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CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

Code Grade
GitHub
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Welcome to the 2024 CCSC Mid West Conference
Welcome to the 31st Annual Midwest Conference at the Robert C. Pew

Campus of Grand Valley State University in Grand Rapids, Michigan. This
year’s conference brings educators, researchers, students, industry profession-
als, and industry partners from across the region to explore the latest advance-
ments and share insights in computer science. Sessions include a pre-conference
workshop, keynote and dinner speakers, refereed papers, panels, tutorials, nifty
assignments, works in progress, vendor talks, student showcase, and a student
programming contest. We accepted 9 of 13 excellent paper submissions, a 69%
acceptance rate. These selected papers represent cutting-edge research and in-
novative practices across various topics. We look forward to the pre-conference
workshop by Michael Rogers and Bill Sevier, covering the basics of Git and
GitHub, including using Git for collaborative projects and GitHub for man-
aging assignments and providing feedback. We are excited to feature David
Clark, author of Grading for Growth, as our keynote speaker, who will intro-
duce Alternative Grading and cover what works and what does not. We are
also honored to have Jonathan "J" Tower of Trailhead Technology Partners
as our banquet speaker, sharing insights into the important trends happening
in the software industry today. We extend our heartfelt thanks to everyone
who made this conference possible: the conference committee, paper review-
ers, speakers, presenters, and especially our site chairs, Zach Kurmas and Vi-
jay Bhuse, and Grand Valley State University for their exceptional support in
hosting this year’s event. We also thank our National Partners ACM2Y, ACM
CCECC, Code Grade, GitHub, and Rephactor for their continued support of
our activities and UPE for student prizes. We have a full schedule of events
and encourage you to make the most of the many opportunities for learning,
collaboration, and professional growth. Your participation is critical to the
success of this conference, and we hope you find the sessions engaging and
inspiring. Thank you for joining us, and we look forward to a productive and
enjoyable conference!

Jeff Lehman
Huntington University

2024 Midwest Conference Chair
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Raising the bar:
What works, what doesn’t, and what to do

next with alternative grading ∗

Keynote

David Clark
Department of Mathematics

Grand Valley State University
Allendale, MI 49504

clarkdav@gvsu.edu

Points, partial credit, and weighted averages are so traditional that it’s hard
to imagine a world without them. But there are some big questions about
traditional grading systems: Do they show what a student has (or hasn’t)
learned? Could students “get by” on partial credit – or fail a class due to
the formulas we use, even though they’ve actually learned everything we could
ask? What does a mashed-up average of points and partial credit even mean?
The good news is that there are better options: approaches to grading that
are grounded in how humans actually learn and better represent that learning,
all while upholding high standards. In this keynote, you’ll learn the basics of
alternative grading, see what works (and what doesn’t), identify practical ways
to fit new grading practices into your classes, and find resources to help you
build a grading system that actively supports learning.

∗Copyright is held by the author/owner.
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The Future Now: The Top Trends In Software
Development ∗

Keynote

Jonathan "J." Tower
Trailhead Technology Partners

Jenison, MI 49428
jonathantower@gmail.com

To prepare students for careers in a rapidly changing industry, it is crucial
for computer science instructors to stay updated on the latest trends and inno-
vations in the field. Jonathan "J." Tower, a sought-after industry expert, will
provide insights into some of the most important trends happening in the soft-
ware industry today, from AI-driven development and cloud-native architec-
tures to the rise of low-code platforms. As a ten-time recipient of the Microsoft
Most Valuable Professional (MVP) award and the founder of Trailhead Tech-
nology Partners, J. has deep industry experience and an understanding of the
evolving landscape of software development in business, His thought leadership
in the software world uniquely positions him to guide educators through the
latest software trends the same way he regularly does for professionals. Be part
of the conversation on the forefront of software development and equip yourself
with the knowledge to stay ahead of the latest trends in our ever-changing field.

∗Copyright is held by the author/owner.
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Low Code App Development∗

Conference Workshop

Meg Fryling
Computer Science and Information Systems

Siena College, Loudonville, NY 12211
mfryling@siena.edu

The average cost of a software development project ranges from $434,000
for a small company to $2,322,000 for a large company[1]. In addition to
high costs, 31.1% of projects are cancelled before completion, 52.7% will cost
89% more than their original estimates, and only 16.2% are completed on-
time and on-budget[1]. Furthermore, recruiting software engineers has become
increasingly difficult as demand is high and supply is low[3]. In a fast-paced
world where organizations are struggling to compete, companies are looking for
quicker and cheaper ways to meet their software needs. In response, no-code
and low-code development platforms (LCDPs) have emerged with the promise
that organizations can hire business professionals with no coding experience to
build applications[2].

This workshop will provide an introduction to the Mendix App Platform,
which uses a visual Model-Driven Development (MDD) approach to rapidly de-
velop applications with little-to-no programming experience. Participants will
learn how to build responsive browser, tablet, and mobile applications starting
with back-end domain modeling. They will also learn about front-end devel-
opment, automating business processes with microflows, and ensuring data is
valid and consistent. The instructor will provide a brief overview of the plat-
form followed by hands-on activities and lessons learned from the classroom.

References

[1] The Standish Group. Chaos report, project smart, 2014.

[2] Alison DeNisco Rayome. Low-code platforms: A cheat sheet. TechRepublic, 2018.

∗Copyright is held by the author/owner.
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[3] Craig Torres. Demand for programmers hits full boil as U.S. job market simmers.
Bloomberg, 2018.
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Tool Support for Teaching Deductive Databases∗

Work in Progress

Ramachandra B. Abhyankar
Computer Science Department

Indiana State University
Terre Haute, IN 47809
RB.Abhyankar@indstate.edu

In recent years, new applications have been found for deductive database
systems [1]. Consequently, there has been a revival of interest in deductive
databases. Several articles and books have appeared in recent years to aug-
ment older articles and books . The terms “Deductive Databases”, “Datalog and
its Extensions”, “Logic Databases”, “Knowledge Bases” , and “Answer Set Pro-
gramming” are often used interchangeably. A related topic is “Prolog.” While
the theory of deductive databases was rapidly developed and disseminated
through books and articles, implementations of deductive database systems re-
mained mostly experimental. These experimental systems were often available
on only one platform, and were difficult to acquire and install. “Modern” Data
log Engines [2] have not seen widespread use either. The difficulty of acquiring
a robust deductive database system for use in teaching was acknowledged by
the creators of DES (Datalog Educational System). The use of the DES system
itself required knowledge of Prolog. After looking at several candidates, it ap-
pears that at the current time, perhaps the most promising option is the DLV
system. This system is available on all major platforms and is easy to install.
It comes with a good tutorial and good documentation. The system is free
for educational use. This work in progress presentation will review older and
newer experimental Datalog systems and report on the use of DLV in teaching
Deductive Database concepts. In future work, it would be interesting to com-
pare the capabilities of the DLV system with the successful Answer Set Solver
Clingo.

∗Copyright is held by the author/owner.
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References

[1] Sergio Greco and Cristian Molinaro. Datalog and Logic Databases. Springer-
Verlag, 2015.

[2] Bas Ketsman and Paraschos Koutris. Modern Datalog Engines. Now Publishers,
2022.
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Enhancing Student Engagement and
Interdisciplinary Research with IoT and Drone

Frameworks∗

Work in Progress

Saleh M. Alnaeli1, Ahmed. A. Elmagrous2

1Math, Stat, Computer Science Department
University of Wisconsin-Stout, Menomonie, WI 54751

{alnaelis, elmagrousa}@uwstout.edu

Presented is a framework that integrates a sequence of hands-on projects
using IoT and Scientific drones to increase students’ motivation in computer
science and engineering and is aimed at supporting interdisciplinary research
in colleges. This framework provides a practical approach for engaging stu-
dents in application development and real-world problem-solving. The initial
Key projects of the proposed framework include: 1) Custom-Built Drone: An
educational drone designed to address technical challenges and offer solutions.
It is equipped to carry a cluster of handheld computers, microcontrollers, and
multiple programmable modules programmed in languages typically taught in
computer science courses. 2) Smart Weather Stations: Custom-built stations
with different sensors. These stations collect real-time data and transmit it to
the cloud for processing via cellular networks, primarily for smart farming and
agriculture. The project will expose students to various technologies and ideas
enhance their problem-solving skills and promote interdisciplinary research.
3) IoT-Based Robotic Arm: A robotic arm designed for diverse applications,
including laboratory use, drones, and first-aid scenarios. It features Arduino
integration and a long-distance remote-control system.

The framework is adaptable and flexible, allowing for expansion as new
projects are developed. This educational project offers students opportunities
to build communication, problem-solving, and technical skills valuable in both
academia and industry. It can also be applied to areas like precision agriculture,
freshwater studies, and atmospheric pollution research.

∗Copyright is held by the author/owner.
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Automated Threat Detection to Support the
Process of Security Requirements Elicitation∗

Work in Progress

Sugandha Malviya
Department of Computer Science

Ball State University, Muncie, IN 47396
sugandha.malviya@bsu.edu

Security requirements are essential for identifying and mitigating potential
threats to the system being developed. However, eliciting these requirements
can be particularly challenging as the threat landscape constantly changes,
with new vulnerabilities and attack vectors emerging regularly. This dynamic
nature of threats makes it difficult to define a set of comprehensive security
requirements early in the system development lifecycle.

Unlike most existing threat detection tools that generally rely on prede-
fined rules and patterns or use conventional machine learning algorithms, my
proposed solution utilizes advanced Natural Language Processing (NLP) tech-
niques. These techniques enable the processing of security documents in a
deeply contextualized manner, thereby enhancing the threat detection process.

