need to stay consistent to look natural and easy to under-
stand. The axis of a box object is a line that extends outward from a point in
the middle of one of the end faces through the middle and to the opposite end
face. The axis can be used to determine length and direction of a box object.

8 171

Using the landmarks at positions (xsys, zs), and (xd, yd, zdest) (xd−xs, yd − ys,
zd − zs). Fig. 5 illustrates the axis and other attributes of the box in a visual
diagram.

4 Results

When executed, the program displays the set of recorded words from the .pkl
file, where users can string together phrases that they would like to see signed
out. We recorded a total of 87 word signs, as well as signs for A-Z and 0-10,
that can be played back for viewing at 30fps to match the recorded frame rate
for consistency and fluidity. Currently, the input only takes the raw words
and not proper sentences, so indefinite articles like “a,” “an,” “the,” are omitted
from the input phrase, and compound phrases that have a single sign require
underscores in between words. Support for punctuation is also omitted for
simplicity, but will be added in as we develop our natural language processing
model to specify tone and help with context. An example of an input that we
would use for testing and demo purposes would look something like:

Input Sentence to be translated: {excuse_me where bathroom}

Currently, the output will play the animation in a localhost window. The
animation skeleton would look something like the following when played back
(see Fig. 6):

Figure 6: The signs for (from left to right) “excuse me,” “bathroom,” and
“where” from the .pkl file.

5 Discussion

In this study, we have developed a software framework that can transform an
English token into ASL modular language using MediaPipe, a object detection
library that is able to capture over 543 landmarks on the face, hands and body.

9172

We used these features to capture the position of these landmarks and use them
to create animations in VPython, a 3-dimensional graphics library.

This is a groundbreaking start to creating a fully functioning two-way ASL
translation software. However, there is still much work to be done. English and
ASL have very different grammar and sentence structures [10]. To turn our
program into something usable for a general audience, we need to translate not
only the words that are being said but also the grammar in which it is being
said in. We plan to approach this by utilizing Natural Language Processing
(NLP) and gathering a lexical ASL dataset from scratch, which would be one
of, if not the first of its kind. We are also aiming to gather data for an ASL-to-
English translation program and run both simultaneously for a full translation
experience.

As for the STT model that we used in our framework developing, it is very
good at dealing with accents [7]; however, it is very slow when writing to the
output .txt file. This makes conversation difficult because each participant
involved must wait for the processing of the data prior to starting a new line of
dialogue. Additionally, multiple voices during the same input period can cause
errors in the API’s ability to parse out some parts of speech [19]. This can be
remedied with multithreading and further optimizations that we would have
to make to the base model, which is currently in development.

6 Conclusion

In this study, we have created a revolutionary machine translation tool that can
transform English tokens that are gathered via a Speech-to-Text model into
American Sign Language. We discussed the previous works in ASL machine
translation and how our work differs from what was done before. We were
able to take landmarks generated by the MediaPipe Python library and save
the positional data to later be used in real time animation using the VPython
3D graphics library. We were able to generate both the left and right hands
in addition to the face. Picking out 146 of the 478 facial keypoints to best
illustrate the emotions in the facial features while remaining clear enough to
be read by the user.

We were able to record 100 signs in total that are able to be used including
letters from A to Z, numbers from 1 to 10 and many of the most commonly
used signs in ASL. We are also able to use the alphanumeric signs to spell any
spoken words that are not currently in our dictionary, which allows even the
most uncommon words the ability to be spoken.

Although our work is a massive forward for ASL machine translation, we
still fall short of being able to translate between grammars as ASL and English
have very different grammatical structures. We do eventually plan on gathering
data for, and creating a Natural Language Processing model to be able to

10 173

accomplish this task.
We also need to accomplish a way to turn phrases like “thank you” and “how

are you?” into a single compound word when querying from out dictionary in
order to access the correct signs for the phrases we wish to use. In addition
to language processing tasks, we also need to increase the processing speed of
our Speech to Text functionality as it is currently very slow during runtime.
Despite these limitations, we have made a framework that has never been
accomplished to the scale that we have produced. This program will give both
students and educators the ability to better communicate with Deaf and Hard
of Hearing (HoH) people while still retaining the emotional tone of language
that textual communication cannot.

References

[1] Md Amiruzzaman et al. “Classifying crime places by neighborhood visual
appearance and police geonarratives: A machine learning approach”. In:
Journal of computational social science (2021), pp. 1–25.

[2] Vijayendra D Avina et al. “An AI-Based Framework for Translating
American Sign Language to English and Vice Versa”. In: Information
14.10 (2023), p. 569.

[3] Hicham Boudlal, Mohammed Serrhini, and Ahmed Tahiri. “A novel ap-
proach for simultaneous human activity recognition and pose estimation
via skeleton-based leveraging WiFi CSI with YOLOv8 and mediapipe
frameworks”. In: Signal, Image and Video Processing (2024), pp. 1–17.

[4] Joanna E Cannon, Laura D Fredrick, and Susan R Easterbrooks. “Vo-
cabulary instruction through books read in American Sign Language for
English-language learners with hearing loss”. In: Communication Disor-
ders Quarterly 31.2 (2010), pp. 98–112.

[5] M Bellen Enrique III et al. “Integrated Visual-Based ASL Captioning in
Videoconferencing Using CNN”. In: TENCON 2022-2022 IEEE Region
10 Conference (TENCON). IEEE. 2022, pp. 1–6.

[6] Yona Falinie Abdul Gaus and Farrah Wong. “Hidden Markov Model-
Based gesture recognition with overlapping hand-head/hand-hand esti-
mated using Kalman Filter”. In: 2012 Third International Conference on
Intelligent Systems Modelling and Simulation. IEEE. 2012, pp. 262–267.

[7] Katrina N Haug and Perry D Klein. “The effect of speech-to-text tech-
nology on learning a writing strategy”. In: Reading & Writing Quarterly
34.1 (2018), pp. 47–62.

11174

[8] Jie Huang et al. “Sign language recognition using 3d convolutional neural
networks”. In: 2015 IEEE international conference on multimedia and
expo (ICME). IEEE. 2015, pp. 1–6.

[9] Ahmed Kasapbaşi et al. “DeepASLR: A CNN based human computer
interface for American Sign Language recognition for hearing-impaired
individuals”. In: Computer Methods and Programs in Biomedicine Update
2 (2022), p. 100048.

[10] Scott K Liddell. American sign language syntax. Vol. 52. Walter de Gruyter
GmbH & Co KG, 2021.

[11] Camillo Lugaresi et al. MediaPipe: A Framework for Building Perception
Pipelines. 2019. arXiv: 1906.08172 [cs.DC].

[12] Ross E Mitchell and Travas A Young. “How many people use sign lan-
guage? A national health survey-based estimate”. In: Journal of Deaf
Studies and Deaf Education 28.1 (2023), pp. 1–6.

[13] Ross E Mitchell et al. “How many people use ASL in the United States?
Why estimates need updating”. In: Sign Language Studies 6.3 (2006),
pp. 306–335.

[14] Qutaishat Munib et al. “American sign language (ASL) recognition based
on Hough transform and neural networks”. In: Expert systems with Ap-
plications 32.1 (2007), pp. 24–37.

[15] Elissa L Newport and Richard P Meier. “The acquisition of American
sign language”. In: The crosslinguistic study of language acquisition. Psy-
chology Press, 2017, pp. 881–938.

[16] David Scherer. https://vpython.org/. Accessed: 5-2-2024. 2000.
[17] Steve Spicklemire. Visualizing Quantum Mechanics with Python. CRC

Press, 2024.
[18] Thad Starner, Joshua Weaver, and Alex Pentland. “Real-time american

sign language recognition using desk and wearable computer based video”.
In: IEEE Transactions on pattern analysis and machine intelligence 20.12
(1998), pp. 1371–1375.

[19] Andreas Stolcke et al. “Recent innovations in speech-to-text transcrip-
tion at SRI-ICSI-UW”. In: IEEE Transactions on Audio, Speech, and
Language Processing 14.5 (2006), pp. 1729–1744.

[20] Tsung Heng Wu et al. “Visualizing Routes With AI-Discovered Street-
View Patterns”. In: IEEE Transactions on Computational Social Systems
(2024).

12 175

Enhancing Learning of Matrix Transformations
through Immersive Virtual and Augmented

Reality Interfaces∗

Kantida Nanon1, Margarita Vinnikov1,
Mathew Schwartz2, Michael J. Lee1

1Department of Informatics, 2School of Art and Design
New Jersey Institute of Technology

Newark, NJ 07102
{kn32, margarita.vinnikov, cadop, mjlee}@njit.edu

Abstract

This study investigated the effectiveness of 3D Augmented Reality
(AR) and Virtual Reality (VR)interfaces for teaching affine matrix trans-
formations. Matrix transformations play a critical role in various disci-
plines (e.g., computer science, game development, robotics, and biome-
chanics), and traditional teaching methods often fall short of providing
an intuitive understanding of these abstract concepts. Having a tool
that can generate visual representations of matrix transformations in
a more intuitive manner can connect mathematical operations with vi-
sual outcomes. Participants engaged in matrix transformation activities
using 2D, 3D-AR, and 3D-VR calculators. Results showed significant
improvements in achievement scores for the 3D groups, indicating the
potential of immersive technologies for enhancing mathematical spatial
understanding. While comfort was slightly impacted, overall satisfaction
with the 3D groups were high. This research contributes insights into the
evolving landscape of educational technology, emphasizing the promising
role of 3D interfaces in facilitating a deeper comprehension of complex
mathematical spatial concepts.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1176

1 Introduction and Related Work

Matrix transformations—which are crucial in disciplines like robotics, biome-
chanics, and graphics—form the foundation for understanding spatial rela-
tionships [2, 4, 27]. Traditional learning methods, relying on pen-and-paper
calculations and 2D visualizations [5], have been criticized for lacking engage-
ment and presenting challenges in comprehending transformation matrices and
related concepts such as coordinate frames [7]. However, recent advancements
in Virtual Reality (VR) and Augmented Reality (AR) technologies provide
exciting opportunities to revolutionize the learning experience, enhance under-
standing [12], and offer unique possibilities to transform learning environments
by providing immersive, interactive, and engaging settings for learners [20]. Nu-
merous studies have explored the application of immersive technologies across
various educational domains, highlighting their potential to enhance learning
outcomes and learner engagement [13, 17, 28]. Better understanding and uti-
lization of immersive educational technologies continue to be an important
domain to explore to effectively teach and engage learners.

Previous work has explored the effectiveness of VR and AR in teaching
complex concepts. For example, studies show that students demonstrate pos-
itive learning gains using VR simulations to learn binary counting [19], list
sorting algorithms [18], and chemistry concepts [15]. Similarly, students using
an AR biology application that facilitated interaction with virtual organisms
and explore anatomical structures revealed improved spatial reasoning skills
and a deeper understanding of biological concepts [29]. Immersive technologies
have also been applied in various professional domains. In medicine, VR sim-
ulations train students in surgical procedures, enhancing technical skills and
confidence [25]. In architecture and design, AR tools facilitate spatial visual-
ization and prototyping, effectively enhancing students’ spatial cognition and
design thinking abilities [8]. Therefore, it is essential to further investigate the
integration of VR and AR in education and professional training to fully un-
derstand how these technologies benefit learners, highlighting their potential
to transform traditional learning and skill acquisition methods.

The potential benefits of immersive technologies in education are vast, but
more research is necessary to fully understand their long-term effects on learn-
ing outcomes, learner motivation, and skill transferability. Immersive technolo-
gies like VR and AR have the potential to revolutionize education, providing
engaging and interactive learning experiences successfully applied across var-
ious disciplines [3, 6]. Despite challenges, these technologies offer promising
opportunities for educators to create dynamic learning environments [9]. The
integration of VR and AR with matrix transformations (i.e., the topic of this
study) presents a promising approach to enhance the learning experience [30].
In the context of matrix transformations, kinematics (which VR and AR can

2 177

include) is essential for describing the movement of objects and understand-
ing how they change position or orientation over time [1, 21], which can be
crucial for fields such as robotics, where precise movement control is essen-
tial [22]. Therefore, incorporating kinematics into VR and AR applications
can significantly enhance learning experiences [18], particularly in fields where
understanding movement and transformations is critical.

In the realm of immersive technologies like VR and AR, understanding
kinematics becomes even more vital. These technologies often involve the sim-
ulation of movement and interactions within a 3D space. For instance, in a
VR environment, users may manipulate objects or navigate through a virtual
world, and a robust understanding of kinematics is necessary to ensure real-
istic and accurate movement representations. The interactive and immersive
nature of VR and AR allows learners to visualize and manipulate objects in
3D, enabling a deeper understanding of complex concepts.

The study described in this paper aims to investigate the effectiveness of
immersive VR and AR interfaces in learning matrix transformations. By inte-
grating mathematical concepts with interactive tools, our study utilizes spatial
manipulation and transformation operations on an axis to enhance understand-
ing of homogeneous transformations. We conducted a comparative analysis to
evaluate the recall and transfer of knowledge across conventional methods and
matrix-based modalities. The application allowed users to comprehend the
transformation matrix, kinematics, and transition patterns between coordi-
nate frames. New interfaces, developed and evaluated, allow users to visualize
and interact with matrix transformations in 3D, with effectiveness compared
to traditional methods like pen-and-paper calculations and 2D visual repre-
sentations. The study seeks insights into how learners effectively recall and
transfer knowledge through different modalities, emphasizing the potential to
create interactive tools stimulating visual and spatial cognition. Additionally,
the study explores the potential of immersive VR and AR interfaces in facil-
itating the learning of matrix transformations. By leveraging the benefits of
visual and spatial cognition, the aim was to create an interactive and engaging
learning experience empowering learners to understand the complexity of ma-
trix transformations and apply them effectively in diverse areas. Participants
engaged in matrix transformation problems, with their performance closely ob-
served in terms of completion time, task accuracy, and overall usability. The
findings of this study can inform the design and development of future learning
tools for matrix transformations and related areas. By combining the power of
immersive technologies with mathematical knowledge, our aim was to provide
learners with an interactive and engaging learning experience that enhances
their understanding and proficiency in matrix transformations. This research
significantly contributes to the growing body of knowledge on the application

3178

of VR and AR in education, highlighting the potential for these technologies
to revolutionize how complex concepts are taught and learned.

2 Method

The study employed a comparative design, incorporating three distinct partici-
pant groups: a control group, an experimental group using a 3D-VR calculator,
and another experimental group using a 3D-AR calculator. All conditions uti-
lized a cube as the primary instrument for visualizing position and orientation,
a shape commonly used in 3D modeling software for visualizing orientation and
perspective [11]. The control group utilized traditional learning resources such
as class lectures and online materials. In contrast, the experimental groups
interacted with an advanced VR /AR interface, which included a specialized
3D calculator for inputting and manipulating transformation matrices. The
primary focus of observation was on three aspects: 1) the time taken by par-
ticipants to complete the tasks, 2) the accuracy of their solutions, and 3) the
usability of the tools they were provided with that proxy participant engage-
ment, tool usability, and the overall impact on learning outcomes.

2.1 Research Question & Hypotheses

We explore the following research question and two research hypotheses: Does
learning using different modalities (2D traditional vs. 3D-VR vs. 3D-AR)
affect learners’ recall and ability to transfer matrix transformation knowledge?

H1: The learners’ average test scores across learning groups are different.
H2: The learners’ average usability scores are different across learning groups.

2.2 Participants

Thirty adults were recruited from the university campus and surrounding com-
munities using convenience sampling (see Table 1 for demographics). The sam-
ple included college students enrolled in a math class, representing the broader
population of students taking similar courses, especially metric lesson.

The experimenter provided participants with a brief statement of the study
and a consent form before conducting the experiment, all of which were ap-
proved by our institution’s Institutional Review Boards (IRB). In summary,
16 males (53.3%) and 14 females (46.70%) participated in our study. Ages
ranged from 18 to 35 years old (median 25). 40% of the participants had prior
experience with VR technology before the experiment, while 23.33% of the
participants had prior experience with AR technology.

4 179

Table 1: Our study participants’ demographic information.
Variable Counts Percent (%)

Gender Male 16 54.55
Female 14 45.45

Disability condition No 28 93.33
Yes 2 6.67

Age 18-24 17 56.67
25-34 13 43.33

Highest education level College/University 20 66.67
High School 8 26.67

Graduate School 2 6.66
Participants’ experience Gaming 13 43.33

VR 12 40.00
Web programming 8 26.67

Unity/Unreal 7 23.33
AR 7 23.33

Game programming 6 20.00

2.3 Stimuli

We developed 3D-AR and 3D-VR applications in the form of a calculator to
enable users to visualize and interact with matrix transformations in 3D. We
designed these as mobile applications for tablet devices and implemented them
in the Unity game engine. Figure 1 illustrates the User Interface (UI) of the 3D
calculator application. The UI of the 3D calculator application consisted of the
matrix calculator panel, the cube object, and its frame transformation (x, y, z
axis) in 3 different colors. User could select the listed utilities in the application
to transform the object based on a matrix function. The interaction method
was based on a set of utilities that describe rotations, translations, matrices,
and axis definitions. The utilities were arranged in left to right order: x, y,
and z; there was no specified order of operations. The application workflow
was top to bottom. Users could drag-and-drop and add the desired operations
to the slots. Users could then enter the number (in degrees or radians) to view
values in various formats for the active utility and final transformation matrix
value. There are numerous ways users could interact with the utility. In the
case of a rotation, the user could choose between entering degrees and radians.
The single input field updates the values inside the rotation matrix. To view
the matrix in terms of an expression, where cosine and sine are present with
the specified radians, the user could also select the Expression button, whereas
the Value button displays the matrix values. Three lines indicated the frame
transformations of the cube object: the red line represented the x-axis, the
green line represented the y-axis, and the blue line represented the z-axis.

In the application interface (Figure 1), the calculator panel was positioned
on the right side of the screen, featuring interactive controls for numerical input

5180

Figure 1: The 3D-AR (left) and 3D-VR (right) calculator overlay the mapping
cube on the real world or virtual environment, respectively.

and calculations. The left side displayed a blue cube, with each side labeled to
indicate its specific orientation. Upon launching the application, users could
select a cube, and the application dynamically positions the chosen cube to
correspond with the inputted numerical value. This interactive setup ensureed
a visually intuitive experience, allowing users to associate the calculated num-
ber with the spatial arrangement of the labeled cube sides. There were three
main areas of interest in the calculator panel (Figure 2). The upper section
included utilities, operators, and an axis definition that could be dragged into
the empty dark gray slots in the middle section of the interface. The middle of
the display panel presented the currently active utility, allowing users to enter
values and view specific transformations (local transformation matrix value).
The bottom area showed the final transformation (global transformation ma-
trix value) from the combination of active utilities. We built on our previous
work to create the UI [16] and logic of the application interface [24].

2.4 Experimental Procedure

Participants started the experiment with the demographic questionnaire (see
Table 1). Then, one of the researchers demonstrated the use of each tool (2D
traditional, 3D-AR, or 3D-VR), which lasted approximately 3 minutes. Next,
participants watched a transformation matrix lesson on a computer screen with
a headset for 15 minutes. After finishing this lesson, the experimenters divided
participants into three groups to solve the matrix transformation problems,
completing 10 activities (see Figure 3), using the assigned tool. The control
group consisted of traditional methods of learning matrix transformations, in-
cluding class lecture notes, pencils, and quiz activity paper. On the other
hand, the experimental groups consisted of VR /AR interfaces that provide
3D calculators for user input.

6 181

Figure 2: The 3D calculator application showing the matrix calculator panel,
the cube object, and its frame transformation (x, y, z axis) in 3 different colors.

The experimental group used the 3D calculator to find the global transfor-
mation metric by manipulating the cube in space. Figure 1 shows the UI of
the 3D-AR and 3D-VR calculators. The quiz for the control group (using the
traditional 2D method) contained ten 2×2-matrix problems, while the quiz for
the experimental group (using the 3D application) contained ten 3× 3-matrix
problems. We measured participants’ task completion time and task accuracy.
After completing the quiz activity, all participants completed a usability ques-
tionnaire to evaluate their engagement, satisfaction, ease of use, efficiency, and
effectiveness. All questionnaires were completed within five minutes.

7182

Figure 3: The Matrix Transformation activity involves 10 questions requiring
participants to fill in local and global transformation matrix numbers.

3 Results

Figure 4 presents a boxplot of participants’ test scores between control (2D)
and experimental groups (3D-AR and 3D-VR). The control group had the
lowest average score (5), while the experimental groups with 3D-AR and 3D-
VR had an average score of 9 and 8, respectively. We used Welch’s test for
one-way ANOVA to compare the means of the three groups, which showed
that the p−value was less than α=0.05 (see Table 2). This suggests that there
was a significant difference between the group means between the control and
experimental groups. To further examine the differences, we used the Fisher

Table 2: Participants’ test scores between control and experimental groups.

Source DF Adj SS Adj MS F-Value p-Value
Groups 2 83.72 41.86 14.69 < 0.05
Error 27 76.95 2.85
Total 29 160.67

8 183

Figure 4: Participants’ test scores in the control (2D) and experimental groups
(3D-AR and 3D-VR). * for p < 0.05, ** for p < 0.01, n.s. for not significant.

LSD method (see Table 3) to determine which specific group means differ. The
means of the 3D-VR and 3D-AR groups were not significantly different from
each other, but both were significantly different from the 2D group.

According to the Fisher individual tests, the means of achievement scores for
both experimental groups (3D-AR and 3D-VR) were significantly different from
the control group (2D). However, there was no significant difference between
the means of 3D-VR and 3D-AR groups. Our results suggest that both the
3D-AR and 3D-VR tools tend to promise higher achievement scores.

3.1 Physical Comfort Score

The boxplot of participants’ physical comfort score between groups is shown
in Figure 5. The control group has the highest mean score of 3.40. The 3D-AR
group has a lower mean score of 1.50 compared to the control group. The 3D-
VR group has the lowest mean score of 2.20 among the three groups, with a
standard error of 0.68. We used Welch’s test for one-way ANOVA to determine
if there were significant differences among the group means. We conducted the

Table 3: The results of Fisher Individual Tests for Differences of Means.

Methods Means SE 95% CI t-Value p-Value
3DAR - 2D 3.95 0.76 (2.07, 5.82) 5.23 < 0.05
3DVR - 2D 2.90 0.76 (1.03, 4.77) 3.84 < 0.05

3DVR - 3DAR −1.05 0.76 (−2.92, 0.82) −1.39 0.36

9184

Figure 5: Participants’ physical com-
fort score between groups, with scores
of 1–7 (low–high) comfort.

Figure 6: Participants’ satisfaction of
experience score between groups, with
scores of 1–7 (low–high) satisfaction.

test and found a significant result (F = 3.99, p < 0.05), indicating differences
in the means of the groups. These findings suggest that there seems to be
a difference in the means of the physical comfort scores between the groups.
The control group has the highest mean physical comfort score, followed by
the 3D-AR group, and the 3D-VR group has the lowest mean score. However,
the analysis results suggest that participants who experienced the 3D-AR and
3D-VR calculators reported higher satisfaction scores than those who used the
traditional 2D paper-based approach. Figure 6 presents participants’ satis-
faction of experience score between groups. We conducted ANOVA analyses
to examine the satisfaction of experience scores among the different groups,
revealing a significant effect of the group variable on the satisfaction scores
(F = 11.64, p < 0.05), indicating differences in the means of the groups. Fur-
thermore, the control group’s mean satisfaction score was 2.00, with a standard
deviation of 1.05. The 3D-AR group had a mean score of 5.10, with a standard
deviation of 1.79. The 3D-VR group had a slightly lower mean score of 4.40,
with a standard deviation of 1.58. We conducted the Tukey post-hoc pairwise
comparisons to examine the differences between pairs. The results indicated
that the 3D-AR and 3D-VR groups had significantly higher mean satisfaction
scores than the control group. However, there was no significant difference
between the mean satisfaction scores of the 3D-AR and 3D-VR groups. These
findings highlight the potential of immersive technologies to enhance users’
overall satisfaction and engagement in educational settings.

10 185

4 Discussion

The results of this study provide valuable insights into the effectiveness of dif-
ferent learning tools and interfaces for understanding the relationship between
matrix transformations and their spatial relevance. The findings indicate that
the 3D-AR and 3D-VR calculators significantly impacted participants’ achieve-
ment scores compared to the traditional 2D methods. This suggests that the
immersive nature of the 3D interfaces, coupled with the calculator’s interactive
and visual elements, positively influenced participants’ learning outcomes. The
higher average test scores observed in the experimental groups using the 3D-
AR and 3D-VR calculators can be attributed to several factors. It agrees with
previous work by Singh, Tuli, & Mantri’s work that 3D representation of matrix
transformations provided a more intuitive and immersive learning experience,
allowing users to visualize and manipulate the matrices more realistically and
interactively [26]. Our VR and AR applications enhanced learners’ spatial
understanding and mental visualization of matrix transformations, which are
crucial concepts in mathematics and related fields.

The interactive nature of the 3D calculators allowed participants to actively
engage with the learning material. Our tool provides a hands-on approach to
solving matrix transformation problems, and the calculators fostered a deeper
level of understanding and application of the concepts. Unlike Kaneto & Ko-
muro’s previous work finding that participants preferred traditional implemen-
tations [10], our study shows that users preferred the VR version. This could
be because our tool’s design or problem being solved facilitated such outcomes.
The drag-and-drop functionalities, input fields, and visual feedback provided
by the calculators facilitated an iterative problem-solving process, enabling
participants to explore different transformations and evaluate their results in
real-time. It is important to highlight that the control group, which relied
on traditional 2D methods such as lecture notes and pencil-paper activities,
demonstrated the lowest average test score. This highlights the limitations
of conventional learning approaches when it comes to complex mathematical
concepts like matrix transformations. The static and abstract nature of 2D
representations may prevent learners’ ability to understand the spatial rela-
tionships and transformations inherent in matrices.

There was no significant difference in achievement scores between the 3D-
AR and 3D-VR groups. This suggests that both AR and VR interfaces can
be equally effective in facilitating learning outcomes for transformation metric
knowledge. The similarity in performance may be attributed to the shared
characteristics of both interfaces, such as their immersive nature, interactive
elements, and ability to provide realistic visualizations. Future research could
further explore the specific advantages and differences between AR and VR in
the context of mathematics education. Furthermore, the analysis of satisfac-

11186

tion of experience scores revealed significant differences between the groups.
The 3D-AR and 3D-VR groups reported significantly higher satisfaction scores
than the control group. This indicates that the immersive nature of the AR
and VR technologies positively influenced participants’ overall experience and
perception of the learning environment. The ability to interact with 3D ob-
jects and navigate virtual spaces likely created a more engaging and enjoyable
learning experience for the participants, resulting in higher satisfaction levels.

It is worth noting the comfort scores among the different approaches. The
analysis revealed that the control group had a higher mean comfort score than
the 3D-AR and 3D-VR groups. This finding raises important considerations
when evaluating the use of immersive technologies in educational settings. One
possible explanation for the higher comfort score in the 2D paper group was
the familiarity and simplicity of the traditional paper-based approach. Par-
ticipants in this group may have been more accustomed to learning through
printed materials and felt more at ease with the conventional learning method.
The absence of additional technological equipment and the physical interaction
with tangible paper materials may have contributed to a sense of comfort and
ease of use. On the other hand, the 3D-AR and 3D-VR approaches introduced
novel and immersive experiences that could potentially be more demanding or
unfamiliar to participants. Using AR and VR technologies requires headsets,
controllers, or other devices that can be cumbersome or create a sense of dis-
orientation for some individuals. This could have influenced the comfort scores
and contributed to a slightly lower perceived comfort level in the immersive
technology groups. However, the comfort scores alone do not necessarily indi-
cate the overall effectiveness or quality of the learning experience. While the
2D paper group reported higher comfort scores, the achievement and satisfac-
tion of experience scores were significantly higher in both 3D groups. This
suggests that although participants in the immersive technology groups may
have perceived a slightly lower comfort level, they still benefited from enhanced
learning outcomes and greater satisfaction with the learning experience.

5 Limitations and Future Work

While our participants represented our tool’s target demographic, we recruited
them from a university campus and surrounding communities, potentially lead-
ing to a sample that is not fully representative of the broader population. A
more diverse and randomly selected sample would enhance the study’s external
validity. Another limitation is the relatively short duration participants were
exposed to the learning materials and tools. This limited exposure may not
fully capture the long-term effects or sustainability of the observed learning
outcomes. Future studies should consider incorporating a longer intervention

12 187

period or follow-up assessments to examine the strength of the effects and in-
vestigate the potential long-term benefits of using 3D interfaces for learning
matrix transformations. In summary, while the current study provides valu-
able insights into the effectiveness of 3D interfaces for learning matrix trans-
formations, future research needs to address some limitations. By expanding
the sample size, extending the intervention duration, incorporating qualitative
measures, and exploring new research directions (e.g., training educators to use
AR/VR tools to teach course materials [14]), researchers can further enhance
our understanding of the potential and limitations of immersive technologies
in education. Experience with long-term use of AR/VR devices may impact
the results, even with higher experience scores. With continuing improvements
to AR/VR technologies that provide extremely lightweight glasses with head-
tracking technologies (e.g., Nreal Light [23]), replicating this study in the future
may provide insights into the importance of comfort in learning tasks.

6 Conclusion

This study investigated the effectiveness of different learning tools and inter-
faces on engagement, usability, and learning outcomes for matrix transforma-
tion knowledge. The analysis of the participants’ test scores revealed significant
differences among the group means. The control group, utilizing traditional
2D methods, exhibited the lowest average test score. In contrast, the experi-
mental groups using the 3D-AR and 3D-VR calculators demonstrated higher
average scores. Further examination shows that both the 3D-AR and 3D-
VR tools significantly outperformed the traditional 2D methods in terms of
achievement scores. However, there was no significant difference between the
3D-AR and 3D-VR groups, indicating that both interfaces were equally ef-
fective in facilitating learning outcomes for matrix transformation knowledge.
The study supports the hypothesis that the average test and usability scores
across modalities are significantly different. Using 3D-AR and 3D-VR cal-
culators resulted in higher achievement scores than traditional 2D methods.
These results highlight the potential of immersive technologies in enhancing
learning outcomes and engagement in the context of matrix transformation
knowledge. In conclusion, this study’s findings underscore the potential of im-
mersive technologies, specifically 3D interfaces, to enhance learning outcomes
and engagement in mathematics education. The results provide empirical ev-
idence supporting integrating such tools into educational settings to promote
a deeper understanding and application of mathematical concepts. By lever-
aging the advantages of 3D visualization, interactivity, and real-time feedback,
educators can create more engaging and effective learning environments, par-
ticularly in subjects that involve spatial reasoning and visual representations.

13188

7 Acknowledgements

This work was supported in part by the Google Research Scholar Program. Any
opinions, findings, conclusions, or recommendations are those of the authors
and do not necessarily reflect the views of Google Research or other parties.

References

[1] K. Anjyo and H. Ochiai. Mathematical basics of motion and deformation in
computer graphics. Springer Nature, 2022.

[2] C. Brown and B. Jones. Matrix transformations in biomechanics: A comprehen-
sive review. Journal of Biomechanics, 45(2):89–104, 2018.

[3] M. Chen. Virtual reality in education: A review of the research. Journal of
Educational Technology & Society, 23(4):133–148, 2020.

[4] W. Chen and L. Wang. Matrix transformations in computer graphics: Tech-
niques and applications. ACM Transactions on Graphics, 36(4):67–89, 2017.

[5] R. Davidson and S. Lee. Teaching matrix transformations: Challenges and
opportunities. Mathematics Education Research Journal, 27(2):165–182, 2015.

[6] J. Dibbern and A. Arvanitis. Augmented reality in education: Current tech-
nologies and the potential for education. In Handbook of Research on Immersive
Digital Learning Environments, pages 170–186. IGI Global, 2019.

[7] J. Dick and M. Childrey. Enhancing understanding of transformation matrices.
The Mathematics Teacher, 105(8):622–626, 2012.

[8] W. Hwang and S. Chang. Enhancing spatial cognition through ar tools in design
education. International Journal of Architectural Research, 12(2):124–139, 2018.

[9] L. Johnson, R. Smith, H. Willis, A. Levine, and K. Haywood. NMC/CoSN
Horizon Report, 2019.

[10] Y. Kaneto and T. Komuro. Space-sharing ar interaction on multiple mobile
devices with a depth camera. In VR, pages 197–198, 2016.

[11] A. Khan, I. Mordatch, G. Fitzmaurice, J. Matejka, and G. Kurtenbach.
Viewcube: a 3D orientation indicator and controller. In I3D, pages 17–25, 2008.

[12] S. Kim and J. Lee. The impact of virtual reality on learning matrix transforma-
tions. International Journal of Educational Technology, 23(4):123–145, 2019.

[13] M.J. Lee, A. Spryszynski, and E. Nersesian. Personalizing VR educational tools
for English language learners. In IUI Workshops, volume 19. ACM, 2019.

[14] E. Nersesian, A. Spryszynski, T. Espiritu, and M.J. Lee. Pre-college computer
science initiative for augmented and virtual reality development. In ISEC, pages
1–7. IEEE, 2020.

[15] E. Nersesian, A. Spryszynski, and M.J. Lee. Integration of virtual reality in
secondary stem education. In ISEC, pages 83–90. IEEE, 2019.

14 189

[16] E. Nersesian, A. Spryszynski, J. Ross, and M.J. Lee. Usability evaluation on
artifact affordances in collaborative virtual reality. In ISEC, pages 83–90. IEEE,
2019.

[17] E. Nersesian, A. Spryszynski, U. Thompson, and M.J. Lee. Encompassing En-
glish language learners in virtual reality. In AIVR, pages 200–203. IEEE, 2018.

[18] E. Nersesian, M. Vinnikov, and M.J. Lee. Travel kinematics in virtual reality
increases learning efficiency. In VL/HCC, pages 1–5. IEEE, 2021.

[19] E. Nersesian, M. Vinnikov, J. Ross-Nersesian, A. Spryszynski, and M.J. Lee.
Middle school students learn binary counting using virtual reality. In ISEC,
pages 1–8. IEEE, 2020.

[20] R. Patel and A. Gupta. Augmented reality as a tool for enhancing understanding
of matrix transformations. International Journal of Computer Science Educa-
tion, 12(2):87–102, 2018.

[21] E.L. Pier, C. Walkington, V. Clinton, R. Boncoddo, C. Williams-Pierce, M.W.
Alibali, and M.J. Nathan. Embodied truths: How dynamic gestures and speech
contribute to mathematical proof practices. Contemporary Educational Psychol-
ogy, 58:44–57, 2019.

[22] L. Pérez, E. Diez, R. Usamentiaga, and D.F. García. Industrial robot control
and operator training using virtual reality interfaces. Computers in Industry,
109:114–120, 2019.

[23] A. Robertson. Nreal light review: almost a look at the future of AR glasses,
2022. Accessed on January 22, 2024.

[24] M. Schwartz and J. Lee. Buildable transforms for axis manipulation in 3D
applications. In HCIK, 01 2016.

[25] M. Seymour. VR simulations for surgical training. Medical Education, 53(8):654–
668, 2019.

[26] G. Singh, N. Tuli, and A. Mantri. Augmented reality based application for
linear algebra visualization: Development of interactive learning environment.
In ICACITE, pages 1400–1404, 2022.

[27] J. Smith and A. Johnson. Applications of matrix transformations in robotics.
Robotics Journal, 10(3):45–57, 2019.

[28] L. Williams. Exploring the potential of virtual reality in teaching matrix trans-
formations. Journal of Educational Technology, 35(3):167–182, 2020.

[29] B. Zhang. Enhancing spatial reasoning in biology education through AR. Edu-
cational Technology Research, 32(4):78–92, 2019.

[30] Y. Zhang and W. Huang. Virtual reality technology and its applications in
education. In International Conference on Education, Management, Information
and Management Society, pages 373–378. ACM, 2021.

15190

An Ontology for Social Determinants of
Education (SDoEd) based on Human-AI

Collaborative Approach∗

Navya Martin Kollapally1, James Geller2,
Patricia Morreale1, Daehan Kwak1

1Kean University
Union, NJ 07083

2New Jersey Institute of Technology
Newark, NJ 07102

{nmartink, pmorreal, dkwak}@kean.edu, james.geller@njit.edu

Abstract

The use of computational ontologies is well-established in the field of
Medical Informatics. The topic of Social Determinants of Health (SDoH)
has also received extensive attention. Work at the intersection of ontolo-
gies and SDoH has been published. However, a standardized framework
for Social Determinants of Education (SDoEd) is lacking. In this paper,
we are closing the gap by introducing an SDoEd ontology for creating a
precise conceptualization of the interplay between life circumstances of
students and their possible educational achievements. The ontology was
developed utilizing suggestions from ChatGPT-3.5-010422 and validated
using peer-reviewed research articles. The first version of developed on-
tology was evaluated by human experts in the field of education and
validated using standard ontology evaluation software. This version of
the SDoEd ontology contains 231 domain concepts, 10 object properties,
and 24 data properties.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 191

1 Introduction

According to the US Department of Health and Human Services (HHS), So-
cial Determinants of Health (SDoH) [18] are the conditions in the environment
where people are born, live, learn, work, play, and age that affect the quality-
of-life outcomes and risks. Education, health, and well-being are intrinsically
interconnected. Education profoundly impacts individuals’ lives, playing a
crucial role in alleviating poverty and diminishing socioeconomic and politi-
cal disparities. According to a study by the Centers for Disease Control and
Prevention [7], high school students who demonstrated higher academic per-
formance showed a greater tendency towards better health-related behaviors
and a notably lower prevalence of health-related risk behaviors when compared
to students who exhibited poor academic performance. In analogy to SDoH,
these factors have variously been referred to as Social Determinants of Educa-
tion (SDoEd) or simply SDE [3], e.g., lack of access to a high-speed internet
connection.

Given the significant influence of education on individuals’ lives and its role
in addressing poverty and reducing inequalities, it is important to establish
an ontology in this domain. It can serve as a comprehensive framework for
organizing and representing knowledge related to education and its impact on
society. By capturing the relationships, concepts, and interdependencies within
the educational landscape, an ontology can facilitate better understanding,
analysis, and decision-making.

Computationally, an ontology is a hierarchical structure of concepts, where
pairs of concepts are connected by IS-A (generalization) links and semantic
links. Concepts may also have their own local attributes. In a diagram, an
ontology appears as a nodes-and-links graph. Refer to Figure 2 in the Results
Section for an intuition of such a diagram. Bubbles represent concepts, and
arrows are IS-A links. General concepts are at the left, and specific concepts
are at the right. Notably, some of these determining factors might be circular
and mutually reinforcing. For example, bad health will lead to poor school
attendance, which could in turn lead to not learning about a healthy lifestyle
or not being able to get into college, perpetuating social issues associated with
low income and low living standards, closing the cycle by not being able to
afford good healthcare.