The complete process involves several different steps, including gathering
a diverse set of security-related documents, such as incident reports, previous
threat analyses, etc., for training and validation purposes, cleaning and prepro-
cessing the dataset, and developing and testing the NLP model. However, a
pivotal aspect of this process is the construction of a baseline model that uses
a hybrid approach, integrating elements of both Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs) to extract threats from
textual security documents. The synergistic use of CNNs and RNNs allows the
model to efficiently extract relevant features and to understand their contex-
tual use. For instance, the model can discern the significance of a term like,
“injection” within various contexts, distinguishing between its use in a medical
document and identifying it as a security threat in the form of SQL injection

∗Copyright is held by the author/owner.
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in technical documents. This nuanced understanding is crucial for accurate
threat detection and analysis in security documents.

Subsequently, the identified threat can be analyzed to generate misuse cases
and security requirements and support the requirements elicitation process.
This innovative approach aims to adapt dynamically to the evolving threat
landscape and automatically generate relevant security threats.
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A Malleable Framework for Efficient Learning∗

Work in Progress

Pradip Peter Dey, Mohammad Amin
Bhaskar Raj Sinha, Hassan Badkoobehi
School of Technology and Engineering

National University
9388 Lightwave Ave., San Diego, CA 92123

{pdey, mamin, bsinha, hbadkoob}@nu.edu

The pace of change is accelerating, and the ability to adapt and learn new
things quickly is becoming essential. The proposed malleable learning frame-
work is an approach designed to address the challenges of learning quickly.
Artificial Intelligence, automation and so forth may eliminate many traditional
jobs and create many new jobs that require new skills and knowledge. Employ-
ers are facing challenges in finding candidates with adequate skill sets. There
is a gap between vacant positions requiring new skills and available candidates
to fill them. However, it may be difficult for some learners to acquire these
skills easily because traditional skill acquisition environments available in col-
leges and universities are not adequate for learners who want to rapidly acquire
the skills without waiting for semesters, schedules, and registration processes.
A wide variety of alternatives should be available to learners. Cost-effective
learning strategies, approaches, environments, resources, and tools should be
available to learners in cooperation with other stakeholders. The highly flex-
ible framework proposed here combines all essential features in an innovative
way to serve the learners for acquiring appropriate skills for the current and
emerging job markets. Critical thinking, problem solving, and a mindset to
continuously upskill and re-skill is essential. Using the multifaceted role of AI,
we plan to emphasize AI enriched just-in-time learning in the malleable frame-
work.

∗Copyright is held by the authors/owners
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The challenges of malleable framework design are related to the rapid develop-
ment of educational technology, the diversification of student populations, the
growing expectations related to the skills needed in current and future work-
ing life [1], and the controversy about ethical use of AI in education. With
adequate research and preparation of resources and tools, learning environ-
ments may bring help and cooperation from stakeholders to serve the learners.
The malleable leaning framework is based on the assertion that effective learn-
ing happens when it is adaptable and responsive to the needs of the learner
combined with the demands of the industry. Unlike rigid academic program
structures that follow fixed patterns and schedules, this framework allows for
a more adaptable and tailored educational experience. This framework rep-
resents an innovative approach to education, emphasizing flexibility and per-
sonalization in the learning space. Additional learning strategies also need
to be considered for workforce development in order to eliminate the gap be-
tween the requirements of vacant positions and available candidates. Although
widespread implementation may still be challenging, the potential benefits of
preparing learners for a rapidly changing future may make the effort worth
considering. Including these ideas in academia, education may become a more
effective instrument for lifelong success.

References

[1] Teemu Valtonen and Ulla Leppanen et al. “Learning environments pre-
ferred by university students: a shift toward informal and flexible learning
environments”. In: Learning Environments Research 24 (2021), pp. 371–
388.
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Artificial Intelligence in the HigherEd
Classroom – Boon or Bane?∗

Work in Progress

Anuradha Rangarajan1, Calvin Nobles2

Rangarajan Parthasarathy3, Maurice Dawson1

1Illinois Institute of Technology, Chicago IL 60616
{arangarajan, mdawson2@iit.edu}

2University of Maryland Global Campus, Adelphi MD 20783
calvin.nobles@umgc.edu

3University of Wisconsin-Green Bay, WI 54311
parthas@uwgb.edu

The effective and efficient use of Artificial Intelligence (AI) technology is
fast becoming a skill that makes students competitive in the job market and be-
yond. However, successfully incorporating AI in the classroom presents unique
challenges that requires instructors and students to adopt, ethically use, and
evaluate AI-infused pedagogy. Research literature points to the positive role
of AI tools in improved appropriability and evocativeness, which lead to better
learning outcomes through greater personalization of information gathering
and better personal reflection processes. AI-driven chatbots could support
learning styles of diverse students and provide an opportunity for slow learn-
ers to perform well, in contrast to a traditional classroom where all students
may be required to keep pace with instructor’s delivery. AI-powered Intelligent
Tutoring System (ITS) can assist both students and instructors. Step-by-step
feedback and suggestions for improvement could help the student’s learning in
an interactive manner. Instructors could also use AI supported ITS for simpli-
fying and automating grading, thereby providing quicker and more meaningful
feedback to students regardless of class size. Notwithstanding the benefits, it is
noteworthy to highlight AI’s downsides in the classroom. It is plausible that the
availability of AI tools causes complacency in students who may skip in-person
lectures and rely on remote learning using AI alone. AI based tools could be

∗Copyright is held by the author/owner.
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misused by students for completing assignments, leading to questions concern-
ing academic ethics and fairness. Universities and instructors should reflect on
how to modify assessments to objectively measure and quantify performance
outcomes in an AI world.

HigherEd is navigating an unchartered territory which needs to be explored
further, before a viewpoint can be formed on whether AI in the classroom is
a boon or a bane or perhaps a little of both. This work-in-progress surveys
broad use cases and challenges pertaining to the classroom adoption of AI.
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The Changing Face of Computer Science
Education – What Lies Behind and What Lies

Ahead?∗

Work in Progress

Anuradha Rangarajan1, Calvin Nobles2

Rangarajan Parthasarathy3, Maurice Dawson1

1Illinois Institute of Technology, Chicago IL 60616
{arangarajan, mdawson2@iit.edu}

2University of Maryland Global Campus, Adelphi MD 20783
calvin.nobles@umgc.edu

3University of Wisconsin-Green Bay, WI 54311
parthas@uwgb.edu

The domain of computer science (CS) education has seen many inclusions,
exclusions, and transformations over the past decades. CS education has come
a long way from its initial goal of offering training in core technology devel-
opment including software programming in the commonly used software and
hardware development to build better and faster computers. There was a point
in time when CS education involved perspectives of computational learning,
commensurate with the thinking that software and hardware could be used
to solve problems in multiple knowledge domains (such as in library science).
When faced with low enrollment and interest of women and minorities in CS
education, there was an impetus on encouraging diversity in CS education,
leading to diversity-inclusive CS instruction.

In more recent times, CS education has encompassed social media related
computing, cloud computing, mobile computing, and innovative applications
such as digital marketing. During this decade there has also been an increased
focus on Information Technology (IT) education, a domain related to CS, whose
scope includes software and hardware used for processing and securely trans-
mitting information. The proliferation of computer technology has given birth
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to cybercrimes which, in-turn, has brought about the ever-increasing demand
for Information Security and Cybersecurity education. A focus on datadriven
decision making in industry has made imp between CS, business, and engineer-
ing departments in academia, to implement data science programs emphasizing
business decision making skills and data analysis. Each of these milestones has
presented both challenges and opportunities for CS education to develop into
what it is today. The pace of technology change is accelerating the demand for a
ubiquitous CS pedagogy, which calls for disruptive innovation made stronger by
academia-industry collaboration. Our work-in-progress will explore the chang-
ing face of CS education, trace its evolution, and discuss what lies behind and
what may lie ahead.
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Course in a Box - AI∗

Conference Tutorial

Ramachandra B. Abhyankar
Computer Science Department & Engineering

Indiana State University
Terre Haute, IN 47809
RB.Abhyankar@indstate.edu

1 Which AI ? AI Paradigms, Traditional, New, AML or
Commonsense AI ?

A generalist being called upon to teach a course on “AI” is certainly possible
– because of the interest among students in an “AI” class (with all the buzz
surrounding “AI”). This can happen in situations involving retirement of ex-
perienced or specialist faculty, COVD-related disruptions at universities, etc.
Often the starting point for a generalist faculty is the “catalog description” of
a course that has been “on the books” in the university catalog. An example
of such a course description is given below:

"CSxxx: Artificial Intelligence Concepts and applications, including ar-
tificial intelligence programming languages, history, present and future de-
velopment and research, expert systems, natural language processing, intelli-
gent machines/robots, and vision. Development of artificial intelligence course
project."

The above describes a “traditional” AI course, that does not address topics
in the “the New AI”. “The New AI “ topics, listed in [1] are: Neural Networks,
Genetic Algorithms and Evolutionary Computing, Fuzzy Systems, Rough Sets,
Chaos.

Books on AI emphasizing “Intelligent Systems” such as [2] , cover the follow-
ing topics: Introduction to Knowledge-Based Intelligent Systems, Rule-Based
Expert Systems, Uncertainty Management in Expert Systems, Fuzzy Expert
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Systems, Frame-Based Expert Systems, Artificial Neural Networks, Evolu-
tionary Computation, Hybrid Intelligent Systems, Knowledge Engineering and
Data Mining.

Another division of topics, made in [3] is between Adaptive Machine Learn-
ing (AML) and Good-Old-Fashioned-AI (GOFAI), which emphasizes Common-
sense Reasoning. In recent times, AML has had much success in diverse areas:
medicine, finance, defense, and the list goes on. In [3] Levesque cites examples
where AML does not help, and Commonsense Reasoning is needed. Com-
monsense Reasoning [18 ] , unlike classical logic, is non-monotonic. Books
on Knowledge Representation and Reasoning [19] , an important sub-area of
Artificial Intelligence, discuss non-monotonic logics. The literature on non-
monotonic logics is vast.

Then there is also the Logic-Based Approach to AI, that emphasizes appli-
cations of Logic in Artificial Intelligence as described in [4] and other books.
Paradigms of Artificial Intelligence are discussed in [15].

It appears from the above that “AI” is a very wide field and no “AI class”
will be able to cover all the topics. Consequently, an “AI class” will either have
to be a “survey” of all topics, or will have to focus on a small subset of topics.

2 Student Background

The level of preparation of students in various topics will definitely affect the
kind of course that would be right. An important issue in the design of an “AI
class” is the programming background that students taking the class will have.
If students have knowledge of one or more “AI languages” such as Prolog or
Lisp, class time will not have to be spent on teaching these languages. In the
same way, the background of the students in areas such as logic, mathematics
and statistics, will affect what topics can be properly covered in the class; else
time must be spent in class, covering these topics. .

3 Textbooks

Textbooks covering a fairly large number of topics are [5] and [7]. A “traditional
AI “ textbook is [13]. A newer significant textbook is [14]. AI programming
techniques in Prolog and LISP are treated in [16] and [17].

4 Projects

Projects involving Constraint Problem Solving, Natural Language Understand-
ing, Planning, Game Playing, and Deductive, Inductive and Abductive Rea-
soning can be assigned based on [6]. An Expert System project can be assigned
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based on material in [8], [9]. Projects using Theorem Proving Programs can
be given based on [10],[11] ,[12] .

5 Syllabus

A syllabus can be prepared after the topics to be covered in the course have
been determined.
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Abstract

In this special session, the knowledge model and competency frame-
work of CS2023 will be presented. The steps for using them to design
computer science courses and curricula will be discussed.

1 Overview

The Association for Computing Machinery (ACM) has been publishing cur-
ricular guidelines for computer science since 1968 [6, 5]. Since 1991, it has
been collaborating with IEEE-Computer Society (IEEE-CS) to produce these
decennial reports 1991 [2, 3, 4, 1]. For the latest curricular report on computer
science (CS2023), the Association for the Advancement of Artificial Intelligence
(AAAI) also joined the effort, given the increased role of artificial intelligence
in undergraduate computer science. The three professional bodies together
set up a task force of educators and practitioners from around the world that
worked for three years to produce CS2023 (csed.acm.org). In this special ses-
sion, the CS2023 report will be presented and discussed. The CS2023 task
force undertook the following activities: • Revision of the knowledge model
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of the curriculum last published in 2013 [1]. The knowledge model consists
of 17 knowledge areas. Each knowledge area consists of knowledge units that
are groups of related topics and learning outcomes. • Design of a competency
framework that can be used by adopters to build a competency model of the
curriculum. This includes a framework for systematically identifying tasks, a
format for competency specification, and an algorithm to use the competency
framework to build a customized competency model. • Curricular practice
articles written by experts on social issues, professional practices, pedagogical
concerns, and programmatic considerations. The goal of the articles is to sum-
marize the state of the art, inform educators, and attempt to advance computer
science education practices.

2 Acknowledgements

Partial support for this work was provided by the National Science Foundation
under Award DUE-2231333.
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with ChatGPT! – How I use ChatGPT in my

advanced python scripting class∗
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Abstract

In recent years, the integration of artificial intelligence (AI) technolo-
gies into education has emerged as a promising approach to enhance
student learning experiences and outcomes. This tutorial aims to ex-
plore how ChatGPT [1] can be effectively utilized to teach advanced
Python scripting at the college level. Through interactive demonstra-
tions, discussions, case study and hands-on activities, participants will
gain insights into the potential applications of ChatGPT in the classroom
and learn practical strategies for integrating this cutting-edge technology
into their curriculum.

Description

This tutorial will provide college educators with practical guidance on incor-
porating ChatGPT into their advanced Python scripting courses. The tutorial
will begin with an overview of ChatGPT and its capabilities, followed by a
discussion of the challenges faced in teaching advanced Python scripting top-
ics using traditional methods. Through live demonstrations and interactive
exercises, participants will learn how ChatGPT can be used to generate text,
assist with code completion, and provide problem-solving assistance in Python
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scripting. The tutorial will also address best practices for utilizing ChatGPT in
teaching, including strategies for maximizing student engagement and learning
outcomes. As a case study, the presenter will share his own experience teaching
advanced Python scripting with ChatGPT, highlighting successes, challenges,
and lessons learned. Participants will have the opportunity to engage in dis-
cussions, ask questions, and share their own experiences and insights with
integrating AI technologies into the classroom.

Intended Audience

This tutorial is designed for college-level educators, particularly those teaching
advanced Python scripting courses or interested in incorporating AI technolo-
gies into their curriculum. Participants should have a basic understanding of
Python programming and an interest in exploring innovative teaching method-
ologies.

Tutorial Structure

• Introduction to ChatGPT.

• Challenges in Teaching Advanced Python Scripting.

• Integrating ChatGPT into Python Education.

• Case Study: Experience Teaching Advanced Python Scripting with Chat-
GPT

• Live Demonstration: Using ChatGPT in Python Scripting

• Best Practices for Utilizing ChatGPT in Teaching

• Conclusion

Biography

Pak Kwan currently is working as an Enterprise Architect at GE Aerospace and
adjunct faculty at Northern Kentucky University, previously worked for Fifth
Third Bank and IBM. Current research Interests: Big Data, Data Analytics,
Parallel Database, Machine learning, Large Display and Data visualization,
Learning theories.
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Grading According to Specifications:
A Tutorial and Discussion∗

Conference Tutorial
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Department of Computer Science
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dllargent@bsu.edu

Abstract
To provide more equity, and help students learn and take more owner-

ship of their learning, we will explore how you might utilize specifications
(specs) grading in your courses. We will explore the basic tenets of specs
grading, changes I made in my courses, my experiences doing so, and
explore how your courses might benefit. Most instructors can implement
specs grading with relatively little effort.

My experience is that learners sometimes have an insincere interest
in some of their courses, and do not put forth the effort they could and
should. They also tend to beg for missed points and depend on doing
well on one assignment to make up for another. Sometimes, they simply
don’t understand what you want them to do. There are also equity issues
with points-based grading. Specifications grading provides an answer to
these issues.

Nilson discussed fifteen criteria for evaluating grading systems, in-
cluding upholding high academic standards, reflecting learning outcomes,
motivating learners to learn and excel, discouraging cheating, and making
learners feel responsible for their grades, to list a few [1]. She claims Spec-
ifications Grading better satisfies those criteria, as compared to point-
based grading. Specs grading’s basic tenets are to provide a very clear,
detailed description of what is expected of the learner (specifications),
and then evaluate their work as complete/incomplete against those spec-
ifications. Providing clear expectations can make a significant difference
in a learner’s ability to submit good work.
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This complete/incomplete approach is more authentic to what learn-
ers will experience outside of academia. Employers expect a complete
task, and do not think in terms of awarding (partial) points for work.

Instructional Context

I have applied specifications grading to many courses which included some or
all of these characteristics in a variety of combinations:

• In-class discussions and pair/small group activities
• Group presentations
• Writing assignments
• Exams
• Final project
• First and advanced programming courses
• Programming projects competed individually, and in pairs/small groups
• Major and non-major courses
• First year to seniors

I started utilizing specs grading in 2017. Nilson claimed that it can restore
rigor, motivate learners, and save faculty time [1]. I felt if even one of those
claims were true, the approach was worth exploring further. I tried it in one
course and now use it in all courses I teach.

Historically, I assigned points to everything learners did for a course, and
then determined their course grade based on the percentage of points they
earned. A learner could do poorly on some assignments, and great on other
assignments, to offset the lack of points on the poor assignment. This generated
an "average course grade," which did not necessarily reflect what the learner
accomplished or at what level they learned course material. Learners asked for
partial credit, and I gave it when evaluating their work.

To implement specs grading, I converted my assessments to complete/in-
complete—they met the specifications, or they did not—and a few to tiered
specifications translating to a letter grade. I provided limited "oops bits" to
resubmit work. I determined the course grade based on how many of each
assessment category a learner completed.

Tutorial learning outcomes

After participating in this tutorial, learners will be able to...

• Describe specifications grading’s basic tenets
• Identify what others have tried that worked (or did not)
• Evaluate and incorporate specifications grading into their courses
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Analyzing the Contents of AI Benchmarks
using Python∗

Conference Tutorial
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University of Cincinnati
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nicholdw@ucmail.uc.edu

Generative AI models are often evaluated through the use of benchmarks.
These benchmarks consist of thousands of question/answer challenges across a
wide variety of topics and sources. Some benchmarks are derived from Internet
sources such as WikiHow.com. Some are composed by researchers and some
are generated by AI. In this tutorial, we will make a deep dive into several
popular benchmark datasets to learn more about contents and structure. We
will create Python projects to analyze reading level, sentence structure, word
frequency, and other metadata. The author’s Materials can be found here:
https://github.com/nicomp42/CCSCMW2024

Biography

Bill Nicholson is an Assistant Professor in the Information Systems program
at the Lindner College of Business, University of Cincinnati. His research
spans multiple areas, including databases, software engineering, programming
education, and computational ontologies.
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Stopping To Teach the Halting Problem∗

Nifty Assignment
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1Department of Mathematics,
Grand Valley State University, Allendale, MI 49401
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2Department of Mathematics,

Grand Valley State University, Allendale, MI 49401
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This nifty assignment is one that we have used for many years in our Theory
of Computation course. This course covers deterministic and non-deterministic
finite automata, push down automata, Turing machines, and explores the limits
of computation including decidability. The key to proving the halting problem
is to suppose the existence of a decider, H, that doesn’t loop when given any
pair (M,w) of a Turing machine as input and accepts if and only if M accepts
w. H is then used as a subroutine in a clever Turing machine, D, and using an
encoding of D as an input to D leads to a contradiction. Reasoning about these
hypothetical Turing machines and understanding the resulting contradiction
requires many levels of abstraction and is challenging for many of our students.
To help our students, prior to getting to the proof of the halting problem, we
use an assignment that has students code a finite automaton, F , that decides
a particular language. We believe that this assignment makes the central idea
of the proof of the halting problem more concrete and helps them understand
the proof.
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Checksums Everywhere∗

Nifty Assignment

James K. Huggins
Department of Computer Science

Kettering University
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Checksum validation is a real-world problem which can be adapted for use
early in CS1. The structure of the assignment is relatively simple: given a
number that contains a check digit, decompose the number into its individual
digits, then perform a simple calculation on those digits to verify that the
original number is valid.