The risk factors of SDoEd are not restricted to racial and ethnic minori-
ties as they are often income-based, but these populations are at a higher risk
compared to their white peers. The research goal of this work is to present an
ontology for Social Determinants of Education (SDoEd). A human-AI collabo-
rative approach to concept collection using ChatGPT-3.5-010422 was utilized.
Along with the design and development of the ontology, the human expert and
software-based evaluation criterion for ensuring consistency and coherence of

2192

the ontology are presented in this work.

2 Background

An existing framework for Determinants of Education/Learning involves ask-
ing nine inter-dependent questions related to education; the answers to these
questions will produce the concepts for School Health Education (SHE) [7].
To create a comprehensive ontology, it is crucial to compile an extensive list
of terms and concepts that cover the domain under consideration. When en-
riching a domain ontology, developers may rely on research articles to gather
concepts that expand the ontology’s scope and coverage. However, despite a
thorough search, the tasks of gathering all relevant concepts and ensuring the
ontology’s comprehensiveness were challenging. To address this issue, we uti-
lized a Generative Pretrained Transformer (GPT), a language model trained on
extensive text datasets. OpenAI’s ChatGPT [19], built on the GPT-3.5/4/4o,
is a chatbot that utilizes supervised and reinforcement learning techniques to
generate human-like responses to natural language prompts and was trained
on licensed and publicly available data through 2023.

Rather than relying solely on the concept choices suggested by ChatGPT-
3.5-010422, we ensured the validity of the concepts and their relationships
by cross-referencing them with published articles from reputable sources such
as PubMed Central (PMC) [16], International Journal of Education Research
(IJER) [21], and American Educational Research Association (AERA) [6].

3 Methods

We utilized the ontology principles stated by Noy [17] for developing the ontol-
ogy for SDoEd. Furthermore, we have used the design and evaluation criteria
as used in [8, 10, 11].

3.1 Domain and scope of ontology

The scope of Social Determinants of Education (SDoEd) encompasses a wide
range of factors that impact student engagement in education and substantiate
the existence of an achievement gap. As defined by the American Board of
Education, the achievement gap occurs when there is a statistically significant
disparity in average scores between different groups of students [5], typically
categorized by race/ethnicity or gender. These factors can be influenced by a
variety of elements, including political, economic, cultural, and societal factors.

3 193

3.2 Enumerate important concepts for developing SDoEd

We retrieved articles and reports available from trustworthy sources by per-
forming a keyword-based search on the web. These sources utilized terms such
as “social determinants of education,” “role of education in SDoH,” “educational
disparities,” “reasons for achievement gap in education,” and “determinants of
learning.” By analyzing the results, the main categories of SDoEd were iden-
tified to achieve comprehensive coverage of relevant domain concepts.

To confirm coverage in terms of concepts and to address any potential gaps,
we then utilized ChatGPT-3.5-010422. We used specific prompts such as “Main
categories of Social Determinants of Education,” “Sub-concepts related to Eco-
nomic stability that contribute to the achievement gap,” “Child concepts as-
sociated with Parental factors influencing educational determinants,” “Is there
an IS-A relationship between factors affecting health and well-being and the
parent concept of Social Determinants of Education,” and “Does cyberbully-
ing fall under the child concept of technology integration?” These prompts
helped us to find more candidate concepts and to clarify the relationships and
classifications within the broader context of SDoEd.

Before adding each of the concepts under a main category of the ontology,
we validated the IS-A relationships by searching for articles in PMC within the
range of 2018-2023, in the IJER, and on the websites of the AERA and the
Department of Education. We utilized the advanced query feature of PMC to
validate the concept pairs suggested by ChatGPT-3.5-010422.

During the validation of concept pairs from ChatGPT-3.5-010422 in the rel-
evant sources, we encountered new concepts that were not in the output lists
from ChatGPT-3.5-010422. Hence in addition to forward validation, i.e., vali-
dating concept pairs extracted from ChatGPT-3.5-010422 utilizing the target
sources, we also performed backward validation, i.e., extracting concept pairs
from target sources and validating them using ChatGPT-3.5-010422. Figure
1 represents the forward validation in which ChatGPT-3.5-010422 states that
“availability of after-school programs” is a child concept of “availability of edu-
cational resources.”

To validate this concept pair, we used the prompt “how availability of after-
school program and educational resources affect social determinants of educa-
tion” in PMC, IJER, the AERA, and the Department of Education websites.
After identifying relevant articles, a concept pair (parent-child concept pair) is
either accepted into the SDoEd ontology or rejected. For backward validation
while performing a manual review of relevant articles from target sources, new
concept pairs may be identified. These concept pairs will be framed as two con-
cepts connected by an IS-A relationship as shown in Figure 1. We prompted
ChatGPT with text corresponding to “Does this RDF triple share a valid IS-A
relationship?” (RDF is the Semantic Web Resource Description Framework.)

4194

Figure 1: Visualization of forward and backward validation.

3.3 Concept Categorization

After the initial step of concept extraction from ChatGPT-3.5-010422, scholarly
articles, and government educational websites, we placed the concepts under
six main categories. They are:

a) Cultural factors: This parent concept includes child concepts that sig-
nificantly shape the educational environment and practices within a par-
ticular community or society [12]. They can influence how education is
valued, the expectations placed on students, the teaching and learning
methods employed, and the overall educational goals and priorities.

b) Economic factors affecting education: This category includes concepts re-
ferring to the financial resources and socio-economic conditions that play
a significant role in shaping educational opportunities and outcomes [20].
These factors encompass aspects such as funding and resource allocation,
socioeconomic disparities, and access to educational resources.

c) Factors influencing health and well-being: The sub-concepts under this
main concept encompass a range of elements that impact the physical,
mental, and emotional well-being of individuals, which in turn can affect
their educational experiences and outcomes.

d) Institutional factors influencing education: Institutional factors encom-
pass the policies, structures, and organizations within the education sys-
tem that directly or indirectly impact educational outcomes [1].

e) Neighborhood factors influencing education: Neighborhood factors com-
prise the characteristics and conditions of the local community that sur-
rounds a school, which can significantly influence educational opportuni-
ties [15].

f) Parental factors: Parental factors refer to the influences, actions, and
characteristics of parents or guardians that significantly impact educa-
tional opportunities and outcomes for children [2]. Parental factors play

5 195

a crucial role in shaping children’s educational experiences, motivation,
and academic achievements, as parents serve as primary caregivers and
key influencers in their children’s educational journey.

3.4 Developing an SDoEd Ontology

To implement the SDoEd ontology, we utilized Protégé 5.5, an open-source
ontology editor by Stanford University [14]. The SDoEd ontology was devel-
oped as a Web Ontology Language (OWL) file. Protégé refers to “concepts” as
“classes,” and allows adding properties (attributes) and relationships between
the classes. The class “Thing” is predefined in Protégé and is used as the root
of every ontology created with it. Protégé enables users to edit ontologies in
OWL and use a HermiT reasoner to validate the consistency and coherence of
the developed ontologies.

3.5 Software-based SDoEd Ontology Evaluation

We performed consistency checking in Protégé by utilizing HermiT [4] Version
1.4.3.456. The HermiT reasoner is based on hyper tableau calculus, which
allows it to avoid nondeterministic behaviour exhibited by the tableau calculus
that is utilized in FaCT++ [23] and Pellet [22]. Nondeterministic behaviour
arises when tableau calculus may have to make arbitrary choices that can lead
to inefficiency, and this is avoided by structuring the reasoner process as in
hyper tableau calculus.

3.6 Human Expert SDoEd Ontology Evaluation

The main goal of the evaluation of an ontology is to make sure that it is con-
sistent, accurate, and maintains a high level of adaptability and clarity. After
evaluating the SDoEd ontology with HermiT for consistency and coherence,
we involved two human expert evaluators with extensive experience in the field
of education. To understand the percentage agreement between the two eval-
uators, we utilized Cohen’s kappa coefficient (κ). κ is an alternative when
the overall accuracy is biased to understand the level of agreement between
two evaluators. Both human evaluators (P1 and P2) were provided with the
same spreadsheet of 100 randomly selected concept pairs. Among the 100 con-
cept pairs, we provided 10 concept pairs as training samples to present the
flavor of the ontology and 90 concept pairs that needed to be evaluated. The
spreadsheet contained three kinds of concept pairs: pairs related by IS-A, pairs
related as ancestor/grandparent-child, and pairs that were not hierarchically
related. P1 and P2 were aware of the fact that the spreadsheet contained these

6196

three kinds of concept pairs. Table 1 provides examples of the concept pairs
included in the spreadsheet.

Table 1: A snippet of the concept pairs provided to the human expert.

The 10 samples provided to the evaluators included five of the ‘Child’ fields
filled with ‘No’ and corresponding reasons were provided in ‘Reason if unre-
lated,’ three of the ‘Child’ fields filled with ‘Yes,’ and two of the ‘Farther away’
fields with Yes. For each pair, the fourth column (‘Child?’ in Table 1) had to
be filled in with ‘Yes,’ if the evaluator felt that the concepts were connected by
a parent-child (IS-A) relationship, and ‘No,’ otherwise. If the answer was ‘No,’
they were asked to fill in the reason in the column ‘Reason if unrelated.’ These
reasons provided us with directions on how to make improvements to the design
of the ontology. The evaluators were asked to fill in the ‘Farther away’ column
with ‘Yes,’ whenever they felt that the concepts were related by a grandparent
or ancestor relationship, i.e., a chain of IS-As. The evaluators were also asked
to give reasons in this case. P1 and P2 independently reviewed the pairs, and
we used an online κ calculator [13] to identify the level of agreement.

A κ > 0.4 is considered as moderate agreement, κ > 0.6 indicates substantial
agreement, and κ = 1 means perfect agreement.

7 197

4 Results

We could not locate any preexisting domain ontology specific to SDoEd. This
supports the need for our research work. We also used Protégé for evaluation
(HermiT). The class metrics returned by Protégé/HermiT are in Table 2.

Table 2: Class metrics from Protégé.

Our SDoEd ontology, developed in Protégé, is available as an OWL file
in GitHub [9]. In Figure 2 is a snippet of the ontology, visualized using the
OWLViz plugin of Protégé.

Figure 2: Snippet from OWLViz visualization of SDoEd ontology.

The SDoEd ontology is coherent and consistent as per the HermiT reasoner,
also available as a plug-in in Protégé. The confusion matrix for evaluators is
given in Table 3, and a κ value of 0.6345 was obtained in the first round

8198

of evaluation. This indicates a substantial agreement (83.389%), hence no
mitigation plan and no second round were necessary. The κ value represented
that the experts were in “substantial agreement” about the domain coverage
of the designed ontology. For concept extraction and backward validation,
a total of 72 prompts were posed to ChatGPT-3.5-010422. These prompts
encompassed a wide range of topics and concepts to ensure comprehensive
coverage. The extracted concepts were then validated to ensure accuracy and
relevance in the given context.

Table 3: Confusion matrix of evaluator 1 and evaluator 2.

Figure 3 shows the six main categories and few of direct subcategories
of the SDoEd ontology, full view in the GitHub repository [9]. Even though
details are hard to see in the figure, it provides an overall “Gestalt” of the
ontology.

9 199

Figure 3: Six main categories and few of direct subcategories of SDoEd ontol-
ogy.

5 Conclusions

The ontology for Social Determinants of Education holds significant potential in
enhancing our understanding of the complex interplay between education and
various socio-environmental factors, including health. By creating a compre-
hensive framework that captures the concepts, relationships, and dependencies
within this domain, the ontology can serve as a tool for organizing and repre-
senting knowledge related to educational disparities, poverty alleviation, and
reducing inequalities. This research contributes to the broader goal of leverag-
ing data-driven and intelligent systems to enhance educational outcomes and
promote equity considering pressing challenges, such as the recognition of struc-
tural racism. This prototype of the SDoEd ontology contains 231 concepts, 10
object properties, and 24 data properties. It is available in the GitHub repos-
itory [9].

6 Limitations and Future Work

To facilitate the utilization of the Social Determinants of Education ontology
in natural language processing (NLP) tasks, we plan to annotate the ontology
using CURIES IDs, which are shortened, standardized references that simplify
concept identification. This will enhance the accessibility and interoperability
of the ontology. Additionally, to enhance the richness of relationships within

10200

the SDoEd ontology, more contextual information will be incorporated. The
authors also plan to explore various prompt engineering techniques and train
an LLM for supporting ontology development.

Acknowledgments

During the final editing of several sections of this paper, ChatGPT was used
to check for grammar and expression errors. No changes of the content were
performed by it.

References

[1] C. Akenbor. “Institutional Factors Influencing the Academic Performance
of Students”. In: International Journal of Higher Education Management
(IJHEM) 1 (Aug. 2014), p. 15.

[2] M. Ðurišić and M. Bunijevac. “Parental Involvement as a Important Fac-
tor for Successful Education”. In: Center for Educational Policy Studies
Journal 7 (Sept. 2017), pp. 137–153. doi: 10.26529/cepsj.291.

[3] K. Fortes et al. “The influence of social determinants of education on
nursing student persistence and professional values”. In: J Prof Nurs 39
(Mar. 2022), pp. 41–53. doi: 10.1016/j.profnurs.2021.11.011.

[4] B. Glimm et al. “Hermit: An Owl 2 Reasoner”. In: Journal of Automated
Reasoning 53 (Oct. 2014). doi: 10.1007/s10817-014-9305-1.

[5] N. A. Harris and L. E. Eberman. “Board of Certification Examination
Achievement Gaps as a Barrier to Diversifying the Athletic Training Pro-
fession”. In: J Athl Train 58.1 (Jan. 2023), pp. 1–8. doi: 10.4085/1062-
6050-0483.21.

[6] M. S. Knapp. American Educational Research Association. Online. 2003.
url: https://www.aera.net.

[7] L. J. Kolbe. “The Future of School Health Education in the United States:
An Ontology”. In: J Sch Health 94.7 (July 2024), pp. 661–673. doi: 10.
1111/josh.13436.

[8] N. Kollapally, Y. Chen, and J. Geller. “Health Ontology for Minority
Equity (HOME)”. In: 13th International Conference on Knowledge En-
gineering and Ontology. 2021.

[9] N. M. Kollapally. GitHub Repo. Online. 2024. url: https://github.
com / navya777 / Social - Determinants - of - Education - Ontology /
tree/main.

11 201

[10] N. M. Kollapally et al. “An Ontology for the Social Determinants of
Health Domain”. In: 2022 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM). 2022, pp. 2403–2410.

[11] N. M. Kollapally et al. “Integrating Commercial and Social Determinants
of Health: A Unified Ontology for Non-Clinical Determinants of Health”.
In: AMIA Annu Symp Proc 2023 (2023), pp. 446–455.

[12] A. S. Latif. “The Importance of Understanding Social and Cultural Norms
in Delivering Quality Health Care-A Personal Experience Commentary”.
In: Trop Med Infect Dis 5.1 (Feb. 2020). doi: 10.3390/tropicalmed5010022.

[13] M. L. McHugh. “Interrater reliability: the kappa statistic”. In: Biochem
Med (Zagreb) 22.3 (2012), pp. 276–282.

[14] M. A. Musen. “The protégé project: a look back and a look forward”. In:
AI Matters 1.4 (2015), pp. 4–12. doi: 10.1145/2757001.2757003.

[15] J. Nieuwenhuis and P. Hooimeijer. “The association between neighbour-
hoods and educational achievement, a systematic review and meta-analysis”.
In: OTB Working Papers 2014 (Nov. 2014). doi: 10.1007/s10901-015-
9460-7.

[16] NIH. PubMED Central. Online. url: https://www.ncbi.nlm.nih.gov/
pmc/.

[17] N. Noy. Ontology Development 101: A Guide to Creating Your First On-
tology. 2001.

[18] OASH. Social Determinants of Health. Accessed 2024. url: https://
health.gov/healthypeople/priority-areas/social-determinants-
health.

[19] OpenAI. ChatGPT. Accessed July, 2024. url: https://openai.com/
chatgpt/.

[20] Y. Qiu and P. Ye. “The influence of family socio-economic status on
learning engagement of college students majoring in preschool education:
The mediating role of parental autonomy support and the moderating
effect of psychological capital”. In: Front Psychol 13 (2022), p. 1081608.
doi: 10.3389/fpsyg.2022.1081608.

[21] ScienceDirect. International Journal of Educational Research. Online.
url: https://www.sciencedirect.com/journal/international-
journal-of-educational-research.

[22] E. Sirin et al. “Pellet: A practical OWL-DL reasoner”. In: Journal of Web
Semantics 5.2 (June 2007), pp. 51–53. doi: 10.1016/j.websem.2007.
03.004.

12202

[23] D. Tsarkov. FaCT++ reasoner. Accessed 2024. url: http://owl.cs.
manchester.ac.uk/tools/fact/.

13 203

Enabling Blind and Low-Vision (BLV)
Developers with LLM-driven Code Debugging∗

Clark Saben, Jessica Zeitz and Prashant Chandrasekar
University of Mary Washington

Fredericksburg, VA, 22401
csaben@mail.umw.edu, jzeitz@umw.edu, pchandra@umw.edu

Abstract

BLVRUN is a command line shell script designed to offer developers
within the blind and low-vision (BLV) community a succinct and insight-
ful overview of traceback errors. Its primary function involves parsing
errors and utilizing a refined large language model to generate informa-
tive error summaries. In terms of performance, our model rivals that of
well-known models like ChatGPT or AI-chatbot plug-ins tailored for spe-
cific Integrated Development Environments (IDEs). Importantly, BLV
users can seamlessly integrate this tool into their existing development
workflows, eliminating the need for any modifications or adaptations to
facilitate debugging tasks.

1 Introduction

Code debugging is one of the five main programming tasks or challenges that
developers undertake while building programs or softwares [6]. Whether one is
new to coding, or an experienced coder, one comes across the situation where
their code, or the code they’re working with, causes an error. We are specifi-
cally describing a situation where executing the code produces an explicit error.
Our research does not address the scenario of unintended behavior where no
error is produced on the screen. These “traceback” errors are unstructured

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1204

text that is often verbose and difficult to comprehend. While the intention
is to communicate as much information as possible, the source of the error,
and the understanding of it, can only be discovered by putting together infor-
mation from interpreting one or two key sentences. Developers of the blind
and low vision (BLV) community are forced to process the lengthy error trace
sequentially.

This process can be time-consuming as it extends the time and effort to-
wards debugging and, thereby, writing correct code. BLVRUN is a shell script
that runs in the background of any command prompt on any operating system.
Once installed, it takes in error trace and summarizes it using a machine learn-
ing model that has been fine-tuned on the widely used Python bug dataset,
PyTraceBugs [1]. The BLV programmer (user) is then presented only with
a concise and insightful summary of the error trace. While code summariza-
tion or code description through machine learning is not new, our solution
focuses on maintaining the current workflow of BLV programmers who use
text buffers, printf-styled debugging methods, and command line. By using
BLVRUN, BLV programmers do not need to make any change to their current
workflow. Neither would they have to worry about committing to a “tool” and
keep up with the tool or plug-in’s documentation and development lifecycle.
From their point-of-view, when a buggy program is executed, a summarized
error is produced. This will greatly reduce the time it takes for BLV program-
mers to assess an error, thereby reducing, if not removing, the frustrations that
BLV programmers would otherwise experience. For BLV programmers in the
early stages of learning the art, this would be hugely impactful.

2 Related Work

This research effort is informed by two specific (sub-)areas of literature. The
first area focuses on code debugging challenges. Code Debugging is listed as
one of the primary programming tasks and/or challenges that programmers
undergo in their development process [6]. Debuggers are primarily used for ei-
ther: (a) analyzing runtime behavior, or (b) finding logical errors in code. Our
research specifically addresses BLV developers who deal with (b). Debugging
or, more specifically, the process of finding errors in code is heavily supported
in IDEs. There are numerous reasons why current debugging tools or plug-
ins are challenging to use for BLV developers. Firstly, use of debugging tools
or plugins within IDEs require understanding of the spatial layout of IDEs.
The functionality of the debugging tool is built without consideration of screen
reader interpretation, leading to incompatibility between the two [2, 3, 9, 13].
Visual aids such as Syntax Highlighting or Syntax Error cues like squiggles,
that assist in code debugging and possibly navigation, is challenging for pro-

2 205

grammers with visual impairments, especially when compared against sighted
programmers [7, 9]. This results in BLV developers leaning on text editors
instead of IDEs, employing “printf” debugging instead, and editing code using
text buffers [2, 5]. These “workarounds” imply the requirement or use of the
command-line interface in conjunction [8, 11]. This brings us to our second
context or area of our research. Harini et. al highlight the lack of understand-
ing of accessibility of CLIs [11]. One of the main findings of their work was the
inaccessibility of scrolling a terminal with screen readers. Scrolling is extremely
pertinent in the context of debugging. Not even considering the outcome of
“printf debugging”, scrolling through traceback errors is a challenge. We calcu-
lated the some metrics on a large Python software defect dataset. The median
number of sentences per error, among 3864 errors, was around 26. The median
number of words per error was 76. Which is why they recommended that (a)
long output of unstructured text is converted into an accessible format, and
(b) error messages be easier to comprehend.

The primary intent of this research is to aid BLV developers in their de-
bugging efforts by improving the accessibility of CLI output. In the following
sections we describe the design of our solution and report on its performance.

3 Solution

3.1 Approach

BLVRUN, our innovative CLI application, is designed to simplify the debugging
process by providing concise summaries of traceback errors. It is built on a
two-pronged approach:

1. A Rust-written shell application that operates in the background, mon-
itoring the output of Python code executions. This script is adept at
capturing the often unstructured and verbose text generated from trace-
back errors.

2. A fine-tuned 7 billion parameter CodeLlama model [10]. This model is
specifically trained on traceback data, ensuring that even with reduced
precision, it maintains robust performance on traceback summarization,
even if its efficiency in other tasks diminishes.

LLMs are typically slow in generating text on standard consumer-grade
hardware. To counter this, we have optimized BLVRUN by reducing the pre-
cision of the model’s parameters. While this makes text generation faster
compared to using full precision, it’s still not rapid enough for an optimal
user experience. To further address this, BLVRUN is configured to load the
precision-reduced model upon startup. Consequently, every time an error is

3206

Figure 1: Architecture and Development Components of BLVRUN. Starting
from the left, a BLV programmer, who using CLI and text buffers executes
their Python code. When an error is produced, BLVRUN’s script captures the
verbose and unstructured text and only presents the user with a concise and
accurate description of the error. This is possible because BLVRUN’s model is
fine-tuned using a dataset we created from PyTraceBugs. Finally, BLVRUN is
optimized to run on any machine, thereby not requiring BLV programmers to
depends on IDEs and/or switch contexts with ChatGPT-like solutions.

emitted in the terminal, BLVRUN swiftly captures the traceback information
and consults the model for a summary.

This setup ensures that users do not need to adopt any new practices,
gain additional knowledge, switch contexts, or acquire new hardware to better
understand their code errors. In the subsequent (sub-)sections we delve into
the details of BLVRUN’s development. This is also shown in Figure 1.

3.2 Dataset

The dataset enhancing BLVRUN’s model performance is PyTraceBugs [1].
This dataset includes training and evaluation data with 14,118 and 56 errors,
respectively. The PyTraceBugs dataset offers a broad spectrum of traceback
types. This is beneficial for model generalization and, therefore, user support.
There are 555 unique error types across the dataset. However, the occurrence
per error type is extremely sparse. Additionaly, we filter both training and test
sets for the keyword "Traceback," focusing on this aspect in our model. We
wanted to ensure that our evaluation of our model was rigorous. Therefore,
we only fine-tuned and tested our model on certain categories of errors that

4 207

were most commonly occurring in both the training set and the test set. These
traceback errors include; TypeError, ValueError, AttributeError, IndexError,
NameError, RuntimeError, and KeyError. Specifics about these errors in the
dataset can be found at [1].

3.3 Fine-Tuning

Fine-tuning is a technique where we take a model that has already been
trained on a general task and then continue training it on data specific to a
particular domain. This process often results in the model performing better
on the new, specific task. In the case of BLVRUN, the base model is provided
by Meta and is known as CodeLlama [10]. Originally trained on Python code,
CodeLlama serves as an advanced development assistant, generating Python
code based on the context provided.

CodeLlama operates by taking the given code and predicting the next se-
quence of tokens, which are essentially bits of Python code. Meta has released
several versions of the CodeLlama model, each differing in the amount of com-
putational power and memory required. This variance is due to the number
of parameters in each model. Parameters, the values in each layer of the neu-
ral network, are crucial in the process of output generation. The CodeLlama
models come in different sizes, namely 7 billion, 13 billion, and 34 billion pa-
rameters, with larger models typically showing better performance.

The fine-tuning process itself is done using QLoRA [4]. QLoRA is an ad-
vanced technique designed to make training large AI models, like the one in
BLVRUN, more manageable on regular computers. Training such extensive
models typically requires substantial computing power, but QLoRA reduces
this need by cleverly minimizing memory usage. At its core, QLoRA specializes
in fine-tuning large models (with billions of parameters) while still maintaining
high-quality performance. Think of it like precisely adjusting a complex ma-
chine to improve its efficiency. In the context of AI, it involves refining certain
model components to enhance its task-specific effectiveness. A standout fea-
ture of QLoRA is its use of a novel data type called 4-bit NormalFloat (NF4).
This data type is theoretically optimal for handling weights in the model that
follow a normal distribution, a common scenario in AI model data. Essentially,
it’s akin to finding an incredibly efficient way of packing data into a smaller
space without losing the essence of the information. These high-performance
models offer a progressive approach to handling complex tasks. For instance,
we use the larger parameter model to process a subset of the errors in the
training set to generated our training data of “<error, summary>” pairs.

To build BLVRUN, we use the 7 billion parameter CodeLlama as the base
model. We fine-tune the base model using the dataset generated from Py-
TraceBugs, in combination with the 13 billion parameter CodeLlama model

5208

(as mentioned previously). This approach helps BLVRUN to better under-
stand and handle Python traceback errors, which are critical in debugging and
development processes

3.4 Reducing precision

A common practice in deploying Large Language Models (LLMs) involves
reducing the model’s precision beforehand. This process is known as quantiza-
tion. Reducing precision refers to storing fewer digits after the decimal point
for each parameter in the model. The lower the precision, the smaller the
model, thereby increasing the speed at which it can generate summaries. How-
ever, this approach entails a performance tradeoff. As the precision decreases,
so does the model’s representation quality, which can affect its effectiveness.

By concentrating on a specific task, the model is expected to maintain
acceptable performance levels in that area, despite a potential drop in its overall
capabilities.

The process begins by applying QLoRA. After the QLoRA fine-tuning, a
specialized component called a LoRA adapter is produced. This adapter con-
tains the adjustments made to the original model, enabling it to perform well
on specific tasks despite the reduced precision. The LoRA adapter is then
converted to match the format of the original model, ensuring compatibility.
Subsequently, the base model and the LoRA adapter are merged. This com-
bined model is further quantized to what is termed Q2K, where on average,
each parameter is represented by approximately 2 bits. This extreme level of
quantization greatly reduces the model’s size from 12.55GB to just 2.83GB,
making it more manageable for deployment in applications like BLVRUN.

As described further in the Evaluation section, the Q2K quantization achieves
significant performance gains, especially when compared to a model that is sim-
ply quantized to 2 bits without the benefit of our QLoRA fine-tuning.

3.5 Addressing LLM Hallucinations

As noted in the literature [14], use of large language models introduces the
risk of generating text unrelated to the prompt. Whether the information is
simply unrelated or incorrect, the longer the generation the more likely a hallu-
cination is to present itself. In order to mitigate this issue, BLVRUN enforces
a strict 130 token generation limit. Tokens themselves are subword(s) deter-
mined by the tokenizer used by the underlying base model of BLVRUN[10].
The original tokenizer implementation used in [10] is used in [12]. The choice
of 130 was determined empirically and doesn’t correspond to an industry stan-
dard the authors are aware of.

6 209

3.6 User interface

Figure 2: Information Flow within BLVRUN. When blvrun sample.py is exe-
cuted in the shell, the prompt is sent to our model that is hosted on a Ollama
server. Our model produces a traceback summary that is sent back to the ter-
minal and saved in a database. BLV programmers can see previously generated
summaries using the blvrun prev -n command.

Figure 3: Example of the usefulness of BLVRUN. On the left one can see
the unstructured, and verbose, output printed to BLV programmers (without
the assistance of BLVRUN). On the right, we see the summary produced by
BLVRUN. Within the summary, we have highlighted the key takeaway of the
error, which BLVRUN presents it in a concise and, therefore, consumable man-
ner.

The user interface of BLVRUN is command-line driven, designed to assist
users in quickly understanding and acting on Python traceback errors. When
a Python script encounters an error, as seen in the right of Figure 3 executing
blvrun sample.py directs the traceback to BLVRUN, which then provides a
clear summary of the error in the terminal. Where BLVRUN really improves

7210

quality of life while coding for BLV users can be seen when compared to the er-
ror shown on the left of Figure 3. A large traceback will often verbosely list line
numbers from dependency files where each error occurs while not necessarily
making it clear where in the user’s code the issue is on a glance. BLVRUN pro-
vides an excellent workaround with allowing the model to read and summarize
where the error likely occurs.

BLVRUN allows users to revisit the last generated summary with a com-
mand such as blvrun prev -n, enabling them to retrieve the ‘n’ most recent
sentences from the summary for further review. This feature is particularly
useful for users who need to recall or further examine the details of the last
error without re-running the script. The database supporting this feature is
optimized to hold just the previous response, maintaining system efficiency by
avoiding storage of extensive historical data.

The focus of BLVRUN’s UI is on functionality and ease of use, offering
essential commands without overwhelming the user with unnecessary options
or configurations. This ensures that the user can remain focused on their
primary task—coding, while BLVRUN handles error summarization efficiently
in the background.

4 Evaluation

Figure 4: Cosine similarity scores of summaries generated by (1) base model
(with no fine-tuning or lowered precision), (2) base model (with lowered preci-
sion), (3) BLVRUN’s fine-tuned and optimized model compared against “gold
standard”

8 211

Figure 5: ROUGE-1 f-scores of summaries generated by (1) base model (with
no fine-tuning or lowered precision), (2) base model (with lowered precision),
(3) BLVRUN’s fine-tuned and optimized model compared against “gold stan-
dard”

We designed BLVRUN to run on any computer hardware in the background
of the terminal without disrupting a BLV user’s workflow. BLVRUN is only
helpful if it produces accurate summaries of long traceback errors. To evaluate
the accuracy, we compared the output produced from BLVRUN against Meta’s
largest model (13 billion parameter model). PyTrackback’s open dataset also
provides a test set to be used for evaluation. Similar to the fine-tuning pro-
cess, we employed Meta’s model to generate a labeled dataset of “<error, sum-
mary>” pairs from the test set of PyTraceback. As a result, we compared
BLVRUN’s summaries against this “gold-standard” for 23 number of errors.
We picked a subset of the errors based on the number of data points available
for each error. We used cosine similarity and ROUGE-1 to compare the two
summaries. From Figures 4 and 5, we see that our model achieved a fairly
high similarity, and high ROUGE-1 scores. Most importantly, we can see
the improvement achieved in the model performance when compared against
the baseline non-fine-tuned model and non-optimized model. We find that
BLVRUN does the best job in producing a shorter version of a lengthy trace-
back error by excluding the “noisy” text and highlighting the key insights. In
the next section we describe our plans to expand on our model capabilities and
our planned user study.

9212

5 Planned Future Work

Our current and near-future efforts are two-pronged: (1) Widen the support for
prompt message understanding: Currently, our model is fine-tuned to support
error messages that were frequently represented in the error database. Our
immediate next step is to widen the support for messages, error or otherwise,
by generating a synthetic dataset to augment the low-incidence report of these
messages. (2) Gain insight and feedback to inform future design of BLVRUN:
We are in the process of getting IRB approved for our user study. We plan
to recruit BLV participants who primarily use text editors and command line
terminals in their current development workflow. Participants in our control
group will be asked to perform tasks that involve interaction with the terminal
without support of BLVRUN. Participants in our test group will perform the
same tasks using the aid of BLVRUN. We will measure task performance,
usability of the BLVRUN interface, and self-reported impact on participants
(such as stress, fatigue, frustration, etc.). Insights from this study will further
inform the development of future AI-models and design of the interface.

6 Contributions

AI- or LLMs-centric models are reliable enough that they are increasingly be-
ing included as part of the interface for programming IDEs. Our effort has
demonstrated the feasibility of harnessing that potential and reliability into a
command line interface that is considered, through support from many stud-
ies, as being more accessible as compared to IDEs. More importantly, our
solution works on a local CPU, thereby not requiring BLV users to switch
contexts or change their current programming “workflow.” BLVRUN is cur-
rently fine-tuned and engineered to support more frequently occurring errors.
This is done to support debugging-related efforts through the command line.
We are refining our models to increase the scope of different types of program
outputs that BLVRUN can support. In our user study, we plan to examine
the the long-term impact of BLVRUN on the development process of the BLV
programmers. Any insights will naturally inform the design of our model and
future work on its interface.

References

[1] Elena N. Akimova et al. “PyTraceBugs: A Large Python Code Dataset
for Supervised Machine Learning in Software Defect Prediction”. In: 2021
28th Asia-Pacific Software Engineering Conference (APSEC). 2021, pp. 141–
151. doi: 10.1109/APSEC53868.2021.00022.

10 213

[2] Khaled Albusays and Stephanie Ludi. “Eliciting Programming Challenges
Faced by Developers with Visual Impairments: Exploratory Study”. In:
2016 IEEE/ACM Cooperative and Human Aspects of Software Engineer-
ing (CHASE). 2016, pp. 82–85. doi: 10.1145/2897586.2897616.

[3] Catherine M. Baker, Cynthia L. Bennett, and Richard E. Ladner. “Edu-
cational Experiences of Blind Programmers”. In: Proceedings of the 50th
ACM Technical Symposium on Computer Science Education. SIGCSE
’19. Minneapolis, MN, USA: Association for Computing Machinery, 2019,
pp. 759–765. isbn: 9781450358903. doi: 10.1145/3287324.3287410.
url: https://doi.org/10.1145/3287324.3287410.

[4] Tim Dettmers et al. “QLoRA: Efficient Finetuning of Quantized LLMs”.
In: arXiv preprint arXiv:2305.14314 (2023).

[5] Sean Mealin and Emerson Murphy-Hill. “An Exploratory Study of Blind
Software Developers”. In: 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 2012, pp. 71–74. doi: 10.
1109/VLHCC.2012.6344485.

[6] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. “Ad-
dressing Accessibility Barriers in Programming for People with Visual
Impairments: A Literature Review”. In: ACM Trans. Access. Comput.
15.1 (Mar. 2022). issn: 1936-7228. doi: 10.1145/3507469. url: https:
//doi.org/10.1145/3507469.

[7] Maulishree Pandey et al. “Accessibility of UI Frameworks and Libraries
for Programmers with Visual Impairments”. In: 2022 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 2022,
pp. 1–10. doi: 10.1109/VL/HCC53370.2022.9833098.

[8] Maulishree Pandey et al. “Understanding Accessibility and Collaboration
in Programming for People with Visual Impairments”. In: Proc. ACM
Hum.-Comput. Interact. 5.CSCW1 (Apr. 2021). doi: 10.1145/3449203.
url: https://doi.org/10.1145/3449203.

[9] Venkatesh Potluri et al. “CodeTalk: Improving Programming Environ-
ment Accessibility for Visually Impaired Developers”. In: Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems. CHI
’18. Montreal QC, Canada: Association for Computing Machinery, 2018,
pp. 1–11. isbn: 9781450356206. doi: 10.1145/3173574.3174192. url:
https://doi.org/10.1145/3173574.3174192.

[10] Baptiste Rozière et al. Code Llama: Open Foundation Models for Code.
2024. arXiv: 2308.12950 [cs.CL].

11214

[11] Harini Sampath, Alice Merrick, and Andrew Macvean. “Accessibility of
Command Line Interfaces”. In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. CHI ’21. Yokohama, Japan:
Association for Computing Machinery, 2021. isbn: 9781450380966. doi:
10 . 1145 / 3411764 . 3445544. url: https : / / doi . org / 10 . 1145 /
3411764.3445544.

[12] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine
Translation of Rare Words with Subword Units. 2016. arXiv: 1508.07909
[cs.CL].

[13] Andreas Stefik et al. “SODBeans”. In: 2009 IEEE 17th International Con-
ference on Program Comprehension. 2009, pp. 293–294. doi: 10.1109/
ICPC.2009.5090064.

[14] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is In-
evitable: An Innate Limitation of Large Language Models. 2024. arXiv:
2401.11817 [cs.CL].

12 215

Decoding SPAM: A Comprehensive Exploration
of Unsolicited Messages∗

Nooh Bany Muhammad1, Tamer Alghamaz2, Luma Alghamaz2

1 Frostburg State University
Frostburg, Maryland 21532

2 Al-Albayt University
Mafraq, Jordan

{nooh.bany, tamer.magableh, luma.naim94}@gmail.com

Abstract

In an era dominated by digital communication, spam remains a perva-
sive threat to privacy and security, causing significant disruption across
internet platforms. This paper delves into the dynamic landscape of
spam, tracing its evolution from simple unsolicited messages to today’s
sophisticated cyber threats that leverage advanced machine learning tech-
niques to evade detection. By integrating historical insights with con-
temporary research, this study highlights the critical challenges in spam
detection and underscores the necessity of innovative technological so-
lutions paired with stringent legislative frameworks. We examine the
effectiveness of current machine learning strategies in identifying and
mitigating spam and propose a multi-faceted approach to enhance future
spam detection systems. Our findings advocate for a balanced integra-
tion of technology and policy to robustly defend against spam, ensuring
safer digital environments for users worldwide.
Keywords: Spam, machine learning in spam detection, emails, Social
Media Spam, Spam Detection, trackback, spiders, bots, DDOS, spear
phishing, deceptive phishing, vishing, pharming.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1216

1 Introduction

Spam is the unsolicited messages delivered over the internet to a massive num-
ber of internet users. The use of spam originated back in 1864. This was when
irrelevant and unsolicited messages were sent over the wires when telegraph
lines were used to deliver information on investment opportunities to the af-
fluent Americans. In this period, it was not labeled as Spam up to until the
early 1990s.

The name spam originated from a Monty Python Sketch with a setting
in a café, where Vikings hid out the information by being louder than others
by singing out Spam repeatedly. The initial modern Spam was delivered on
ARPANET, the militarized computer network that foreshadowed the internet.

In 1978, Gary Turk sent email spam to 400 people in order to advertise
his contemporary line of computers. However, Turk’s actions proved to be
infamous that it took more than a decade for someone to attempt it. In 1993,
the term spam had its initial application when irrelevant messages were sent
to 200 users of Usenet newsgroup network accidentally. The first deliberate
use of Spam was on 18 January 1994 when USENET sent letters to every
newsgroup. The message was controversial and sparked a mass outcry. The
first commercialized use of Spam was in April, 1994 was when two lawyers from
Phoenix hired a programmer to send “Green-Card Lottery Final One” message
to available newsgroups.