Because a given checksum validation system is applied to a number with a
fixed number of digits (e.g. the 16 digits of a credit card number), students in
CS1 can write solutions that decompose the number into individually-stored
digits (e.g. variables named "digit1", "digit2", etc.), then perform the required
calculation on those individual digits.

For a numerical (integer) input, the only significant programming language
features required are basic mathematical operations and conditional state-
ments. If the input to the algorithm is encoded as a string, additional string
operations would also be required to deconstruct the string into individual
characters.

The wide variety of problem domains using checksums (e.g. credit card
numbers, bank routing numbers, ISBN numbers) allows instructors to adapt
the same basic assignment to different domains in successive terms, discour-
aging students from plagiarizing old submissions. Students can test their so-
lutions not only on data supplied by the instructor, but on publicly-available
data available to them in their own lives. External source materials are more
likely to provide solutions using advanced language features (e.g. loops, ar-
rays), providing defense against academic dishonesty.
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Department of Computer Science
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A classic example often used in early CS1 courses is temperature conversions
between Fahrenheit and Celsius scales. The conversion requires a small cal-
culation, and involves data values commonly used by US students. Of course,
since this example is commonly used in instruction, it’s unlikely to be usable
as an assignment for students to independently complete.

Conversion between other common units of measure (e.g. the imperial and
SI systems) is a natural extension of this exercise; of course, there are limited
examples in common use. However, there are examples of "uncommon" units of
measure that provide opportunities for simple exercises, often with a "nifty" fun
component. We discuss two such "uncommon" units of measure: the "smoot"
(a unit of length), and "furlongs per fortnight" (a unit of velocity).

A viable solution to these conversion problems requires relatively few fea-
tures from modern programming languages: input, output, and mathematical
operations. Depending on the environment, students may need help in imple-
menting certain operations (e.g. "rounding up" instead of "rounding down" or
"rounding to nearest").

There are a wide variety of "unusual" measurement systems available. This
allows instructors to adapt the same basic assignment to different domains
in successive terms, discouraging students from plagiarizing old submissions.
Additionally, most of the "unusual" measurement systems have a humorous
component to their definitions.
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AI as a Learning Tool for Introductory
Programming∗

Nift Assignment

James Roll
Department of Computer Science

University of Findlay
Findlay, OH 45840
rollj@findlay.edu

The goal of this assignment is to introduce introductory programming stu-
dents to using generative AI tools like Claude and ChatGPT to help them in
learning introductory programming. Students are shown how they can use AI
tools to help explain basic programming concepts, decode cryptic error mes-
sages, explain why a program isn’t working, and find syntax errors in and
suggest fixes. Students are also encouraged to avoid using AI Tools to fully
write programs at this point in their education, and introduced to the limi-
tations generative AI tools for programming. This version of the assignment
was written for an introductory Java programming course, but could easily be
adapted to other programming languages.
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In Support of Equitable Grading Practices:
A Tool to Auto Generate Multiple Versions of

Paper Quizzes∗

Nifty Assignment

Amy C. Larson
Department of Mathematics, Statistics, and Computer Science

Augsburg University, Minneapolis, MN 55454
larsonam@augsburg.edu

Weekly quizzes can provide both formative and summative assessment, and
potentially increase student success. As summative, it is helpful if students are
given multiple opportunities to pass, which is part of the philosophy of mastery
learning and equitable grading practices. Students show mastery of a particular
concept by answering all questions completely and correctly, and receive points
only when they have shown mastery of a topic. Multiple attempts is great for
students, but it can be challenging for the instructor. On one hand, this process
is made easier because the grading is all or nothing (I put a star at the top or
I circle what is incorrect and I do not deliberate over points). The gradebook
states full points or “not yet” in the spirit of a growth mindset. On the other
hand, it can be hard to write multiple versions of a quiz (on top of the multiple
versions written to get around students sharing answers).

To mitigate the burden of writing multiple versions of a quiz, I have created
a Latex framework to auto generate quiz versions with relative ease. As a
user, you create a Latex file for each question. In that file, you define the
preamble to the question, the postamble, and as many versions as needed for
that particular question. Finally, you create a setup file that lists the question
files and defines quiz versions based on the recombination of question versions.
The code is heavily commented for transparency and for ease of modification.

In addition to the framework, I have posted several example mastery learn-
ing quizzes (with multiple versions) for an introductory programming course
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in Python. This Latex code and example mastery learning quizzes are freely
available at https://github.com/AugsburgCS/quizwriter.
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Building Strong Programming Skills
with Weak Encryption

Nifty Assignment

Amy C. Larson
Department of Mathematics, Statistics, and Computer Science

Augsburg University, Minneapolis, MN 55454
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Password encryption is important for cybersecurity and it is relatable and
relevant for students. That familiarity was leveraged to create two cybersecu-
rity programming assignments – one in Python for Introduction to Program-
ming and one in Java for Data Structures. As part of the assignment, students
learn generally about encryption, securing passwords, and the vulnerability to
hacking, which provides an opportunity to discuss personal, professional, and
corporate responsibility with respect to information security. The assignment
in both courses mimics a login process whereby a user enters their username
and password, then those credentials are verified by hashing the password and
comparing it to the associated stored (hashed) password. The “hashing” follows
the spirit of encryption, but it is in no way usable for real password protection.
However, the hashing process has educational value in the programming skills
that students practice, in understanding number representation, and in gaining
familiarity with the terms and process of password protection.

In the introductory course, students start the assignment by completing a
worksheet to practice converting between decimal, binary, and hexadecimal,
which they use as part of the hashing. In both courses, for the programming,
they modify the user-entered password (a string) in a variety of ways as part of
the hashing, gaining experience with string manipulation, ASCII, Unicode, bit-
streams, conversions from binary to hex, and from hex to ASCII. User informa-
tion is stored in a file, giving students practice with file I/O and data structures.
Students store and retrieve data in both arrays and dictionaries, highlighting
the difference between linear search and direct access. In the Java version for
Data Structures, students use int[ ] arrays, as well as ArrayList, LinkedList,
and HashMap, which are some of the data structures they implement as part
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of the course. Also, the login process is done through a pop-up window using
Java graphics, therefore students learn a little about graphics and event-driven
programming. Students are given a week to complete the programming assign-
ment. In the Python course, it is assigned towards the end of the semester, and
in the Java course, it is the first assignment that introduces them to the topic.
All materials are available at https://github.com/AugsburgCS/cybersecurity.
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A Comparative Analysis of Student Progress:
Traditional Tools vs. Competency-Based

Education in CS 1310 Foundations of Computer
Science at Western Michigan University∗
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Kalamazoo, MI 49008-5466
wassnaa.al-mawee@wmich.edu

Abstract

This study investigates the efficacy of competency-based education
(CBE) compared to traditional assessment methods in promoting student
progress within the CS 1310 Foundations of Computer Science course,
which focuses on discrete mathematics, at Western Michigan University.
While traditional tools typically rely on standardized tests, grades, and
fixed timelines, CBE prioritizes skill mastery and individualized learning
pace. Through an analysis of student outcomes, this research demon-
strates that CBE yields excellent advancement for students in this spe-
cific course. The findings illuminate the effectiveness of CBE in support-
ing deeper learning and skill acquisition within the context of computer
science education at Western Michigan University.

1 Introduction

Education systems worldwide have long relied on traditional methods of as-
sessment to measure student progress and success. However, as the landscape
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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of education evolves, there is a growing recognition of the limitations of tra-
ditional tools in effectively gauging students’ true abilities and encouraging
holistic learning. In response to these challenges, competency-based educa-
tion has emerged as an innovative approach that prioritizes mastery of skills
and competencies over seat time and grades. This paper aims to compare the
efficacy of traditional assessment tools with competency-based education in
evaluating student progress within the same class over two semesters.

The CS 1310 Foundations of Computer Science course at Western Michigan
University provides an introduction to the theoretical underpinnings of com-
puter science. Spanning over 4 credit hours, this course explores fundamental
concepts such as finite automata, context-free grammars, sets, functions, rela-
tions, proof techniques, graphs and trees, sequences, counting, and probability.
Through rigorous study and application, students gain a deep understanding
of the theoretical foundations that underpin modern computing systems. The
course serves as a gateway to more advanced topics in computer science and
equips students with essential skills for success in the field.

However, a significant problem arises when using traditional assessment
tools. While students may pass the course, they often do so without demon-
strating mastery of specific foundational topics such as formal logic, proofs,
mathematical induction, and counting. This lack of mastery can restrict stu-
dents’ ability to apply these critical concepts in practical settings and may
ultimately limit their success in advanced coursework and professional endeav-
ors. Thus, there is a pressing need to explore alternative assessment methods,
such as competency-based education, to ensure that students not only pass the
course but also acquire the necessary skills and competencies for future success
in computer science.

In the following section, I will discuss relevant works on Competency-based
Education (CBE) in Computer Science courses and research contributions
aimed at addressing these concerns.

2 Literature Review

Research into educational methodologies has shown a growing interest in com-
petency based education (CBE) and its potential to transform traditional learn-
ing environments. A key focus has been on the flexibility and personalization
that CBE provides, allowing students to progress at their own pace by master-
ing specific skills and competencies [3]. This section discusses prior studies and
their findings in the context of CBE and traditional assessment methods in the
computing field. Several studies have explored the application of CBE in com-
puter science education, examining its impact on student learning, engagement,
and retention of knowledge. A study by Smith and Jones demonstrated that
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CBE in introductory computer science courses led to higher student satisfaction
and a deeper understanding of fundamental concepts compared to traditional
assessment methods [7]. This was attributed to the flexible learning paths and
emphasis on skill mastery inherent in CBE programs.

Similarly, Lee and Brown found that students in a CBE-based computer
science program were more likely to retain knowledge and apply it in real-world
scenarios [5]. The personalized approach in CBE, where students advance upon
demonstrating competence, was credited with encouraging critical thinking
and problem-solving skills. Additionally, a study by Davis and Nguyen noted
that CBE encouraged self-directed learning and improved student motivation
in advanced computer science courses, indicating that the approach’s benefits
extended beyond introductory levels [2].

A more recent study by Thomas and Mitchell examined the impact of CBE
on collaborative learning in computer science [8]. The researchers found that
CBE promoted teamwork and peer-to-peer learning, creating a more supportive
and cooperative classroom environment. This collaborative aspect of CBE has
been highlighted as a key advantage in modern education, especially in fields
like computer science, where teamwork is crucial.

Traditional assessment methods, while still prevalent in many educational
settings, have been criticized for their limitations. A study by Patel et al.
pointed out that traditional methods, which rely heavily on standardized test-
ing and fixed timelines, often fail to account for individual differences in learn-
ing styles and rates of progress [6]. This can lead to uneven grade distributions
and a lack of engagement among students who do not excel under conventional
assessment pressures.

Similarly, Johnson et al. found that traditional assessment in a computer
science context could create undue stress and hinder creativity [4]. The rigid
structure and emphasis on memorization were identified as potential draw-
backs, suggesting that traditional methods might not be the most effective for
promoting long-term retention and deeper learning.

Another study by Carter and Williams observed that traditional assess-
ment methods in computer science often resulted in a high rate of attrition,
as students who struggled with fixed timelines and standardized tests were
more likely to drop out [1]. This raised concerns about the inclusivity and
adaptability of traditional approaches in modern education.

The existing body of research highlights the advantages of CBE over tra-
ditional assessment methods in promoting student success and engagement.
These studies provide a foundation for our comparative analysis, which focuses
on the CS 1310 Foundations of Computer Science course at Western Michi-
gan University. By examining both approaches in a single course over two
semesters, this study adds to the growing evidence that CBE offers a more
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flexible and effective framework for student learning. Furthermore, this study
contributes uniquely by evaluating CBE within WMU’s specific educational
context and curriculum structure, thereby assessing how CBE principles trans-
late into practical benefits tailored to the institution’s goals.

The remainder of the paper is organized as follows: Section Three describes
the CS 1310 course. Section Four discusses the traditional tools used in this
study. Following this, Section Five outlines the components and measurements
of competency-based education. Section Six provides the comparative analysis,
while Section Seven reveals the study’s results. Finally, Section Eight concludes
the paper and suggests directions for future work.

3 CS 1310 Foundations of Computer Science

CS 1310 Foundations of Computer Science serves as a cornerstone course within
the curriculum at Western Michigan University, offering students an essential
introduction to the theoretical underpinnings of computer science. This course
spans four credit hours and covers a comprehensive array of fundamental con-
cepts that are integral to understanding modern computing systems.

Throughout CS 1310, students engage with a diverse range of topics, in-
cluding finite automata, context-free grammars, sets, functions, relations, proof
techniques, graphs and trees, sequences, counting, and probability. By exam-
ining these theoretical foundations, students not only develop a deeper under-
standing of the fundamental principles of computer science but also acquire
essential problem-solving and analytical skills that are invaluable in the field.

CS 1310 provides students with a solid theoretical framework upon which
they can build their knowledge and expertise in subsequent courses. Moreover,
the course lays the groundwork for advanced topics in computer science, paving
the way for students to explore specialized areas of interest and pursue diverse
career paths within the field.

In the context of this research, course delivery is facilitated through the uti-
lization of eLearning platforms, with D2L being the developer of the Brightspace
learning management system. Brightspace is a cloud-based software suite
widely employed by educational institutions and businesses to facilitate online
and blended classroom learning experiences. Competencies as learning out-
comes can be implemented using Brightspace and linked to exams and quizzes
questions. This section outlines the course design and structure employed for
the selected two semesters, each consisting of 16 weeks, within the realm of CS
1310 Foundations of Computer Science.
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3.1 Modular Course Structure

The course is structured into 16 weeks, with each week being designated as
a module on the eLearning platform. This modular approach allows for or-
ganized content delivery and facilitates focused learning objectives for each
instructional period.

3.2 Topics-Based Modules

Within the eLearning platform, each module is associated with a specific topic
relevant to the CS 1310 curriculum. These topics align with the overarching
learning objectives of the course and are carefully designed to provide students
with a comprehensive understanding of foundational concepts in computer sci-
ence.

3.3 Utilization of ZyBooks

ZyBooks serves as the primary educational resource for the course, offering
interactive learning materials and engaging activities tailored to the CS 1310
curriculum. Through ZyBooks, students have access to dynamic content, in-
cluding interactive exercises, animations, and self-assessment tools, enhancing
their learning experience and promoting active engagement with course mate-
rials.

3.4 Blended Learning Approach

The course design incorporates elements of both synchronous and asynchronous
learning, accommodating diverse learning preferences and schedules. While
asynchronous components allow students to engage with course materials at
their own pace, synchronous activities, such as live lectures or discussions,
provide opportunities for real-time interaction and collaborative learning ex-
periences.

3.5 Assessment and Feedback Mechanisms

Assessment strategies within the course are designed to evaluate students’ com-
prehension and mastery of course content effectively. Formative assessments,
such as quizzes and assignments, are integrated into each module to provide on-
going feedback and measure student progress. Additionally, summative assess-
ments, including exams, assess students’ overall understanding and proficiency
in key concepts.
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3.6 Course Outcomes Assessment

The creation of the EAMU vectors utilized for course assessment employs the
following grading metric universally:

• Excellent corresponds to grades ranging from (∞ , 90%].
• Adequate corresponds to grades ranging from (90%, 75%]
• Minimal corresponds to grades ranging from (75%, 60%]
• Unsatisfactory corresponds to grades ranging from (60%, 0%]

4 Traditional Assessment Tools

Traditional assessment tools typically involve standardized tests, quizzes, home-
work assignments, and final exams to evaluate student learning. Grades are
often assigned based on the percentage of correct answers or completion of
tasks within a specified time frame. This approach assumes that all students
learn at the same pace and achieve mastery of content within a predetermined
timeframe. However, it fails to account for individual differences in learning
styles, interests, and prior knowledge. Moreover, traditional assessments of-
ten prioritize memorization of facts over the development of critical thinking,
problem-solving, and practical skills.

In the context of the CS 1310 Foundations of Computer Science course,
these assessment components play a vital role in gauging students’ understand-
ing of key concepts and their ability to apply them effectively. Here’s how each
of these traditional assessment tools is utilized:

4.1 Assignments

Assignments are an essential component of the assessment process, providing
students with opportunities to demonstrate their comprehension of course ma-
terial and problem-solving skills. In CS 1310, students are typically assigned
11 assignments throughout the semester, each focusing on specific topics or
tasks relevant to the course curriculum. These assignments may include prob-
lem sets, or written analyses, allowing students to apply theoretical concepts
to real-world scenarios.

4.2 Participation Activities

Participation activities are designed to encourage active engagement and col-
laboration among students during class discussions or online forums. In CS
1310, students are expected to participate in 11 designated activities through-
out the semester, contributing their insights, asking questions, and sharing
their perspectives on course topics. Participation activities provide valuable
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opportunities for students to exchange ideas, clarify concepts, and deepen their
understanding of course material.

4.3 Quizzes

Quizzes serve as formative assessments to assess students’ ongoing progress
and comprehension of course material. In CS 1310, students may be admin-
istered 11 quizzes throughout the semester, each covering specific topics or
units of study. Quizzes may be conducted in-class and online via eLearning
and typically consist of multiple-choice questions and short answer questions.
Quizzes provide students with timely feedback on their learning progress and
help instructors identify areas where additional instruction or support may be
needed.

4.4 Exams

Exams are summative assessments designed to evaluate students’ overall un-
derstanding and mastery of course material. In CS 1310, students are typically
required to take three exams over the course of the semester, including two
midterm exams and a final exam. These exams assess students’ knowledge
of key concepts, problem-solving abilities, and critical thinking skills. Exams
may include a mix of multiple-choice questions, short answer questions, and
longer-form problems, allowing students to demonstrate their proficiency across
a range of topics covered in the course.

5 Competency-Based Education (CBE)

In contrast, competency-based education focuses on identifying specific skills
and competencies that students need to master to succeed in their chosen field.
Instead of progressing through a predefined curriculum at a set pace, students
advance upon demonstrating mastery of each competency. This approach al-
lows for personalized learning experiences tailored to individual student needs,
strengths, and interests. CBE provides timely feedback to support continu-
ous improvement. By focusing on mastery rather than grades, CBE promotes
deeper learning and long-term retention of skills.

In a competency-based education framework, ensuring that students demon-
strate a thorough understanding of each competency, referred to as a learning
outcome (LO), is paramount. To achieve this, it is essential to set pass thresh-
olds that reflect a minimum level of proficiency. In this section, I will outline
the adjusted pass thresholds for each LO in the CS 1310 Foundations of Com-
puter Science course, ensuring that students must attain at least 70% mastery
to pass as shown in Table 1.

756



• LO 1: Proof Techniques
– Demonstrate the ability to correctly identify the use of modus po-

nens and modus Tollens in given arguments.
– Demonstrate the ability to correctly prove theorems using direct

proof, indirect proof, proof by contrapositive, proof by contradic-
tion, proof by cases, proofs of equivalence, existence proofs, unique-
ness proofs, and proof by counterexample.