In 1996, the Mail Abuse Prevention System was found by software engi-
neers, Dave Rand and Paul Vixie, to keep lists of IP addresses that sent mail
Spam [7]. Numerous managers of networks wanted to keep the list to block
spam emails.

In the 2000s, Spam became a lethal problem; hence the fight to control
it began in early 2000. Therefore, regulations were set to counter Spam. On
20 April 2001, Justin Mason created a Spam-filtering system known as Spam
Assassin and uploaded it on SourceForge.net. In May 2000, a computer worm
called ILOVEYOU was sent to millions of users with windows personal com-
puter. The resulting impact showed how Spam had become pervasive. In 2003,
the CAN-SPAM Act was signed into law by G. Bush. The law was enforced to
control spam. The fight to prevent spam has therefore picked up globally as it
has become a nuisance.

2 New Common Spam

2.1 Comment spam

Comment spam is the unwanted comments posted to a blog, with the pri-
mary objective being to drop a link to the website of the spammer. Comment

2 217

spam is also known as spomment, customarily characterized by the presence
of replies that are useless to the blog entry, along with a link that directs into
the commenter’s website. The comments posted on sites where they are not
required is Spam. Spammers use comment spam to post irrelevant advertise-
ments as comments on forums, blogs, wikis and online guestbooks [2]. The
main reason for spam comments is to link back to their own website so as to
rank higher and acquire more traffic. Spammers don’t usually choose a target.
They use special programs that target websites based on various factors like
the rankings of a particular site for multiple keywords and what the site is all
about. Spammers want to manipulate the success of everyone for their own
gain. There are several ways to recognize spam comments. Firstly, the site
owner should prioritize real names over mysterious nicknames. Legit readers
and corporations have no reason to hide their names [22].

2.2 Trackback Spam

The trackback spam is developed by spammers who use automated scripts to
send millions of trackbacks globally. Trackbacks were formed to act as a noti-
fication to the webmaster of a new backlink by creating a link to the source of
the backlink. The sole purpose of sending trackbacks is to leave their links on
unmonitored websites [17]. Therefore, if a website is unmonitored, links are cre-
ated by spammers from their website to your website. Spam links mostly direct
one to suspicious activities such as selling drugs and distribution of malicious
codes and programs. Your website will then communicate with a trackback.
After the trackback is live, the link to your website is removed by spammers.
This makes it appear like you are the one linking to them. Trackback spam can
be mitigated by the use of plugins such as Akismet. Trackback spam can also
be disabled by disabling trackback from the Discussion settings in WordPress.

2.3 Negative SEO Attack

Then there is the Negative SEO attack and it is a typical type of SPAM that
mainly destroys businesses. The sole purpose of a Negative SEO attack is to
fool google that you are the one doing Blackhat SEO tactics. It is used pri-
marily by competitors who want to destroy your business instead of uplifting
you. Spammers use Blackhat and unethical ways to eliminate and lower a com-
petitor’s ranking in search engines [17]. Spammers use it to make thousands of
spammy links to your website. To prevent negative SEO attacks, there are sev-
eral ways as once destroyed, and it cannot be fixed completely. Firstly, Google
Webmaster Tools Email Alerts should be set. Secondly, one should monitor the
backlinks profile. Most spammers perform negative SEO by making inferior
ranks or redirects. Therefore, it is very important to know when a spammer is

3218

forming links and redirects to another website.

2.4 Spiders, Bots and DDoS Attacks

Finally, another common type of Spam is the Spiders, Bots, and DDoS Attacks.
A spider is a bot of the internet that crawls through the internet and stores
the data for search engine indexing. A bot is a program used by Google to
gather information by scouring the web or performing tasks that are automated.
Search engines often use crawlers like spiders and bots for internet browsing
and create an index. This information may include the site the website links
to. The spiders and bots are not necessarily destructive. However, spammers
can use them to overload the firewall, Central Processing Unit, or the server’s
bandwidth. This is what is referred to as a Distributed Denial of Service
(DDoS) attack. It occurs when the bandwidth is flooded by many users, usually
a single or more web servers. The main goal is to disturb the normal operations
of the targeted websites; when the website receives a very large number of
users, it will crash if it is not ready for it. DDoS are used in blackmailing
and extorting the site owners [17]. Spammers use different methods to perform
DDoS, such as UDP fragmentation, CharGen attacks, and TCP anomalies.
There are several remedies to DDoS attacks. In Cloudflare, the Cloudflare
network is distributed across 102 data centers and manages more than 10 TB/s
and handles all attacks. Another solution, Incapsula, consists of 32 datacenters
and gives 32TBps. Incapsula can tackle attacks in 10 seconds or less. Other
solutions are Akamai, AWS Shield, BeeThink Anti-DDoS Guardian, Sucuri,
Cloudbric, Alibaba, F5, and Radware DefensePro.

2.5 Spam in media

Spams are used in various types of media. Firstly, it is through email. This
has been discussed above. Also, Spam is spread through instant messaging.
Systems for instant messaging are utilized by spammers to send messages.
This is somehow less frequent than the email. Instant Messaging is mainly used
by spammers as it can escape anti-virus software and malware. The solution
against Instant messaging spam is by blocking any message from those not in
your contact list. Another media is the mobile phone. Spam is sent through
the text messages of a mobile phone. However, the number of spam sent
through the mobile phones as text messages is significantly low. This is due
to the high charges incurred when sending spam texts. The social media is
also another media for sending spam. Facebook and X are vulnerable to spam
[17]. Another media is the Voice over Internet Protocol (VoIP). When the user
accepts a spam call, a pre-recorded spam message or advert is played back.
Spammers use VoIP as they are affordable and provide anonymity. Moreover,

4 219

mobile apps are also media for spam transmission. These are apps that utilize
unrelated keywords excessively to attract users through indeliberate searches.

2.6 Virus spamming

At times, the virus sent as spam mails are sent automatically to different
computers using scripts in the virus that causes the recipient’s computer to
deliver it to other address books. This is, however, without the recipient’s
knowledge. The sole purpose of virus Spam is to provide viruses across networks
through the email. In addition to advertisement and virus delivery, spam mails
are also used for phishing [3]. Phishing spam emails are fake emails that tend to
cheat the recipient that the message came from a trusted source, for instance,
banks. Phishing spam email is forwarded to targeted recipients into visiting a
particular website and provide their financial data or any other relevant and
sensitive information like login details. The spam mail is false at the first look
and appears to come from the masked organization initially.

3 Spam Detection Technologies and Approaches

To counter spam most social networks have a spam reporting system in place.
This allows users to tag specific posts as spam, so they can be later removed.
Some platforms detect spam by finding spamming patterns through searching
their data and activity logs, which are designed to monitor events on the plat-
form [1]. The problem with such spam detection methods is that they take a
relatively long time to return any results. Consequently, the spam will have a
higher chance of being detected as it gets more attention from users (“likes” or
“up-votes”), or if it follows the behavior of conventional spam. Furthermore,
the current anti-spam technologies focus on classifying users as “spammers” by
looking at their histories and behavior [1]. Which also means that it is harder
to detect spammers with minimal “history” (like new users for example.) And
considering that there will be an enormous number of requests to perform these
“background checks”, it will no doubt put a lot of strain on the social platform’s
API/computational limits.

In order to solve some of the aforementioned problems some researchers
have suggested that social platforms evaluate individual posts and messages
for spam without taking into consideration the user’s history [1]. This works
by analyzing a large dataset of spam messages and identifying certain pat-
terns associated with spam. The larger the dataset, the more accurate the
system will be in detecting future spam. This can potentially significantly re-
duce the amount of time it takes to take down spam posts. In addition, this
approach can be applied to most social media platforms as it simply relies on
text-based analysis. Another approach focuses on identifying spam patterns

5220

collectively across multiple accounts and multiple social media platforms [4].
In this method, posts from many different accounts are evaluated using a clus-
tering algorithm [4]. This algorithm scans different posts by different users
and detects if there are any common/duplicate spam URLs that are being
collectively posted by these accounts. Then, these accounts are gathered and
evaluated in bulk to confirm the existence of spam. The algorithm then puts
the confirmed cases in one group and suspected cases in another. The sus-
pected accounts are then evaluated manually (by the spam regulation team)
to confirm their violation of the given platform’s rules and policies.

3.1 Machine learning and SPAM

Recent advancements in machine learning have significantly enhanced spam
detection capabilities. Techniques such as Deep Learning and Natural Lan-
guage Processing (NLP) have emerged, enabling more sophisticated analysis
of content for potential spam. These methods leverage large datasets to learn
and predict spam patterns with greater accuracy, addressing the limitations
of traditional machine learning approaches [1]. Each one of these methods
are applied to their specific anti-spam duty, of course, they can fill more than
one anti-spam types. Machine Learning generally works with a set of training
samples, where it will train itself on samples with answers. These samples are
already classified and then the process of learning is done for differentiating
between what options are available [1].

Classifier Methods:

• Naïve Bayes. Bayesian classifier depends on events that happened and
attempts to predict what possible future events that may happen based
on the previous events that it dealt with. It basically never forgets its
enemies. The Bayesian mainly predicts the occurrence of words based on
its “spamminess” calculation tokens [1]. Where it would compare whether
certain words appear more in spam or ham content messages or emails.

• K-Nearest Neighbor (K-NN). K-NN is based to work with examples,
where the provided data for its Machine Learning process, is used for
comparison. It will assign the document it has to a category that other
documents are like. Basically, it will put a document with the group of
documents it belongs to or most similar to, and that group of documents
belong to a certain category. The process of K-NN classifier can also be
enhanced “using traditional indexing methods” [1]. The idea of K-NN is
to do a real time process. It compares the document to the k nearest
neighbor using its own algorithm, and the quickest match up of either
spam or ham, it will classify accordingly.

6 221

• Artificial Neural Networks (ANN). In short words also called “Neu-
ral Network” (NN). As its name suggests, this classifier is based on the
biological neural networks, based on that its model is computational and
interconnected (perceptron / multilayer perceptron) [1]. The ANN, like
other machine learning classifiers, also learn by feeding it examples. It
will keep generating function until it finds a function that correctly clas-
sifies all its examples, only the algorithm stops.

• Support Vector Machines (SVM). The vector Machines follow the
concept of decision making based on defined boundaries according to
decision planes [1]. A decision plane is “one that separates between a
set of objects having different class membership” [1], the SVM tried to
separate two planes to place the set of objects into an easier scope of
classification dimensions.

• Artificial Immune System. This classifier is based on the fascinating
immune system in the human body, which is as we all know very success-
ful in protecting us. Also, as we know, the role of our immune system is
to protect us from viruses, bad bacteria and so on. The way our immune
system functions give the Artificial Immune System classifier a mapped
plan to build itself upon. This classifier follows the exact same steps of a
human’s Immune system in its algorithm, which has been very successful
with the technology of Machine Learning [1].

• Rough Sets (RS). Developed by Pawlak, this classifier computes reduc-
tion of information systems. It has a great ability to reduce redundant
attributes, and this classifier method is designed to the need of gener-
ating simple useful knowledge. For example, if it was taking attributes
of a human profile, it would check for the attributes it needs with their
required values. Headache, muscle-pain, and temperature, if all of them
have a value of yes then the profile of that human is sick, and so on the
algorithm classifies on reduction of information systems.

4 Law and Regulations

The Computer Fraud and Abuse Act (CFAA) and the common law of contract
and trespassing have been used to control Spam. This has been done indirectly
by watching the unlawful acquisition of email. However, these solutions offer
little help. Putting the focus on the acquiring emails has no support whatso-
ever for people whose email addresses are used by spammers. Mailing lists can
be purchased, sold, or posted for free by those who have them. As a result,
federal acts that address spamming directly to fill the gaping hole and pro-
vide an option after an email address has been obtained. To limit spamming

7222

efficiently, a new federal law that replaces the CAN-SPAM Act needs to be
activated. Different federal laws that target spamming activities directly, pref-
erence to opting into opting out, have enough evidence to file complaints, and
provides reliable resources for spam investigation would reduce spamming ef-
fectively. Federal laws against Spam can enhance the need for private backlists,
blocking Spam without the generation of anticompetitive forces [6]. Unwanted
commercialized emails have also been prohibited. Another legislative solution
for spamming is the increase of funding allocated to control spamming in a fed-
eral way. Software that gets addresses must also be illegal, and the header of
the message should always be able to tell if the content is an advertisement or
not. Lastly, as spamming is a global problem, there has to be an international
co-operation that fights against spammers as a single entity.

Legislative measures have also been laid to curb spamming. The CAN-
SPAM Act of 2003 was passed to stop the high growth of unwanted commer-
cial emails. Therefore, reducing the cost to recipients and Internet Service
Providers of forwarding and discarding unwanted email. The Act also obli-
gated the senders of advertising emails to use correct header information and
clearly label their emails as advertisements or solicitation [14]. Also, the sender
is required to notify the recipient of the option to restrict receiving incoming
emails in the future. The sender is therefore illegalized from sending future
emails to the recipient once the recipient has opted out. However, the CAN-
SPAM Act has failed because of several reasons. Firstly, senders are not re-
quired to be granted permission before they send. Secondly, the Act has been
under-enforced. Enforcing the act to limit Spam has been minimized hence
considered a failure. Spammers still send spam emails despite users opting
out.

Comparatively, the European Union’s General Data Protection Regulation
(GDPR) introduces stringent penalties for spamming, offering a different model
of enforcement. An analysis of spam trends post-GDPR reveals a noticeable
decline in spam originating from EU countries, suggesting the efficacy of harsh
penalties combined with clear consent mechanisms. This paper advocates for
international cooperation modeled on the GDPR’s success, proposing a global
spam treaty that harmonizes anti-spam laws, sharing of best practices, and
joint efforts in spammer prosecution

4.1 Current state of regulation

In the current state of the state of regulations for Spam, there is several com-
mon state laws. Most of these laws are targeted towards the fake or commercial
mails. Most states illegalize faking of the address origin of the emails or mes-
sages. The use of a third-party internet address without the owner’s consent
is also forbidden. Several states have even illegalized the selling and distri-

8 223

bution of programs designed for the sole purpose of faking the source of the
information or the routing information on email messages.

4.2 Spamming as a freedom of speech

Is Spam freedom of speech? Several questions concerning the protection of
spam under the laws continue to prevail. When spammers send emails, this
is their freedom of speech. Many states have made laws to monitor com-
mercial spam and not political spam. Political Spam is a form of freedom of
speech. The First Amendment Act allows the freedom of speech, but it does not
guarantee forceful hearing of messages [20]. Regulations on spam, therefore,
limit the freedom of speech despite being irrelevant. The Commerce clause
prohibits states from discrimination against discrimination of interstate com-
merce. Spam is a form of interstate commerce. As not all spam are dangerous,
therefore the freedom of speech cannot be blocked. The freedom of speech in
spam has bad effects as malicious emails are sent to the recipient’s accounts.

5 Conclusion

In conclusion, the fight against spam represents a critical front in maintaining
the integrity and usability of digital communication platforms. As spamming
techniques grow in sophistication, so too must our strategies to detect and
neutralize them. This paper underscores the importance of ongoing research,
ethical considerations, and international collaboration in the quest to secure our
digital landscape against spam The discussion digs deeply to define Spam, types
of spam, the utility of Spam, state regulations against Spam, and the technical
and legislative solutions undertaken to reduce spam. On the other hand, social
spam has had a profound impact on political discussions on social networks
in recent years. Many social spam campaigns were launched with the goal of
manipulating public opinions while the culprits remained largely anonymous.
Spammers are also taking advantage of users in times of natural disasters to
spread spam and malicious content. There are many ways to counter spam but
none of the solutions work one hundred percent. All different strategies have
advantages and disadvantages. Different strategies may be used in different
scenarios.

6 Future Directions: Emerging Threats

As artificial intelligence (AI) technologies become more accessible, we antici-
pate an uptick in AI-generated spam that mimics human writing styles, making

9224

detection increasingly challenging. To combat this, future research should fo-
cus on developing AI models capable of understanding the nuances of human
communication to distinguish between genuine messages and sophisticated AI-
generated spam. For example, incorporating natural language understanding
(NLU) techniques could enhance the model’s ability to detect subtle cues of
authenticity in messages.

References

[1] W. A. and S. ELseuofi. “Machine Learning Methods For Spam E-Mail
Classification”. In: International Journal of Computer Science and Infor-
mation Technology (IJCSIT) 3.1 (2011).

[2] R. Amin, J. Ryan, and J. Van Dorp. “Detecting Targeted Malicious
Email”. In: IEEE Security & Privacy Magazine 10.3 (2011), pp. 64–71.
doi: 10.1109/msp.2011.154.

[3] A. Bhattarai and D. Dasgupta. “A Self-Supervised Approach to Comment
Spam Detection Based on Content Analysis”. In: International Journal of
Information Security and Privacy 5.1 (2011), pp. 14–32. doi: 10.4018/
jisp.2011010102.

[4] Valve Corporation. Steam. Retrieved February 2024. url: https : / /
store.steampowered.com/about/.

[5] Valve Corporation. Steam. Retrieved February 2024. url: https : / /
store.steampowered.com/about/.

[6] B. Gao et al. Forum mining for suspicious link spam sites detection.
U.S. Patent No. 8,219,549. 2012. url: https://patents.google.com/
patent/US8219549B2/en.

[7] A. George. Google AI blocks 100 million spam messages daily. Retrieved
April 8, 2023. Feb. 2019. url: https://www.digitaltrends.com/
computing/google-ai-blocks-100-million-spam-messages-daily/.

[8] Google. Ridding Gmail of 100 million more spam messages with Tensor-
Flow. Retrieved August 2023. 2019. url: https://cloud.google.com/
blog/products/g-suite/ridding-gmail-of-100-million-more-
spam-messages-with-tensorflow.

[9] D. Gudkova. Spam and the law. Retrieved May 14, 2020, Accessed March
2024. 2010. url: https://securelist.com/spam-and-the-law/36301.

[10] G. Hatchimonji. Social media spam on the rise, says study. Retrieved
November 2023. 2013. url: https://www.csoonline.com/article/
2133983/social-media-spam-on-the-rise--says-study.html.

10 225

[11] J. Hong. “The state of phishing attacks”. In: Communications of the ACM
55.1 (2012), pp. 74–81. doi: 10.1145/2063176.2063197.

[12] H. A. Jalab, T. Subramaniam, and A. Y. Taqa. “Overview of textual anti-
spam filtering techniques”. In: International Journal of Physical Sciences
5 (2010), pp. 1869–1882. url: http://www.cs.rug.nl/~tanguyen/
pubs/article-Subramaniam.pdf.

[13] J. Ju, J. K. Lee, and J.-H. Ahn. “Competing with Spams More Fiercely:
An Empirical Study on the Effectiveness of Anti-Spam Legislation”. In:
SSRN Electronic Journal (2017). doi: 10.2139/ssrn.2933278.

[14] M. Khonji, Y. Iraqi, and A. Jones. “Phishing Detection: A Literature
Survey”. In: IEEE Communications Surveys & Tutorials 15.4 (2013),
pp. 2091–2121. doi: 10.1109/surv.2013.032213.00009.

[15] K. Lee, J. Caverlee, and S. Webb. “Uncovering social spammers”. In:
Proceedings of the 33rd International ACM SIGIR Conference. 2010. doi:
10.1145/1835449.1835522.

[16] Mc. How Spam Works on Social Media. Retrieved February 25. 2016.
url: https://www.mailcleaner.net/blog/spam-world-news/how-
spam-works-on-social-media/.

[17] S. Raja and K. Venkatesan. “Electronic Mail spam zombies purify in
email connection”. In: International Journal of Advanced Research in
Computer Science Engineering & Information Technology 1.1 (2013),
pp. 26–36.

[18] M. Rajdev and K. Lee. “Fake and Spam Messages: Detecting Misinfor-
mation During Natural Disasters on Social Media”. In: IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Tech-
nology (WI-IAT). 2015, pp. 17–20. doi: 10.1109/WI-IAT.2015.102.

[19] Y. Roth and D. Harvey. How Twitter is fighting spam and malicious au-
tomation. Retrieved May 13, 2020. 2018. url: https://blog.twitter.
com/en_us/topics/company/2018/how-twitter-is-fighting-spam-
and-malicious-automation.html.

[20] K. M. Sullivan. Two Concepts of Freedom of Speech. Retrieved December
2023. 2010. url: https://law.stanford.edu/publications/two-
concepts-of-freedom-of-speech/.

[21] K. Thomas, C. Grier, and V. Paxson. Retrieved May 13, 2020. 2012. url:
https://www.usenix.org/conference/leet12/workshop-program/
presentation/thomas.

11226

[22] S. K. Trivedi and S. Dey. “Effect of feature selection methods on ma-
chine learning classifiers for detecting email spam”. In: Proceedings of the
2013 Research in Adaptive and Convergent Systems on - RACS 13. 2013,
pp. 35–40. doi: 10.1145/2513228.2513313.

[23] Twitter. How Twitter is fighting spam and malicious automation. Re-
trieved March 20, 2024. 2018. url: https://blog.twitter.com/en_
us/topics/company/2018/how-twitter-is-fighting-spam-and-
malicious-automation.html.

[24] J.-P. Verkamp and M. Gupta. Five Incidents, One Theme: X Spam as a
Weapon to Drown Voices of Protest. Retrieved February 14, 2024. 2013.
url: https : / / www . usenix . org / conference / foci13 / workshop -
program/presentation/verkamp.

12 227

The Impact of Changing a Course to Follow
Equitable Grading Practices: A Case Study of
Incremental Changes to Grading in Computer

Science III∗

David G. Cooper1

1Computer Science Department
West Chester University
West Chester, PA 19383

dcooper@wcupa.edu

Abstract

Alternative Grading systems have recently been framed as a way to
grade for equity. These systems have been framed in many ways, mas-
tery grading, specifications grading, un-grading, etc. In addition there
are some steps in assessment that are different than those in standard
grading systems. These include provide multiple chances to succeed, en-
courage revisions of work, change the scale of grading in the classroom
to match the scale of grading of the school, and include flexibility with
deadlines. In order to gain adoption of alternative grading, practitioners
claim that a course can be changed incrementally using equitable grading
practices. With that in mind, this paper explores the question of how
robust final examination scores are to incremental changes to the grad-
ing of a course? Specifically, this paper looks at 1) the modification of
homework assignments to have automatic test suites for grading, 2) the
modification of multiple choice quizzes to allow for unlimited attempts
by the deadline, and 3) the use of self-assessment worksheets and a self
assessment narrative as the main grading criteria. This study looks at six

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1228

different semesters of the third course in a sequence of computer science
and programming fundamentals courses. Across semesters, incremental
changes to the grading system were made, with only minor changes to
the assignments given in order to deter cheating by using prior answers
to assignments.

1 Introduction

Computer Science III in our program is the third programming course in a
sequence of computer science courses for computer science majors. This is
often the first programming course in our curriculum that transfer students
take since they have transfer credit for the earlier courses. Computer Sci-
ence III is taught in java, and it focusses on solidifying beginner concepts of
programming and introducing intermediate java concepts such as Inheritance,
Polymorphism, Interfaces and Abstract Classes, Generics, Exceptions, etc. For
traditional students this is the 3rd semester of programming and either the 2nd
or third class that is in the Java language. For transfer students some of the
students haven’t had any java programming experience. The goal of the course
is to solidify student competency in programming while introducing students
to object oriented concepts and the ability to program custom basic data struc-
tures such as linked lists and binary trees. The starting version of the course
had 10 weekly programing assignments, two leetcode style assignments on text
processing and linked list topics, 5 quizzes about 5 of the topics of the course,
and a final comprehensive exam at the end of the semester. The course started
with strict deadlines and grading and feedback based on the instructor compil-
ing and running each assignment and checking the assignment for correctness
and good style. Prior to this study this course was graded in a traditional
matter. In the first and second semester of offering the class, auto-graders
were created for each homework assignment in order to loosen the deadlines
so that revisions were allowed after deadlines and students could get feedback
from the auto-grader to know which parts of there project were functionally
working. For assignments that came in on time, additional feedback from the
instructor was provided. In addition all assignments were graded with a 50
as the minimum score. In the 3rd semester, no changes to the grading were
made, but the quizzes were changed from being one time quizzes to having
unlimited attempts with questions that change each time the quiz is taken. In
the 5th semester, grading was changed away from weighted assessments to a
set of narrative self-assessments that culminated in a final self-assessment that
included a proposed grade. The instructor would use the evidence presented
in the self-assessment referencing the completed work in the class and the final
exam to determine the final grade. The goal of this paper is to examine if
there are any noticeable changes with performance on the final comprehensive

2 229

exam, the non-passing or withdraw rate, or a change in the overall grades of
the students who passed the course.

2 Motivation

One of the reasons that alternative grading is done is the concept of equitable
grading or grading for equity [3]. The idea is that some students, who don’t
fit into the system, lose the opportunity to learn because they may have other
responsibilities that were not expected when standard grading practices were
created. This means that in standard grading practices, the ability to make
strict arbitrary deadlines can have more of an impact on a student’s grade
than the student’s understanding or ability with the material of the course.
There are two things that equitable grading is meant to address. 1. Is the rule
around measuring the performance of the student fair. 2. Does the assessment
of students measure expected learning outcomes, or is it a proxy. If it is a proxy,
what information is lost, and could it be recovered with a different assessment
tool?

Standard grading practices come with a colonial understanding that stu-
dents should fit into the mold in order to be assessed. Those who don’t make
all the deadlines or turn in all of the assignments tend to be punished for
non-conformity regardless of how much they’ve learned. A positive side effect
of these standard practices is that they ensure the ability to get things done
on schedule. There is a premium on submitting all of the assigned work and
submitting it on time because there are real consequences when work is not
completed to a predefined schedule.

An argument against standard grading practices is that the need to fit into
a mold goes against the goal that the classroom is a place for all participants
to learn all of the material. It has been argued that requiring students to fit
into such a mold places inequitable expectations on the student and that lifting
these expectations can lead to more equitable learning spaces.

With the goal of creating a more equitable learning space, this paper ex-
plores the incremental changes to a Computer Science III class in order to see
if there are measurable changes for the students.

3 The Alternative Grading Menu

[5] discuss stakeholders in grades, alternative grading strategies, and modifi-
cations to tests to consider students with diverse needs in order to approach
the goal of equitable, accountable, and effective grading. The stakeholders
and primary concerns are Administrator/counselor concerned with the perfor-
mance of the school, teacher concerned with instructional effectiveness, fam-

3230

ily concerned with student’s success in the courses, student concerned with
showing others level of achievement and ability, and future employers are con-
cerned with the student’s competency on the job. The paper suggests grad-
ing strategies that could be broadly categorized as stakeholder related strate-
gies and grading scheme strategies. The stakeholder related strategies are
IEP-Based Grading, Individual Contracts, Shared Grading, Narrative Reports
(from the teacher and optionally the student), Parent/Family conferences, and
Self-Comparison Grades (amount of learning over time). The grading scheme
strategies include three traditional methods Point Systems, Pass-Fail grading,
and Weighted Grading. In addition, the alternative grading scheme strategies
mentioned are Multiple Grades (content competency, effort, and progress),
Checklist Evaluations (specifications grading), and Portfolio Systems. The top
four modifications to tests suggested are extended time, simplifying wording of
test questions, practice questions for study guides, and extra help preparing for
tests. More recently, [2] suggested that courses should be modified to have eq-
uitable grading practices including minimum grading, learning outcomes based
grading scales, smaller grading scales, multiple submissions, the removal of late
penalties, and support to make it easier to make these modifications.

Recent explorations of alternative grading in computer science include bi-
nary grading [1], specifications and contract grading [7, 8, 4], and ungrading
[6]. [1] take on binary grading is to create a final grade based on the number
of successfully completed activities. Activities included 4 quizzes, 1 final exam
(counting as 2 activities), 4 self assessments of an eight week group project, and
5 individual explorations. Completion of 12 of the 15 activities constituted an
A in the class, 9 constituted a B, 6 for a C, and 3 for a D. Initial quizzes were at
set times, but retakes could be done at any time before the end of the semester.
The final was the only exam that couldn’t be retaken and either counted as
one activity if more than 50% was correct or 2 if more the 85% was correct.
All other activities could be completed and revised any time before the end of
the semester. They suggested that they would have a recommended schedule
for completion, and set retake times for quizzes in future versions of binary
grading. Students were asked about their perceptions of the grading process,
but there was no comparison or discussion of outcomes as far as success rates
compared to when traditional grading was used.

[7, 8] describe a discrete math and programming class using specifications
grading. In the discrete math class, the grade was based completely on the
number/percentage of topics that were passed/mastered. A quiz could be re-
taken for each topic after it was introduced until all questions were answered
correctly for that topic. The final grade is the percentage of the ten topics
mastered. In the programming class, the mastery quizzes were worth 40% of
the grade, while participation was worth 10%, team assignments were worth

4 231

10%, and individual programming assignments demonstrating mastery in spe-
cific skills were worth 40%. Essentially 80% of the grade was based on mastery
of skills from either quizzes or programming projects, while 10% assessed par-
ticipation and 10% of the assessment came from a team effort. These courses
did not compare their assessment to a traditional assessment.

[6] discusses a course based on the idea of ungrading. In this case assign-
ments are given levels of completion, either binary for lab activities, 4 levels for
Homework assignments and the final project, or a binary threshold for quizzes.
Then each assignment type had expectations of the number of assignments
completed at each level of completion for a grade of an A, B, or C, with any-
thing under the C level being considered a C. There is also a maximum number
of redos per assignment type for particular grades. In addition to completion of
the work, students were given a survey about their expected grade, and some-
times students would request an audience to discuss grades. Most of the time
students were given their requested grade, and most differences were within a
letter grade of the request. This grading scheme was compared to prior times
the course was taught, and there were no significant differences in the grade
distributions, however there was significantly more effort using the alternative
grading method.

[4] surveyed 11 papers that did some form of specifications or contract grad-
ing, including [7, 8, 6], and though the papers discussed subjective measures
of improvement due to using the alternative grading practice, there was no
objective assessment of the learning outcomes between a traditional grading
approach and the

The dimensions that have been considered are deadlines of assignments,
number of revisions or redos, schedule of retakes, type of assessment used for
grading, grading scale, and whether behavior can have a side effect on the
grade.

4 Methods

The goal of this study is to make incremental changes away from standard grad-
ing practices more towards equitable grading practices while keeping the same
final self assessment as a way to monitor changes of learning. Changes started
with having a minimum grade for any assignment of 50 and having resubmis-
sions allowed for programming assignments only in the first two semesters. In
the second two semesters quizzes were changed to be dynamic so that they could
be redone as many times as the student wanted. In the third two semesters,
students were required to do a self assessment narrative that discussed what
they learned with regard to the learning outcomes instead of using a weighted
grading system.

5232

4.1 Fall 2021 & Spring 2022

The initial grade breakdown is shown in Table 1. Program projects are assigned
weekly after a review of java and an introduction to GitHub classroom where
all of the assignments must be submitted. Students were expected to submit
an initial version of each project with the expected files stubbed out as a quick
way for everyone to get started. Students were told to commit and push their
code often and reminded that only their final version will be evaluated. A
test suite was available for each assignment to give feedback about compilation
and some functionality, but it was expected that students also test the their
projects themselves. After the deadlines additional feedback would be given
from the instructor. Some feedback was simply to turn the program in, while
other feedback was more substantive explaining why some of the tests failed
and giving suggestions for fixes.

Table 1: Meeting & Assessing Student Learning Outcomes version 1
Category Percentage Description
Quizzes 25% 5 quizzes total 5 points each
Program Projects 50% 10 homework assignments
Linked List and 10% 1% per problem
Text Processing Programs
Final Exam 15% Comprehensive final exam

Students were allowed to resubmit their projects, but needed to inform
the instructor about any resubmissions after the deadline so that additional
feedback could be given and new grades could be recorded.

4.2 Fall 2022 & Spring 2023

The next changes that were made was to make quizzes more dynamic so that
they could be retaken until the concepts were understood, also, in order to
reduce procrastination, students were given two formal times to submit revi-
sions. The first was one week after the due date, and the second time was two
weeks after the due date.

The PrarieLearn quiz system was used to transform quizzes that were multi-
ple choice quizzes on the LMS into multi-select quizzes that were programmed
to randomly change questions with different values, names, correct answers,
and distractors. The topics of the quizzes were the same, but if a student took
multiple attempts on a quiz, then they would get more coverage of the topic.
Since the quizzes could be taken multiple times, most students took each quiz
more than once, and many took each quiz more than twice. The instructors

6 233

thought that taking the quiz multiple times could impact overall test scores,
but there was no evidence that having the multiple quiz option improved the
final exam scores.

4.3 Fall 2023 & Spring 2024

The most recent change to the course was to change the Linked List and Text
Processing projects to be half-semester projects instead of sets of leetcode
problems, to add 10 minute in class practice worksheets, and also to change the
grading to be based on a narrative self assessment instead of a weighting of each
of the categories of assignments. Table 2 shows the categories of assignments.
The expectation was to complete each of the assignments, and to use the
submitted work as evidence for the narrative self-assessment. A single final
self assessment was used in Fall 2023, and for Spring of 2024 students were
asked to do a midterm self-assessment to practice and get feedback before the
final self-assessment. Students were required to do all of the assignments.

Table 2: Meeting & Assessing Student Learning Outcomes version 2
Category Description
In Class Practice topic based worksheets
Quizzes 5 quizzes
Program Projects 9 homework assignments
Linked List Exploration Pair/Trio Project
Text Processing Project Solo Project
Self-Assesments Narratives based on outcome/topic grid
Final Exam Comprehensive final exam

They were encouraged to submit multiple revisions until all tests passed,
and for each project, they were required to write a self-assessment of what
parts of the project improved learning outcomes for which topics of the course.

5 Results

The course can be measured in a number of ways. The first looks at the average
final grade for each semester in Figure 1. If there is big change then that could
indicate further investigation.

Next, Figure 2 looks at the raw final exam score across semesters and again
look to see if there is a big change.

The third score to look at in Figure 3 is the scaled score and both look at the
difference across semesters and also the difference between the average scaled
final exam score and the average final grade to see that they move together.

7234

Fall.2021 Spring.2022 Fall.2022 Spring.2023 Fall.2023 Spring.2024
50

60

70

80

90

100

Final Grade Scores By Semester

Semester

S
co

re
 o

ut
 o

f 1
00

Figure 1: The median final grades rise a little bit from year to year until the
final semester when the median score jumps down again.

Fall.2021 Spring.2022 Fall.2022 Spring.2023 Fall.2023 Spring.2024

0
50

10
0

15
0

Raw Final Exam Scores By Semester

Semester

S
co

re
 o

ut
 o

f 2
00

Figure 2: The median raw final score was pretty steady at around 50% of the
answers were correct. The fall 2021 class had the fewest number of students
(24), so that could be why it is further from the other medians.

8 235

Fall.2021 Spring.2022 Fall.2022 Spring.2023 Fall.2023 Spring.2024

50
60

70
80

90
10

0

Scaled Final Exam Scores By Semester

Semester

S
co

re
 o

ut
 o

f 1
00

Figure 3: The median scaled final score changed between 67 and 74, which is
only a seven point spread over the six semesters. The scaled score is just a
compressed representation of the 200 point score into a range between 50 and
100.

When looking at passing rates in Table 3, it appears that there may be a
higher chance of passing in the Fall than in the Spring. It looks like there may
have been a raise in passing rates in year two due to changes in the class, but
it could just be in the variability of classes. There doesn’t appear to be any
trend in the numbers.

Table 3: Passing vs Non-passing Rates by Semester
Fall 21 Spr 22 Fall 22 Spr 23 Fall 23 Spr 24

%-age Passing 55.88% 50.00% 69.23% 60.32% 66.67% 46.55%
%-age D’s 8.82% 6.67% 8.97% 9.52% 3.70% 12.07%
%-age F’s 14.71% 25.00% 7.69% 9.52% 18.52% 22.41%
%-age W’s 20.59% 18.33% 14.10% 20.63% 11.11% 18.97%
of Students 34 60 78 63 54 58

6 Discussion

The biggest take-away from this study is that incremental changes of adding
grading practices geared towards equity appears to have little or no significant
negative impacts on the outcome of the students. This suggests that changing
a course one piece at a time is a viable option for moving towards equitable

9236

grading practices.
In the latest two semesters, the self-assessment process was difficult for

most students, and the instructor plans to add additional scaffolding for the
self-assessment. In addition, in the Spring 2024 semester, a number of students
tried to use only one or two homework assignments as evidence for a majority
of the topics and learning outcomes. A more explicit expectation that a weekly
homework assignment can work to justify at most one learning outcome of at
most one topic, while different parts of the half-semester projects can be used
for multiple learning outcomes of multiple topics as long as the justification is
pointing to different parts of the project.

References

[1] Andrew Berns. “Scored out of 10: Experiences with binary grading across
the curriculum”. In: Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. 2020, pp. 1152–1157.

[2] Adrienne Decker et al. “Transforming Grading Practices in the Computing
Education Community”. In: Proceedings of the 55th ACM Technical Sym-
posium on Computer Science Education V. 1. SIGCSE 2024. Portland,
OR, USA: Association for Computing Machinery, 2024, pp. 276–282.

[3] Joe Feldman. Grading for equity: What it is, why it matters, and how it
can transform schools and classrooms. Corwin Press, 2023.

[4] Brian Harrington et al. “Specifications and Contract Grading in Computer
Science Education”. In: Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1. SIGCSE 2024. Portland, OR, USA:
Association for Computing Machinery, 2024, pp. 477–483.

[5] Jo Hendrickson and Robert A Gable. “Collaborative assessment of stu-
dents with diverse needs: Equitable, accountable, and effective grading”.
In: Preventing School Failure: Alternative Education for Children and
Youth 41.4 (1997), pp. 159–163.

[6] Scott Spurlock. “Improving student motivation by ungrading”. In: Pro-
ceedings of the 54th ACM Technical Symposium on Computer Science Ed-
ucation V. 1. 2023, pp. 631–637.

[7] Ella Tuson and Tim Hickey. “Mastery learning and specs grading in dis-
crete math”. In: Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education Vol. 1. 2022, pp. 19–25.

[8] Ella Tuson and Timothy Hickey. “Mastery Learning with Specs Grading
for Programming Courses”. In: Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1. 2023, pp. 1049–1054.

10 237

Ad-hoc Ensemble Approach for Detecting
Adverse Drug Events in Electronic Health

Records∗

Saurav K. Aryal and Howard Prioleau
Department of Electrical Engineering and Computer Science

Howard University
Washington, DC 20059, USA

saurav.aryal@howard.edu, howard.prioleau@bison.howard.edu

Abstract

Adverse Drug Events (ADEs) are a significant concern in healthcare
due to their prevalence and impact. However, implementing such per-
sonalized systems will not be without its own challenges, as ADEs are
frequently documented in electronic health records (EHRs), and the in-
herent complexities of these records, particularly unstructured clinical
notes, pose significant obstacles for their identification. In this study, we
seek to address these challenges by using large language models (LLMs)
to detect ADE occurrences in clinical text. We will employ the zero-shot
classification capabilities of various pre-trained LLMs and then integrate
them into an ensemble approach to consolidate their predictions. We con-
ducted a series of experiments utilizing various ensemble strategies and
model comparison techniques to gauge the effectiveness of these mod-
els in detecting and classifying an ADE in medical notes. Our findings
highlight the potential and limitations of current state-of-the-art LLM
and their maximal zero-shot potential when leveraging ensembling, em-
phasizing the importance of continuous fine-tuning to enhance model
reliability and applicability in real-world scenarios.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1238

1 Introduction

Adverse Drug Events (ADEs) is a significant concern in healthcare due to
their prevalence and impact. It annually accounts for 3.5 million outpatient
visits and 1 million emergency department visits in the United States, also
ranking as the fourth leading cause of death in the nation. The financial toll
is also substantial, costing the U.S. healthcare system between $30 and $130
billion each year. Despite rigorous three-stage clinical testing requirements by
the Food and Drug Administration (FDA) and randomized controlled trials to
detect potential ADEs, many ADEs are only identified post-market. This gap
underscores the critical need for effective detection methods that can improve
patient safety and optimize treatment outcomes.

Furthermore, ADEs not only exacerbate the financial burden on healthcare
systems but also influence the general public trust in medical institutions [7].
This erosion of trust can lead to hesitancy in seeking treatment or following
medical advice, complicating health outcomes and driving patients towards
alternative, sometimes unproven, treatments not aligned with evidence-based
practices [6]. In addition, ADEs are often individual-specific, with elderly pa-
tients experiencing increased risks, highlighting the variability in how these
events affect different populations [7]. This is further realized by the nocebo
effect, where the expectation of side effects from treatment is consistently re-
lated to the symptoms being realized [9].

With this noted, it is evident that systems should be developed with a
focus on being patient-specific, as this approach would theoretically lead to
improved performance and better outcomes tailored to each individual’s unique
needs and circumstances. However, implementing such personalized systems
will not be without its own challenges, as ADEs are frequently documented
in electronic health records (EHRs), and the inherent complexities of these
records, particularly unstructured clinical notes, pose significant obstacles for
their identification. The medical notes within the EHRs are often embedded
in intricate unstructured text that traditional data processing tools struggle to
decipher. The subtlety of clinical language, diverse terminology, and variations
in narrative style across different healthcare providers further complicate the
automatic extraction and interpretation of relevant data. Furthermore, the
voluminous nature of EHRs means that manually sifting through them to locate
ADE instances is inefficient and prone to errors, underscoring the need for
sophisticated computational techniques capable of handling large datasets with
high precision and efficiency. Our study seeks to address these challenges by
using large language models (LLMs) to identify ADEs.

In this paper, we plan to explore the potential of LLM to detect ADE occur-
rences in clinical text. We will employ the zero-shot classification capabilities
of various pre-trained large language models (LLMs) and then integrate them

2 239

into an ensemble approach to consolidate their predictions. This strategy will
evaluate their collective proficiency in interpreting and processing clinical lan-
guage related to ADEs, without the need for prior training on ADE-specific
datasets. By leveraging the combined strengths of multiple models, we seek to
understand current state-of-the-art LLMs on ADE detection.

2 Relevant Works

2.1 ADE Detection Task

The earliest proposal for ADE Detection can be found in ADE Corpus [12].
The authors developed the ADE corpus, which consists of 3000 MEDLINE case
reports manually annotated for mentions of drugs, adverse effects, dosages,
and their relationships. The annotation process involved three annotators and
multiple rounds with intermediate harmonization steps to ensure high-quality,
consistent annotations. The final harmonized ADE corpus contains 2972 doc-
uments with 4272 sentences annotated with drug-related adverse effect infor-
mation.

Building upon this work, TAC 2017 [21] presented a task that challenged
participants to extract mentions of adverse reactions and identify related mod-
ifiers such as negation, severity, and drug class. The task also required the
determination of unique sets of positive adverse reaction mentions across all
sections of a drug label and their normalization to the MedDRA terminology.
However, the data provided in a simplified XML format may have resulted in
the loss of important contextual information critical for accurate ADE extrac-
tion. Some of the limitations in [12, 21] were addressed in the 2018 National
NLP Clinical Challenges Track 2 (n2c2) task [14], which serves as the primary
data source and guide for this study.

The n2c2 task expanded the concept types to include medications, ADEs,
and signature information like strength, form, dosage, frequency, route, dura-
tion, and reason. Furthermore, N2C2 required participants to identify relations
between these concepts, linking them to their corresponding medications. This
more comprehensive approach to ADE extraction aimed to provide a more
complete understanding of the medication information and potential adverse
events described in clinical narratives. The data retained its original format
from the electronic health records, facilitating a smoother transition to real-
world applications compared to previous tasks.

2.2 Modeling Techniques for ADE Detection

Several advanced machine learning approaches were employed in exploring the
modeling techniques used for ADE detection across the three studies [12, 21,

3240

14]. These studies leveraged a mix of traditional machine learning and deep
learning techniques to tackle the complex nature of ADE detection. ADE
Corpus [12] utilized a maximum entropy classifier trained on the ADE cor-
pus sentences and achieved an F1 score of 0.70. Both [21, 14] modeling tech-
niques were improved using Conditional Random Fields that were commonly
used due to their effectiveness in sequence tagging, which is crucial to identify
mentions of ADEs and their attributes, such as severity and negation. In addi-
tion, deep learning models, particularly those incorporating bidirectional Long
Short-Term Memory networks combined with CRFs, were prominent. These
models are adept at capturing the dependencies in sequential data, typical of
narrative clinical texts where ADEs and related medical concepts are discussed.

As an example use case, LLMs, which only came into broader recognition
and use after these studies were completed, have yet to be fully explored for
their effectiveness in identifying ADEs in clinical texts. A study by [11] utilizes
LLMs on the ADE Corpus, and they were able to achieve an F1 score of 91.99
by leveraging knowledge distillation to scale biomedical knowledge curation
and focusing on ADE extraction. Despite their potential, the specific focus on
applying LLMs to the n2c2 task has not been extensively pursued, although
they were able to increase the baseline from the original study by 0.2 F1; this
is what we seek to address in this study.

2.3 Ensembling

Ensembling is a technique that combines the predictions of multiple individual
models to enhance overall predictive performance. This approach takes ad-
vantage of the strengths and mitigates the weaknesses of various models. It
has demonstrated impressive general performance on a wide array of machine
learning classification tasks, as indicated in [20, 10]. In addition, it has shown
remarkable performance in the medical domain. As seen in [17], they deployed
a diverse ensemble of SVMs enhanced by a weighted voting strategy using a
simulated annealing genetic algorithm to optimize weight vectors, significantly
improving performance across multiple unbalanced medical data sets. Through
our research review and previous works, it was evident that ensembling has the
potential for high performance in ADE detection [3, 5, 22, 18, 2, 4].

3 Methodology

3.1 Dataset

This research used the n2c2 dataset [14], which consists of approximately 500
discharge summaries from the MIMIC-III (Medical Information Mart for Inten-
sive Care III) database. These medical documents were annotated for drug and

4 241

ADE information by seven domain experts, including four physician assistant
students and three nurses, using specific entity tags and attributes. We used
that annotation to categorize medical notes as containing adverse drug events
(ADE) or not, based on the presence or absence of entity tags indicative of
ADE in the documents. This classification schema, which labeled documents
as containing ADE if they were tagged with ADE and as non-ADE otherwise,
was consistently applied across both training and testing datasets. Specifically,
the training dataset included 237 instances identified as containing ADE and
67 instances as non-ADE, while the test dataset contained 156 ADE and 47
non-ADE instances.

3.2 Pre-Processing

The pre-processing involves converting the structured format of medical records
into a more natural language representation. This included extracting and re-
formating critical pieces of information such as admission and discharge dates,
patient demographics (e.g., date of birth, sex), and the attending service de-
tails, which are originally presented in a coded format. This was done since
the initial header format would have the models treat the data as a coding
problem. So, for example, “Sex: F” is replaced with a more conversational
format such as “Sex is F”, and the content is restructured to flow like a stan-
dard written paragraph. Also, since the medical notes were large in token size,
ranging from 8,000 - 15,000 tokens per medical note, we had to truncate the
data to fit within each model’s context window, which will be expanded more
in the modeling section.

3.3 Modeling

We utilized seven models for zero-shot classification of ADEs to evaluate their
performance as-is, to directly gauge the effectiveness of these models in rec-
ognizing and classifying ADEs based on their trained capabilities without any
task-specific modifications. The selected models include BERT [8], Alpaca [23],
GPT2 [19], and BART [16] for their robust general understanding of natural
languages, and MedAlpaca [13], BioLinkBERT [24], and BioClinicalBERT [1]
for their domain-specific specialized pre-training.

To achieve optimal zero-shot classification performance, the selection of pre-
cise labels was crucial. We experimented with various prompt designs for opti-
mal zero-shot classification performance, including defining an ADE within the
label, rephrasing the classification label, and much more. After experimenting,
we selected labels “Does Not Contain Adverse Drug Event” and “Does Contain
Adverse Drug Event” as these enabled the models to understand better and
distinguish the classes.

5242

Table 1: Overview of Models Utilized: Parameters, Application Domains, Pub-
lication Years, and Context Window Size (CWS).

3.4 Experiments

To fully assess the performance capabilities of current models in classifying
medical notes as either containing or not containing Adverse Drug Events
(ADEs), we conducted a series of experiments utilizing a variety of ensem-
ble strategies and model comparison techniques. Each model was used to
predict the presence of an ADE in medical notes, and we aggregated the re-
sults through different methods to determine the most effective and reliable
classification approach.

• Majority Voting: This approach involved taking the most common
output (ADE or no ADE) from all models as the final decision for each
document.

• Minority Voting: We also considered the least common output as
the final decision, to explore the impact of outlier predictions on overall
performance.

• Most Confident by Probability: The model output with the high-
est confidence (probability) was chosen as the final prediction for each
instance, highlighting the influence of individual model certainty.

• Sum of Positive vs. Negative Probabilities: We aggregated the
probabilities assigned to the positive (contains ADE) and negative (does
not contain ADE) classes across all models, and the category with the
higher total probability was selected.

• Meta-Model (Decision Tree/Random Forest/SVM) of Votes: A
meta-model was trained on the votes (as features) of each classifier to
make a final prediction, utilizing traditional classification algorithms to
interpret the ensemble outputs.

6 243

• Meta-Models of Class Probabilities:Similarly, meta-models were trained
on the class probabilities provided by each model, rather than their bi-
nary outputs, to refine the decision-making process.

• Meta-Model for Both Votes and Probabilities: This approach
combines meta-models of votes and class probabilities, leveraging binary
decisions and confidence levels to enhance predictive performance and
robustness.

These experiments were designed to identify the most effective individual
models and ensemble techniques and explore different strategies for integrating
diverse model outputs into a coherent classification system. The meta-models
used, including Random Forest (RF), LightGBM (LGBM), SVC, Gaussian
Naive Bayes, Decision Tree, Logistic Regression, and Multinomial Naive Bayes.
Were selected for their diverse algorithmic approaches enhancing the ensem-
ble’s predictive performance and robustnes. From these meta-classifications,
we chose the top five performers based on weighted f1 and then parameter-
tuned them for the final results. This fine-tuning process ensured the optimal
performance of each of the selected models. The results of these experiments
will help determine the optimal approach for future implementations in similar
medical NLP tasks.

3.5 Evaluation

To assess and compare the performance of the ensemble models, we mainly use
the weighted F1 score as the leading indicator of model performance due to class
imbalance. We will also report accuracy, precision, and recall on both train
and test set. Moreover, distinguishing between train and test sets for model
performance in zero-shot classification is unnecessary; however, we make this
distinction to facilitate direct comparisons in ensembling and provide a baseline
performance foundation for further research.

4 Results

4.1 Zero Shot Classification Results

Our findings highlight the impressive capability of both general-purpose and
domain-specific LLMs in detecting ADEs. BioLinkBERT and Alpaca achieved
the best performance on the dataset, despite differences in model size and
pre-training corpus. Surprisingly, domain-specific models like MedAlpaca and
BioClinicalBERT did not perform satisfactorily, indicating the complexity of
ADE detection and the importance of model pre-training quality. Overall, the
performance reported shows the potential of LLMs trained in general language

7244

Table 2: Comparison of Train and Test Weighted Metrics on Zero Shot Clas-
sification.

understanding to adapt to specialized domains like healthcare. However, the
erratic performance across models underscores the need for ensembling to im-
prove reliability and consistency and better understand zero-shot classification
limits.

4.2 Ensembling Results

Table 3: Comparison of Train and Test Weighted Metrics on Ensembling Types

The top-performing ensembling techniques included Most Confident Proba-
bilities, Meta Vote and Probabilities with LGBM, and Meta Probabilities with
Random Forest. We were able to improve performance over the individual
best performing model by 2+%. This demonstrates the predictive capabilities
of confidence levels derived from zero-shot classification in detecting ADEs.

However, the meta classifiers for Probabilities and both Vote and Proba-
bilities tended to overfit the training set, yet they achieved the highest perfor-
mance levels. Furthermore, the suboptimal performance of the minority voting
ensembling indicates that there is minimal residual performance left during en-
sembling. This implies that the individual models in the ensemble are already
performing well, and the ensembling process is effectively leveraging their col-
lective knowledge. Also of note, for the Meta Classifier, we chose to present only

8 245

the highest performing one to provide a clear benchmark of the best possible
performance achievable through this method. Ensembling consistently out-
performed individual models by leveraging the set of models, showcasing the
benefit of ensembling in improving overall prediction accuracy and robustness.
These findings underscore the ability of the current state-of-the-art LLMs and
their maximal zero-shot potential when leveraging ensembling, understanding,
and detecting ADEs, highlighting the extent to which these approaches can be
applied in real-world scenarios.

5 Conclusion

Our study highlights the potential of ensembling techniques to enhance the
detection of ADEs using LLMs. Our findings demonstrate that both general-
purpose and domain-specific LLMs can effectively identify ADEs, with Bi-
oLinkBERT and Alpaca achieving the best individual performance. This high-
lights the impressive adaptability of LLMs trained on general language to spe-
cialized domains like healthcare. The best performing ensembling techniques
were Meta Vote and Probabilities with LGBM, Most Confident Probabilities,
and Meta Probabilities with Random Forest. These techniques showcase the
predictive capabilities of confidence levels derived from zero-shot classification
in ADE detection, emphasizing how far zero-shot classification can go in this
domain. In conclusion, our findings highlight the potential and limitations
of current state-of-the-art LLMs and their maximal zero-shot potential when
leveraging ensembling, emphasizing the importance of continuous fine-tuning
to enhance model reliability and applicability in real-world scenarios.

6 Limitations & Future Work

The major limitation of this work is the limited data availability and the small
sample size, which restricts the robustness and generalizability of our findings.
Additionally, the need for more compute resources posed a significant challenge.
This constraint prevented us from testing the largest pre-existing models or
extensively tuning the approaches we evaluated, limiting our analysis’s depth.
Furthermore, the context window size of the models used needed to be more
significant to incorporate the full medical notes, which likely impacted the
models’ ability to understand and process the complex information in the notes
fully. These limitations highlight the need for more comprehensive resources
for a thorough and accurate analysis.

In the future, our research will focus on further finetuning these LLMs to
detect ADEs. As we improve the performance of our models, we plan to apply
them to extract additional instances of ADE occurrences from existing datasets,

9246

such as MIMIC-IV [15]. To ensure the accuracy of these mined results, we seek
to establish collaborations with domain experts who can provide access to ad-
ditional data and validate the generated labels. Upon successful validation,
we aim to extract drug-ADE entity linkages to advance drug safety research
and identify known ADEs associated with specific medications. Moreover, we
envision developing a custom architecture that can process clinical notes and
incorporate past EHR data to predict personalized probabilities of ADE occur-
rence at the point of prescription, further tailoring our approach to individual
patient needs.

References

[1] Emily Alsentzer et al. “Publicly available clinical BERT embeddings”. In:
arXiv preprint arXiv:1904.03323 (2019).

[2] Saurav Aryal and Howard Prioleau. “Howard university computer science
at semeval-2023 task 12: A 2-step system design for multilingual senti-
ment classification with language identification”. In: Proceedings of the
17th International Workshop on Semantic Evaluation (SemEval-2023).
2023, pp. 2153–2159.

[3] Saurav K Aryal et al. “Evaluating Ensembled Transformers for Multilin-
gual Code-Switched Sentiment Analysis”. In: 2023 International Confer-
ence on Computational Science and Computational Intelligence (CSCI).
IEEE, 2023, pp. 165–173.

[4] Saurav K Aryal et al. “From Predicting MMSE Scores to Classifying
Alzheimer’s Disease Detection Severity”. In: Journal of Computing Sci-
ences in Colleges 39.3 (2023), pp. 317–326.

[5] Saurav K Aryal, Howard Prioleau, and Surakshya Aryal. “Sentiment anal-
ysis across multiple African languages: A current benchmark”. In: arXiv
preprint arXiv:2310.14120 (2023).

[6] Dominic Balog-Way et al. “Effects of public trust on behavioural inten-
tions in the pharmaceutical sector: data from six European countries”.
In: Journal of Risk Research 24.6 (2021), pp. 645–672.

[7] Kathrin M Cresswell et al. “Adverse drug events in the elderly”. In: British
medical bulletin 83.1 (2007), pp. 259–274.

[8] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: CoRR abs/1810.04805 (2018).
url: http://arxiv.org/abs/1810.04805.

10 247

[9] Kate Faasse and Keith J Petrie. “The nocebo effect: patient expectations
and medication side effects”. In: Postgraduate medical journal 89.1055
(2013), pp. 540–546.

[10] Heitor Murilo Gomes et al. “A survey on ensemble learning for data
stream classification”. In: ACM Computing Surveys (CSUR) 50.2 (2017),
pp. 1–36.

[11] Yu Gu et al. “Distilling large language models for biomedical knowl-
edge extraction: A case study on adverse drug events”. In: arXiv preprint
arXiv:2307.06439 (2023).

[12] Harsha Gurulingappa et al. “Development of a benchmark corpus to sup-
port the automatic extraction of drug-related adverse effects from med-
ical case reports”. In: Journal of Biomedical Informatics 45.5 (2012),
pp. 885–892. doi: 10.1016/j.jbi.2012.04.008. url: https://www.
sciencedirect.com/science/article/pii/S1532046412000615.

[13] Tianyu Han et al. “MedAlpaca–An Open-Source Collection of Medi-
cal Conversational AI Models and Training Data”. In: arXiv preprint
arXiv:2304.08247 (2023).

[14] Sam Henry et al. “2018 n2c2 shared task on adverse drug events and
medication extraction in electronic health records”. In: Journal of the
American Medical Informatics Association 27.1 (2020), pp. 3–12.

[15] Alistair EW Johnson et al. “MIMIC-IV, a freely accessible electronic
health record dataset”. In: Scientific data 10.1 (2023), p. 1.

[16] Mike Lewis et al. “Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension”. In: arXiv
preprint arXiv:1910.13461 (2019).

[17] Na Liu et al. “A novel ensemble learning paradigm for medical diagnosis
with imbalanced data”. In: IEEE Access 8 (2020), pp. 171263–171280.

[18] Howard Prioleau and Saurav K Aryal. “Benchmarking Current State-
of-the-Art Transformer Models on Token Level Language Identification
and Language Pair Identification”. In: 2023 International Conference on
Computational Science and Computational Intelligence (CSCI). IEEE,
2023, pp. 193–199.

[19] Alec Radford et al. Language Models are Unsupervised Multitask Learn-
ers. 2019.

[20] Ye Ren, Le Zhang, and P.N. Suganthan. “Ensemble Classification and
Regression-Recent Developments, Applications and Future Directions [Re-
view Article]”. In: IEEE Computational Intelligence Magazine 11.1 (2016),
pp. 41–53. doi: 10.1109/MCI.2015.2471235.

11248

[21] Kirk Roberts, Dina Demner-Fushman, and Joseph M Tonning. “Overview
of the TAC 2017 Adverse Reaction Extraction from Drug Labels Track”.
In: TAC. 2017.

[22] Hrishav Sapkota, Saurav Keshari Aryal, and Howard Prioleau. “Zero-
Shot Classification Reveals Potential Positive Sentiment Bias in African
Languages Translations”. In: ICLR Tiny (2023).

[23] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA
model. 2023. url: https://github.com/tatsu-lab/stanford_alpaca.

[24] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. “LinkBERT: Pre-
training Language Models with Document Links”. In: Association for
Computational Linguistics (ACL). 2022.

12 249

Finiteness Considerations in Machine Learning∗

Jeffrey C. Jackson
Mathematics and Computer Science Department

Duquesne University
Pittsburgh, PA 15282

jacksonj@duq.edu

Abstract

Many machine learning textbooks include at least some coverage of
one or both of the No Free Lunch theorems for learning and probably-
approximately correct generalization error bounds. However, it is not
a simple matter to reconcile the implications of these two topics and
provide advice to students (and practitioners) regarding when learning
claims such as “this learned hypothesis will be at least 95% accurate on
previously-unseen data” can reasonably be made. This paper shows how
finiteness considerations can potentially provide such a reconciliation.
It also suggests that finiteness considerations can be used to simplify
certain generalization error bounds by eliminating their reliance on the
VC-dimension of hypothesis classes, which might be of independent ped-
agogical interest.

1 Introduction

A key question in machine learning is, when can it reasonably be claimed
that an algorithm has successfully learned? For instance, consider the problem
of learning to recognize whether a photograph (of fixed dimensions) contains
an image of a bicycle. Under what circumstances, if any, can it reasonably be
claimed that a learning algorithm has produced a hypothesis function that with
95% accuracy classifies photographs as containing or not containing bicycles?

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1250

One possible answer to this question is provided by a Bayesian application
of the No Free Lunch (NFL) theorems for learning [13]. Specifically, consider a
rational agent who begins by assuming that all possible functions mapping pho-
tographs to bicycle/no-bicycle classifications are equally likely to be perfectly
accurate, that is, who has a uniform prior over possible target classification
functions. One of the implications of the NFL theorems is that, regardless of
the learning algorithm employed by this agent, after applying the algorithm to
a given training set to produce a hypothesis function, by Bayesian reasoning the
agent should conclude that the average accuracy of the hypothesis—averaged
according to the posterior distribution over target functions and over all unseen
photographs—is exactly 50%, the same as random guessing. The NFL theo-
rems might therefore seem to imply that the only way to make a positive claim
for a learning algorithm’s accuracy is to begin by assuming a non-uniform prior
distribution over possible target functions.

Another possible answer to the accuracy question is provided by so-called
probably-approximately correct (PAC) [11] generalization bounds. Such bounds
can, under the right circumstances, be used to make statements such as “With
probability at least 99% (the ‘probably’ part of PAC), this learned classifier
is 95% accurate (the ‘approximately’ part).” This might seem to be a more
promising answer than the one provided by the NFL theorems. However, the
“probably” part of such claims does not mean what one might like it to mean.
In fact, when we attempt to reconcile PAC bounds with NFL implications,
we find that PAC bounds by themselves do not free us from those negative
implications.

This raises another question: Rather than reconciling the NFL and PAC
viewpoints, can we simply choose one viewpoint and ignore the other? It does
not seem so. For many machine learning/artificial intelligence textbooks—
e.g., [1, 3, 7, 8, 9, 10]—contain at least some coverage of the NFL theorems
and/or PAC generalization bounds. That is, both viewpoints would appear to
be well-established elements of machine learning pedagogy.

This paper will begin by expanding on the discussion above to clearly show
that there is a fundamental conflict between the Bayesian and PAC views of
learning when it comes to the necessity of making prior assumptions. Next, it
will be shown that some PAC bounds can be simplified by making a certain
finiteness assumption. This leads to employing a different finiteness assump-
tion in order to reconcile the negative implications of the NFL theorems with
the positive claims of PAC bounds. It will also be suggested that this finite-
ness assumption is reasonable. In the end, for those willing to embrace this
assumption, it will be justifiable under certain circumstances to make learning
claims without the need for prior assumptions.

2 251

2 The PAC/Bayes Conflict

This section will illustrate the fact that, from a Bayesian perspective, PAC
generalization bounds are not meaningful without certain assumptions. The
section begins by defining some learning models and terminology, then de-
scribes a Bayesian application of the NFL theorems for learning, and finally
considers this Bayesian view of PAC bounds.

2.1 Machine Learning Models and Terms

Consider a very simple learning problem. There are 100,000 small disks num-
bered 1 through 100,000 in a room. The underside of each disk is either green
or red. We will be given the opportunity to choose a small subset of the disks
and to view their colors. Based on this, we would like to learn a function that,
given a disk’s number, will predict whether the disk is green or red. (We will
consider a more general form of prediction function below.) This example and
the photographs example of the Introduction will be used to illustrate a num-
ber of terms commonly used in machine learning. See any machine learning
textbook, e.g., [1], for additional details and terms.

The disk color learning problem is an example of a supervised learning
problem, the type of problem studied in this paper (and a very common form
of learning problem). Such problems have an input space X , the domain of
the function that we are attempting to learn, and an output space Y, the
codomain of the function. For the photographs problem of the Introduction,
the input space consists of the set of all of the photographs that the learning
algorithm might be given and the output space is {bicycle, no-bicycle}. For
the disks problem, the input space is {1, 2, . . . , 100,000} and the output space
is {red, green}. All of the learning problems considered in this paper will for
simplicity be so-called two-class problems, problems for which |Y| = 2.

We will throughout assume, again for simplicity, that there is a determinis-
tic target function f : X → Y that assigns the correct output class to every
input. We will further assume that there is no restriction on what the target
function might be. So, if X is finite and that we are considering a two-class
problem, the target could be any of the 2|X | possible functions f : X → Y.
For instance, in the disk problem, any of the 2100,000 colorings of the disks is
considered possible initially.

A learning algorithm is given a training set d of input/output pairs, or
examples. We will make the typical assumption that there is a fixed proba-
bility distribution D over X and that the training set is formed by successively
drawing x ∈ X according to D and pairing each selected x with the value f(x)
assigned to it by the target function f . A training set for the disks problem
might be formed by uniformly at random selecting disks 100 times and flip-

3252

ping them to reveal their colors. We would then have a training set of 100
examples.1

The function output by a learning algorithm, after it has processed the
training set, is referred to as the hypothesis of the algorithm. In its simplest
form, a hypothesis is deterministic, that is, is of the form h : X → Y, just as
the target is assumed to be. The PAC bounds considered later will assume
deterministic hypotheses. However, the hypothesis space of all possible hy-
potheses output by a learning algorithm might be a proper subset of the set of
all possible targets. For instance, a very simple learning algorithm for the disk
problem might be designed to output only one of two possible hypotheses, one
that ignores its input and always predicts “green” and the other that always
predicts “red.”

Bayesian learning allows for a more general, probabilistic, form of hypoth-
esis. This and other aspects of Bayesian learning are covered as part of the
next section.

2.2 Bayesian Learning and the NFL Theorems

Let us begin by considering a simplified version of the disk color learning prob-
lem in which there are only four disks numbered 1 through 4, and consider a
Bayesian approach to this problem (see, e.g., [9] for details on Bayesian learn-
ing). Given that all that we know is that each disk is red or green, it seems
reasonable to begin with the assumption that all 24 = 16 possible red/green
colorings of the disks are equally likely. That is, we might begin by applying
the principle of indifference [5], or in the terminology of Bayesian learning,
begin with a uniform prior distribution over the set of 16 possible target
classification functions that map disks to colors.

Once a prior has been fixed, Bayesian learning proceeds by drawing a train-
ing set d as described in the previous section. Let us begin with a training set
of size 1. So, one of the disks is chosen at random—say, disk 3—and flipped.
Imagine that its underside is green. Then, in Bayesian learning, we use this
information to update the probability of each of the possible target colorings
hi by employing Bayes’ Rule:

P (hi | d) = αP (d | hi)P (hi)

where d is the observed data, α is a normalization factor that guarantees that∑
i P (hi | d) = 1, and P (hi) is the prior probability of possible target hi. For

our problem, P (hi) = 1/16 for every hi. Also, notice that the conditional
1It is possible that this random process will select some input x more than once. In

such a case, the resulting training set will have fewer than 100 distinct elements. Thus,
although this paper follows the standard convention of referring to a training “set,” training
“collection” would be more accurate.

4 253

probability P (d | hi) is 0 for any hi that assigns red as the color of disk 3 and
is 1 for the remaining hi. Since there are eight of each type of possible target,
it is easy to see that after this Bayesian update the posterior probability
distribution P (hi | d) will be 0 over the hi that are inconsistent with the data
we have seen (assign red to disk 3) and uniformly positive (1/8) over the eight
possible targets consistent with this data.

Next, imagine that we instead form training set d by randomly selecting
three disks and that those disks are 3, 1, and 4. Extending the reasoning of the
previous paragraph, it is not hard to see that if all three disks are green then
Bayes’ Rule will produce a final posterior probability distribution over the hi
that places 50% probability on the target that colors disks 1, 3, and 4 green
and disk 2 red, 50% probability on the hi that colors all four disks green, and
0% probability on the remaining 14 possible target functions.

The hypothesis function produced by Bayesian learning is not deterministic
but instead combines all of the targets according to the posterior probability
distribution and therefore is itself a probability distribution over the output
space values (classes). In this case, under the posterior distribution one target
has 50% weight and says that disk 3 is red, another target has 50% weight
and says that disk 3 is green, and no other target has any weight. Thus, the
learned hypothesis is one that would predict that disk 3 is red with probability
0.5 and also predict that it is green with the same probability.

This is exactly the same hypothesis regarding disk 3 as the one that would
be obtained by using the prior distribution to combine hypotheses, since the
prior distribution assigned equal weights to the eight targets labeling disk 3
red and the eight labeling it green. In short, after observing the training data,
the Bayesian learning algorithm has not changed its prediction for disk 3 and
in this sense has learned nothing about disk 3.

What’s more, it turns out that similarly negative results will hold for larger
problems. For instance, if we return to the original problem having 100,000
disks and consider a training set of size 100, and if all 100 examples are green,
Bayesian learning—if we begin with a uniform prior—tells us that the learned
hypothesis should assign equal probability of red or green to any disk that was
not part of the training set.

This analysis is taken a step further by applying the No Free Lunch the-
orems for learning [13]. One of these, Theorem 3, implies that no matter
what learning algorithm—Bayesian or otherwise—is applied to the training
data, from a Bayesian perspective and given a uniform prior all over possible
targets, the prediction made by the learned hypothesis on disks outside the
training set is just as likely right as wrong. Intuitively, the rationale for the
theorem is that according to a Bayesian perspective that begins with a uniform
prior, all disks outside the training set are just as likely red as green.

5254

The following quote from [13] sums up nicely a key challenge posed by this
Bayesian viewpoint for anyone wishing to make claims about hypothesis accu-
racy without invoking assumptions about prior distributions. Generalization
error in this quote refers to the probability that a hypothesis incorrectly pre-
dicts the classification of an input that has not previously been observed, either
as part of a training set or as part of a separate test set. (We will have more
to say about generalization error soon.)

In addition, the NFL theorems have strong implications for the
common use of a “test set” or “validation set” T to compare the
efficacy of different learning algorithms. The conventional view is
that the error measured on such a set is a sample of the full gen-
eralization error. As such, the only problem with using error on T
to estimate “full error” is that error on T is subject to statistical
fluctuations, fluctuations that are small if T is large enough. How-
ever if we are interested in the error for [data not in the training or
validation sets], the NFL theorems tell us that (in the absence of
prior assumptions) error on T is meaningless, no matter how many
elements there are in T .

So, returning to the disk learning problem, if based on a training set we
hypothesize that all of the disks are green, and if we further observe that this
hypothesis is completely accurate for the elements in a second, relatively large,
set of randomly chosen disks (the validation set), this quote is claiming that
the zero error observed on the validation set tells us nothing whatsoever about
the performance of the all-green hypothesis on unseen disks in the absence of a
non-uniform assumption about the prior over targets. This is consistent with
the earlier comment that observing 100 consecutive green disks did not have
any impact on a uniform-prior Bayesian learner’s predictions regarding unseen
disks.

With this challenge to the assumption-free use of generalization bounds in
mind, we next consider PAC generalization error bounds and see how they do
indeed run afoul of a Bayesian view based on the No Free Lunch theorems.

2.3 Probably Approximately Correct Generalization Error

We now consider a learning setting in which there is no assumption regarding a
prior distribution over possible target functions. Hoeffding’s bound on the tails
of probability distributions over sums of a random variable [4] along with the
union bound of probability theory readily give rise to the following observation
(see, e.g., [1] for a derivation): If the hypothesis space of a learning algorithm
has finite cardinalityM and the algorithm is given N randomly drawn training
examples of a target deterministic two-class function f , then the probability

6 255

over the random choice of the training set that the overall error rate of the
hypothesis h output by the algorithm differs by more than ε from the error
rate of h on the training set is at most

2Me−2Nε
2

(1)

Here the overall error rate of h, e(h), is the probability that h is correct
on examples drawn according to the same distribution D used to generate the
training set. That is, e(h) = Px∼D(h(x) 6= f(x)). The training error rate
of h on training data d, ed(h), is the percentage of errors h makes on the N
examples in d. That is, ed(h) = (1/N)

∑
(x,y)∈d(h(x) 6= y).

Technically, e(h) is the error over the entire input space; in the case of
disk learning, it is over all disks, those that were seen in the training set and
those that are unseen. Thus, e(h) is not exactly the same as the generalization
error referred to in the previous section, which was error measured only over
unseen examples. However, in typical learning problems, the training data
set represents a tiny fraction of the overall input space. In such settings, the
difference between overall error and generalization error as described in the
previous section is, for practical purposes, nil. Such settings will be assumed
in this paper, and e(h) will therefore also be referred to as “generalization
error.”

Using δ to represent an upper bound on (1) and algebraically rearranging
the resulting inequality, we can obtain the following probably approximately
correct (PAC) bound on generalization error e(h): With probability at least
1− δ over the random choice of training set d of size N ,

e(h) ≤ ed(h) +
√

1

2N
ln

(
2M

δ

)
(2)

However, we are making no prior assumption here, and per the Wolpert
quote of the previous section, a Bayesian view of the NFL theorems there-
fore suggests that ed(h) is meaningless.2 How can we reconcile the seemingly
positive PAC claims with the negative NFL-based claims?

Notice that the “probably” part of the PAC bound is a probability over the
random choice of training data d. Imagine, then, that the target f is an essen-
tially random, “white noise,” function. Intuitively, given that the training data
covers a small fraction of the input space, essentially any learning algorithm
we might imagine will produce a hypothesis h having e(h) ≈ 1

2 . However, if
we fix a learning algorithm and repeatedly draw random training sets d for

2Technically, Wolpert’s quote says that validation error, not training error ed(h), is
meaningless. But clearly he has in mind that error measured on seen data is meaningless, in
the absence of prior assumptions, when it comes to estimating error on unseen data.

7256

this target f , there is some chance that eventually we will draw a d such that
ed(h) is noticeably less than 1

2 . In this case, a PAC analysis based on (2) could
lead us to erroneously claim that e(h) is also noticeably less than 1

2 . The PAC
bound tells us that we can expect that this will happen no more frequently
than roughly a δ fraction of the experiments. But, as this example shows,
it might be that every time this low-probability event occurs it leads us to
conclude that h predicts the target better than random guessing does, which
is false. On the other hand, every time this low-probability event does not
occur, the generalization bound is uninteresting because it does not allow us to
make a claim that h predicts better than random guessing. Put differently, if
our algorithm is executed repeatedly on a “white noise” function, it will rarely
(probability at most δ) have anything to say, and when it does say something,
it is wrong! What’s more, Kolmogorov complexity analysis [6] tells us that
not only do such essentially-unlearnable functions exist but they are the norm
within the set of all possible functions.

We see, then, why PAC generalization bounds by themselves do not allow
us to escape the NFL-based negative conclusions: The “probably” part of the
bound is not what we might like it to be, not “With probability 99% over the
executions of my learning algorithm, the algorithm produces a 95% approx-
imator.” Instead, it is the probability that our learning algorithm is being
misled by the random training data. This means that, depending on the target
functions the algorithm is run on, the PAC bounds might never lead to a good
approximator, despite the algorithm making occasional claims to the contrary.
Furthermore, the NFL theorem analysis suggests that, even for a learning algo-
rithm informed by PAC generalization bounds, we should (roughly speaking)
expect the algorithm’s hypotheses to be wrong as often as they are right if the
target functions are chosen uniformly at random. That is, despite the use of
PAC bounds, we should expect e(h) = 1

2 on average (the exact equality holding
only when e(h) represents error on unseen inputs rather than overall error).

Hopefully, at this point the problem is clear: We would like to make learn-
ing claims without making prior assumptions, but the NFL theorems seem to
imply that it would be unreasonable to do so, even if we use learning algo-
rithms providing PAC guarantees. In the next section we employ finiteness
considerations to begin developing a possible solution to this problem.

3 Replacing Infinite Hypothesis Spaces with Finite

The PAC bound given in the previous section assumed a learning algorithm
that would output one of a finite number M of possible hypotheses. But many
learning algorithms, such as those for learning neural networks, can—at least
in theory—output one of an infinite number of possible hypotheses. In the case

8 257

of neural network learning, this is because the neural network output by the
algorithm is described by a vector of real-valued numbers (weights).

A standard approach to producing generalization bounds when hypothe-
sis spaces are infinite is to employ Vapnik-Chervonenkis (VC) analysis of the
hypothesis space [12, 2]. This produces a generalization bound (see [1], for
instance, for details) with a form similar (up to constants) to that of (2) but
substituting for M a term involving the so-called VC-dimension V C(H) of the
hypothesis space H:

e(h) ≤ ed(h) +
√

8

N
ln

(
4(2N)V C(H)

δ

)

One potential disadvantage of this approach is that, depending on H, find-
ing the correct value for V C(H) can be a somewhat daunting theoretical un-
dertaking. And even if an appropriate term is known, an instructor presenting
bounds that use a VC term will likely find it prudent to spend course time
providing at least a surface treatment of VC theory to provide context for the
term. Although the theory has a certain amount of beauty in its own right,
there would seem to be some value in having a simpler, perhaps more intuitive,
alternative way to generalize error bounds to infinite hypothesis spaces.