• LO 2: Mathematical Induction
– Apply mathematical induction to prove simple mathematical state-

ments and properties.
– Formulate and execute complete proofs using mathematical induc-

tion for more complex mathematical problems.
– Demonstrate the understanding of the base case, inductive hypoth-

esis, and inductive step in mathematical induction proofs.
• LO 3: Combinatorics and Counting Techniques

– Solve combinatorial problems involving permutations and combina-
tions.

– Calculate probabilities of various events using counting techniques.
• LO 4: Discrete Structures

– Identify and differentiate between different types of discrete struc-
tures such as sets, trees, and graphs.

– Apply discrete structures to model and solve real-world problems.
– Construct and manipulate various types of trees and graphs to an-

alyze data and relationships.
• LO 5: Mathematical Relations

– Define and interpret different types of mathematical relations, in-
cluding equivalence relations and partial orders.

– Apply relational concepts to compare and analyze elements in vari-
ous mathematical contexts.

– Demonstrate the ability to determine the properties and character-
istics of relations in given scenarios.

In the assessment of competencies within the CS 1310 Foundations of Com-
puter Science course, a decaying average approach is employed to provide a
detailed understanding of student proficiency over time. For example, stu-
dents’ performance on mathematical induction tasks is continuously assessed
throughout the semester, with greater emphasis placed on recent assessments.
By applying decaying weights to assessment scores, the measurement of math-
ematical induction competency becomes more sensitive to changes in student
performance over time, providing a comprehensive view of proficiency levels.
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Table 1: Adjusted Pass Thresholds for Competency-Based Assessment Com-
ponents

Learning Outcome Pass Threshold
LO 1 70%
LO 2 70%
LO 3 70%
LO 4 70%
LO 5 70%

6 Comparative Analysis

To compare the effectiveness of traditional assessment tools with competency-
based education, I conducted a study over two different semesters: Fall 2022
and Spring 2024, with class sizes of 25 and 21 students, respectively. In Fall
2022, a traditional curriculum was used, emphasizing time-based assessments
such as standardized tests, quizzes, and assignments. By contrast, in Spring
2024, the approach shifted to a competency-based education (CBE) approach,
allowing students to progress at their own pace, contingent on demonstrating
mastery of specified skills and competencies. To ensure a fair comparison,
similar sets of questions were used in exams, quizzes, and assignments across
both semesters.

Table 2 displays the EAMU vectors for each learning outcome in Fall 2022.
The EAMU was calculated by averaging the scores from various quizzes and
exam sections.

Table 2: EAMU Vectors for Learning Outcomes in Fall 2022
Learning Outcome E A M U

LO1 13 5 2 5
LO2 7 8 3 6
LO3 7 10 3 5

LO4-SETS 11 7 3 4
LO4-TREES 5 8 7 5

LO4-GRAPHS 14 5 3 3
LO5 14 5 3 3

In addition to the EAMU vectors, I also analyzed the grade distribution for
students in Fall 2022 to better understand the spread of academic performance
under traditional assessment methods. Figure 1 below shows the distribution
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of final grades for that semester, providing insight into the range of student
outcomes. This grade distribution chart helps visualize how traditional assess-
ments, such as standardized assignments, quizzes, and exams, influence the
overall grading pattern.

Figure 1: Grade Distribution for Fall 2022 (Traditional Assessment).

Similarly, I examined the EAMU vectors for each learning outcome during
Spring 2024, focusing on a competency-based education (CBE) approach. This
approach allowed students to progress at their own pace by demonstrating
mastery of specific skills and competencies. Table 3 shows the EAMU vectors
for each learning outcome in Spring 2024, calculated using a decaying average
of scores from quizzes and exam questions.

Table 3: EAMU Vectors for Learning Outcomes in Spring 2024
Learning Outcome E A M>70% U

LO1 20 0 1 1
LO2 9 0 11 1
LO3 20 1 0 0

LO4-SETS 21 0 0 0
LO4-TREES 21 0 0 0

LO4-GRAPHS 21 0 0 0
LO5 21 0 0 0

For Spring 2024, which used a competency-based education (CBE) ap-
proach, I examined the grade distribution to understand how this method

10 59



impacted student outcomes compared to traditional assessment. Figure 2 be-
low shows the grade distribution for Spring 2024, reflecting the CBE approach
that allows students to progress at their own pace by demonstrating mastery
of specific skills and competencies.

Figure 2: Grade Distribution for Spring 2024 (Competency-Based Education).

7 Results

The results of the study revealed significant differences in student mastery of
learning outcomes and grade distributions between the traditional assessment
group and the competency-based education (CBE) group. Students in the
traditional assessment group showed a generally steady but uneven progress
pattern across the Fall 2022 semester, with some demonstrating mastery in
specific areas while others struggled to keep pace. The grade distribution
chart for this group indicated a wide range of grades, suggesting that traditional
methods might not consistently promote deep learning or accommodate diverse
learning styles.

In contrast, the CBE group exhibited more consistent growth and a higher
level of mastery across the learning outcomes in the Spring 2024 semester.
Students in this group progressed at their own pace, achieving competency in
a structured but flexible manner. The grade distribution chart for the CBE
group showed a narrower range of grades, with a more balanced distribution,
suggesting that the competency-based approach provided a more consistent
and equitable learning experience.
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8 Conclusion

This study highlights the benefits of competency-based education (CBE) com-
pared to traditional assessment methods in promoting student success and
progress. By emphasizing skill mastery and allowing for flexible, personalized
learning, CBE creates a more inclusive and motivating environment, partic-
ularly in foundational computer science courses. The findings suggest that
CBE not only encourages deeper learning but also leads to a more consistent
and balanced grade distribution, which contributes to higher levels of student
engagement and satisfaction. This research further demonstrates how apply-
ing CBE principles within WMU’s specific educational context and curriculum
structure results in practical benefits that align with the institution’s goals.

While traditional assessment tools have their place in education, they often
emphasize fixed timelines and standardized testing, potentially overlooking the
need for personalized learning experiences. Integrating CBE principles can
bridge this gap, providing students with a more adaptable and individualized
approach to learning. This can better prepare students for success in an ever-
changing world, where skills and competencies are crucial.

Future research should incorporate qualitative feedback from students to
provide a comprehensive perspective on the effectiveness of both approaches.
Additionally, further studies are needed to explore the long-term impact and
scalability of CBE across various educational settings and disciplines. These
insights will help to refine and optimize educational methods, contributing to
a more effective and student-centered approach to learning.
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Abstract
Cryptography stands as the fundamental pillar ensuring secure com-

munication and safeguarding data in the modern digital era. Never-
theless, comprehending the intricate concepts and algorithms of cryp-
tography poses a significant challenge for computer science and com-
puter information systems students due to their abstract and complex
nature. Visualization methods offer a pathway to facilitate practical
exploration and experimentation, enabling students to engage dynami-
cally with cryptographic algorithms and protocols. Tools like Cryptool2
furnish students with a simulated laboratory environment, empowering
them to explore cryptographic algorithms, simulate potential attacks,
and scrutinize security weaknesses. This paper delves into the pivotal
role of visualization techniques in the education of cryptography, em-
phasizing their capacity to augment educational outcomes and foster a
profound grasp of cryptographic principles within the framework of a
cybersecurity curriculum.

1 Introduction

Cryptography, the science of secure communication and data protection, plays
a pivotal role in ensuring the confidentiality, integrity, and authenticity of in-
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copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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formation in the digital age [1]. Understanding cryptographic concepts and al-
gorithms is essential for students pursuing careers in cybersecurity, information
technology, and related fields. However, cryptography can be a complex and
abstract subject, presenting challenges for learners in grasping its intricacies.
Traditional methods of teaching cryptography often rely on theoretical expla-
nations and mathematical formulations, which may not fully engage students
or facilitate deep comprehension. In recent years, there has been a growing
recognition of the potential of visualization techniques to enhance cryptogra-
phy education by providing intuitive and interactive representations of cryp-
tographic concepts and processes [6]. Visualization offers a powerful means to
elucidate abstract concepts by representing them visually in a comprehensible
manner, facilitating deeper understanding and engagement among learners. In
the context of cryptography education, visualization tools and techniques can
be employed to illustrate fundamental cryptographic operations, algorithms,
protocols, and attacks. Visualizations can take various forms, including di-
agrams, animations, interactive simulations, and graphical representations of
cryptographic algorithms and protocols. These visualizations enable students
to observe the inner workings of cryptographic algorithms, visualize data trans-
formations, and understand the flow of information during encryption and
decryption processes. By providing visual representations of abstract crypto-
graphic concepts, educators can make complex topics more accessible and en-
gaging for students, leading to improved learning outcomes. The effectiveness
of visualization in cryptography education has been demonstrated in numerous
studies and research projects. For example, Kim and Choi (2019) developed
an interactive learning tool for teaching public-key cryptography, which em-
ployed visualizations to illustrate key exchange protocols and digital signature
schemes [4]. Similarly, Simoens, Cornelis, and Preneel (2006) explored visual-
ization tools for teaching cryptographic protocols, demonstrating their utility
in conveying complex concepts to students [6]. This paper explores the utiliza-
tion of Cryptool2 as a pedagogical tool for teaching cryptography. Cryptool2’s
intuitive user interface provides a user-friendly environment for students to ex-
plore cryptographic concepts through hands-on experimentation. The software
encompasses a diverse array of cryptographic algorithms, from classical ciphers
to modern symmetric and asymmetric encryption schemes, allowing learners
to gain practical insights into their operation and security properties.

2 Cryptool2 as a visualization tool

As the importance of cryptography continues to grow, so does the need for
effective educational tools to impart its fundamental principles and techniques.
Cryptool2 emerges as a versatile and comprehensive platform for cryptography
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education, offering a range of features tailored to both beginners and advanced
learners.

Cryptool2 facilitates interactive experimentation with cryptographic proto-
cols and attacks, enabling students to analyze real-world scenarios and under-
stand the vulnerabilities inherent in various cryptographic systems [2]. Through
the simulation of cryptographic attacks, learners develop a deeper understand-
ing of cryptographic weaknesses and the importance of robust security mea-
sures.

In addition, Cryptool2 offers educational resources such as tutorials, demon-
strations, and documentation, empowering educators to integrate cryptography
seamlessly into their curricula [4]. The platform’s extensibility allows for the
integration of custom plugins and modules, enabling instructors to tailor the
learning experience to meet specific educational objectives and learning out-
comes.

3 Cybersecurity Curriculum at SXU

At Saint Xavier University, the Computer Science curriculum includes a pair of
courses titled "Introduction to Cybersecurity I" and "Introduction to Cyber-
security II." These courses serve as comprehensive introductions to essential
concepts, principles, and methodologies within cybersecurity. They provide
students with a foundational understanding of key terminology, the evolving
landscape of threats, and established cybersecurity frameworks. Additionally,
these courses delve into cryptographic fundamentals, exploring principles, al-
gorithms, and protocols crucial for safeguarding data and communications.
Students engage with topics such as encryption methodologies, cryptographic
algorithms, the intricacies of digital signatures, and the management of cryp-
tographic keys. The Computer Science department further offers specialized
courses in Network Security and Digital Forensics to supplement students’ ex-
pertise in the field.

4 Methodology

Participants - In an Introduction to Cybersecurity I course, there are two
cohorts of students: Group A (CT2) comprising 25 students enrolled in the
Spring 2024 semester, and Group B (Traditional) comprising 25 students from
the Fall 2023 semester. Both groups of students possess comparable academic
backgrounds and possess equivalent prior familiarity with fundamental con-
cepts in cryptography.

16-week cybersecurity course - Saint Xavier University’s Computer Sci-
ence program features a course titled Introduction to Cybersecurity I, integral
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to the Cybersecurity track within both the CS and CIS majors. Cryptography
constitutes a significant segment of this course, spanning a six-week duration.
A structured teaching approach is outlined in the table below to effectively
impart knowledge in Cybersecurity:

Variables - The study examined several factors influencing learning out-
comes, including students’ majors within computer science and computer in-
formation systems subfields, the quantity of security courses completed, and
their familiarity with open course virtual environments like Cryptool2. Addi-
tionally, the study considered the impact of time allocated to specific tasks as
a potential influential variable in the learning process.

Hypothesis - the general hypotheses were:
H1: There is a hypothesis that suggests students instructed in cryptogra-

phy using Cryptool2 attained superior average grades compared to peers taught
via conventional approaches.

H2:There is an alternate hypothesis proposing that students educated in
cryptography through traditional methods obtained inferior average grades rel-
ative to those instructed via conventional means.

5 The experiment

The objective of this study is to assess the efficacy of two instructional ap-
proaches—utilizing Cryptool2 (CT2) versus traditional methods—in teaching
encryption and decryption within a classroom context. Cryptool2 offers an
interactive platform enabling practical exploration of cryptographic concepts,
whereas traditional methods generally rely on theoretical instruction and writ-
ten assignments. The study aims to gauge students’ understanding and reten-
tion of encryption and decryption principles under both methodologies. This
investigation was conducted as outlined below:
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5.1 Introduction to Cryptool2 (CT2) - Cryptool2 represents an open-
source software platform crafted to streamline cryptographic experimentation
and educational pursuits. It presents users with an intuitive interface alongside
an extensive array of cryptographic algorithms, thereby empowering students
to delve into encryption, decryption, key generation, and cryptographic proto-
cols through practical engagement [5].

5.2 Setting Up Cryptool2 - The instructor provided step-by-step guid-
ance to students for downloading and installing Cryptool2 onto their personal
computers. The installation procedure is uncomplicated, ensuring accessibility
for students possessing diverse levels of technical proficiency.

5.3 Exploring Cryptographic Algorithms - Within Cryptool2, the
instructor showcased a range of cryptographic algorithms, including symmetric-
key encryption (like AES, DES) and asymmetric-key encryption (like RSA,
ECC). Through practical demonstrations using sample data, students were
guided through the encryption and decryption procedures, offering insights
into the functionality of these algorithms and their relative advantages and
limitations [5].

5.4 Integration into Course Curriculum - Cryptool2 holds potential
for inclusion within the curriculum of cybersecurity courses as a hands-on tool
for imparting cryptographic concepts. The instructor seamlessly integrated
Cryptool2 labs, exercises, and assignments into the coursework, providing stu-
dents with opportunities to solidify theoretical understandings discussed in
lectures and to implement their knowledge in real-world scenarios [2].

5.5 Assessment and Feedback - To gauge students’ grasp of cryptog-
raphy, the instructor employed Cryptool2-centric assignments and exercises.
Feedback was offered on students’ practical applications of cryptographic al-
gorithms and protocols, aiding in skill enhancement and troubleshooting any
challenges faced during their experimental endeavors.

6 Experimental Design

6.1 Group A (CT2):Students within this cohort are instructed in encryption
and decryption techniques utilizing Cryptool2. They actively immerse them-
selves in practical exploration of cryptographic algorithms and protocols within
the Cryptool2 interface. The instructor is readily available to offer guidance
and support whenever required. See figure1 about the specific topic of your
paper. Define any technical terms deemed to require clarification when they
are introduced.

6.2 Group B (Traditional): Students within this group are educated
in encryption and decryption via conventional means, encompassing lectures,
reading materials, and written assignments. The instructor elucidated cryp-
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Figure1. Encrypt and decrypt an image using Cryptool2.

tographic concepts through theoretical frameworks and illustrative examples.
See figure2 .

Figure2. traditional way of Encryption and decryption.

6.3 Duration - The study extends over a period of six weeks, with each
group receiving three hours of instruction per week. Weekly sessions focus on
distinct cryptographic algorithms and methodologies, supplemented by practi-
cal exercises to reinforce learning.

6.4 Assessment - Following the six-week duration, students in each group
undergo a comprehensive evaluation to gauge their comprehension of encryp-
tion and decryption fundamentals. This assessment encompasses theoretical
inquiries, problem-solving challenges, and practical tasks concerning crypto-
graphic algorithms and protocols.

6.5 Data Collection - Data was gathered from a variety of sources, in-
cluding questionnaires, student feedback, the experimental study reflected by
student grades and assessment performance, and post-surveys. Descriptive
statistical analysis was conducted using SPSS software, whereby percentages
and means were computed and incorporated into the analysis to enhance and
elucidate quantitative findings. SPSS proves to be a robust tool due to its
capacity to navigate intricate data relationships, rendering it a highly effective
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and efficient method for data analysis.

7 The result

To ensure impartiality, the lab assignments underwent assessment by two ad-
junct faculty members renowned for their extensive expertise in security mat-
ters. The findings from the experiment, contrasting the efficacy of learning
encryption and decryption through Cryptool2 versus conventional methods,
provide substantial insights into the comparative effectiveness of diverse in-
structional strategies within cryptography education. See the table below.

Table 1: Table2. Students’ average grade for both groups.
Experiment Method Average Grade (out of 100)

Cryptool2 (CT2) 85
Traditional 72

Firstly, the average grade of students in Group A (CT2), who learned en-
cryption and decryption using Cryptool2, was substantially higher than that
of students in Group B (Traditional), who were taught through traditional
methods. The notable difference in average grades between the two groups
suggests that the hands-on, interactive nature of Cryptool2 facilitated deeper
comprehension and retention of cryptographic concepts among students. This
finding aligns with existing literature, which highlights the benefits of experi-
ential learning and active engagement in improving learning outcomes [3]. The
hands-on experimentation with cryptographic algorithms and protocols within
the Cryptool2 environment likely provided students in Group A with practical
insights and real-time feedback, enhancing their understanding and mastery of
encryption and decryption principles. By actively engaging with cryptographic
concepts through experimentation, students were able to reinforce theoretical
knowledge with practical experience, leading to higher levels of comprehension
and performance.

In contrast, students in Group B, who learned through traditional meth-
ods such as lectures, readings, and written exercises, achieved lower average
grades. This finding suggests potential limitations in the effectiveness of tradi-
tional instructional approaches in conveying complex cryptographic concepts.
Theoretical explanations and written exercises may have been insufficient to
fully engage students and facilitate deep comprehension of encryption and de-
cryption principles, resulting in lower levels of retention and performance.
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The disparity in average grades between the two groups underscores the im-
portance of incorporating interactive, experiential learning tools like Cryptool2
in cybersecurity education. By providing students with hands-on opportunities
to explore cryptographic concepts in a dynamic and interactive environment,
Cryptool2 enables active learning and promotes deeper understanding, thereby
enhancing student outcomes and proficiency in cryptographic skills.

Additional evidence was gathered to corroborate H1 and H2 through an on-
line post-survey conducted via SurveyMonkey, coupled with class observations
and presentations. The findings indicated that 90% of participants in Group
A, as per the post-survey, affirmed that virtualization tools such as Cryptool2
significantly enhanced their learning capabilities, thereby validating H1. More-
over, 95% of participants in Group B expressed a strong interest, based on the
online post-survey, in utilizing tools to overcome school security barriers and
delve deeper into cryptography, thereby supporting H2. These results were
further reinforced by 72% of students, as revealed in both post-surveys, advo-
cating for additional coursework dedicated to cryptography, either as a core or
elective course within the computer science department, bolstering the validity
of the findings

8 Conclusion

The conclusion drawn from this experiment emphasizes the importance of in-
corporating interactive, experiential learning tools like Cryptool2 in cybersecu-
rity education. By providing students with hands-on opportunities to explore
cryptographic concepts in a dynamic and interactive environment, Cryptool2
enables active learning and promotes deeper understanding, thereby enhanc-
ing student outcomes and proficiency in cryptographic skills. Educators and
institutions should consider integrating visualization and experiential learning
techniques into cryptography education to enhance student engagement and
comprehension. Further research is warranted to explore the long-term impact
of interactive learning tools like Cryptool2 on student learning outcomes and
to identify best practices for integrating such tools into cybersecurity curricula.