And, at least for hypothesis spaces such as neural networks that are de-
scribed by vectors of real values, there does seem to be such a way.3 The ap-
proach depends on the fact that digital computers do not store real numbers;
they store finite-bit-length approximations to real numbers. So, if a neural net
is defined by the value of v weights in a computer using 64 bits to approximate
real values, the effective size of the hypothesis space is no more than 264v.
More generally, for a hypothesis space consisting of hypotheses defined by v
parameters each occupying b bits, we obtain the bit-based PAC generalization
bound

e(h) ≤ ed(h) +

√
1

2N
ln

(
2bv+1

δ

)

If V C(H) is taken to be v—v is the VC dimension for the simple hypothesis
space of linear separators (perceptrons), and is typically an underestimate of
the dimension for more complex spaces—then we can compare the VC and
bit-based bounds numerically. For instance, under this assumption regarding
V C(H) and taking b = 64, it is not hard to show that for N ≥ 8, the bit-based
bound is tighter than the VC bound for any values of v and δ. For b = 128,
N ≥ 128 guarantees an advantage to the bit-based bound. Thus, for reasonable

3Avrim Blum first suggested something like this idea to the author.

9258

values of b and N and a hypothesis space defined by v b-bit values, nothing is
lost by using bit-based bounds in place of VC bounds.

This bit-based generalization bound would seem to have pedagogical value
in its own right. But it also illustrates a concept that is so familiar that
it is easily overlooked: We routinely use finite approximations in computing.
The bit-based generalization error bound is one example of a broad array of
applications of finiteness in rational decision making. In the next section, we
will leverage a different form of finiteness to potentially allow PAC bounds to
provide meaningful guarantees without prior assumptions.

4 Finiteness and Small Probabilities

The author would be more than happy to make the following bet with the
reader. The reader pays the author $1. We then begin simulating the flipping of
a fair coin using some agreed-upon website, such as random.org, that generates
random bits. We continue flipping coins/generating bits once per second until
we observe 50 consecutive heads/1s, at which time I will pay the reader $2
(inflation adjusted, plus interest earned on the $1 wagered by the reader). Is
the reader willing to play?

In theory, the reader should be willing to play. After all, if we flip the
simulated coin enough times, we will almost certainly observe 50 consecutive
heads at some point in time and the reader will be money ahead.

In practice, I feel confident that the reader will not be willing to play. The
problem, of course, is that the two of us will almost certainly both shuffle off this
mortal coil long before 50 consecutive heads is observed. (If the reader doubts
this, replace 50 with 500 or some other sufficiently large number; at some point,
even if one imagines that human lives can be extended indefinitely, heat death
of the universe becomes a limiting finiteness factor.) So, the reader will almost
certainly lose this bet.

We see, then, that finiteness considerations—in this case, finiteness of hu-
man life—can lead us to reasonably ignore small probability events. Mathe-
matically, we must take all events into account, even those that have minute
probabilities. Physically, when finiteness constraints are taken into account, it
can be reasonable to behave differently. That is, our existence in a physical
universe that is less than ideal mathematically can at times allow us to escape
the strictures imposed by purely mathematical analyses.

Consider next a second application of finiteness considerations that is more
directly related to machine learning. A typical learning algorithm, after it
has completed executing on a training set, will produce not only a hypothesis
function h but also some relevant information computed during training, such
as the final error rate ed(h) of h on the training set d. Can we be absolutely

10 259

certain that the ed(h) value output by the computer is correct? Of course
not. Even if we were to assume that the learning algorithm software and the
operating system were bug free—a big assumption—computers are physical
devices and are therefore subject to errors due various physical phenomena
such as radiation associated with cosmic rays [14]. Thus, although the chance
of a computation producing an erroneous output that is not obviously in error
is presumably extremely small, the chance is nonzero.

Does this mean that, if we give our students a homework assignment that
asks them to report the training set error for a learned hypothesis, we should
require that their submissions be of the form, “With probability such-and-such
the computer has not erred and therefore the training error is so-and-so”? No,
standard practice is of course to treat computer systems as if they run error-free
and, modulo possible concerns about application software bugs, to accept their
computations as correct. That is, we ignore the positive-but-tiny probability
that a computing system has erred without our noticing. We are aware at some
level that such an error might occur, so we would not entirely rule out evidence
that such an error had occurred if such evidence were to be presented to us.
But, barring such evidence, we simply trust that the computer itself has not
misled us.

What we have been considering is how we treat the possibility of a computer
misleading us regarding its calculation of ed(h) from a given training data set d.
But, as noted earlier, another way that we can be misled is if randomly selected
d is such that ed(h) (correctly computed) is not as close to e(h) as suggested
by the PAC bound of inequality (2). In such a case, we would be misled into
mistakenly believing that e(h) is smaller than it truly is. It is this type of
misleading to which the “with probability at least 1 − δ” caveat of the PAC
generalization bound applies. However, given that it is reasonable to ignore
the possibility of being misled about the calculation of ed(h), might it not also
be reasonable to ignore the probability-δ possibility of being misled about d
being suitable for computing a bound on e(h), as long as δ is sufficiently small,
for instance, comparable to the chance of being misled about the computer’s
calculation of ed(h)?

This thinking suggests that PAC generalization error bounds can be mean-
ingful despite NFL-based Bayesian claims to the contrary. In particular, this
statement is true, although potentially vacuous:

If a rational person is comfortable ignoring the possibility of com-
puter error in calculating ed(h) and if they are similarly comfortable
ignoring the possibility of a misleading training set d being selected
randomly given that the probability δ of this event is sufficiently
small, then for such δ it is reasonable for them to accept (2) without
any probabilistic caveat and without any prior assumptions regard-

11260

ing possible targets.

This statement can be reconciled with a Bayesian analysis by observing that
Bayesian analysis, like all of probability theory, informs our thinking in the
limit as the number of repetitions of experiments grows without bound. But if
the number of experiments is bounded—in particular, if there is good reason to
expect that none of the training sets we observe will ever be misleading—then
we should be open to the possibility that it is the Bayesian analysis itself that
might be misleading. For, as noted earlier, purely mathematical, in-the-limit
analyses do not always align well with our finite physical reality.

However, as already suggested in passing, perhaps the conditional statement
above is vacuous. In particular, perhaps for every δ > 0 and for every person,
rationality prevents that person from being comfortable with ignoring the δ-
probability of a misleading training set being drawn. It should be clear that
the author believes otherwise and hopes that many readers will be similarly
inclined. In fact, as suggested in the betting scenario at the beginning of this
section, for a δ of 2−50, or roughly 10−15 (one in one quadrillion), it seems
that it might be reasonable to ignore the possibility of drawing a misleading
training set. Also note that for learning problems for which large training sets
are available, the bit-based generalization bound can be reasonably strong even
when δ is tiny. For instance, for b = 64, v = 3, and δ = 10−15, N = 100,000
gives that, with probability at least 1 − δ over the choice of training set, e(h)
is no more than 0.03 greater than ed(h).

Still, the author’s approach to explaining to students how NFL theorems
and PAC bounds can be reconciled has been to present a conditional statement
similar to the one above and let the students decide for themselves whether they
would be comfortable ignoring sufficiently small δ. Although student attitudes
toward this approach were not formally surveyed, anecdotally, students seemed
very receptive to the material presented in this way.

The conclusion of this paper is that if a machine learning student (prac-
titioner) and their professors (clients) are all comfortable ignoring the pos-
sibility of misleading training data at some δ level, the student (practitioner)
can—given sufficient training data and a relatively small training error ed(h)—
provide meaningful bounds on generalization error without making any prior
assumptions regarding targets. On the other hand, short of ignoring the
misleading-data possibility, it seems that the warning of [13] must be heeded:
Without prior assumptions, generalization claims are meaningless.

References

[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learn-
ing from Data. 2012.

12 261

[2] Anselm Blumer et al. “Learnability and the Vapnik-Chervonenkis Di-
mension”. In: Journal of the ACM 36.4 (Oct. 1989), pp. 929–965.

[3] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-
cation. 2nd edition. Wiley-Interscience, 2000.

[4] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded Ran-
dom Variables”. In: American Statistical Association Journal 58 (1963),
pp. 13–30.

[5] J.M. Keynes. A Treatise on Probability. Macmillan and Company, lim-
ited, 1921. isbn: 9780404145637. url: https://books.google.com/
books?id=YmCvAAAAIAAJ.

[6] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer New York, 2008. isbn: 9780387498201.
doi: 10.1007/978-0-387-49820-1.

[7] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of Machine Learning. Second edition. MIT Press, 2018. url: https:
//cs.nyu.edu/~mohri/mlbook/.

[8] Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. MIT
Press, 2022.

[9] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 4th edition. Pearson, 2020.

[10] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[11] L. G. Valiant. “A Theory of the Learnable”. In: Communications of the
ACM 27.11 (Nov. 1984), pp. 1134–1142.

[12] V. N. Vapnik and A. Ya. Chervonenkis. “On the Uniform Convergence
of Relative Frequencies of Events to Their Probabilities”. In: Theory of
Probability and Its Applications 16.2 (1971), pp. 264–280.

[13] David H. Wolpert. “The Lack of A Priori Distinctions Between Learning
Algorithms”. In: Neural Computation 8.7 (1996), pp. 1341–1390.

[14] James F. Ziegler. “Terrestrial cosmic rays”. In: IBM J. Res. Dev. 40.1
(1996), pp. 19–40. doi: 10.1147/RD.401.0019.

13262

FACE: A Framework for AI-driven Coding
Generation Evaluation∗

Bao Ngo1, Jack Formato 3, James J. May2,
Nguyen Ho3, Hoang Bui3, Linh B. Ngo2

1Oberlin College, Oberlin, OH
bngo@oberlin.edu

2West Chester University, West Chester PA
{jm1006779,lngo}@wcupa.edu

3Loyola University Maryland, Baltimore MD
{jpformato,tnho,hdbui}@loyola.edu

Abstract

Previous work on evaluation code generation solutions is limited to
static test cases due to difficulty in manual acquisition of test data. This
paper presents a framework that enables the automated study of various
code generation solutions using the entirety of an online competitive
programming platform. To evaluate the capability of this framework, we
exhaustively tested solutions generated from ChatGPT and Gemini for
all programming questions on this platform. The resulting statistical and
textual analysis highlights the difference between these two platforms and
demonstrates the contribution of this framework in enabling researchers
to collect and analyze a massive amount of data.

1 Introduction

The recent popularization of AI-enabled tools that are based on large language
models has motivated researchers to investigate the long-term impacts and
implications of these tools on the labor market. One working paper yet already

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 263

highly cited finds that information processing industries will be exposed to
“high economic impact without distinguishing between labor-augmenting or
labor-displacing effects” [8]. From the perspective of software development,
there are AI-enabled platforms that have the ability to generate code based
on a problem statement. These platforms raise the possibility of partially or
completely replacing software developers[6]. A search on Google Scholar with
the phrase ai code generation yielded more than 18,000 results in 2023 alone,
with ten initial pages of results including the majority of work published in
IEEE/ACM peer-reviewed conferences and journals.

One of the challenges in study AI-enabled code generation platforms is how
to test the quality of generated. Existing literature focuses on utilizing ready-
to-use problem statements and test cases collected by manually mining publicly
available data[7] [15]. This approach provides a massive amount of problem
statements but is limited to only public test cases. Hidden test cases, such as
those provided by LeetCode or Kattis, are not accessible to research purposes.

In this work, we present an approach to help alleviate the above problem
by designing and implementing a framework for AI-driven code generation
evaluation (FACE). Without direct access to all test cases, FACE can still
leverage the online testing platforms’ API interfaces to capture the evaluation
of AI-generated code, thus enabling the investigation of code generation. FACE
also allows easy modification and interfacing to multiple AI platforms.

The rest of the paper is as follows. Section 2 discusses the design and
implementation of the FACE framework. Section 3 studies the effectiveness of
the framework through the case study of two platforms, OpenAI’s ChatGPT
(GPT) and Google’s Gemini (Gemini). A summary of other static test datasets
is presented in Section 4. Section 5 concludes the paper and discusses future
work.

2 Framework Architecture

2.1 Architecture

We design the system to automate the process of collecting thousands of pro-
gramming problems from a coding challenge platform, querying an AI platform
to generate solutions, and finally submitting the solutions back to the original
platform for evaluation. Each programming problem typically consists of a
problem description, sample input, and output. The result includes the status
of the submission, whether the solution is accepted or rejected, and the rea-
son for rejection. Figure 1 illustrates the overall architecture of our proposed
framework, comprising three primary components: the Miner, the Generator,
and the Submitter. Each component plays an important role in the seamless
functioning of the system.

2264

Figure 1: Data Collection Framework

The Miner is responsible for extracting the text of individual coding prob-
lems from the coding challenge platform. It gathers essential information,
including detailed problem descriptions, corresponding test cases, and other
requirements. This information serves as the foundational input for the sub-
sequent stages of the framework. The Generator leverages the information
procured by the Miner, this component queries an AI-enabled platform to gen-
erate potential solutions to the coding problem. By interpreting the problem
descriptions and test cases, an AI-enabled platform generates a solution that
aims to meet the specified requirements and constraints of each problem. The
Submitter takes over the process of submitting the solution back to the coding
challenge platform for evaluation. This component ensures that each solution
is assessed by the original platform, with the results being saved in text files,
creating a repository of results that can be analyzed, and evaluated to refine
the system further.

2.2 Implementation

The 8-stage workflow of FACE is visualized in Figure 1. In our prototype, the
Miner obtains coding problems listed on Kattis1, a popular coding challenge
platform. First, the Miner extracts a list of problem names and constructs a
URL for each problem. In our implementation, we employ the autokattis22

Python library to request (Stage 1) an HTML page for each problem. Then,

1https://open.kattis.com/problems
2https://www.piwheels.org/project/autokattis/

3 265

Metadata Description Sample Test Cases
different
https://open.kattis.com
/problems/different
2.8
Medium

Write a program that computes
the difference between
non-negative integers.
Input
Each line of the input consists
of a pair of integers.
Each integer is between 0 and
215 (inclusive).
The input is terminated by end
of file.
Output
For each pair of integers in the
input, output one line,
containing the absolute value of
their difference.

Sample Input 1
10 12
71293781758123
72784
1 12345677654321
Sample Output 1
2
71293781685339
12345677654320

Table 1: An example of a coding problem from Kattis

the problem name, difficulty score, difficulty level, problem description, and
sample test cases are extracted from the HTML page. All data associated with
each problem is stored (Stage 2) in text files in a single folder.

In Stage 3, the Generator reads the information obtained by the Miner and
begins constructing an AI prompt for each problem. Each prompt includes
a leading question that describes the objective of the prompt, along with the
problem description and the test cases. An example of a leading question
is: Write a python program for the following problem and make sure that the
variables’ names and functions’ names are different, and also, only use internal
Python libraries, not external Python libraries. These constraints are added to
ensure that the solutions generated by AI platforms (ChatGPT or Gemini)
comply with Kattis’ judging system, which only allows the use of internal
Python libraries. In Stage 4, the Generator uses OpenAI APIs or Gemini
APIs to send the constructed prompt to the specific platform to generate the
solution. A copy of the generated solution is saved (Stage 5) locally in a text
file before the Submitter takes over and submits the solution to the Kattis’
judging system for evaluation.

Once Python solutions generated by ChatGPT/Gemini are obtained, the
Submitter reads (Stage 6) the solutions from local storage and submits (Stage
7) them back to Kattis’ judging system for evaluation. Based on the number
of passed test cases, Kattis’ judging system will label the result. The label

4266

Result
Submission received. Submission ID: 13469967.
Submission URL: https://open.kattis.com/submissions/13469967
New...New...New...New...New...New...New...New...
Test cases: [..] 2 / 2

Table 2: An example of a result file from a Kattis submission

is either Accepted (AC), Wrong Answer (WA), Runtime Error (RTE), Time
Limit Exceeded (TLE), or Memory Limit Exceeded (MLE). We discuss the
meaning of these five statuses in the next section. The result is stored (Stage
8) in a text file for further evaluation. Table 2 shows an example of the result
from a Kattis submission through the Submitter.

2.3 Technical Discussion

For coding challenge platforms with a large amount of problems (e.g., 3,323
coding problems for Kattis), it is important that FACE does not accidentally
flood that platform with a large amount of requests. In addition to the rate
limits of ChatGPT and Gemini, various timing delays were included in Stages
1, 4, and 7. We find that random delays between 60 to 100 seconds are adequate
for all external platforms.

The additional of timing delays significantly increases the duration it takes
to completely generate all solutions. Throughout this process, we encounter
various errors such as losing network connection and reaching the monthly
quota limits on ChatGPT/Gemini. To make our framework fault-tolerant, we
develop a checkpoint component that allows the Generator to restart where
it failed. To future-proof FACE, we also decide to not overwrite generated
solutions but to save multiple versions across different runs. This leads to a
change in the Submitter, which is able to identify and load only the latest
solution. This will let us later expand FACE to support prompt refinement.

3 Case Study: Analyzing ChatGPT and Gemini

In this section, we use FACE to study the solution generation process using two
separate AI platforms: ChatGPT and Google Gemini. The generated solutions
are submitted to Kattis and the evaluation results are collected and validated.

5 267

3.1 Programming Problem Description

Our study examines 3,323 programming contest problems from Kattis. After
the AI-generated solutions are submitted to Kattis via its Python API, FACE
captures the returned text, which contains information about how many test
cases passed and what the final status is. These results, in addition to input
information, create the core features set to be later analyzed. The features can
be categorized into two groups, one including attributes of programming prob-
lems (Problem, Difficulty, and Description) and the other including attributes
of the resulting evaluations (Status, Pass, and Total).

For each programming problem, Problem provides a unique problem name,
which is used to generate a direct URL to the Kattis problem. Difficulty is a
number representing Kattis’ difficulty ranking for the problem. Kattis’ diffi-
culty values are neither fixed nor manually assigned but calculated based on the
ratio of successful solutions versus failed attempts. Problems that are solved
by many and have few failed attempts have lower difficulty scores. Problems
that are frequently tried but have more failed submissions have higher difficulty
score. The lowest difficulty score for Kattis problems is 1.1, and the hardest
problem has a difficulty of 9.7. Description contains the problem’s text de-
scription, which contains all requirements and information needed to solve the
programming contest.

The resulting text captured through Kattis’ Python API allows the frame-
work to extract the final evaluation statuses, which include Accepted (AC: The
submitted solution passed all tests), Wrong Answers (WA: The solution ran,
but could not pass all tests. Failure to pass a test could mean either incorrect
results or incorrect output format of results), Run Time Error (RTE: The so-
lution crashed and could not produce a result), Time Limit Exceeded (TLE:
The solution took too long to run), and Memory Limit Exceeded (MLE: The
solution required more memory to run than allowed by the problem statement).
Pass indicates how many tests were successfully passed by the submitted so-
lutions prior to failure, and Total indicates how many tests are there in total
for the problem.

We were able to collect 3323 solutions to unique Kattis problems from
ChatGPT but only 2139 from Gemini. The number of generated solutions
from Gemini has been limited by the daily rate limit for our Gemini account.
The two platforms share 1981 unique problems. Table 3 presents a breakdown
of the status counts across these common problems. Value in cell (i,j) of the
matrix represent the number of problems with solution status i for Gemini and
solution status j for GPT. The final column and the final row represent the
total count for each problem status for Gemini and GPT, accordingly.

6268

Table 3: Status summary matrix for Gemini solutions and GPT solutions

AC WA RTE TLE MLE Gemini Total

AC 114 75 20 8 0 217
WA 59 820 296 31 9 1215
RTE 23 142 136 10 2 313
TLE 15 130 38 42 4 229
MLE 0 8 2 1 6 17
GPT Total 211 1175 492 92 21 1981

3.2 Exploratory analysis

As shown in Table 3, the numbers of AC (186/192), WA (1023/1066), and
MLE (20/15) results sare similar for both platforms. On the other hands,
the number of RTE (431/278) and TLE (71/180) results MLE differ from
one another, with GPT has more RTE statuses and Gemini has more TLE
statuses. These differences are visualized in Figures 2, and 3.

Figure 2: Status per Difficulty Range (Gemini) Figure 3: Status per Distribution Range (GPT)

In addition to the evaluation results, FACE also stored the generated Python
solutions, enabling the study of the source codes. Sample-generated solutions
from Gemini and GPT are presented in Listings 1 and 2, respectively. Visual
inspection of the generated solutions shows that Gemini generates codes with
more comments and well-defined functions and variable names according to
good software engineering conventions. On the other hands, GPT generates
more abbreviated code with function and variable names taken directly from
the problem’ text.

7 269

Listing 1: Gemini

def evaluate_sound_duration():
"""Compares the duration of Jon Marius' "aaah" with

↪→ the doctor's requirement."""
patient_sound = input()
doctor_sound = input()

patient_a_count = patient_sound.count('a')
doctor_a_count = doctor_sound.count('a')

if patient_a_count >= doctor_a_count:
print("go")

else:
print("no")

evaluate_sound_duration()

Listing 2: GPT

def sore_throat_test():
jon_aaah = input()
doctor_aaah = input()

if len(jon_aaah) >= len(doctor_aaah):
return 'go'

else:
return 'no'

print(sore_throat_test())

A direct text comparison does not work in this scenario. Instead, we uti-
lize Python’s Abstract Syntax Tree (AST) and the PyASTSim Python library
[13] to compare the generated solutions from the two platforms. PyASTSim
first converts the Python source codes to AST trees, removes all comments
and docstring, and then normalizes the identifiers. Next, the AST trees are
reconverted to source code, and the differences between the source codes are
measured using the Damerau-Levenshtein distance [2]. The edit distances are
then converted to percentages. Table 4 provides the summary statistics of
this similarity percentage scores for different statuses across different difficulty
ranges. The selected problems are the ones where both platforms generate the
same status. The median similarity scores for AC problems in lower difficulty
ranges (0.0-2.0 and 2.0-4.0) are noticeably higher than the similarity scores for
other statuses at other difficulty ranges, suggesting that simpler problems are
likely to have more similar solutions.

8270

Table 4: Summary statistics of text similarity between Gemini/ChatGPT-generated solutions

Problem Difficulty: 0.0 - 2.0
Status Count Median Minimum Maximum Std. Dev.
Accepted 65 46.000 8.000 89.000 16.039
Wrong Answer 28 39.500 0.000 69.000 16.344
Run Time Error 2 50.500 40.000 61.000 14.849
Time Limit Exceeded 0 nan nan nan nan
Memory Limit Exceeded 0 nan nan nan nan
Total 95

Problem Difficulty: 2.0 - 4.0
Status Count Median Minimum Maximum Std. Dev.
Accepted 48 48.000 0.000 91.000 18.656
Wrong Answer 149 36.000 0.000 82.000 14.848
Run Time Error 24 36.000 0.000 70.000 14.940
Time Limit Exceeded 4 38.000 33.000 71.000 17.569
Memory Limit Exceeded 0 nan nan nan nan
Total 225

Problem Difficulty: 4.0 - 6.0
Status Count Median Minimum Maximum Std. Dev.
Accepted 1 24.000 24.000 24.000 nan
Wrong Answer 276 35.000 0.000 79.000 14.344
Run Time Error 45 34.000 0.000 53.000 13.056
Time Limit Exceeded 9 48.000 30.000 76.000 18.824
Memory Limit Exceeded 2 58.000 40.000 76.000 25.456
Total 333

Problem Difficulty: 6.0 - 8.0
Status Count Median Minimum Maximum Std. Dev.
Accepted 0 nan nan nan nan
Wrong Answer 268 33.000 0.000 69.000 14.221
Run Time Error 44 32.500 0.000 53.000 12.777
Time Limit Exceeded 15 40.000 22.000 61.000 11.767
Memory Limit Exceeded 2 20.500 7.000 34.000 19.092
Total 329

Problem Difficulty: 8.0 - 10.0
Status Count Median Minimum Maximum Std. Dev.
Accepted 0 nan nan nan nan
Wrong Answer 99 34.000 0.000 78.000 13.140
Run Time Error 21 33.000 0.000 54.000 12.557
Time Limit Exceeded 4 41.000 0.000 57.000 24.364
Memory Limit Exceeded 2 33.000 29.000 37.000 5.657
Total 126

3.3 Statistical Analysis

Figures 4, provide a visual intuition regarding the correlation between Chat-
GPT and Gemini’s performance and the problems’ difficulty. Solutions with
AC status concentrate primarily between difficulty levels 0 and 3. As the range
of difficulty increases, the number of AC solutions declines by a visible amount
across both platforms. For WA, RTE, and TLE, the distribution seems to
visually fit with a normal distribution with a mean around 6.0 difficulty.

9 271

Figure 4: Difficulty Distribution across Different Status

To determine whether there is a statistically significant difference between
difficulty distributions and pass-ratio distributions for different statuses across
the two platforms, we first apply the Kolmogorov-Smirnov (KS) to the two
platforms’ set of problem difficulty scores for each status. For the KS test,
the null hypothesis is that both score sets come from the same continuous
distribution. Next, we apply the t-test with the null hypothesis that both
score sets have the same expected value. The same set of procedures is applied
to the platforms’ pass ratio score for each status. The p-value results are shown
in Table 5.

From the results, we fail to reject the null hypotheses for both tests in the
cases of AC, RTE, and MLE. In other words, we fail to find any statistically
significant proof that the distributions of solutions for these statuses from both
platforms seem to be drawn from the same distribution. For WA, both KS test
results for Difficulty and Pass Ratio scores are statistically significant (p-value
< 0.05), while both t-test results are not. This means that while we cannot
reject the null hypothesis that the expected value of these scores distributions
are similar across platforms, it is statistically significant that their distribu-

10272

tions are different. In other words, there is a significant difference between
WA-causing solutions generated by Gemini and GPT. For TLE, only the null
hypothesis of the KS-test for Pass Ratio scores is rejected at 0.0274.

Table 5: Summary statistics comparing Gemini solutions and GPT solutions

Status Pass Ratio Difficulty
KS test t-test KS test t-test

Accepted 1.0 0.8294 nan 0.4187
Wrong Answer 0.0048 0.802 0.0171 0.2732
Run Time Error 0.9999 0.4498 0.2739 0.0978
Time Limit Exceeded 0.0274 0.8388 0.3818 0.3321
Memory Limit Exceeded 0.2144 0.8329 0.1534 0.7647

From the Damerau-Levenshtein distance collected in the Exploratory Anal-
ysis, we also graph the distribution of similarity scores between solutions for
different statuses. In this case, we have to select a union set of solutions that
generateHanoi1982! the same status for both platforms. Figure 5 indicates that
with the exception of MLE, all other statuses have nearly identical distributions
for their similarity scores. There is no overwhelmingly similar distribution, in-
dicating some common coding structure and the majority of differences lying
in the details of the code generated by the two platforms.

4 Literature Review

There have been many works focusing on studying the quality of code gen-
erated through LLM platforms [9, 4, 12, 3, 5, 11, 14]. These work utilized
datasets consists of test cases and codes collected and generated previously.
One of the more popular dataset is APPS, a benchmark for code genera-
tion from natural language specification [9]. It consists of 10,000 problems
collected from 7 sources: codeforces.com, atcoder.jp, www.codechef.com, leet-
code.com, open.kattis.com, www.hackerrank.com, and www.codewars.com. The
input/output test cases are collected from publicly available sources. For ex-
ample, test cases from open.kattis.com are the ones available on the problems’
pages. Hidden tests are not available from APPS. Another dataset is the Most
Basic Programming Problems [1]. These problems were created by crowd-
sourcing participants to write a short problem statement, a single self-contained
Python solution, and three test cases that check for semantic correctness. The
Refactory dataset contains 2442 correct and 1783 buggy programs collected
from real world students’ submission to an introductory programming course
at a large public university [10]. FACE provides an additional alternative to
these static datasets by allowing users to access authentic and extreme test
cases that are not readily available to the public. This, in turn, can provide
for a more rigorous study of AI-generated coding platforms.

11 273

Figure 5: Similarity Score Distribution across Different Status

5 Conclusion

Through FACE, we are able to extensively collect problem statements, cap-
ture AI-generation solutions from different online platforms, and evaluate the
quality of these solutions for comparison purposes. The analysis of the results
demonstrate a clear difference in written convention and coding style, which in
turn lead to a noticeable difference in the distribution of final evaluation status
among the two platforms in our case study: OpenAI’s ChatGPT and Google’s
Gemini. FACE provides a foundational framework from which the following
future study can be carried out:

• Adding prompt engineering capability to customize and resubmit prob-
lem statements to generate better codes.

• Investigating approaches to customize and summarize problem state-
ments to reduce token count in order to improve cost without impacting
the quality of generated codes.

• Investigating the possibility of combining multiple failed codes into the
problem statements to ask the platforms to generate better codes.

12274

References

[1] Jacob Austin et al. “Program Synthesis with Large Language Models”.
In: arXiv e-prints (2021), arXiv–2108.

[2] Bonnie Berger, Michael S Waterman, and Yun William Yu. “Levenshtein
distance, sequence comparison and biological database search”. In: IEEE
transactions on information theory 67.6 (2020), pp. 3287–3294.

[3] Bei Chen et al. CodeT: Code Generation with Generated Tests. 2022.
arXiv: 2207.10397 [cs.CL].

[4] Mark Chen et al. Evaluating Large Language Models Trained on Code.
2021. arXiv: 2107.03374 [cs.LG].

[5] Carlos Eduardo Andino Coello, Mohammed Nazeh Alimam, and Rand
Kouatly. “Effectiveness of ChatGPT in Coding: A Comparative Analysis
of Popular Large Language Models”. In: Digital 4.1 (2024), pp. 114–125.
issn: 2673-6470. doi: 10.3390/digital4010005. url: https://www.
mdpi.com/2673-6470/4/1/5.

[6] E Dreibelbis. ChatGPT Passes Google Coding Interview for Level 3 En-
gineer With 183KSalary. 2023.

[7] Nora Dunder et al. “Kattis vs ChatGPT: Assessment and evaluation of
programming tasks in the age of artificial intelligence”. In: Proceedings of
the 14th Learning Analytics and Knowledge Conference. 2024, pp. 821–
827.

[8] Tyna Eloundou et al. “Gpts are gpts: An early look at the labor market
impact potential of large language models”. In: arXiv preprint arXiv:2303
.10130 (2023).

[9] Dan Hendrycks et al. “Measuring Coding Challenge Competence With
APPS”. In: Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track. 2021.

[10] Yang Hu et al. “Re-factoring based program repair applied to program-
ming assignments”. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE. 2019, pp. 388–398.

[11] Jiawei Liu et al. Is Your Code Generated by ChatGPT Really Correct?
Rigorous Evaluation of Large Language Models for Code Generation.
2023. arXiv: 2305.01210 [cs.SE].

[12] Erik Nijkamp et al. CodeGen: An Open Large Language Model for Code
with Multi-Turn Program Synthesis. 2023. arXiv: 2203.13474 [cs.LG].

[13] PyASTSim. https://pypi.org/project/pyastsim/. 2021.

13 275

[14] Haoye Tian et al. Is ChatGPT the Ultimate Programming Assistant –
How far is it? 2023. arXiv: 2304.11938 [cs.SE].

[15] Nghia D Tran et al. “Exploring ChatGPT’s Ability to Solve Programming
Problems with Complex Context”. In: Journal of Computing Sciences in
Colleges 39.3 (2023), pp. 195–209.

14276

Strengthening Financial IoT Systems Against
Bank Fraud: Integrating Data Backup and

Recovery Solutions∗

Syed Rizvi, Steven McKimm, Jonathan Bush,
Lukas Rhyner, Christian Diaz

Department of Information Sciences and Technology
Pennsylvania State University

Altoona, PA, USA
{srizvi, sjm7323, jwb6609, lwr114, csd5429}@psu.edu

Abstract

Bank fraud poses significant challenges for both consumers and providers
alike. Protecting the privacy and security of financial data is crucial, as
any breaches can result in severe financial losses and damage to repu-
tation. When financial institutions lack adequate data backup and re-
covery capabilities, the impact of a data breach or cyber-attack becomes
even more dire. Therefore, it’s imperative to develop robust data re-
covery solutions to instill trust and confidence among customers. This
paper delves into various controls and recommendations aimed at pre-
venting bank fraud, particularly by integrating data backup and recovery
capabilities into existing IoT infrastructure. Additionally, the paper ad-
dresses the challenges and potential risks associated with this integration.
Through developed data backup and recovery plans, it is evident that
proactive planning can enable financial institutions to swiftly return to
normal operations with minimal data loss and disruptions.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 277

1 Introduction

IoT devices in the financial domain revolutionize how financial services operate
and deliver value to stakeholders. Devices enhance data collection and analy-
sis, enabling real-time monitoring and asset management. Smartphones are at
the forefront of IoT, and a multitude of devices designed for transactions have
been created to provide a seamless customer experience [7]. Additionally, IoT
devices support the creation of smart contracts in blockchain technology, en-
suring secure and automated financial transactions; smart contracts can match
end users with high-reputation edge servers automatically, and the end user can
submit a reputation evaluation for smart contracts based on the behavior of
edge servers [3]. The use of IoT in financial services also extends to predictive
maintenance for ATMs and other critical infrastructure, reducing downtime
and ensuring continuous service availability. In ATMs, predictive algorithms
were utilized to predict failure and optimize the maintenance route [1]. Despite
the benefits of IoT devices in the financial domain, they are vulnerable to vari-
ous security threats which significantly impact customers and their institutions.
Similarly, the immaturity of smart contracts may result in losses or leaked in-
formation [11]. These devices often lack robust security measures which make
them prime targets for cyberattacks. Data breaches, hacking, and malware are
significant attacks which can carry a costly impact. For customers, vulnera-
bilities leading to unauthorized access to sensitive financial information may
result in identity theft and financial loss. For banks and financial institutions,
security breaches can erode customer trust, damage reputations, and lead to
significant financial penalties. Thus, the development of models that identify
these costs is significant in patching security gaps to better manage consumer
data [4]. Blockchain, compromised IoT devices, can undermine the integrity
of smart contracts and transactional accuracy, potentially causing disruption
to the financial ecosystem, so ensuring the security of IoT devices is crucial,
requiring continuous updates, stringent security protocols, and proactive mon-
itoring to protect against emerging threats and safeguard trust in the financial
domain.

Addressing security issues in the financial domain involves several criti-
cal steps to ensure robustness and reliability. First, identifying security gaps
through rigorous assessments and penetration testing uncovers vulnerabilities
in IoT devices and networks, allowing for targeted improvements that will
benefit both the customer and service provider. Developing advanced security
models, often leveraging machine learning (ML), helps predict and mitigate
potential threats by simulating various attack scenarios and strengthening de-
fenses. Deep neural architecture is utilized in identifying and characterizing
threats which operate on precision, recall, and F1 scores to optimize threat
mitigation [2]. Hence, developing a more secure environment for operation. Ad-

2278

ditionally, creating validation software is essential for continuously monitoring
IoT devices, ensuring adherence to stringent security standards and providing
real-time feedback on their performance. Distributed caching is applied in val-
idating public-key certificates which proposes utilizing cache spaces on IoT de-
vices as a pool to store validated certificates [10]. Implementing cryptography
secures data and communications with strong encryption algorithms, ensuring
that even intercepted data remains inaccessible to unauthorized users. Cryp-
tography and Lightning Network (LN) are a proposed solution for the issues
with traditional blockchain transactions. This provides a delegated channel
where the IoT device will open and close LN channels to complete transac-
tions through untrusted gateways with low power consumption while ensuring
security[6]. Additionally, blockchain technology enhances security by provid-
ing decentralized, tamper-proof records of transactions and smart contracts,
ensuring transparency and significantly reducing the risk of fraud. Utilizing
blockchain’s security enhancements in the realm of IoT can help to implement
a resilient framework [5]. Blockchain also finds uses in developing privacy in
IoT devices. It can employ a proposed architecture where enabled devices can
facilitate sharing through multiple blockchain ecosystems, ensuring exclusive,
seamless access through blockchain smart contracts [9]. Finally, blockchain
sees another use in a lightweight payment verification protocol on IoT devices.
Utilizing a ticket-based verification protocol, blockchain transactions can be
completed through a contract manager and transaction verifier which limits
the necessity for high-performance embedded systems [8].

Providing comprehensive data to detail the foundation of financial IoT de-
vices and their protection, including related data and backups, is crucial for
reinforcing the integrity of modern financial systems. In a digital landscape
where trust hinges on the security of information, this research highlights the
critical data recovery capabilities needed for a successful restoration in the
event of cybersecurity attacks. By presenting detailed information, the authors
empower stakeholders to navigate cybersecurity challenges effectively, fostering
a shared understanding and collaborative efforts towards resilience and innova-
tion. Ultimately, this research serves as a practical guide for decision-making
processes, reinforcing the security of financial ecosystems and ensuring robust
data recovery mechanisms are in place.

2 Case Study

CJL Bank is looking to grow its customer base by boosting better fraud de-
tection and prevention than its competitors. To achieve this, CJL is looking
to integrate IoT devices into its network to better track and detect fraudulent
transactions. The goal is to create a network capable of determining legitimate

3 279

transactions from fraudulent transactions using ML techniques. For this case
study, we have the following assumptions: (1) CJL is an international bank
with customers around the world. (2) CJL bank already has current cyber
security policies in place for their current IoT infrastructure. (3) CJL provides
services such as online banking, ATMs, mobile banking, credit/debit cards,
investment portfolios, and 24/7 customer support.

2.1 IoT Model for Financial Domain

Figure 1 represents a financial institution that is incorporating ML into their
IoT devices. This model is divided into two sections, Banking and Customer
assets. The banking assets include its firewall, cloud servers, and user database
with ML being implemented on the cloud servers. This allows for better model
training, scalability, and design simplicity while being protected by the bank’s
firewall. The customer assets are divided into different ways a user interacts
with the bank. These include online banking, mobile banking, wearable bank-
ing, credit/debit cards, and smart wallets for digital assets.

Figure 1: Financial IoT domain

2.2 Scenario

A customer has been using their debit card to get gas in California for the
last several months and then a sudden charge for gas in Arizona occurs. This
represents a case of credit fraud as the legitimate customer’s card information

4280

has been stolen. Without ML, it would be up to the individual to prove they
did not make the purchase. With the use of ML, the algorithm can detect this
drastic change in purchasing location to prevent the transaction, and then place
a “hold” on the card. Once the fraudulent charge has been prevented, a bank
representative can contact the account holder based on the contact information
recorded on file. This will then determine if the transaction was legitimate
and allow the charge or fraudulent and place a “freeze” on the account. The
incorporation of ML will enable data to be collected on customers and construct
a baseline of activity. After establishing a baseline, outliers can be detected to
prevent fraudulent activity on customer accounts. The algorithm trains itself
based on the customer’s actions using location data, online interactions, device
information, credit history, customer behavior, and transaction data. After
enough data has been collected and analyzed, the algorithm can then predict
how a customer generally interacts with the banking system.

3 Outcome of Risk Management Framework

The risk management framework is presented in Fig. 2 which provides an
effective methodology for assessing IoT devices used in the financial domain,
ensuring a comprehensive approach to risk management.

Figure 2: Risk Management Framework

Utilizing this framework is a crucial step before performing a Business Im-
pact Analysis (BIA) and developing data backup and recovery capabilities, as
it lays the groundwork for understanding and mitigating potential threats. By

5 281

systematically managing risks, financial institutions can enhance the security
and reliability of their IoT infrastructure.

3.1 Risk Assessment

The risk assessment process highlights the multifaceted nature of risks asso-
ciated with integrating ML into IoT infrastructure for fraud prevention at
CJL Bank. Identified risks encompass financial losses from fraudulent trans-
actions, potential data breaches compromising sensitive customer information,
and operational disruptions affecting regular banking operations and customer
experience. By systematically identifying these risks, the assessment under-
scores the need for a proactive approach to risk management. Moreover, it
emphasizes the importance of evaluating the likelihood and impact of each risk,
considering factors such as the criticality of banking functions, the sensitivity
of customer data, and the potential for customer dissatisfaction. This holistic
risk assessment approach provides a foundation for implementing targeted mit-
igation strategies and ensuring the resilience of CJL Bank’s operations against
evolving threats.

3.2 Risk Identification

There is a risk of financial loss if the ML algorithms fail to accurately identify
and prevent fraudulent transactions. With the integration of IoT devices and
the storage of large volumes of user data, there is an increased risk of data
breaches, exposing sensitive customer information. Implementing changes to
online or mobile banking for account holds may lead to disruptions in regu-
lar banking operations and customer inconvenience. It is essential to identify
all IoT devices integrated into banking operations. This includes cataloging
devices such as smart ATMs, card readers, biometric authentication systems,
and sensors for environmental monitoring. Understanding the purposes served
by each device, whether transaction processing, customer authentication, or
facility management, helps assess their criticality to banking operations. Iden-
tifying vulnerabilities and exploits is another essential aspect of IoT device
assessment. Conducting vulnerability assessments and staying informed about
known vulnerabilities targeting IoT devices enables banks to assess the risk of
exploitation and take appropriate mitigation measures.

3.3 Risk Evaluation

Risk evaluation involves assessing various factors, such as potential financial
losses and determining acceptable risk levels. This includes comparing the cost

6282

of implementing machine learning (ML) against potential fraud losses and eval-
uating the likelihood and impact of data breaches involving sensitive customer
information. Implementing mitigation strategies is essential. Consider opera-
tional disruptions and their impact on customer satisfaction and develop strate-
gies to minimize these during implementation. Evaluating IoT device security
features, such as authentication, encryption protocols, and access controls, is
crucial to prevent unauthorized access and data breaches. Additionally, ana-
lyzing connectivity options and data transmission protocols helps understand
security implications. Lastly, assess vendor security practices by reviewing their
certifications, adherence to industry standards, and responsiveness to security
vulnerabilities through timely updates.

3.4 Risk Prioritization

Risk prioritization is a critical step in effectively managing the integration
of ML into IoT infrastructure for bank fraud prevention. It is essential to
evaluate the potential impact of various risks on financial loss, data security,
operational continuity, and customer trust. High-priority risk is the poten-
tial for data breaches compromising sensitive customer information. A data
breach could not only result in financial losses but also damage the bank’s
reputation and erode customer trust. Therefore, implementing data security
measures, such as encryption, access controls, and regular audits, is essential
to mitigate this risk effectively. Operational disruptions in online and mobile
banking systems also rank high in terms of risk prioritization. Changes to these
systems to accommodate ML-driven fraud prevention measures may introduce
technical challenges or errors, leading to service interruptions or delays. Such
disruptions could inconvenience customers, undermine their confidence in the
bank’s services, and potentially result in financial losses if transactions are not
processed timely or accurately. Therefore, proactive measures to identify and
mitigate potential operational risks, such as conducting pilot tests, extensive
staff training, and effective communication with customers, are essential to
ensure smooth implementation and minimize disruptions.

Additionally, the risk of customer dissatisfaction stemming from false posi-
tives or account holds should not be overlooked. Balancing the need for fraud
prevention with the desire to provide seamless banking experience is crucial.
Therefore, strategies to promptly address false positives, such as customer ver-
ification processes and clear communication channels, are essential to maintain
customer satisfaction and trust in the bank’s services. By prioritizing these
risks and implementing appropriate mitigation measures, CJL Bank can ef-
fectively navigate the challenges associated with integrating ML into its IoT
infrastructure for fraud prevention while safeguarding its operations and repu-
tation. Table 1 provides a summary of the risk assessment and prioritization

7 283

Table 1: Summary of Risk Prioritization and Mitigation Strategies for Finan-
cial IoT

of various financial IoT devices, highlighting their risk levels, Single Loss Ex-
pectancy (SLE) scores, and recommended risk mitigation strategies. Each de-
vice is ranked based on the likelihood of exploitation and the potential impact
of such exploitation.

3.5 Risk Analysis and Control

Implement real-time monitoring and response mechanisms to quickly identify
and prevent fraudulent transactions. Establish a customer verification process
to resolve false positives promptly. Implement strong encryption protocols, reg-
ular security audits, and employee training programs to reduce the likelihood
of a data breach. Ensure compliance with data protection regulations. Develop
a phased implementation plan, conduct extensive training for bank staff and
customers, and provide effective communication channels for issue resolution.
The efforts to enhance fraud detection through ML integration, risk acceptance
involves acknowledging certain inherent risks without actively attempting to
mitigate or transfer them. For instance, the bank might accept a certain level of
financial risk associated with potential false positives in the ML algorithms, un-
derstanding that a strict approach might inconvenience legitimate customers.
This acceptance could be based on a thorough evaluation of the cost-benefit

8284

analysis, where the expense of eliminating all risks may outweigh the bene-
fits. Outsourcing specific aspects of fraud detection to specialized third-party
service providers or forming contractual agreements with vendors for liability
distribution are examples of risk transference strategies that CJL Bank will
adopt to alleviate the potential financial and operational consequences asso-
ciated with these risks. While risk transference can be a valuable component
of a comprehensive risk management strategy, it should be complemented by
other proactive risk management measures, including continuous monitoring,
evaluation, and adaptation of security protocols.

4 BIA for IoT Financial Domain

The outcome of Risk Management provides valuable information that can be
effectively utilized as part of performing a BIA. Each identified risk corre-
sponds to a potential impact on specific business functions, enabling the BIA
team to pinpoint areas vulnerable to disruptions. The section assists in as-
sessing potential impacts by detailing the consequences of identified risks such
as financial losses, data breaches, and operational disruptions. Understand-
ing the severity and magnitude of these impacts is crucial for quantifying the
effect of disruptions on revenue, reputation, customer service, and regulatory
compliance, which are integral aspects of BIA.

The risk prioritization and device ranking sections provide insight into the
criticality of different IoT devices and associated risks. This aligns with BIA’s
objective of prioritizing recovery objectives based on the criticality of busi-
ness functions and their dependencies on IT systems and infrastructure. The
outcome of risk management aids in identifying dependencies and interdepen-
dencies between business functions, processes, and IT systems, essential for de-
veloping comprehensive recovery strategies. For instance, understanding how
disruptions in online/mobile banking systems can affect transaction processing,
customer service, and revenue generation facilitates better planning for recov-
ery. This section assists in estimating recovery time objectives (RTO) and
recovery point objectives (RPO) by providing insights into potential downtime
and data loss associated with different risks. This information is essential for
setting realistic recovery objectives and ensuring timely restoration of critical
business functions in the event of disruptions.

4.1 Recovery Criticality for Business Processes

The outcome of this step is a comprehensive understanding of the mission-
critical and essential business processes within CJL Bank. These processes
include activities related to banking operations, customer service, transaction

9 285

processing, and fraud detection and prevention. By mapping out these pro-
cesses, the bank can prioritize which functions are most critical to its operations
and require immediate recovery in the event of a disruption. As a result, CJL
Bank identifies key business processes such as online banking, ATM operations,
transaction processing, customer support, and fraud detection as mission criti-
cal. Each process is assessed for its recovery criticality, considering factors such
as financial impact, regulatory compliance, customer trust, and legal obliga-
tions.

4.2 Identify Resource Requirements

The outcome of this step is the identification of the resources necessary to
support the recovery of mission-critical processes. These resources encompass
both tangible assets (such as IT infrastructure, data storage, and physical fa-
cilities) and intangible assets (such as employee expertise and vendor support).
By understanding resource requirements, CJL Bank can ensure adequate pre-
paredness for potential disruptions. As a result, CJL Bank conducts a thorough
assessment of resource requirements for each critical business process. This in-
cludes identifying the IT systems, hardware, software, data backups, commu-
nication channels, and personnel needed to resume operations. Additionally,
the bank evaluates external dependencies, such as third-party vendors and reg-
ulatory compliance requirements, to ensure comprehensive recovery planning.

4.3 Identify Recovery Priorities for System Resources

The outcome of this step is the establishment of recovery priorities for system
resources based on the criticality of business processes. This involves determin-
ing the sequence in which resources will be allocated and restored during the
recovery phase to minimize downtime and mitigate business impact. As a re-
sult, CJL Bank establishes clear recovery priorities for system resources based
on the criticality of each business process. High-priority resources, such as core
banking systems, fraud detection algorithms, and customer communication
channels, are identified for immediate restoration. Lower-priority resources,
such as non-essential applications or services, may be deferred until critical
functions are restored. This prioritization ensures efficient resource allocation
and minimizes the impact of disruptions on essential operations. The outcomes
of each step of the BIA process enable CJL Bank to effectively prioritize its re-
covery efforts, allocate resources efficiently, and ensure the continuity of critical
business operations in the face of potential disruptions. By understanding the
mission-critical processes, resource requirements, and recovery priorities, the
bank can enhance its resilience and responsiveness to various threats, including
cyberattacks, natural disasters, and operational failures.

10286

4.4 Recommendations for Contingency Policies/Plans

Incident response plan: CJL Bank’s IRP is designed to quickly detect and
mitigate incidents from the integration of ML into our IoT infrastructure for
fraud prevention with a focus on minimizing downtime and data loss. The roles
and responsibilities of the incident teams consist of IT, cybersecurity, legal, and
management personnel to meet the RTO timeline. Continuous monitoring is
to be conducted to ensure incorporating ML does not result in an incident
with unnecessary downtime to critical systems. The RTO set is near zero as
excessive downtime is not acceptable and critical systems must be returned to
functional status as soon as possible.
Disaster Recovery Plan: CJL Bank’s DRP focuses on the rapid recovery
of critical systems and services. Based on the BIA and RA, data backups are
conducted every 5 minutes to reduce the potential for loss of data. These back-
ups will result in rapid recovery in the case of an incident. CJL Bank operates
multiple servers for redundancy so if one should go offline, the other will im-
mediately take over until the primary server can be returned to operational
status.
Business Continuity Plan: CJL Bank’s BCP is to ensure the uninterrupted
operation of critical business functions and to align with our zero-downtime
objective. The critical business processes include online banking, ATM oper-
ations, transaction processing, customer support, and fraud detection. These
processes have short RTO times and need to be restored immediately. The
RTO is set to 5 minutes, with WTR being 10 minutes for a total WTD of 15
minutes. In the event of transitioning to an alternate site, customer support
will be handled by phone calls being redirected to the bank’s call center rather
than the specific branch. CJL Bank consists of multiple branches so day-to-day
functions will be diverted to another branch location until the primary loca-
tion is restored. Each branch contains a local server that can be integrated into
the banking network should one go offline; another branch will automatically
receive the data traffic.

Table 2 highlights the critical components and tolerance parameters of
CJL Bank’s. Understanding the RPO, RTO, WRT, and Maximum Tolerable
Downtime (MTD) is essential for developing an effective data backup and re-
covery plan for the financial domain. By defining these parameters, financial
institutions can ensure that they have a robust framework in place to minimize
data loss, swiftly recover critical systems, and maintain continuous operation
during and after incidents. Integrating these tolerance parameters into the data
backup and recovery strategy helps financial institutions align their recovery
efforts with their operational and compliance requirements, ensuring resilience
in the face of potential disruptions.

11 287

Table 2: Summary of CJL Bank’s IR, DR, and BC with Tolerance Parameters

5 Data Protection and Recovery Criticality

The data classification is based on public, internal, confidential, and restricted.
Most data should be classified as confidential if it handles users’ personal iden-
tifiable information (PII). The classification will be based on the highest level
of classification the document handles or contains to prevent under classifying
data. Internal data will be of that that stays within the banking network.
The retention schedule for individual and banking records will be retained and
stored for 2 years before being archived for an additional 3 years. This covers
all confidential and restricted data. Internal only data will be stored for one
year. This is to maintain record keeping of employee logs and video evidence
in the event of threat of incidents. No public data will be stored, as once it
receives PII, it will be classified as confidential. The main governing factors
for our organization are HIPAA, PCIDSS, and the bank protection act. These
are designed to protect users PII and must be upheld to prevent lawsuits and
damages

5.1 Real-time Protection and Server Recovery

The critical assets of the bank are backed up using mirroring for real-time
protection. This creates multiple exact copies of data to prevent data loss
and interruption in real-time. Mirroring is the preferred method since we deal

12288

with financial records and data needs to be captured and stored in real-time
to prevent losses. The use of mirroring also serves as the recovery method
for minor incidents in conjunction with back up from major outages. Server
recovery will be handled by the additional servers classified as warm servers.
In the event the main server goes offline, the warm server will become the
temporary hot server. The downed server will then transition to a cold server
status to repaired and tested. Once testing has been completed and there are
no issues, the server will then function as the hot server again

5.2 Application and Site Recovery

Clustering is used for application recovery. This recovery method is in con-
junction with the hot and warm servers. Should the primary server fail, the
applications will then run on the warm server. The two servers are configured
identically so if one application fails, all applications will then switch to the
warm server. The application will continue to run on the warm server until the
hot server is repaired. Site recovery method will be transitioning to a mirrored
site. There are multiple branch locations in our network. Should a location
become unusable, all operations will be transferred to an alternative location
until the site can be reopened. Since all branches operate the same, no addi-
tional resources will need to be transitioned. Critical employees will continue
to work from home using their work computer. Should the expected downtime
of the site be greater than five days, the money on site will be transferred to
the alternative location and stored in the safe.

5.3 Recovery Criticality in Financial Domain

Backup Creation: Table 3 provides an overview of different IT components
that are found in our business. Table 3 shows the type of data backup, fre-
quency of backup, backup methods, backup strategy, and backup locations for
each IT component.
Backup Verification: Table 4 outlines different IT components that are
found in our business. The tables include the following for each IT com-
ponent: Verification method, integrity, testing backup method, frequency of
verification, frequency of integrity check, and frequency of testing.
Data Storage and Data Encryption: Each component requires careful
consideration of storage, access control, data retention, backup iterations, and
encryption methods to ensure security, compliance, and operational efficiency.
Servers housing critical banking data should be stored in secure data centers
with redundant storage, access controlled through role-based permissions, and
data encrypted both at rest and in transit. Regular backups, including in-
cremental backups for transactional data, are essential to mitigate the risk of

13 289

Table 3: IT Component Backup Recommendations

data loss. Smart devices like locks and ATMs require similar security measures,
with data encrypted and stored locally on devices and backed up in real-time
to centralized servers. Mobile banking apps demand strong encryption for data
transmission and storage, multi-factor authentication for user access, and reg-
ular backups to protect against data loss. Blockchain technology is utilized for
smart contracts, ensuring tamper-proof data storage with decentralized access
controls and cryptographic hashing.

14290

Table 4: IT Component Backup Verification Recommendations

6 Conclusion

This paper has highlighted the importance of effective risk management strate-
gies in strengthening fraud detection and prevention efforts while protecting
customer data within financial institutions. Through a careful analysis of chal-
lenges and proposed recommendations, our research emphasizes the critical
need for a comprehensive approach. Key among these strategies is conducting

15 291

a thorough BIA focused on IoT devices used in financial transactions. Our
contributions extend to promoting regular audits, multiple-factor authentica-
tion, thorough employee training, and the strategic use of ML algorithms to
enhance the privacy and security of customer data. Additionally, developing
customized data backup and recovery plans for each IoT device emerges as a
crucial step to mitigate the risks of potential disruptions or data loss incidents.
By adopting these proactive measures, financial institutions can strengthen
their resilience against evolving threats, ensuring continuous operations, and
maintaining customer trust in an increasingly digital landscape.

References

[1] L. Calle-Sarmiento et al. “Neural Networks and Genetic Algorithms ap-
plied to the Maintenance Process in an ATM Network”. In: 2022 IEEE
Sixth Ecuador Technical Chapters Meeting (ETCM). Quito, Ecuador,
2022, pp. 1–7.

[2] R. Pratap Singh Chauhan et al. “Optimizing IoT Threat Mitigation
with Artificial Intelligence in Banking: A Multi-Objective Approach”. In:
2024 2nd International Conference on Disruptive Technologies (ICDT).
Greater Noida, India, 2024, pp. 296–301.

[3] H. Cheng et al. “Trusted Resource Allocation Based on Smart Contracts
for Blockchain-Enabled Internet of Things”. In: IEEE Internet of Things
Journal 9.11 (June 2022), pp. 7904–7915.

[4] C. H. O. Huamán et al. “Critical Data Security Model: Gap Security Iden-
tification and Risk Analysis In Financial Sector”. In: 2022 17th Iberian
Conference on Information Systems and Technologies (CISTI). Madrid,
Spain, 2022, pp. 1–6.

[5] Z. A. Khan and A. S. Namin. “The Applications of Blockchains in Ad-
dressing the Integration and Security of IoT Systems: A Survey”. In: 2021
IEEE International Conference on Big Data (Big Data). Orlando, FL,
USA, 2021, pp. 2421–2426.

[6] A. Kurt et al. “LNGate22: Secure Bidirectional IoT Micro-Payments Us-
ing Bitcoin’s Lightning Network and Threshold Cryptography”. In: IEEE
Transactions on Mobile Computing 23.5 (May 2024), pp. 6027–6044.

[7] V. P. Parandhaman. “A Secured Mobile Payment Transaction Handling
System using Internet of Things with Novel Cipher Policies”. In: 2023
International Conference on Advances in Computing, Communication
and Applied Informatics (ACCAI). Chennai, India, 2023, pp. 1–8.

16292

[8] A. Pouraghily and T. Wolf. “A Lightweight Payment Verification Proto-
col for Blockchain Transactions on IoT Devices”. In: 2019 International
Conference on Computing, Networking and Communications (ICNC).
Honolulu, HI, USA, 2019, pp. 617–623.

[9] A. Pouraghily et al. “Poster Abstract: Privacy in Blockchain-Enabled
IoT Devices”. In: 2018 IEEE/ACM Third International Conference on
Internet-of-Things Design and Implementation (IoTDI). Orlando, FL,
USA, 2018, pp. 292–293.

[10] M. Wang et al. “Collaborative Validation of Public-Key Certificates for
IoT by Distributed Caching”. In: IEEE INFOCOM 2019 - IEEE Confer-
ence on Computer Communications. Paris, France, 2019, pp. 847–855.

[11] Q. Zhou et al. “Vulnerability Analysis of Smart Contract for Blockchain-
Based IoT Applications: A Machine Learning Approach”. In: IEEE In-
ternet of Things Journal 9.24 (Dec. 2022), pp. 24695–24707.

17 293

Programming and Control of Physical
Autonomous Robots via ROS 2∗

Lili Ma1, Christian Rosa1, Xiaohai Li1, Yu Wang1

Benito Mendoza1, Andy S. Zhang2

1Deptartment of Computer Engineering Technology
2Deptartment of Mechanical Engineering Technology

CUNY-New York City College of Technology
New York, NY 11201

Abstract

This paper describes two exemplary projects on physical ROS-compatible
robots (i.e., Turtlebot3 Burger and Waffle PI) for an undergraduate
robotics course, aiming to foster students’ problem-solving skills through
project-based learning. The context of the study is a senior-level techni-
cal elective course in the Department of Computer Engineering Technol-
ogy at a primarily undergraduate teaching institution. Earlier courses
in the CET curriculum have prepared students with programming skills
in several commonly used languages, including Python, C/C++, Java,
and MATLAB. Students’ proficiency in programming and hands-on skills
make it possible to implement advanced robotic control algorithms in this
robotics course, which has a 3-hour companion lab session each week.

The Robot Operating System (ROS) is an open-source framework
that helps developers build and reuse code between robotic applications.
Though mainly used as a research platform, instructors in higher edu-
cation take action in bringing ROS and its recent release of ROS 2 into
their classrooms. Our earlier work controlled a simulated robot via ROS
in a virtual environment on the MATLAB-ROS-Gazebo platform. This
paper describes its counterparts by utilizing physical ROS-compatible
autonomous ground robots on the MATLAB-ROS2-Turtlebot3 platform.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1294

The two exemplary projects presented in this paper cover sensing,
perception, and control which are essential to any robotic application.
Sensing is via the robot’s onboard 2D laser sensor. Perception involves
pattern classification and recognition. Control is shown via path plan-
ning. We believe the physical MATLAB-ROS2-Turtlebot3 platform will
help to enhance robotics education by exposing students to realistic sit-
uations. It will also provide opportunities for educators and students to
explore AI-facilitated solutions when tackling everyday problems.

1 Introduction

Robotics engineering is a multidisciplinary field built upon electrical, mechan-
ical, and computer engineering. It deals with designing, building, operating,
and engineering robots and robotic systems based on theoretical understanding
and practical application. From its inception, robotics has been an inherently
interdisciplinary field, bringing together diverse domains such as engineering,
cognitive science, computer science, and knowledge from social sciences and
humanities [9]. When teaching robotics in higher education, it is thus im-
portant to keep up with the latest developments in robotics as well as many
related fields such as Artificial Intelligence (AI), data science, computer vision,
Internet of Things (IoT), and Cybersecurity.

The context of this study is an undergraduate robotics course offered as
a technical elective in the Department of Computer Engineering Technology
(CET) at a primarily four-year teaching institution. Preceding courses in the
CET curriculum have equipped students with knowledge and skills in mecha-
tronics, embedded systems, programming, and cyber-physical systems. This
robotics course aims to provide hands-on experience working with complex
computer-controlled systems that integrate physical components such as sen-
sors and actuators.

Autonomous mobile robots with a simple arm on top were used as the
physical robotic platform for this course, built from VEX robotic kits using
the Cortex microcontroller that comes with the kit [5, 6]. Driven by the need
to also serve the recently approved Software Engineering Technology (SET)
curriculum, we have been exploring robotic systems that allow for complex
software and hardware integration.

This paper describes the development of two exemplary projects using the
Turtlebot3 robots. The experimental setup involves a host computer running
MATLAB and a physical robot (Turtlebot3 Burger or Waffle PI), each being
a ROS node on the ROS network. ROS stands for the Robot Operating Sys-
tem [11], which is a set of open-source software libraries and tools that help re-
searchers and robotic engineers build robot applications. ROS has been widely
used by researchers and developers to build and reuse code between robotics ap-

2 295

plications. However, due to the demanding requirements of C++/Python/Java
programming skills and familiarity with Linux, the adoption of ROS in an un-
dergraduate curriculum is still rare. Recently, MathWorks released its ROS
Toolbox [2], making it easier to interact with both simulated robots [3] and
physical ROS-supported robots (see Fig. 1).

Figure 1: Connecting to ROS robots using MathWork’s ROS Toolbox.

Our earlier work in [8, 7] explored the usage of ROS (particularly, ROS
1) for programming and control of a simulated robot in the Gazebo simulation
environment [Fig. 2 (left)]. This paper presents its counterpart and extension,
which programs and controls a physical ROS-compatible robot (Turtlebot3
Burger or Waffle PI) on ROS 2 [Fig. 2 (right)]. Note that ROS 2 is the second
generation of ROS representing a step forward in the robotic framework [12].
While getting access to the robot’s onboard sensors may be different due to the
available topics and their types, control algorithms that were developed for the
simulated robot can be readily applied to the physical robots, demonstrating
the re-usability of the codes & algorithms.

The physical robotic platform, i.e., the MATLAB-ROS2-Turtlebot3 plat-
form, utilizes benefits from both sides of MATLAB and ROS 2:

• The physical ROS-compatible robot provides students with experience in
authentic Linux operating systems and ROS 2 programming.

• MATLAB already has many other toolboxes dedicated to education and
research (such as computer vision toolbox, artificial intelligence toolbox,
and machine learning toolbox). These toolboxes will significantly shorten
the algorithm development curve.

• Both Mathworks and ROS have well-established mechanisms for devel-
opers to share their codes and experience. This allows students to use
support and resources from the community.

3296

Figure 2: Using MATLAB to control the simulated robot (left) and physical
robot (right).

• Students can collect and save data from the robot’s onboard sensors dur-
ing classes. They can conduct post-processing and refine their algorithms
outside of the classroom.

The objective of this paper is to explore the feasibility of using the MATLAB-
ROS2-Turtlebot3 platform to enhance robotic education and undergraduate
research. The subsequent sections of this paper describe the operation on the
robot side, communication with and control of the robot issued from the host
computer (the MATLAB side), and two exemplary projects that incorporate
sensing, perception, and control.

2 Turtlebot3 Startup and Operation

Before implementing our algorithms to control the robot, we initially learned
how to operate it by running the pre-installed programs. It is worth noting
that the results outlined in this paper were achieved on Turtlebot3 Burger, but
all algorithms can be applied to the Turtlebot3 Waffle PI due to ROS com-
patibility. As an illustration, the following presents the results of running the
pre-installed SLAM program on Burger and provides the necessary sequence
of operations under ROS 1.

SLAM, short for Simultaneous Localization And Mapping, is a common
topic for autonomous mobile robots, as seen in commercially available robots
like robot vacuums. The Turtlebot3 Burger employs SLAM using its onboard
2D range sensor, the LiDAR (Light Detection and Ranging), mounted on top of

4 297

the robot. The LiDAR rotates 360 degrees at a speed of 6 rotations per second.
It emits a laser beam to measure the closest objects at roughly an incremental
angle of 1.5 degrees. The data gathered in this process can be used to discern
between walls and other objects, aiding Turtlebot3 in map construction and
navigation.

Figure 3 shows the results of the robot performing SLAM in a room, where
the green points denote LiDAR scan data, the black area represents walls, and
the grey area shows the movable area (i.e., open space).

Figure 3: Turtlebot3 SLAM.

The Turtlebot3 operates on Linux. Following the installation instructions
as given in Turtlebot3’s e-manual [10], a server version is installed on the
Raspberry PI on the robot. To use any graphic visualization tools, we installed
a Virtual Machine (VM) on the host computer to run the desktop version of
Linux. A Virtual Machine is a digital replica of a physical computer, enabling
one to emulate Linux on a Windows system. We then need to select the ROS
version. As each ROS version runs on different Linux versions and many ROS
versions were no longer maintained, we opted for ROS 1 Noetic, which allows
fully functioning SLAM and Navigation features as shown in Fig. 4.

To initiate the SLAM task, we began by establishing the communication/-
connection between Turtlebot3 and the host computer by configuring them on

5298

the same network. We then executed the startup sequence on the Turtlebot3
robot. On the host computer, we started the Virtual Machine, from where we
run three terminals each of which handles different tasks:

• Referring to Fig. 4(a), the terminal located in the upper left connected
to the Turtlebot3 robot. This terminal facilitated a wireless connection
to the Turtlebot3 Operating System, enabling us to operate the robot
without requiring peripherals like a monitor, mouse, and keyboard.

• The terminal positioned in the upper right served as the ‘roscore’ termi-
nal. ‘roscore’ encompasses a set of nodes and essential programs necessary
for a ROS1-based system. Under ROS 1, it is necessary to have ‘roscore’
up-running to facilitate communication among ROS 1 nodes.

• The terminal located at the bottom is dedicated to Teleoperation, a pre-
installed program. This terminal enabled us to navigate the robot using
the keyboard on the Virtual Machine.

• The above three terminals collectively enable the operation of the Turtle-
bot3. An additional terminal will initiate the SLAM functionality [Fig. 4(b)].

(a) Startup (b) SLAM

Figure 4: Turtlebot3 startup and operation on ROS 1.

As shown in Fig. 4, using pre-installed programs, we have successfully con-
trolled the Turtlebot3 Burger to move and navigate in an environment, collect
laser data, and use the collected laser data to aid in mapping and navigation.
These investigations demonstrate that the robots were correctly assembled and
that all operating systems, libraries, and software were properly installed. We
are now ready to control the robots using our programs.

3 Control the TurtleBot3 using MATLAB

The MATLAB-ROS2-Turtlebot3 experimental platform was set up by following
the Quick Start Guide of the ROBOTIS e-Manual [10] for the construction
and installation of the robot. On the host computer that runs MATLAB,

6 299

MathWork’s ROS Toolbox is required and installed. Successful installation
and communication between these two ROS nodes is shown in the right figure
in Fig. 2. Some details are:

• On the robot’s processor (Raspberry PI), we installed Ubuntu Server
22.04 and ROS 2 Humble Hawksbill. We used SSH to access the Rasp-
berry PI and brought up basic packages to start TurtleBot3 applications.

• The ROS domain ID on MATLAB needs to be set the same as that of
the robot so that these two can establish a connection in between. For
example, we used 30.

• Once communication is established (by using the same Domain ID), the
command “ros2 node list” lists all nodes on the ROS 2 network; “ros2
topic list -t” lists all available topics and their types; and “ros2 service
list” lists all available services. These commands help to confirm that
communication/connection has been successfully established.

• Figure 5 shows sample MATLAB codes that subscribe to topics (odom-
etry and laser scan data), as well as establish a publisher that modifies
the robot’s linear & angular velocities.

• Visualization of the ROS 2 graph is displayed via the “rqt” tool.

Figure 5: Sample MATLAB codes.

7300

After successfully obtaining raw sensor data from the robot and modifying
its behavior, the next task is to develop algorithms for perception and decision-
making. This will be done on the MATLAB side, as demonstrated via two
exemplary projects in Secs. 4 and 5.

4 Path Planning

This project provides a simple scenario for students to implement algorithms
that allow an autonomous mobile robot to work in an unknown environment.
The robot is assumed to have an onboard range sensor. Particularly for the
Turtlebot3 robots, its 360 Laser Distance Sensor (LDS-02) is a 2D laser scanner
capable of sensing 360 degrees around the robot. Initially, the robot will explore
its surroundings, getting to “know” its environment by sensing and recording
its laser data.

Figure 6: Path planning using Wavefront algorithm.

Areas where objects are detected will be considered as “occupied" or “inac-
cessible." After getting familiar with its surroundings, the robot is expected to
find its way to a specified goal location without collision with obstacles. So-
lutions to this path-planning problem provide the robot with an obstacle-free
path.

8 301

The Wavefront algorithm is the most basic but powerful approach to tack-
ling path planning. The workspace is modeled as a 2D grid map. Locations
occupied by the detected objects are marked inaccessible by denoting their
values as “1”. Grids representing open spaces will be assigned a non-zero value,
following the algorithm’s policy. Eventually, after all the open spaces have got-
ten their values updated/assigned, the robot will find its way from its current
location (denoted by the red grid in Fig. 6) to the specified goal location by
counting down the value one less than before. Several snapshots of the robot’s
movement as it follows the path are also shown.

Through this simple path planning project, the MATLAB-ROS-Turtlebot3
platform demonstrates its capability in fast algorithm development and imple-
mentation for processing large amounts of data.

5 LiDAR Data Processing

Transformation of laser data to the inertial frame: In many cases, data
needs to be integrated. For example, in the path planning project described in
Sec. 4, the robot collects laser data in several locations to obtain a more com-
prehensive idea about its environment. Laser data is collected in the robot’s
body-fixed frame. To transform these data to the same frame, i.e., the inertial
frame, the robot’s position and orientation at the time of sensing need to be
used. This is a good example for students to understand the importance of
homogeneous transformation, a common topic in robotics. Figure 7 shows an
illustration of integrating three individual laser scans to form a better repre-
sentation of the robot’s environment.

The path planning algorithm described in Sec. 4 used raw laser data without
going through additional processing. This project aims to familiarize students
with advanced perception processes, focusing on object and shape recogni-
tion using laser scan data, specifically rectangle fitting. Based on data pre-
processing (to obtain the point cloud to be processed), in the next, we will
describe our simple segmentation (also called cluster detection) and rectangle-
fitting schemes.
Distance-based segmentation: To conduct segmentation of 2D point clouds,
the distance between consecutive points is typically used to determine if they
are part of the same object. Using distance as the criterion, laser points are
grouped as one cluster if they are close to each other (i.e., the distance in
between is less than a pre-specified threshold). For each laser point, we first
compute the minimal distance between this point with all existing clusters. If
the minimum of these distances is greater than the specified threshold, this
point is considered to belong to a new group. Otherwise, it is assigned to the
one closest to it.

9302

Figure 7: Transformation of laser data to the inertial frame, a good example
of applying homogeneous transformation.

Figure 8 highlights the effect of selecting different parameters/values. Data
points that were thought to belong to the same object are plotted in the same
color. Different clusters are plotted in different colors. An index is written next
to each cluster. It can be seen that setting the thresholds higher will result in
fewer clusters.
Rectangle fitting to L-shape data: After data segmentation and cluster-
ing, we performed rectangle fitting to each cluster. We computed the sum of
distances (i.e., errors) from each point in this cluster to the fitted model. If
this sum of errors is “small” enough and the width & length of the fitted model
are “large” enough, we will consider this cluster of points to represent a rect-
angle. The motivation for considering this L-shape rectangle fitting problem is
to derive vehicle pose estimation in the Advanced Driving Assistance Systems
(ADAS) scenario [13] in the future.

Figure 9 gives an illustration of the rectangle-fitting process. The raw
laser data is shown in (a). Data segmentation is given in (b), which outputs
6 identified clusters. Rectangle fitting via MATLAB’s LiDAR point cloud

10 303

Figure 8: Clustering algorithms applied to the obstacle points using distance-
based segmentation. The minimal distance between groups is set to be 0.2,
0.33, 0.4, and 0.5 in (a), (b), (c), and (d), respectively.

analysis tools (particularly the pcfitcuboid() function) is used to fit a rectangle
to each cluster [4]. The sum of the minimal distance from each point in the
cluster to the fitted model is computed using the files shared on MATLAB’s
File Exchange Center, i.e., the “Distance from points to polyline or polygon”
routines [14]. The final fitted rectangles are displayed in (b). Calculation of the
distance error is shown in Fig. 9(c), that is, to compute the distance between
each point (denoted by a pink cross) to its closest point (denoted by a red dot)
on the rectangle.

11304

Figure 9: Rectangle fitting routine by applying distance-based segmentation
and MATLAB LiDAR point cloud analysis tools.

6 Discussion, Conclusion, and Future Work

Adopting proper simulation and/or experimental platforms in a robotics course
is essential for students to apply classroom knowledge to practical situations.
Due to the widespread use of ROS in research and industry, as well as the
emerging integration of Artificial Intelligence (AI) with robotics and the need
to align with a new Software Engineering Technology (SET) curriculum, we are
currently investigating different options to update the existing physical robotic
systems used in an undergraduate robotics course (CET 4952: Robotics Tech-
nology). The Turtlebot3 robots are excellent candidates for various features:
Being low-cost, small-size, sturdy, and portable. A low price will allow
the department to purchase enough number of sets. Currently, we are thinking
of providing one robot to each group consisting of two students. Being small-
sized will allow the robots to be stored in cabinets inside the laboratory for
students to check out and then check in during the lab sessions. Being sturdy
will allow these robots to be used semester after semester since the robotics
course is offered in both the spring and fall semesters. Being portable will allow
these robots not to interfere with other courses that use the same lab.
Being able to provide students with hands-on experience in two fun-
damental areas (Autonomous Mobile Robots and Robotic Manipu-

12 305

lator): For undergraduate robotic education, it is a good practice to introduce
these two areas either in one course or a sequence of two courses. So, we are
looking for robotic systems that can cover both. The Burger and Waffle PI
robots will allow students to fully explore almost all aspects essential to au-
tonomous mobile robots, including sensing, perception, laser data processing,
image processing, computer vision, map building, navigation, path planning,
coordinated control, and integration of AI. The 5-DOF robotic manipulator, as
shown in Fig. 10, will help students reinforce their understanding of homoge-
neous transformation, forward and inverse kinematics, and trajectory genera-
tion. Placing the robotic arm on top of the Waffle PI robot results in a robotic
system that combines mobility with action (Fig. 10). The results presented in
this paper focused on autonomous mobile robots. Future investigations will be
conducted for the 5-DOF robotic arm and the integrated robotic system.

Figure 10: Autonomous mobile robots and robotic manipulators. The second
and third pictures are from ROBOTICS website [10].

Being open-source and having well-established mechanisms for shar-
ing and support within the community/society: Robotics is a rapidly
evolving field that intertwines with many other areas such as electronics, com-
munication, cybersecurity, computer science, signal & image processing, and
mathematics. Advancements in these closely related areas will in turn have
huge impacts on robotics. Algorithms and methods that enhance the auton-
omy of robots are developed much faster than traditional sources such as text-
books and conference proceedings. Researchers, educators, and students begin
to use “new” ways to obtain timely support and keep up with the most recent
developments in this field. Open source, which has become a trend since the
last decade, has transformed into a global tendency, especially in fields like
robotics. The demand for open source makes ROS-compatible robots more
intriguing since ROS is a set of open-source software libraries and tools. The
ROS forum allows users to ask questions, comment on others’ discussions, and
thus provide/receive support from the community. Similarly, MathWorks’ File
Exchange Center allows one to share/post their developments. The MATLAB-

13306

ROS2-Turtlebot3 experimental platform utilizes benefits from both ends, in-
cluding algorithm development, community support, and ready adoption of the
developed algorithms to other robots.
Being able to serve as an undergraduate research platform and in-
tegrate the AI computational system with a robot: Due to the rapidly
evolving nature of the robotics field, research needs to be seamlessly integrated
with teaching to expose students to the latest developments. Exponential in-
creases in computing power, sensor actuators, and communication transceivers
have made producing robotic systems economically feasible. Students can now
get access to fully-functioning robots at a much cheaper cost. Research op-
portunities thus become more available to undergraduates. We think robotics-
related activities (courses and projects) should provide a propelling force in
promoting undergraduate research. Further, in response to the emerging trend
of using AI to find better solutions, integrating AI with robotics should play a
leading role since this integration is inherent and embedded [1]. For example,
existing feature extraction and face recognition algorithms in computer vision
already have AI flavors. The distance-based segmentation and rectangle-fitting
routines as described in Sec. 5 could be improved by AI-facilitated adaption and
self-learning in determining the specified thresholds (i.e., the minimal distance
among groups and the lower/upper bounds of the rectangles’ dimensions).

The two exemplary projects presented in this paper confirmed the usage of
the MATLAB-ROS2-Turtlebot3 robotic platform in a robotic course, by pro-
viding engaging and leaning environment through realistic scenarios. They will
also help others to develop and teach similar robotic courses, which is inline
with the nation’s trend in Artificial Intelligence & Machine Learning curricu-
lum. The physical platform can help boost undergraduate research by allowing
students to explore AI-facilitated solutions to improve the robot’s functional-
ities including mapping, navigation, obstacle avoidance, and coordination. In
future investigations, we will explore: a) vision-based control via the onboard
Raspberry PI camera; b) control of the 5-DOF (degree-of-freedom) robotic arm
for pick-and-place tasks and then the integrated robotic system for warehouse
applications; and c) formation control of multiple Robots.

7 Acknowledgement

The National Science Foundation, Award 2240516, supported this research.

References

[1] Robert Avanzato. “Deep Learning Projects for Multidisciplinary Engi-
neering Design Students”. In: ASEE Annual Conference and Exposition.
2023.

14 307

[2] Robert Avanzato and Culllen Wilcox. “Introductory Mobile Robotics and
Computer Vision Laboratories Using ROS and MATLAB”. In: ASEE
Annual Conference and Exposition. 2018.

[3] Siavash Farzan. “Project-Based Learning for Robot Control Theory: A
Robot Operating System (ROS)-Based Approach”. In: ASEE Annual
Conference and Exposition. 2023.

[4] Felipe24 Jiménez and Miguel Clavijo. “LiDAR point clouds analysis com-
puter tools for teaching autonomous vehicles perception algorithms”. In:
Computer Applications in Computer Education (Feb. 2024), pp. 1–17.

[5] Lili Ma. “Teaching Undergraduate Robotic Courses using Enhanced VEX
Robots”. In: Journal of STEM Education: Innovations and Research (July
2021).

[6] Lili Ma et al. “Development of a Raspberry PI-Controlled VEX Robot
for a Robotics Technology Course”. In: ASEE Annual Conference and
Exposition. June 2023.

[7] Lili Ma et al. “Introducing ROS-Projects to Undergraduate Robotic Cur-
riculum”. In: ASEE Annual Conference and Exposition. June 2023.

[8] Lili Ma et al. “Online Robotics Technology Course Design by Balancing
Workload and Affect”. In: Transactions of the SDPS: Journal of Inte-
grated Design and Process Science (Jan. 2022).

[9] O. Michalec, C. O’Donovan, and M. Sobhani. “What is robotics made
of? The interdisciplinary politics of robotics research”. In: Humanities
and Social Sciences Communications 65.8 (Mar. 2021), pp. 1–15.

[10] Robotics. Turtlebot3 e-Manual. https://emanual.robotis.com/docs/
en/platform/turtlebot3/overview/.

[11] ROS. Robot Operating System. https://ros.org/.

[12] S. Macenski et al. “Impact of ROS 2 Node Composition in Robotic Sys-
tems”. In: IEEE Robotics and Autonomous Letters (2023).

[13] Xiaotong Shen, Scott Pendleton, and Marcelo H. Ang Jr. “Efficient L-
shape Fitting of Laser Scanner Data for Vehicle Pose Estimation”. In:
IEEE Conference on Robotics, Automation and Mechatronics. July 2015.

[14] Michael Yoshpe. Distance from points to polyline or polygon. https://
www.mathworks.com/matlabcentral/fileexchange/12744-distance-
from-points-to-polyline-or-polygon.

15308

Comparing K-8 Computing Education
Implementations Between
South Africa and Sweden∗

Michael J. Lee1, Annie Lang2, Bruce Ferwerda2
1New Jersey Institute of Technology, Newark, NJ 07103

2Jönköping University, Småland, Sweden, 551 11

mjlee@njit.edu, laan18no@student.ju.se, bruce.ferwerda@ju.se

Abstract
Recently, the governments of South Africa and Sweden have man-

dated that the youth in their respective countries receive compulsory
computing education. In this study, we explored how in-service teachers
in these countries learned about and taught coding to their students.
Moreover, we asked students from these respective countries to report
on their prior coding experience, and had them take two coding-related
tests. Speaking with six teachers (3 from each country) and surveying
96 students (47 from South Africa and 49 from Sweden), we discovered
several interesting results. Teachers from both countries used similar on-
line resources to learn coding themselves. However, teachers from South
Africa preferred to provide their students with direct, concrete experi-
ences with coding using existing physical and online resources. Their
counterparts in Sweden preferred to teach their students abstract con-
cepts, integrated into other topic areas. However, regardless of the type
of instruction, students from both countries did equally well on vali-
dated tests measuring their understanding of coding concepts. These
results highlight each countries’ teachers’ dedication and effectiveness in
adapting materials for their students, and the students’ receptiveness
and measurable learning outcomes attributed to these methods.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 309

1 Introduction

In today’s increasingly digital world, equipping students with the ability to
think computationally is crucial [17, 18, 20]. Computational thinking (CT)
refers to a problem-solving methodology that draws on concepts fundamental
to computer science [29]. It emphasizes the decomposition of complex problems
into smaller, more manageable steps, the development of algorithms (step-by-
step instructions) to solve those problems, and the iterative process of testing
and refining solutions [30]. This skillset goes beyond computing, and can be
applied to other subjects and aspects of life [11, 28].

Integrating CT into K-8 education offers a multitude of benefits. Research
suggests that CT can strengthen core academic skills like critical thinking,
problem-solving, and collaboration [30]. By breaking down problems into logi-
cal steps and identifying patterns, students develop analytical thinking abilities
that are applicable across disciplines. Furthermore, CT fosters creativity and
innovation as students design solutions and test their effectiveness, encouraging
them to experiment and adapt their approaches [29].

The importance of CT in K-8 education is underscored by recent initiatives
such as South Africa and Sweden requiring all of their primary and secondary
school students to receive computing education. However, it has only been a
few years since these requirements were mandated, so little is known about
how instructors are teaching CT topics, and how well students understand
these lessons. To address this, we explored how in-service teachers in South
Africa and Sweden learned about and taught CT concepts to their students.
Moreover, we asked students from these respective countries to report on their
prior coding experience, and had them take two coding-related tests.

2 Background

2.1 Computational Thinking Education in Sweden

Sweden is a highly developed country ranked fifth in the Human Development
Index. Prior to 2018, computing was not a separate subject in Sweden’s K-12
curriculum. However, a major reform introduced programming concepts into
the national curriculum for compulsory school (grades 1-9), though it is impor-
tant to note that this did not result in standalone computing courses. Rather,
computing and coding concepts are integrated into subjects like mathematics,
technology, and even civics. Like many other countries, in-service teachers—
who often do not have formal or prior experience with coding—are often tasked
with teaching computing [10]. The in-service teachers often learn the content
on their own, and find ways of combining their subject expertise with CT
concepts, typically employing pseudocode or CS unplugged activities [1, 14].

2310

2.2 Computational Thinking Education in South Africa

South Africa is considered a developing country, ranking 109th on the Human
Development Index. In 2021, South Africa’s Department of Education started
their pilot and phased implementation of their “Coding and Robotics” curricu-
lum [5]. This curriculum focuses on computational thinking concepts, and the
engineering design process [5, 12]. Similar to their Swedish counterparts, many
of South Africa’s in-service teachers do not have formal or prior experience with
coding [21, 24]. Since the “Coding and Robotics" course implementation, many
instructors use or adapt existing online materials to learn and teach coding on
their own, and find ways of combining their subject expertise with coding [24],
most often using physical robotics [19] and/or Scratch, and then moving onto
text-based programming as their students progress [7, 12].

3 Method

3.1 Participant Recruitment

We collected data from middle middle schools in South Africa and Sweden (two
schools from each country). We contacted various schools in both countries,
and received positive responses from two headmasters each from South Africa
and Sweden. Each headmaster connected us with teachers from their respective
schools (all co-ed) who were willing to participate in the study.

The school year for South African students is split into four terms, divided
evenly into four quarters (3 months each, starting in January). The school
year for Swedish students is split into two terms, Fall (August-December) and
Spring (January-July). Due to the timing of responses from the headmasters,
and a national holiday in South Africa, we collected data in September (Term 3
in South Africa, and Fall Term in Sweden) and December (Term 4 in South
Africa, and Fall Term in Sweden) of the same year. This was to ensure that
all of the participants from both countries were in the same annual term.

We surveyed 13-14 year old students (Grade 8 in South Africa; Grade 7
in Sweden), as this coincides with the first class of students in Sweden to
start receiving their compulsory computing education (in 2018) and the first
in South Africa to receive the pilot Coding and Robotics curriculum (in 2021).
We confirmed that all student participants received their respective country’s
computing education from initiation to the time of the study. All experimen-
tal procedures and materials were reviewed and approved by an Institutional
Review Board (IRB). We collected signed consent forms from teachers (and
parents), and signed assent forms from all the student participants.

3 311

Figure 1: An example CTt question. Figure 2: An example Bebras question.

3.2 Instruments

We used semi-structured interviews to speak with the teachers. The inter-
views were 20 minutes each, all conducted by one researcher, and were guided
by the following four questions: 1) What is your area of teaching expertise
and/or training? ; 2) Did you have any prior experience teaching computational
thinking or computer coding before (implementation of {respective country}’s
requirements)? ; 3) How do you teach computational thinking or coding? ; and 4)
What tools/resources do you use to teaching computational thinking or coding?

Next, to measure students’ computational thinking and coding knowledge,
we used two validated measures to survey them using Google Forms: the Com-
putational Thinking Test (CTt), and the annual Bebras tasks. It is important
to note that both of these tests are “multi-lingual” [8], meaning that they were
designed to cover important computational thinking/coding concepts across
many languages that students may have learned or encountered (in these cases,
using pseudocode-based assessments). We also asked students if they had any
prior experience with block-based or text-based languages, each with a list of
languages they could choose from (i.e., any that apply).

The Computational Thinking Test (CTt) [6, 32]—is a validated, mul-
tiple choice test specifically designed for our participant age range, consisting
of 28 questions which measures different programming concepts such as basic
instructions (Questions 1-4), loops (Questions 5-12), conditionals (Questions
13-24), and functions (Questions 25-28). The official recommended time is for
students to complete it within 45 minutes.

The Bebras Tasks [4, 15]—are a part of the larger Bebras International
Challenge, an increasingly popular initiative in promoting computational think-
ing skills [3, 4]. With participation from over 30 countries, the challenge
provides a standardized tool for educators to gauge students’ CT develop-
ment on a global scale. More specifically, Bebras tasks are an assessment tool
that utilizes engaging challenges to evaluate CT competency in students of

4312

diverse age groups. Unlike traditional assessments that might emphasize cod-
ing proficiency, the Bebras tasks prioritize the underlying thought processes
and problem-solving strategies employed by students. This aligns with the
framework proposed by Patten et al. [22], who advocate for evaluating CT by
considering both coding skills and problem-solving approaches. Bebras tasks
are updated annually, offered in various difficulty levels catering to different
age groups with 18-24 questions, and similarly to the CTt, the challenges are
to be completed within 45 minutes [2].

3.3 Procedure

Once we received confirmation of participation from each school’s respective
teacher(s), we e-mailed them to set up an initial one-on-one video call (Zoom)
for a short semi-structured interview, along with a consent form. The first
5 minutes were used for introductions, 20 minutes for the interview, and 5
minutes to explain our study and give directions about the student surveys. All
interviews were conducted in English and automatically transcribed in Zoom.

After the interviews, we sent all the teachers email instructions along with
separate Google Form links for the CTt, the Bebras tasks, and consent/assent
forms. To simplify keeping track of the tests and schools, we duplicated the
Google Forms with a unique identifier for each class. We asked teachers to
share each respective link with students on separate weeks during the time of
the day/week they normally have computing related activities. On Week 1, the
teachers administered the CTt, giving their students 45 minutes to complete it.
Similarly, on Week 2, the teachers administered the Bebras tasks, giving their
students 45 minutes to complete it. All schools had tablets and/or laptops
with WiFi connections that students used to connect to the Google Forms.

For our CTt questions, we used those available from csedresearch.org, which
was a PDF document containing 28 questions from Román-González’s 2017
publication [23]. We copied the images and text from the PDF, in the exact
same order, to create our Google Form questions.

For our Bebras tasks, we used the United Kingdom’s (bebras.uk) set from
2022, for "Inters" (12-14 years olds), which included 18 questions. These ques-
tions were ordered in three ascending difficulty brackets A, B, and C (where C
was the most difficult), with 6 questions each. We reused the images available
on the UK Bebras website to create our Google Form questions, in the exact
same order. For the tasks requiring clicking or dragging to place objects on
the original UK Bebras, we overlaid appropriate location labels or coordinates
with corresponding answer choices for our Google Form version.

5 313

4 Results & Interpretations

We received responses from two Swedish schools (3 classes; 3 different teachers),
all based in Stockholm. We also received responses from two South African
schools (3 classes; 3 different teachers), all based in Johannesburg. We inter-
viewed all six of these teachers, who all identified as female, and had a median
of 5 years of teaching experience for Sweden (range 3-10), and 7 years for South
Africa (range 3-9). All reported that they were comfortable speaking English,
and there were no communication issues during the interviews or follow-up
email correspondence.

Next, we received a grand total of 96 student responses, with 47 from
South Africa and 49 from Sweden. We combined all the responses within each
country, as analyses of the scores within groups did not reveal any observable
or statistically significant differences. All participants were 13-14 years old,
and in either Grade 7 (Sweden) or Grade 8 (South Africa). Unfortunately,
we did not collect any demographic information about the children outside of
grade level and age (which were provided by the teachers).

4.1 Teachers’ Experiences

We reviewed the auto-generated transcripts from the teachers’ interviews, cor-
rected errors (which consisted mainly of fixing words and punctuation), and
organized by themes (and occurrences). Independent of country, we found
commonalities in all of the teachers’ background and training, and the way
they looked for educational tools for themselves to learn the material. We also
found major differences in how teachers presented and taught the information
to their students, by country.

4.1.1 Not Experts in Computational Thinking or Coding

While all six of our teachers taught multiple subjects at their respective schools,
they reported that their expertise/training in fields outside of computer science
(or any closely related field). The teachers had a range of college degrees from
their respective countries, with our Swedish teachers having degrees in English
literature, human development, and biology; and our South African teachers
having degrees in child/human development, psychology, and mathematics.

Only one out of the six teachers reported any significant experience coding
or learning about coding prior to their government requirements. The teacher
with prior experience, from South Africa, reported that she learned “a little bit
of coding” (Python and Matlab) in college as a mathematics major, but was not
initially comfortable teaching coding or computational thinking at school. All
of the other teachers reported that they had seen or tinkered with programming

6314

online, using tools such as code.org or Scratch, but did not consider themselves
at all experienced with coding or CT before having to learn it to teach it.

Much prior work in other countries have also found that existing in-service
teachers are often assigned to teach technology/computing/coding courses,
even if it is not necessarily within their expertise or training [9, 16, 31]. With
the governments of South Africa and Sweden recently mandating that their K-8
students learn programming, it is unsurprising that all of the teachers that we
interviewed were later assigned to teach their respective school’s coding courses.
If they are not already doing so, teachers from these countries might benefit
from professional development courses in coding to increase their confidence
and knowledge about coding.

4.1.2 Major Differences in Teaching by Country

We also found that the teachers from both countries used similar resources
in learning about programming, but that the different countries used very
different teaching styles and tools when teaching.

First, all teachers reported that they used code.org as a major resource
for themselves to learn new materials, and also to find links to other coding
resources. Five of the teachers (3 from South Africa, 2 from Sweden) also
reported using Codecademy very often, especially to learn Python, Java, and
HTML/CSS. All of them commented that they liked code.org for its separate
resources for teachers, specific content grouped by age, and examples that they
could adapt to their own teaching. The South African teachers also mentioned
using Kid Spark Education (especially due to content about robotics), Code-
Pen, and Scratch. The Swedish teachers mentioned CS unplugged, CoderDojo,
and Scratch. In addition, there was much more emphasis on using printed text
(i.e., textbooks) and examples from the Swedish Ministry of Education and
(teacher) discussion boards/forums online.

The South African teachers talked about computational thinking as under-
standing the problem, and subsequently solving the problem by creating code.
They tended to use coding resources directly, having students make accounts
for Scratch and code.org to create projects and follow established curricula.
They reported that they would use class time to follow the online guides, pro-
viding help and support to the students when needed [27]. In addition, the
South African teachers would have the students make websites and practice
coding in Javascript using CodePen. In this way, the South African students
had direct/concrete experiences with coding and coding activities.

In contrast, the Swedish teachers talked about computational thinking as
the understanding of logic, breaking down problems, and algorithms. All of
them reported that they tended not to use online resources at all (or very
sparingly), instead, using pseudocode or real-life examples to explain different

7 315

coding concepts. Also, in addition to having some time set aside for general
technology lessons (“teknikprogrammet”), most of the instruction about com-
puting/coding were integrated and blended into other school subjects [10].

Two of the teachers mentioned using CS unplugged activities often, or as-
signing collaborative problem-solving tasks that would involve algorithms (both
supporting findings by Bjursten et al. [1]). When we asked during the inter-
views why this was the case, the teachers responded that this was the way
other teachers in their school(s) did it, and one specifically mentioned that
she disliked giving the students too much screen time (following the Swedish
shift to reduce screen time in classrooms in favor of textbooks [2, 13]). In this
way, the Swedish students tended to receive indirect/abstract experiences with
coding and coding activities.

These differences in teaching styles and preferences between countries were
very interesting, especially given that the teachers from both countries used
similar resources to learn about coding themselves. Based on our interviews
with the teachers, we got the sense that the South African teachers gener-
ally valued their students getting practical, hands-on experience, coding with
concrete, direct interaction with text/blocks. In contrast, the Swedish teach-
ers generally prioritized their students understanding abstract concepts and
algorithms in the context of other subjects and everyday life.

4.2 Students’ Experiences

We reviewed all of the Google Form responses from the students. When appli-
cable, we use nonparametric Wilcoxon Rank Sums tests with α = 0.05 confi-
dence throughout our analyses—as our data was not normally distributed—to
compare our groups’ (South Africa and Sweden) responses/scores. We report
our statistically significant results with the understanding that our sample size
is relatively small and that the findings may not be widely generalizable.

4.2.1 Major Differences in Prior Programming Experience

We compared the countries’ students’ response to the questions asking if they
have prior coding experience in any block-based languages (e.g., Scratch, Snap!,
Blockly) and if they have prior coding experience in any text-based languages
(e.g., Javascript, Java, Python, C++). We found that nearly all of the South
African students reported having experience in both/either block-programming
or text-programming. In contrast, most of the Swedish students reported that
they did not have experience in either block-programming or text-programming.
This is in contrast to recent findings by Zhang et al., who found that 135
in-service Swedish teachers from 5 cities taught coding to Grades 4–6 using
interactive robots (Bluebot and Beebot) and block-based programming lan-

8316

guages, then from Grades 7-9, started transitioning to using more text-based
programming languages [33].

Examining this more closely, we found a significant difference in the re-
sponses to both questions between countries. First, there was a significant
difference in the number of students that reported prior experience with block-
programming between the two groups (W = 2668.5.5, Z = 3.4982, p < .05),
with the South African students reporting more experience. Second, there was
a significant difference in the number of students that reported prior experience
with text-programming between the two groups (W = 2585.5, Z = 2.6649, p <
.05), with the South African students again reporting more experience.

While the results of Swedish students largely reporting that they did not
have prior experience with either block or text coding was surprising in the
context of others’ prior work [33], it supports the teaching methods described
by our Swedish teachers’ interview results (as described in the previous section).

4.2.2 CTt & Bebras: No Differences Detected Between Countries

We compared the respective country’s students’ performance on the CTt ques-
tions, overall, and split by the test’s topic areas. We found no detectable
difference of students’ scores between the countries overall (W = 2052, Z =
−1.6690, n.s.), or when split by concepts: basic instructions (W = 2152, Z =
−0.9705, n.s.), loops (W = 2171.5, Z = −0.7959, n.s.), conditionals (W =
2103.5, Z = −1.2921, n.s.), or functions (W = 2105.5, Z = −1.3178, n.s.).

Next, we compared the respective country’s students’ performance on the
Bebras task questions, overall, and split by task difficulty. Similar to our
CTt results, we found no detectable difference between groups on Bebras task
performance between groups overall (W = 2362, Z = 0.6037, n.s.). We also
did not find any detectable difference between countries by task difficulty:
Difficulty A (easy) questions (W = 2363.5.5, Z = 0.6218, n.s.), Difficulty B
(medium) questions (W = 2238.5, Z = −0.3018, n.s.), or Difficulty C (difficult)
questions (W = 2394.5, Z = 0.8513, n.s.).

These results indicate that the students from South Africa and Sweden
performed similarly (i.e., did equally well) on both the CTt and Bebras tasks.
This suggests that both the South African style of providing their students with
direct, concrete experiences with coding (and robotics) was equally as effective
as their Swedish counterparts, who provided their students with more abstract
experiences with coding that were integrated into other subjects. While we
cannot say for certain that one country’s style would work just as well for the
other (and something that we could explore in a future study), we can say that
each country’s method works well in their specific contexts.

Since we only surveyed two schools from each country, our results may
not be widely generalizable. Therefore, it would be worthwhile to explore a

9 317

wider range of schools in both countries using the same methodology to see
if we get similar results. Next, while it is likely clear to the South African
students when they are learning about coding, it may also be interesting to
explore whether Swedish students know specifically when they are being taught
coding. Similarly, future work could explore whether these country’s students
think of themselves as being proficient coders (especially Swedish students,
since they mostly indicated they did not have prior coding experience), if they
are surprised by their high scores on the CTt and Bebras task, and what
they think about their respective country’s teaching method (e.g., how South
African students view being taught by their teachers and online interactive
computer tutors [25, 26]; or how Swedish students might respond to more
direct/concrete CT and coding instruction).

5 Conclusion

Recently, the governments of South Africa and Sweden have mandated that
the youth in their respective countries receive compulsory computing educa-
tion. In this study, we explored how in-service teachers in South Africa and
Sweden learned about and taught coding to their students. Moreover, we asked
students from these respective countries to report on their prior coding expe-
rience, and had them take two coding-related tests.

Interviewing six in-service teachers (3 from each country), we found that all
of them used similar resources for learning about computing and coding them-
selves (e.g. code.org, Scratch, and online forums). However, we found major
differences between countries in the way they taught their students afterwards.
South African teachers took a direct approach, having their students use ex-
isting online resources to get concrete experience with interacting with code.
Swedish teachers took a contrasting approach, integrating computing lessons
into other school topics, often abstracting CT concepts into psuedocode or
physical activities (e.g., CS unplugged). A major limitation to this work is the
small sample of teachers, and the relatively short time we interviewed them.
They all volunteered to participate in the study, were from major cities from
their respective countries, and identified as female. These shared character-
istics may have led to similar experiences and points-of-view, which may not
necessarily reflect the larger population. Therefore, in future studies, we may
surface additional or different perspectives by recruiting from a wider area of
each country, and include a larger and more diverse sample of teachers.

Surveying 96 students (47 from South Africa and 49 from Sweden) also
yielded interesting results. Nearly all of the South African students reported
that they had prior experience with numerous coding languages and styles
(block- and text-based code), whereas their Swedish counterparts said they had

10318

no (or very little) experience with block- or text-based languages. However, we
found that both countries’ students did equally well on both the Computational
Thinking test and Bebras tests, which are both designed to measure students’
knowledge of CT concepts. This suggests that the teachers are learning cod-
ing material well, and also able to adapt what they learned into meaningful
and effective instruction for their students. Future studies would benefit from
surveying a wider and larger group of students, perhaps from other parts of
each respective country. Collecting demographic information would also allow
us to see if there are any detectable differences by factors such as gender and
socio-economic status.

While our sample of teachers and students for this study was relatively
small, our findings can inform computing education researchers and educators,
as both concrete and abstract experience with code both appear to be effective
ways for students to gain understanding of computational thinking concepts.
All of the teachers and students in our study appeared to be doing very well
with learning (and teaching) CT concepts, especially given the short time since
it was introduced into the compulsory curricula for each country. Future work
will examine the nuanced differences between countries further, expanding our
dataset to include more teachers, students, and possibly additional countries.

6 Acknowledgements

This work was supported in part by the Google Research Scholar Program. Any
opinions, findings, conclusions, or recommendations are those of the authors
and do not necessarily reflect the views of Google Research or other parties.

References

[1] Eva-Lena Bjursten, Tor Nilsson, and Lena Gumaelius. Computer programming
in primary schools: Swedish technology teachers’ pedagogical strategies. Inter-
national Journal of Technology and Design Education, 33(4):1345–1368, 2023.

[2] José Cano. We don’t need no digital education? Tech-Savvy Sweden leads push
to remove screens from schools. World Crunch, March 2024.

[3] Valentina Dagienė and Gerald Futschek. Bebras international contest on infor-
matics and computer literacy: Criteria for good tasks. In Informatics Education-
Supporting Computational Thinking, ISSEP, pages 19–30. Springer, 2008.

[4] Valentina Dagienė and Sue Sentance. It’s computational thinking! Bebras
tasks in the curriculum. In Informatics in Schools: Improvement of Informatics
Knowledge and Perception, ISSEP, pages 28–39. Springer, 2016.

[5] Kareen Fares, Brian Fowler, and Emiliana Vegas. How South Africa implemented
its computer science education program. Brookings Institution, 2021.

11 319

[6] M Román González. Computational Thinking Test: Design guidelines and con-
tent validation. In EDULEARN, pages 2436–2444. IATED, 2015.

[7] Jean Greyling. Coding unplugged—a guide to introducing coding and robotics
to South African schools. Transforming Entrepreneurship Education, 155, 2023.

[8] Mark Guzdial. Holding ourselves to a higher standard: Language-independent
just doesn’t cut it. Computing Ed Research – Guzdial’s Take, August 2019.

[9] Per Dahl Haagensen. Supporting in-service teachers of programming in sec-
ondary schools. Master’s thesis, NTNU, 2021.

[10] Fredrik Heintz, Linda Mannila, Karin Nygårds, Peter Parnes, and Björn Regnell.
Computing at school in Sweden–experiences from introducing computer science
within existing subjects. In International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, pages 118–130. Springer, 2015.

[11] Peter B Henderson, Thomas J Cortina, and Jeannette M Wing. Computational
thinking. In SIGCSE, pages 195–196. ACM, 2007.

[12] Jana Heyns. Development of a framework of factors essential to the optimal
implementation of the Coding and Robotics subject in South African schools.
PhD thesis, Stellenbosch University, 2023.

[13] Anne-Françoise Hivert. Too fast, too soon? Sweden backs away from screens in
schools. Le Monde, May 2023.

[14] Helena Isaksson Persson. Has computational thinking a place in the curriculum?
In Pupils’ Attitudes Towards Technology, pages 213–230, 2022.

[15] Cruz Izu, Claudio Mirolo, Amber Settle, Linda Mannila, and Gabriele
Stupuriene. Exploring Bebras tasks content and performance: a multinational
study. Informatics in Education, 16(1):39–59, 2017.

[16] Barbara Kushan. Preparing programming teachers. ACM SIGCSE Bulletin,
26(1):248–252, 1994.

[17] Michael J Lee. Exploring differences in minority students’ attitudes towards
computing after a one-day coding workshop. In ACM ITiCSE, pages 409–415,
2019.

[18] Michael J Lee. Providing near-peer mentorship to increase underrepresented
minority youth participation in computing. In Handbook of Research on Equity
in Computer Science in P-16 Education, pages 1–13. IGI Global, 2021.

[19] Veronica Lin and Orit Shaer. Beyond the lab: Using technology toys to engage
South African youth in computational thinking. In CHI Extended Abstracts,
pages 655–661. ACM, 2016.

[20] Jamie C Macbeth, Michael J Lee, Jung Soo Kim, and Tony B Zhang. Children
who code. The Routledge Companion to Digital Media and Children, pages 67–
74, 2020.

[21] Matsie Magdeline Mokonyane-Motha and Thelma Thelma De Jager. The sig-
nificance of training student-teacher lecturers in pedagogical robotic and coding
skills. International Journal of Social Science Research and Review, 6(12):107–
118, 2023.

12320

[22] J. Patten, P.J. Guo, and K.A. Toh. Fostering computational thinking in young
children. In SIGKDD, pages 63–872. ACM, 2013.

[23] Marcos Román-González, Juan-Carlos Pérez-González, and Carmen Jiménez-
Fernández. Which cognitive abilities underlie computational thinking? Criterion
validity of the Computational Thinking Test. Computers in Human Behavior,
72:678–691, 2017.

[24] Ismaila Temitayo Sanusi and Fitsum Deriba. What do we know about comput-
ing education in Africa? A systematic review of computing education research
literature. arXiv preprint arXiv:2406.11849, 2024.

[25] Ruiqi Shen and Michael J Lee. Learners’ perspectives on learning programming
from interactive computer tutors in a MOOC. In VL/HCC, pages 1–5. IEEE,
2020.

[26] Ruiqi Shen, Donghee Wohn, and Michael J Lee. Programming learners’ percep-
tions of interactive computer tutors and human teachers. International Journal
of Emerging Technologies in Learning (iJET), 15(9):123–142, 2020.

[27] Ruiqi Shen, Donghee Yvette Wohn, and Michael J Lee. Comparison of learn-
ing programming between interactive computer tutors and human teachers. In
CompEd, pages 2–8. ACM, 2019.

[28] Bernhard Standl. Solving everyday challenges in a computational way of think-
ing. In ISSEP, pages 180–191. Springer, 2017.

[29] Jeannette M Wing. Computational thinking. Communications of the ACM,
49(3):33–35, 2006.

[30] Aman Yadav, Hai Hong, and Chris Stephenson. Computational thinking for
all: Pedagogical approaches to embedding 21st century problem solving in K-12
classrooms. TechTrends, 60:565–568, 2016.

[31] Soner Yildirim. Effects of an educational computing course on preservice and
in-service teachers: A discussion and analysis of attitudes and use. Journal of
Research on Computing in Education, 32(4):479–495, 2000.

[32] María Zapata-Cáceres, Estefanía Martín-Barroso, and Marcos Román-González.
Computational Thinking Test for beginners: Design and content validation. In
EDUCON, pages 1905–1914. IEEE, 2020.

[33] LeChen Zhang, Jalal Nouri, and Lennart Rolandsson. Progression of computa-
tional thinking skills in Swedish compulsory schools with block-based program-
ming. In Australasian Computing Education Conference, pages 66–75, 2020.

13 321

Jguardrail: A Framework for Identifying

Possible Errors in Student Java Code*

Ian Finlayson and Stephen Davies

Computer Science Department

The University of Mary Washington

Fredericksburg, VA 22401

ifinlay@umw.edu, sdavies@umw.edu

Abstract

This paper introduces Jguardrail, a tool for identifying potential pro-

gramming errors in Java programs, especially for beginning programming

students. We identi�ed several programming patterns which often lead

to bugs in student programs, that are not �agged as warnings by the Java

compiler. Jguardrail is a static analysis tool, written with the ANTLR

parser framework, which recognizes these patterns and provides warning

messages to the programmer. By providing an additional layer of warn-

ing reporting, above what the compiler itself provides, Jguardrail aims to

help students avoid common programming pitfalls. This paper discusses

the patterns Jguardrail provides warnings for, its usage in a CS2 course,

and a comparison to other tools.

1 Introduction

This paper presents a tool for identifying common programming errors in Java
programs. Over many years of teaching using the Java programming language,
we identi�ed several patterns that result in bugs that beginning programming
students struggle to �nd and correct. This tool, named Jguardrail [6], makes
a �rst pass over programs looking for these mistakes and reports them as

*Copyright©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or speci�c permission.

1322

warnings, e�ectively adding an extra layer of warning reporting on top of what
the Java compiler o�ers.

Java is the predominant programming language used in computer science
education at the college level [16]. Java has many features to recommend it,
and is widely used in industry, but in our opinion the Java compiler does
not do a great job of identifying warnings, even compared to compilers like
GCC. There are many programming constructs that will certainly, or almost
certainly, result in erroneous code which the Java compiler does not �ag, even
with extra warnings turned on. Jguardrail attempts to give programmers,
especially beginners, more diagnostic warnings in such instances.

There has been much prior work relating to the most common mistakes
made by novice programmers. Jackson et. al. [10] published a study in which
they identify the most common compiler errors encountered by beginning Java
students, using the compiler errors that the Java compiler itself gives.

Brown and Altadmri [2] investigated to what degree instructor perceptions
of the common mistakes students make are accurate. Some of the mistakes
in their study are syntax errors the Java compiler will always catch. Others
are mistakes that the compiler does not catch, including many that Jguardrail
provides warnings for.

There have been many published articles [1], [12], [13], [15] studying novice
programmer's level of understanding of error messages, or works that seek to
make such error messages more comprehensible to beginners. Much of this
research suggests that these messages may be written for an audience of more
experienced developers rather than novices, and that there are improvements
to be made in gearing error and warning messages to novices.

Jguardrail di�ers from these works in that it seeks to actually augment
the messages given by the compiler. We have identi�ed mistakes that are not
identi�ed by the Java compiler and built a tool which does identify them.

This paper is structured as follows: Section 2 enumerates the patterns that
Jguardrail detects as being possible mistakes and issues warnings for. Section
3 discusses the implementation of Jguardrail. Section 4 provides the results of
using this tool with students in a CS 2 class. Section 5 compares its warnings
to those identi�ed by the Java compiler itself, as well as IDE and linting tools.
Section 6 discusses future work and section 7 draws conclusions.

2 Patterns Flagged by Jguardrail

This section will describe the coding patterns �agged by Jguardrail as being
either likely sources of bugs or poor programming style.

2 323

2.1 String Equality

In Java, there is almost never a reason to use the == operator to compare a
string to a literal value. To that end, Jguardrail �ags code like this:

if (choice == "Quit")

The programmer certainly meant to use the .equals method instead. This
mistake can be di�cult to debug since it will seem like string comparisons
simply aren't working as the programmer believes they should.

2.2 Empty Control Structures

In this pattern, there is a control structure that has a single semi-colon for its
body, as in the following code:

while (index < 100);

{

array[index] = 0;

index ++;

}

Here the semi-colon on the end of the line with the while loop forms the body
of the loop, meaning the loop is likely to be in�nite, as in this case.

2.3 Missing Braces on Control Structures

Jguardrail also catches cases where the curly braces for a control structure are
not written. Most consider omitting the braces to be poor style. For instance
the Google Java Style Guide [4] dictates their use even if blocks contain a single
statement. They can also lead to mistakes like this:

if (numbers[i] > numbers[i + 1])

int temp = numbers[i];

numbers[i] = numbers[i + 1];

numbers[i + 1] = temp;

Here the code will not behave as the author probably intends, since only the
�rst indented line is actually part of the if statement. Jguardrail gives warnings
when braces are omitted to encourage good style and avoid such bugs.

2.4 Constant Integer Division

Jguardrail �ags code where division is applied between two integers literals
which do not divide evenly, as in the following code example:

3324

public static double triangleArea(int base , int height) {

return (1 / 2) * base * height;

}

The issue here is that Java sees 1 and 2 as integers and so applies integer
division, truncating the result to 0. This can be especially confusing to students
coming from languages like Python that convert numbers to �oating-point
values in cases like this.

2.5 Missing this

If a programmer is attempting to set an instance variable to a parameter value,
as in a constructor or setter method, and forget the this., then we create a
useless statement such as the following:

public Student(String name) {

name = name;

}

Jguardrail issues a warning, as it is likely that the intention was to set an
instance variable with the same name instead.

2.6 Variable Shadowing

A similar mistake can be seen when a programmer accidentally shadows an
instance variable, such as in the following code:

public void setName(String newName) {

String name = newName;

}

Here, instead of setting the existing instance variable name to newName, we have
introduced a new local variable with the same name (which is called shadow-
ing). Jguardrail �ags the declaration of variables which shadow instance vari-
ables like this, as it can cause di�cult to debug issues where variable updates
seem not to take e�ect.

2.7 Void Constructors

We also issue warnings when a �constructor� has accidentally been marked as
void, as in the following code snippet:

public void Student () {

this.name = "";

this.grades = new ArrayList <>();

}

4 325

Since this has a return type, Java sees it not as a constructor, but rather as a
method which just happens to be named the same thing as the class it is in. So
the constructor will not run when objects are created, leading to a confusing
debugging session. Jguardrail detects this for default constructors or those
with parameters.

2.8 Uninitialized Variables

Related to the previous issue, many students make mistakes in their programs
caused by not initializing instance variables. If class-type instance variables
are not initialized, they begin as null references. Students often struggle with
NullPointerExceptions caused by this issue. Jguardrail checks for instance
variables that are not initialized (whether inline or in constructors) and issues
warnings for them. This warning is perhaps a little opinionated since Java does
guarantee initial values for all variables (unlike C++).

2.9 Mis-capitalized toString

In Java we can control how objects are displayed by overriding a method called
toString, but this only works when the method is spelled and capitalized
correctly. If the student calls the method tostring, for instance, Objects will
be printed out as just the class name, an @ character and the memory address
the object is stored at. Jguardrail checks for methods like this and issues a
warning that the programmer likely meant toString instead.

2.10 Missing Breaks in Switch

Finally Jguardrail looks for switch statements where there are missing break
statements in the cases, as in the following code:

switch (option) {

case "add":

System.out.println("Adding");

case "quit":

done = true;

}

While there are legitimate uses of having switch cases �fall through�, such as
handling both upper-case and lower-case menu options, or �Du�'s Device�[5],
most of the time students do this by mistake. Interestingly, this is the only
one of these which is caught by the javac compiler, and even then only with
the -Xlint:all �ag.

5326

3 Implementation

Jguardrail essentially is a compiler front-end which parses Java code, performs
some analyses and then (unlike an actual compiler) stops there. It only pro-
duces warnings and leaves actual compilation up to the existing Java compiler.

Jguardrail is implemented using the ANTLR [14] parser framework. ANTLR
is a parser generator tool which also comes with example grammars for existing
languages such as Java, which we used. This provides us with a syntax tree of
the program being analyzed, after lexical and syntax analysis are performed.
One of the great things about ANTLR is that the grammar is decoupled from
actions taken after parsing. It uses the Visitor Pattern [9] to allow code to
walk the parse tree after it is produced. We utilized this to write the analyses
as visitors that walk over the tree after the code is parsed, searching for the
patterns we identi�ed.

Jguardrail does a separate tree-walk for each of the patterns that it catches,
using a system in which new ones can be easily added to the system. Each of
these overrides the needed visit methods ANTLR produces. For example, to
catch division between two integer constants, we visit tree nodes which perform
division. From there we simply check if both operands are integer constants
and, if so, whether they divide evenly or not.

Some of the checks were slightly more complicated to perform. For instance
to look for uninitialized instance variables, we have to make two passes. In the
�rst we note all of the instance variables that a class has. If it's initialized
inline, we skip over it, but if not, we add it to a list. In the second pass, we
scan through all the constructors making sure that each one initializes all of
the instance variables it needs to. Two passes are needed as constructors do
not necessarily come after all instance variables. Moreover this analysis must
be done using a stack as Java allows for nested classes. So we in fact keep a
stack of lists of uninitialized variables to ensure that it works correctly in this
case as well.

Each of these analyses records any warnings that should be issued about
the code, which are displayed at the end of the program. We sort them by line
number and pattern the output after that given by the javac compiler.

4 Evaluation

This tool was used in two sections of a CS 2 class during the Spring 2024
semester. The class uses the Java programming language and introduces con-
cepts of object-oriented design and analysis. This class was taught using a
command-line interface in which students write programs in the Vim text edi-
tor and compile using the javac command, on a shared server operated by the

6 327

department.
With the goals of helping students avoid errors, and of learning how often

students actually write the patterns Jguardrail checks for, we set up our system
so that Jguardrail was automatically invoked when the javac command was
run. This was done by creating a shell script in /usr/local/bin called javac

which calls Jguardrail followed by the real javac, which is in the /usr/bin

directory. Because /usr/local/bin comes �rst in a default $PATH variable,
students got the Jguardrail warnings by default.

We also decided to write our script in such a way that if Jguardrail did �nd
any warnings, it does not compile the code at all. This way, warnings must be
�xed before the code can be run. This behavior is similar to the -Werror �ag
that the GCC compiler provides.

We instrumented Jguardrail so that each time a warning was issued, we
saved a record of it so that we can collect usage statistics. This machine is
used by students in many classes, but here we will look speci�cally at the 43
students in the two sections of the CS 2 class.

The student who triggered the fewest warnings triggered 19 of them. The
student who triggered the most triggered 597. The mean was 124.3 and the
median value was 93. This was across a semester's worth of work.

Table 1 contains data on how many times each of the warnings was triggered
by the students in the CS 2 class. The warnings are listed in the same order
as they are described in Section 2.

Table 1: Warnings issued by Jguardrail over one semester of a CS 2 class

Pattern Times Issued

String Equality 125
Empty Structures 25
Missing Braces 218
Integer Division 0
Missing this 12
Local Shadowing 312
Void Constructor 65
Uninitialized Vars 4580
tostring 0
Missing Break 7

As can be seen, students are much more likely to trigger some of these warn-
ings than others. The integer division and mis-capitalized toString method

7328

were never triggered at all. The integer division one was actually triggered by a
more advanced student using the server, but not in the CS 2 class population.

The use of uninitialized instance variables is a clear outlier. It is possible
that Jguardrail is a little over-zealous in its enforcement of the practice of
initializing all instance variables. However it certainly leads to bugs in student
programs and we believe being a little extra rigorous is not a bad thing at this
level. Additionally Java already ensures that all local variables are initialized
before being used, so enforcing this for all variables provides a consistent rule
for students.

We believe that the use of Jguardrail in this class did make a di�erence in
the amount of bugs in student code. Even setting aside the use of uninitialized
instance variables, many of the other warnings were issued a signi�cant number
of times and can cause di�cult bugs if not addressed. It also made helping
students who encounter these issues easier on the instructor. For example in
the case of shadowing a local variable, we can explain the warning to them and
how to �x it, rather than need to help them debug why their variables are not
being updated as they expect.

The tool did cause some issues for students, however. Code in the textbook
used for the class occasionally violates the rules we enforce, which can be
frustrating for a student who may not understand why code given to them by
the text may fail to compile. Jguardrail is rather an �opinionated� tool in that
it �ags things as errors which may be considered subjective style decisions. It
raises the question of what is considered �good code� which di�erent instructors
will certainly have di�erent opinions on. However we do believe it served to
help students avoid bugs in their programs.

5 Comparison to Other Tools

In this section we compare Jguardrail to other tools which report warnings on
Java code. We compared the OpenJDK javac compiler itself, as well as the
Eclipse[8], NetBeans[7] and IntelliJ[11] IDEs. Interestingly these IDEs each
provide more warnings than the compiler itself provides. We also tried the
Sonar Lint[17] linting tool plugin for IntelliJ, which provides more warnings on
top of IntelliJ itself. We also tried the SpotBugs[18] plugin for IntelliJ, but it
did not provide any more warnings than IntelliJ itself did so it is not present
in the results.

Table 2 shows which of the checks that Jguardrail performs are caught
by these tools. Again, these checks are listed in the same order as they are
described in Section 2 of this paper.

8 329

Table 2: Comparison of tools which o�er warnings for Java programs

Pattern javac Eclipse NetBeans IntelliJ Sonar

String Equality ✓ ✓ �

Empty Structures ✓ ✓ �

Missing Braces
Integer Division ✓ �

Missing this ✓ ✓ ✓ �

Local Shadowing ✓1 ✓ ✓
Void Constructor ✓ ✓2 �

Uninitialized Vars ✓ �

tostring ✓
Missing Break ✓3 ✓

1 Eclipse gives a warning for the code we used to test local variables shad-
owing instance variables, but the warning was that the local variable was never
used. This warning does not clearly indicate the underlying mistake.

2 IntelliJ provides a warning for our test which says that the method (with
the same name as the class) is never called. This indicates something is wrong,
but is not especially clear as to the mistake being made.

3 The javac compiler only provides warnings for missing break statements
with the -Xlint:all �ag passed to the compiler.

The � entries for Sonar are because that tool was used as a plugin for In-
telliJ. So the cases where IntelliJ already provided warnings were still provided
with the Sonar lint tool installed.

The IntelliJ IDE, especially with the Sonar lint tool installed, catches almost
all of the cases Jguardrail catches. The Checkstyle tool [3] was also tried and
performs similarly to Sonar. However, in our experience most students ignore
the warnings given by IDEs such as IntelliJ for a few reasons. One, they are
fairly inconspicuous and many students don't even really notice them. Two,
these IDEs allow you to run the program if it compiles, whether or not warnings
are given. Students will usually choose to run and test their code rather than
read the warnings. Finally IDEs and style checkers use warnings to suggest re-
factoring programs in ways students may �nd confusing. For example, IntelliJ
suggests that switch statements be replaced with switch expressions which
students may not have seen.

Jguardrail is designed to be a code analysis framework speci�cally for be-
ginning students. It does this by focussing on mistakes that we have observed
beginning students making, making the warning messages clearer than some
other tools provide, and making the warnings more visible. In our usage of the

9330

tool, we went so far as to dis-allow running of the program until warnings are
resolved.

Jguardrail is also a command-line tool. In an environment, such as ours,
where we encourage students to use the command-line to write and compile
programs, Jguardrail provides many more warnings than the javac compiler
itself.

6 Future Work

There are several areas in which Jguardrail can be expanded. Of course more
warnings can be added to the tool. We would like to issue warnings for code
which is improperly indented. That way if the code structure the programmer
sees does not match the structure the compiler sees, the student will be given
a warning. This will be a little trickier to implement using ANTLR than the
other analyses, but is possible.

We will also be making the tool more �exible by providing a means for users
to determine which of the patterns should be considered errors (disallowing
compilation), warnings (allowing compilation), or disabled entirely. This will
allow instructors to determine which patterns they want to be highlighted as
potential mistakes for their students.

We are also beginning work on an IDE plugin for Jguardrail, initially for
IntelliJ. The goal here is not only to provide warnings for the things Jguardrail
provides warnings for, but also to allow the option of making �xing warnings
mandatory before programs can be run.

7 Conclusion

Jguardrail is a framework for identifying programming patterns which will,
or are very likely to, lead to incorrect Java programs. It currently provides
warnings for ten such patterns, which are not caught by the Java compiler
itself. This tool can be extended to catch other such patterns.

The study we conducted shows that most of these are actually encoun-
tered in real student code at the CS 2 level. Because Jguardrail catches these
mistakes at compile time, students should be in a better position to �x the
underlying mistake instead of needing to debug the symptoms of the mistake.
We can also use this data to inform our teaching, highlighting the issues that
we see occurring the most for our students.

Overall we believe that the needs of novice programmers are di�erent from
those of experienced professionals. We have by and large moved away from
using programming languages geared towards beginners (such as Pascal or
Scheme) in favor of those used in industry. However, that doesn't mean we

10 331

need to use the same tools around those languages. We believe that it is possible
to develop tooling that does a better job of catching and reporting mistakes
that beginning students most commonly face, and Jguardrail is a step in that
direction.

References

[1] Brett A. Becker et. al. �E�ective compiler error message enhancement for
novice programming students�. In: Computer Science Education 26.2-3
(2016), pp. 148�175.

[2] Neil C.C. Brown and Amjad Altadmri. �Investigating novice program-
ming mistakes: educator beliefs vs. student data�. In: Proceedings of the
Tenth Annual Conference on International Computing Education Re-
search. ICER '14. 2014, pp. 43�50.

[3] CheckStyle. CheckStyle. https://checkstyle.sourceforge.io/.

[4] Google Corporation. Google Java Style Guide. https://google.github.
io/styleguide/javaguide.html.

[5] Tom Du�. Explanation, please! https://www.lysator.liu.se/c/

duffs-device.html.

[6] Ian Finlayson. Jguardrail Code Repository.
https://github.com/IanFinlayson/jguardrail.

[7] Apache Software Foundation. NetBeans Homepage. https://netbeans.
apache.org/front/main/index.html.

[8] Eclipse Foundation. Eclipse Homepage. https://eclipseide.org/.

[9] Erich Gamma et al.Design Patterns: Elements of Reusable Object-Oriented
Software. 1st ed. Addison-Wesley Professional, 1994.

[10] James Jackson, Michael Cobb, and Curtis Carver. �Identifying top Java
errors for novice programmers�. In: Proceedings frontiers in education
35th annual conference. IEEE. 2005, T4C�T4C.

[11] JetBrains. IntelliJ Homepage. https://www.jetbrains.com/idea/.

[12] Yoshitaka Kojima, Yoshitaka Arahori, and Katsuhiko Gondow. �Investi-
gating the di�culty of commercial-level compiler warning messages for
novice programmers�. In: International Conference on Computer Sup-
ported Education. Vol. 2. SCITEPRESS. 2015, pp. 483�490.

[13] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. �Com-
piler error messages: what can help novices?� In: Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Education. SIGCSE
'08. 2008, pp. 168�172.

11332

[14] Terence Parr. The de�nitive ANTLR 4 reference. The Pragmatic Book-
shelf, 2013, pp. 1�326.

[15] James Prather et al. �On Novices' Interaction with Compiler Error Mes-
sages: A Human Factors Approach�. In: Proceedings of the 2017 ACM
Conference on International Computing Education Research. ICER '17.
2017, pp. 74�82.

[16] Robert M. Siegfried et al. �Trends Of Commonly Used Programming
Languages in CS1 And CS2 Learning�. In: 2021 16th International Con-
ference on Computer Science and Education (ICCSE). 2021, pp. 407�
412. doi: 10.1109/ICCSE51940.2021.9569444.

[17] Sonar. Sonar Lint Homepage. https://www.sonarsource.com/products/
sonarlint/.

[18] SpotBugs. SpotBugs Homepage. https://spotbugs.github.io/.

12 333

Teaching Bioinformatics Students to Lead
Reproducible Research∗

Miranda Malouf Darby
Hood College

Frederick, MD 20854
darby@hood.edu

Abstract

Reproducibility, the extent to which the results of an experiment will
lead to the same conclusion each time the experiment is performed, and
robustness, the extent to which an experiment is generalizable to other
situations, are essential indicators of the reliability of a study. Unfortu-
nately, many studies that have sought to replicate published work reveal
that most results cannot be reproduced. A great deal has been written
about “reproducibility crisis” over the course of the last decade, yet the
problem persists. Ongoing efforts to develop best practices for experi-
mental design, statistical analysis, and the handling of data and other
computational resources have not resolved the problem. Best practices
are often not followed. It is not sufficient to train bioinformatics students
to understand and implement these practices. Many bioinformatics stud-
ies involve scientists with a variety of specialties who all contribute data
for the bioinformatician to analyze. Therefore, in order to solve the re-
producibility crisis, bioinformaticians need communicate well with their
colleagues who have different training backgrounds and convince them
to follow best practices. This paper describes a course that teaches the
best practices for research methodology and data handling, the ability to
assess the quality of research results and data produced by others, and
the leadership skills to influence others to perform research well.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1334

1 Introduction

For a decade, researchers have bemoaned the “reproducibility crisis” revealed
when efforts to repeat published studies did not lead to the published results
[18], [3]. Reproducibility, the extent to which an experiment will lead to similar
results each time it is performed, is an essential indicator of the reliability of
an experiment. Reproducibility alone does not guarantee that the results are
reliable, since problems in experimental design or analysis that are faithfully
repeated could lead the same erroneous results. But, the ability to successfully
replicate an experiment is a good first step. Experiments that are well designed
and executed are also robust, meaning that the findings are generalizable to
other situations [15]. Robustness relies on good experimental design regarding
sample collection and processing, data acquisition, and appropriate analysis
methodology in addition to good data management and analytical workflow
development. Unfortunately, the majority of published research findings in a
variety of life science fields cannot be replicated [3, 15, 18, 20, 27] and recent
studies report that the same is true for machine learning-based science [1, 10].

The lowest standard of experimental replication is “computational replica-
tion”, which does not repeat the entire experiment but only the analysis steps
taken after the data is collected [6, 13]. In theory, this should be easy if all
stages of the analysis are scripted. In 2016, a diverse group of stakeholders from
academia, funding agencies, scholarly publishers, and industry worked together
to develop principles to enhance the reusability of data and analyses [24]. The
FAIR principles of Findability, Accessibility, Interoperability, and Reusability
[7, 25] apply to all types of data and also the associated algorithms, tools,
and workflows. However, subsequent studies indicate that the FAIR principles
are not well adopted in practice. Workshops conducted in 2018 and 2019 at
the National Institutes of Health attempted computational replication of five
bioinformatics studies and failed because of missing data, software, and doc-
umentation [27]. Attempts at computational replication of Jupyter notebooks
published with biomedical articles [20] and R scripts from the Harvard Data-
verse repository [22] revealed similar problems of missing data, buggy code,
and broken dependencies.

Bioinformatics is an interdisciplinary field that applies advanced statistical
methodology and computational techniques to the analysis of biological data.
That means that bioinformatics studies must not only be computationally re-
producible, but also use appropriate statistical methodology and follow the best
practices for biological experimental design. Unfortunately, efforts to address
the use of statistical methods [13, 23] and the application of experimental de-
sign principles for robust research [8, 14] have not resolved the reproducibility
crisis any more than the computational efforts.

The reproducibility crisis in bioinformatics is compounded by a lack of ef-

2 335

fective guidance. Increasing adoption of next-generation sequencing and other
high-throughput techniques that generate massive datasets that are too large
for standard analysis methods has led to a boom in bioinformatics. Rather
than looking at one gene at a time, new techniques allow researchers to simul-
taneously query every gene in the genome, every RNA in the transcriptome,
or all of the proteins or metabolites in a cell. However, the rapid evolution
of new types of data generated by these techniques has outpaced the evolu-
tion of reliable techniques to analyze them. For many types of data, no “gold
standard” analysis methods exist. The lack of established methods means that
bioinformaticians must use their best judgement when deciding how to analyze
an experiment, requiring them to fully understand the biological underpinnings
of the data and associated metadata, appropriate use of advanced statistical
techniques, and how to implement their analyses using code that is robust
and error-free. Then, for the analysis to be reproducible, all data, metadata,
and code need to be well annotated and able to be used by other researchers.
Therefore, the reproducibility crisis will not be resolved until and unless ex-
perimental design considerations, statistical methodology, and computational
guidelines become intrinsic parts of bioinformatics education.

However, as previous research demonstrates [1, 15, 20, 22, 26, 27], simply
teaching skills for reproducible research will not resolve the crisis. Bioinformati-
cians must be leaders who ensure that the best practices for robust and repro-
ducible research are correctly understood and implemented. Bioinformatics is
inherently multidisciplinary, so bioinformatics studies involve teams of scien-
tists with different training backgrounds who work together. Since the field of
bioinformatics is relatively new and rapidly evolving, many bioinformaticians
are young and early in their careers. They work in laboratories or research
groups headed either by classically trained biologists or computer scientists,
who understand their own field deeply but may not understand bioinformatics.
For example, biologists who are used to smaller, more focused studies may not
understand how many samples are needed to overcome the inherent variability
of a high-throughput experiment or the need to statistically correct for the fact
that tens-of-thousands of tests are being performed simultaneously [13]. They
are also unlikely to know how to ensure that the massive data files are handled
correctly, the code is error-free and robust, or that the analysis is reproducible.
In contrast, computer scientists understand data handling and code testing, but
likely not the biological variables at play or how they should be addressed in
the analysis in order to produce biologically meaningful results. They may also
be unaware of biological experimental design pitfalls or confounding variables
that can affect the data [19].

Consequently, although students graduating with a masters’ degree in bioin-
formatics are unlikely to immediately head their own research groups, they

3336

must take leading roles in ensuring that experiments are performed and an-
alyzed correctly. Becoming effective leaders who can “lead up” to influence
their superiors as well as peers and subordinates requires “soft skills” such as
communication and leadership that are not typically included as learning ob-
jectives in bioinformatics curricula. To remedy this deficit, this paper describes
a three-credit course on leading reproducible research. The course teaches the
best practices for reproducible and robust research methodology as well as
communication and leadership skills. While the course is designed for master’s
level bioinformatics students, the concepts and activities can be adapted for
undergraduate education.

2 Course Overview

The course on leading reproducible research is a core course in the Bioinformat-
ics MS curriculum and has been offered by the author seven times over the last
eight years. Along the way, the course has been continually updated to reflect
the most current guidelines and best practices for research methodology and
the stewardship of data and computational artifacts. The author completed a
more extensive overhaul of the course in 2021 to adapt it for use as part of a
graduate certificate in Project Management in the Life Sciences in addition to
its inclusion in the Bioinformatics MS.

The course follows a “flipped classroom” format [2, 4] wherein most of the
information is imparted to students outside of class through readings, videos,
and weekly homework assignments. Class time is spent discussing and building
on the ideas in small breakout groups and as a whole class, in addition to short
lectures intended to refine student understanding and extend the concepts.
Discussions are enriched by an ongoing activity that the author calls “Real
World Problems”. The author provides index cards and a manila envelope for
students to anonymously share concerns, challenges, and problems that they
have encountered in the workplace. Depending on the concerns that are raised,
these can be used as prompts for a focusing activity at the beginning of class,
or can be pulled out later to enrich discussions of relevant topics in the course.

2.1 Instruction on Robust and Reproducible Research Practices

Like many of us in the hard sciences, the students are usually much more
interested in learning technical considerations and “hard skills” for analysis
than “soft skills” such as communication and leadership. Therefore, most of the
focus of the first two-thirds of the course is on experimental design and analysis.
However, the author takes advantage of openings in the class discussions to
start students thinking about the connection between their scientific goals and
good leadership.

4 337

The class starts with a discussion of respect, trust, and reliability. Students
identify what makes research results reliable and trustworthy– namely that the
results are robust, reproducible, and fairly reported. They also identify what
makes them respect, trust, and rely on other people—honesty, integrity, hard
work, and a willingness to mentor others. The first lecture introduces the
reproducibility crisis and its consequences as well as the challenges that are
inherent to bioinformatics research. We discuss the benefits and difficulties
of working at the intersection of biology, computer science, and statistics. As
a group, we talk about the cultural and communication differences between
biologists, computer scientists, and statisticians and identify the key factors
that influence their experimental design decisions. Finally, we consider different
sources of error that can occur at each stage of an experiment that might be
missed by each group. For example, a biologist who writes some code may not
be aware of how to test their code and avoid silent errors, while a computational
scientist may not recognize all of the potentially confounding variables that can
affect the data.

Instruction on the best practices for reproducible research starts with com-
putational reproducibility, the ability to fully reproduce the results of an ex-
periment by using the same data, metadata and code provided by the original
authors of a study [6, 13]. Students learn about the FAIR principles [24] and
how to ensure that their data and analysis workflows are Findable, Accessible,
Interoperable and Reusable. We also add an additional R by discussing how to
make an analysis Robust in addition to Reusable. Robust workflows contain
all essential software components and can be used on a variety of systems.

The next focus of the course is on experimental design considerations. Stu-
dents learn about a variety of sampling methodologies, their benefits, and their
drawbacks. They describe the relationships between sample size, effect size,
sample-to sample variability, and significance thresholds relative to the power
of an experiment to produce significant results. We discuss how and why the
number of biological replicates improves the power of an experiment while
technical replicates do not, and why technical replicates are still useful. Stu-
dents identify many different types of confounding or “nuisance” variables that
could influence the outcome variable that is being measured and learn how to
deal with them through randomization, blocking, and regression analysis [19].
Students learn how perform exploratory data analysis and sanity checks to ex-
amine the integrity of the resulting data and how to remove outliers and build
a statistical model. Finally, we discuss what should and should not be done
in order to “save” an experiment in case no results are significant. While this
discussion is based on best practices for statistical methodology as described
in [13, 19], the topic also provides an opening to discuss research ethics and
leadership. For example, students often describe unethical research practices

5338

that they have seen others perform or have been encouraged to perform them-
selves in order to improve the statistical significance of results. This sparks
a practical discussion of ethical research practices and how students can “lead
up” to their bosses and maintain their integrity while keeping their jobs.

2.2 Teaching Students to Assess the Quality of Work Performed by
Others

Once students understand the principles of experimental design and computa-
tional reproducibility, they learn how to assess the quality of published work
and publicly available data. The ability to determine whether published work
is reliable is important for scientists of all kinds, but even more so for bioin-
formaticians because they often utilize published data as part of their own
studies. Some students in our Bioinformatics MS program are fresh from their
undergraduate studies while others are established researchers who already
have PhDs, so this section of the course starts with optional articles on how to
efficiently read a biological research article followed by instructions for how to
review a manuscript for possible publication.

Students apply these instructions to review Anil Potti’s infamous paper,
“Genomic Signatures to Guide the Use of Chemotherapeutics” [17] as if it were
a new manuscript submitted for publication. Although the paper contains
many errors caused by a combination of carelessness and fraud, most students
like the paper the first time that they read it. They change their minds as
we discuss the results of the paper in class and they start to notice things like
scatter plots that don’t look linear or have an R2 value, but the p value is
suspiciously low. They also note that differences between groups are reported
as significant although the error bars are huge and clearly overlap each other.
The following assignment is for them to read through the exchanges between
Potti and “forensic data scientists” Baggerly and Coombes who reported their
inability to reproduce Potti’s results [9]. Over the course of several letters to
Nature, Baggerly and Coombes reveal a variety of careless mistakes and also
some apparent fraud committed by the Nevins lab. In class, the author presents
“Chemotherapeutic Signatures. . . ” as if at a conference and has students in-
terject with Baggerly and Coombes’ arguments to point out the errors as we
get to them. We conclude with a discussion of reasons why people cheat, the
actions students can take if they become aware that their peers are behaving
unethically, and how they may act in the future to prevent subordinates from
committing fraud.

As a summative assessment for this section of the course, students apply
what they learned by reviewing of one of a selection of retracted manuscripts
obtained from the retraction watch database (Retractionwatch.org). Students
identify the strengths and weaknesses of the work and recommend whether or

6 339

not it should be published. After completing an initial analysis of the work,
students share their thoughts in small groups. The author leverages the diver-
sity of students in the class by grouping together students with different back-
grounds and levels of experience in biology, computer science, and statistics to
provide a variety of perspectives and insights. Finally, the students complete
an in-depth written evaluation of the retracted article that they selected.

3 2.3 Teaching Students to be Effective Leaders

As previously mentioned, Bioinformatics students are often resistant to the
idea of spending time learning about “soft skills”. In addition, many do not see
themselves as leaders and do not covet leadership positions. Their resistance
usually fades over the course of the discussions described above. Students begin
to realize how they can benefit from influencing others, and that leadership is
not limited to directing subordinates. The author’s aim is to capitalize on
this by demonstrating that good leadership can take many forms depending
on the situation and the individuals who are involved. Each week, students
respond to writing prompts that force them to articulate how their perceptions
of leadership and their own potential to be leaders change during this section
of the course.

We start by examining leadership in the context of scientific research using
an excellent book, “Managing Scientists” by Alice Sapienza [21]. Students
read chapters on “The Condition of Being Different”, “Understanding What
Motivates You and What Motivates Others”, “Understanding Your Leadership
Style and That of Others”, “Communicating Effectively” and “Dealing with
Conflict” while completing homework assignments to guide and enrich their
reading. In class, we highlight the characteristics and behaviors of effective and
ineffective leaders as students share their experiences and discuss how to deal
with different types of managers. We also differentiate between management
and leadership – managers direct tasks while leaders influence people.

Our discussion of “The Condition of Being Different” highlights the impact
of cultural differences based on age, race, gender, and also scientific discipline
on the ways people interact and perceive the words and actions of others.
Students share their experiences as we highlight how diverse perspectives can
strengthen groups, then we relate those ideas to the multidisciplinary nature of
bioinformatics research. In later chapters, students are often surprised by the
outcome of exercises designed to reveal the extent to which they are motivated
by the need for power, achievement, and affiliation in the workplace. Students
also reflect on whether their own leadership styles tend to be task-focused or
relationship-focused. Task-focused leadership styles work well for highly struc-
tured tasks while more open- ended tasks that require a lot of creativity benefit

7340

from relationship-focused leadership. Students explain why different modes of
communication are best suited for different kinds of messages and describe how
personal biases and perceptions can color the way that messages are received
and interpreted. Finally, students demonstrate strategies for dealing with con-
flict using role play while responding to prompts taken from the semester-long
“Real World Problems” activity.

The remainder of the course is spent exploring the characteristics and be-
haviors of good leaders by comparing and contrasting different philosophical
perspectives on leadership. Students get a brief overview of Hellenic views on
leadership by watching short videos explaining the views of Socrates, Plato and
Aristotle. After discussing these views in class, students then participate in a
lecture on Alexander the Great by identifying ways in which his behavior was
influenced by Socrates’, Plato’s, and Aristotle’s ideas. Students discuss the
benefits of self-examination, surrounding themselves with peers whom they re-
spect and from whom they can learn, showing empathy, exploring all things in
moderation, and the lessons of Plato’s Allegory of the Cave [16] among other
ideas. Next, they identify passages in The Analects of Confucius [11] that
illustrate concepts such as self-rectification, justice, benevolence, filial piety,
long-term thinking, and the “golden rule”.

During a lecture expanding on these concepts, students discuss what these
ideas mean in terms of how a leader should behave and compare them to
those espoused by the Hellenics. Finally, students read either “The Tao Te
Ching” [12] or the “Basic Writings” of Zhuangzi [28] and identify passages
illustrating ideas such as seeing the good in bad things and the bad in good
things, living in the moment while planning for the long term, finding balance
between opposites, mindfulness, avoiding conflict, fostering harmony between
individuals in a team, empowering others to succeed, and seeking results but
not acclaim. Following a lecture expanding on these ideas, students compare
and contrast them to the Hellenic and Confucian viewpoints, then identify
concrete actions and behaviors that a Daoist leader would take in response to
a variety of challenges. At the end of each class session, students apply the
perspective being discussed to respond to prompts selected from the collection
of “Real World Problems”.

4 Student Learning Objectives and Examples

Table 1 contains a listing of the student learning objectives for the course, an
example assignment and readings related to each objective, and some of the
insights that students are expected to attain:

8 341

5 Evaluation and Feedback from Students

The author has found this course to be simultaneously very challenging and
rewarding to teach. The described course is one that students frequently argue
against taking, claiming that they don’t need it either because have no intension
of being leaders or because they feel that they have nothing to learn. On
the first day if class, many students arrive looking bored and reluctant to
engage. However, most students become more enthusiastic by the end of the
first session. Over the course of the semester, the class discussions become
increasingly lively as the vast majority of students engage deeply with the
material.

Student evaluations of the author’s teaching are generally very strong with
most scores (out of five) being in the high 4’s or 5 in every category. However,
a couple of students commented that the course was overly theoretical when it
was first offered. Student engagement and performance on learning assessments
has improved over the years as the author has increasingly found ways to help
students understand general concepts in concrete terms by identifying actions
that illustrate how they can be applied. Students particularly enjoy the “Real
World Problems” activity and comment that they value the advice that they
get in response to the concerns that they submit.

Perhaps more importantly, this course inspires many alumni to reach out in
thanks. Alumni say that employers ask them during interviews how they will
ensure that their research is meaningful and reproducible. Potential employ-
ers are very impressed when they can readily give a well-considered answer.
Alumni have also written to the author to express how they applied the lead-
ership concepts that they learned in order to overcome particular challenges
that they faced.

5.1 Selected Comments from Student Evaluations

• “The instructor was contagiously enthusiastic and helped me take an
interest in a subject that previously thought to be mundane. I am very
glad I took this course.”

• “I like way she related topics and gives real world examples.”

• “In context of leadership I love the discussion topics she provided really
interesting topics.”

• “After attending her lectures the way I saw and think completely changed.
After Reading different percepts I realize that we have many things to
learn from our own experience and as well books. . . This course actually

9342

helped me to understand concepts of leadership and their applications in
real world.”

• “Dr. Darby has continuously been enthusiastic and encouraging. This
class was one of the best classes that I have taken at Hood and I really
learned a lot from the other people in the class due to the diverse age
range. I always got the impression that Dr. Darby cared a lot about how
we were outside of school and hoped that we learned instead of caring
just about a grade. She gave great advice regarding how to stand up
for yourself in various situations and encouraged us to speak in class
because she was actually/actively interested in what I had to say. I am
really grateful that I took this class and got to know Dr. Darby more
during this semester.”

• “Appreciated the Professor bringing in different ideas/topics to the class
on the leadership”

• "Thank you very much! I enjoyed almost all the reading and I learned a
lot about how I interact as a researcher with other researchers"

• "Even though this course was less focused on STEM subject matter, it
gave me the information I needed to confront the STEM workforce with
all of its unique challenges"

References

[1] S. Rachid Zaim A. A. Kim and V. Subbian. “Assessing reproducibility
and veracity across machine learning techniques in biomedicine: A case
study using TCGA data”. In: International Journal of Medical Infor-
matics 141 (Sept. 2020), p. 104148. doi: 10.1016/j.ijmedinf.2020.
104148.

[2] M. I. Baig and E. Yadegaridehkordi. “Flipped classroom in higher ed-
ucation: a systematic literature review and research challenges”. In: In-
ternational Journal of Educational Technology in Higher Education 20.1
(Nov. 2023), p. 61. doi: 10.1186/s41239-023-00430-5.

[3] M. Baker. “First results from psychology’s largest reproducibility test”.
In: Nature (Apr. 2015). doi: 10.1038/nature.2015.17433.

[4] J. Bergmann and A. Sams. Flip your classroom: reach every student in
every class every day. Eugene, OR: International Society for Technology
in Education, 2012.

[5] V. Buffalo. Bioinformatics Data Skills. First edition. Sebastopol, CA:
O’Reilly Media, 2015.

10 343

[6] B. Grüning et al. “Practical Computational Reproducibility in the Life
Sciences”. In: Cell Systems 6.6 (June 2018), pp. 631–635. doi: 10.1016/
j.cels.2018.03.014.

[7] Jeffrey Brainard Jocelyn Kaiser. Ready, set, share: Researchers brace for
new data-sharing rules. Accessed: Sep. 03, 2024. url: https://www.
science.org/content/article/ready- set- share- researchers-
brace-new-data-sharing-rules.

[8] F. Ju and T. Zhang. “Experimental Design and Bioinformatics Analy-
sis for the Application of Metagenomics in Environmental Sciences and
Biotechnology”. In: Environmental Science and Technology 49.21 (Nov.
2015), pp. 12628–12640. doi: 10.1021/acs.est.5b03719.

[9] J. Wang K. R. Coombes and K. A. Baggerly. “Microarrays: retracing
steps”. In: Nature Medicine 13.11 (Nov. 2007), pp. 1276–1277. doi: 10.
1038/nm1107-1276b.

[10] S. Kapoor et al. “REFORMS: Consensus-based Recommendations for
Machine-learning-based Science”. In: Science Advances 10.18 (2024), eadk3452.
doi: 10.1126/sciadv.adk3452.

[11] Q. Kong and B. Watson. The Analects of Confucius. Translations from
the Asian Classics. New York: Columbia University Press, 2010.

[12] B. Watson Laozi, S. Addiss, and S. Lombardo. Tao Te Ching. Indianapo-
lis: Hackett Publishing Co, 1993.

[13] P. Poulain M. Ziemann and A. Bora. “The five pillars of computational
reproducibility: bioinformatics and beyond”. In: Briefings in Bioinfor-
matics 24.6 (Nov. 2023), bbad375. doi: 10.1093/bib/bbad375.

[14] R. Normand and I. Yanai. “An Introduction to High-Throughput Se-
quencing Experiments: Design and Bioinformatics Analysis”. In: Deep
Sequencing Data Analysis. Ed. by N. Shomron. Totowa, NJ: Humana
Press, 2013, pp. 1–26. doi: 10.1007/978-1-62703-514-9_1.

[15] B. A. Nosek et al. “Replicability, Robustness, and Reproducibility in
Psychological Science”. In: Annual Review of Psychology 73 (Jan. 2022),
pp. 719–748. doi: 10.1146/annurev-psych-020821-114157.

[16] Plato. The Republic. Classical Era.

[17] A. Potti et al. “Genomic signatures to guide the use of chemothera-
peutics”. In: Nature Medicine 12.11 (Nov. 2006), pp. 1294–1300. doi:
10.1038/nm1491.

[18] B. Pulverer. “Reproducibility blues”. In: EMBO Journal 34.22 (Nov.
2015), pp. 2721–2724. doi: 10.15252/embj.201570090.

11344

[19] G. P. Quinn and M. J. Keough. Experimental Design and Data Analysis
for Biologists. Cambridge University Press, 2002. url: https://www.
book2look.com/book/ge5gzy6TUg.

[20] S. Samuel and D. Mietchen. “Computational reproducibility of Jupyter
notebooks from biomedical publications”. In: GigaScience 13 (Jan. 2024),
giad113. doi: 10.1093/gigascience/giad113.

[21] A. M. Sapienza. Managing Scientists: Leadership Strategies in Scientific
Research. 1st. Wiley, 2004. doi: 10.1002/047166359X.

[22] A. Trisovic et al. “A large-scale study on research code quality and exe-
cution”. In: Scientific Data 9.1 (Feb. 2022), p. 60. doi: 10.1038/s41597-
022-01143-6.

[23] M. Wang and Q. Long. “Addressing Common Misuses and Pitfalls of P
values in Biomedical Research”. In: Cancer Research 82.15 (Aug. 2022),
pp. 2674–2677. doi: 10.1158/0008-5472.CAN-21-2978.

[24] M. D. Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific Data 3.1 (Dec. 2016), p. 160018.
doi: 10.1038/sdata.2016.18.

[25] M. D. Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific Data 3.1 (Mar. 2016), p. 160018.
doi: 10.1038/sdata.2016.18.

[26] J.-B. Poline Y.-M. Kim and G. Dumas. “Experimenting with repro-
ducibility: a case study of robustness in bioinformatics”. In: GigaScience
7.7 (July 2018). doi: 10.1093/gigascience/giy077.

[27] M. Zaringhalam and L. Federer. Data and Code for Reproducible Re-
search: Lessons Learned from the NLM Reproducibility Workshop. May
2020. doi: 10.5281/zenodo.3818329.

[28] Zhuangzi and B. Watson. Basic Writings. Translations from the Asian
Classics. New York: Columbia University Press, 1996.

12 345

Figure 1: Student Learning Objectives.

13346

Reviewers — 2024 CCSC Eastern Conference

Prof. Alvin ChrisFurman University, Greenville, SC, United States
Dr. Anewalt Karen University of Mary Washington, Fredericksburg, VA,
United States
Dr. Bany Muhammad Nooh Frostburg State University, Frostburg, MD,
United States
Dr. Barland Ian Radford University, Blacksburg, VA, United States
Prof. Carter Karla Bellevue University, Bellevue, NE, United States
Dr. Childs DawnMarymount University, Cypress, CA, United States
Dr. Conrad Sue Marymount University, Fairfax, VA, United States
Dr. D’Antonio Lawrence . . Ramapo College, Dobbs Ferry, NY, United States
Dr. Dimitoglou George Hood College, Frederick, MD, United States
Dr. DiTursi Dan . . Rensselaer Polytechnic Institute, Troy, NY, United States
Prof. Dougherty John Haverford College, Haverford, PA, United States
Dr. Finlayson Ian . The University of Mary Washington, Fredericksburg, VA,
United States
Dr. Flinn Michael .Frostburg State University, Frostburg, MD, United States
Dr. Freedman Reva . .Northern Illinois University, DeKalb, IL, United States
Dr. Grinberg GrigoriyMontgomery College, Gaithersburg, MD, United
States
Dr. Gupta Pranshu DeSales University, Center Valley, PA, United States
Dr. Highley Timothy . . . La Salle University, Philadelphia, PA, United States
Dr. Hovemeyer David Johns Hopkins University, Baltimore, MD, United
States
Dr. Lamprecht Ruth Mount St. Mary’s University, Emmitsburg, MD, United
States
Dr. Lee Ingyu . Troy University, Troy, AL, United States
Dr. Li Jiang .Hood College, Frederick, MD, United States
Prof. Lindoo EdwardCCSC Treasurer, Stuart, FL, United States
Prof. Lopez Christian Lafayette College, Easton, PA, United States
Dr. McCloskey Robert W University of Scranton, Scranton, PA, United
States
Dr. McManus John . . .Randolph-Macon College, Ashland, VA, United States
Dr. Ngo Linh . . West Chester University of Pennsylvania, West Chester, PA,
United States
Dr. Nuakoh Emmanuel Borkor North Carolina AT State University,
Shrewsbury, MA, United States
Dr. Nuangpookka Pipop . . Bay Atlantic University, Washington, DC, United
States

347

Dr. Poger SofyaFelician University, Woodland Park, NJ, United States
Ms. Ravishankar Veena University of Mary Washington, Fredericksburg, VA,
United States
Mr. Sanders Patrick SUNY University at Buffalo, Buffalo, NY, United States
Dr. Senbel Samah Ahmed Sacred Heart University, Fairfield, CT, United
States
Dr. Stange Melissa Shenandoah University, Stephens City, VA, United States
Mr. Stedman Jacob Daniel Marymount University / Advanced Circuits,
Osseo, MN, United States
Prof. Teresco James D. Siena College, Loudonville, NY, United States
Dr. Tu Junyi Salisbury University, Salisbury, MD, United States
Dr. Webb Alla Montgomery College, Gaithersburg, MD, United States
Prof. Wonnacott David Glenn Haverford College, Haverford, PA, United
States
Prof. Wright John Juniata College, Huntingdon, PA, United States
Ms. Xu Wenjuan . Frostburg State University, Frostburg, MD, United States

348