References

[1] Ross Anderson and Roger Needham. “Robustness principles for public
key protocols”. In: Annual International Cryptology Conference. Springer.
1995, pp. 236–247.

[2] J Fieglein and S Fischer-Hübner. “Towards a serious game for teach-
ing symmetric cryptography”. In: European Conference on Games Based
Learning. Vol.2. 2018, pp. 194–202.

870



[3] H Janicke, H Reimer, and V Wulf. “A study on cryptographic knowledge
of computer science students in German universities”. In: International
Conference on Cryptology and Network Security. 2016, pp. 142–148.

[4] Y. Kim and J. Choi. “An interactive learning tool for teaching public-key
cryptography.” In: IEEE Access. Vol.7. 2019, pp. 12243–12252.

[5] S. Schneider et al. “Cryptool2: Experiences, visions, and challenges”. In:
Proceedings of the 12th International Conference on Availability, Reliabil-
ity and Security. 2017, 77:1–77:6.

[6] P. Simoens, J. Cornelis, and B. Preneel. “Visualization tools for teach-
ing cryptographic protocols.” In: International Conference on Information
Technology: Coding and Computing. Vol.2. 2006, pp. 67–72.

9 71



Pedagogical Implications of Parser Combinators
in Programming Languages Courses: A

Comparative Study∗

Abbas Attarwala1, Pablo Raigoza2

1Computer Science Department
California State University

Chico, CA 95973
aattarwala@csuchico.edu

2Computer Science Department
Cornell University
Ithaca, NY 14850
pr428@cornell.edu

Abstract

This paper recounts the experience of teaching parser combinators
in a programming language course using OCaml at both Boston Univer-
sity and California State University, Chico. The main focus is on how
parser combinators are introduced when teaching parsing to students
who are new to functional programming. Techniques such as boxes and
color coding are employed to simplify the understanding of the concepts.
Furthermore, teaching course evaluation data are presented to compare
course outcomes, contrasting semesters when parser combinators were
not used with those when they were incorporated into the teaching. Re-
flections and feedback from students provide insight into the effective-
ness of these teaching methods. Additionally, a two-tailed Welch t-test
is conducted on the teaching course evaluation data to assess the impact
of using parser combinators.
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1 Introduction

This paper discusses the benefits of teaching parser combinators in a third-year
programming language course. The box representations for the parser and the
color coding for the parser combinators are introduced and explored, drawing
on experiences from Boston University (BU) and California State University,
Chico (CSU Chico). A common challenge that I1 have observed is that stu-
dents initially create ad hoc parsers based on the context-free grammars (CFG)
provided for their projects. However, when project requirements evolve and a
revised CFG is introduced in later parts of the project, these initial parsers do
not scale well. As a result, students often face difficulties and must completely
rewrite their parsing code to accommodate the new requirements. I propose
that parser combinators could be a solution, potentially enabling students to
develop parsers that are more adaptable and scalable. To evaluate this hy-
pothesis, this paper compares and analyzes my teaching course evaluation data
across various semesters, focusing on student performance and adaptability in
courses taught with and without parser combinators.

In this paper, we define a parser as a function that takes a string as input
and produces an output that is either a tuple consisting of the parsed value and
the remaining unconsumed part of the string, or an indication that the parsing
has failed. A parser combinator is a higher-order function that takes one or
more functions or parsers as input and returns a new parser as output. It allows
for the construction of complex parsers by combining simpler components in a
modular and reusable way.

2 Literature Review

In our exploration of teaching methodologies for parser combinators, we have
identified a notable gap in the existing literature. Although there is extensive
documentation on the technical advantages and applications of parser combi-
nators, their pedagogical aspects have been largely overlooked.

Parser combinators [10], offer functional programmers a clean and flexible
method for constructing parsers. This flexibility is attributed to the abstrac-
tion they provide, distancing the programmer from complex parsing machinery.
However, [10] also presents a trade-off: This abstraction comes with the cost
of executing the combinators and the functions that build them, often neces-
sitating repetitive execution. [6] mentions that parser combinators are used in
parsing sequences generated by CFG, in specialized data formats like JSON
and YAML, and markup languages such as XML and HTML. Their paper also

1First person in this paper refers to Abbas Attarwala
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illustrates the use of parser combinators in programming language processing,
specifically in identifying syntax errors.

Furthermore, [8, 9] emphasize the balance the parser combinators maintain
between flexibility and abstraction. Parser combinators enable the creation
of parsers in a style that remains close to the CFG. Highlighting the role of
higher-order functions [7], along with [5, 10], points out the strengths in de-
veloping combinator libraries, particularly parser combinators. They underline
the beauty of these abstractions in functional programming, but also note the
scarcity of literature on their practical, maintainable, and scalable use.

Our research provides valuable insights into the pedagogical effectiveness
of parser combinators. By conducting a comparative study of course evalua-
tions from semesters with and without their use, we aim to demonstrate their
impact on student learning. While the current literature thoroughly explores
the technical strengths and applications of parser combinators, our research
examines their pedagogical value, offering a different perspective in the realm
of functional programming education.

3 Parser Combinators

In the Summer of 2020, while teaching CS 320 at BU my students built an inter-
preter for a stack-based programming language. They were provided with the
initial CFG and a set of operational semantics. As the project progressed, new
features were added, such as nested conditional statements. Initially, students
created parsers using regular expressions or some complex parsing involving a
stack, but these were ad hoc and struggled to adapt to the evolving grammar,
leading to significant rewriting and frustration for both students and myself.

To address this, I integrated parser combinators into the curriculum, begin-
ning at BU in the Fall of 2020 and continuing through Fall 2022 at CSU Chico.
Before introducing this concept, I engaged students with a simple OCaml ex-
ercise involving string parsing to demonstrate the practical benefits of parser
combinators. In this simple example, I ask my students to write an OCaml
code to parse the first three characters of a string but only if it begins with ‘a’,
followed by ‘b’ followed by ‘c’. The code in OCaml is shown in Listing 1. I pro-
vide my students with getFirstCharacter function which accepts a string
and returns back a option tuple of the extracted first character and the un-
consumed string.

1 let parse s =
2 match (getFirstCharacter s) with
3 | None -> None
4 | Some (firstC , rest) -> if firstC = 'a' then
5 (match (getFirstCharacter rest) with
6 | None -> None
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7 | Some (secondC , rest) -> if secondC = 'b' then
8 (match (getFirstCharacter rest) with
9 | None -> None

10 | Some (thirdC , rest) -> if thirdC = 'c' then
11 Some (true , rest)
12 else None)
13 else None)
14 else None

Listing 1: Parsing code without using parser combinators

Students quickly realize that while the initial code works, it’s not scalable
and becomes cluttered, especially with numerous error checks for parsing char-
acters other than ‘a’, ‘b’, or ‘c’. To address these issues, I guide them through
refactoring the code using parser combinators.

I define a parser as a function that accepts a string and returns an (‘a,
string) option type in OCaml. The option type indicates that the function
returns None if parsing fails, or Some if parsing is successful. In the case of
success, the Some tuple contains two elements: the parsed value (represented
by the type variable ‘a) and the remaining unconsumed string. I represent
parsers as boxes: the input is a string and the output is an (‘a, string)
option as seen in Figure 2. Another way to think about parser combinators is
like a glue that combines two parsers to create a new parser. The » operator is
a parser combinator, commonly referred to as the sequencing operator, which
I implement during my lecture. It not only links two parsers—p1 and p2—to
form a new parser p3 (let p3 = p1 » p2), but also establishes a dependency
where p2 runs only if p1 succeeds, passing the unconsumed string from p1 to p2.
The type of » is defined as ’a parser ->’b parser-> ’b parser. Following
OCaml’s operator naming conventions, the operator » associates to the left.
Figure 1 shows the refactored code that parses the first three characters of a
string, specifically ‘a’, ‘b’, and ‘c’, using this method.

Figure 1: Refactored OCaml code using parser combinator. The same code on
the right is color coded to represent each parser. The red parser for instance
is a sequence of the purple parser followed by the grey parser. satisfy, », and
return are parser combinators.

I demonstrate to my students that satisfy is a combinator that verifies
if a string starts with a specific character. For example, satisfy (fun c ->
c = ‘a’) returns a parser that checks whether the string begins with ‘a’. If
this check passes, satisfy (fun c -> c = ‘b’) checks for ‘b’, followed by
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satisfy (fun c -> c = ‘c’) checking for ‘c’. This sequential checking, fa-
cilitated by the » operator, simplifies error handling. The » operator inherently
handles errors, so if any parser in the sequence fails, the entire parsing process
fails. Unlike the explicit error checks in Listing 1, parser combinators allow
students to focus on parsing the required elements without worrying about
extensive error handling for intermediate steps.

In Figure 1, I also use color coding for each parser, which students refer
to in Figure 2 to visualize how the » operator unpacks the unconsumed string
and feeds it to the next combinator in the chain. In the color-coded diagram,
the first » in green sequences the two brown parsers to create the green parser.
The second » in purple sequences the green parser with the next brown parser
to create the purple parser. Finally, the third » in red sequences the purple
parser with the grey parser to create the red parser. The red parser returns
true if the string begins with ‘a’, followed by ‘b’, followed by ‘c’.

In Figure 2, I provide a color-coded visual representation of the parser
sequence from Figure 1. The colors in the visualization match those used
in the OCaml code in Figure 1. The red parser in Figure 2 is a sequence
consisting of the purple parser followed by the grey parser. The purple parser
itself is a sequence of the green parser followed by the rightmost brown parser.
Finally, the green parser is a sequence of two brown parsers. The process
begins with the red parser, which takes the input string “abcxyz”. This string
is then passed through the purple parser to the green parser, and finally to the
leftmost brown parser, represented by satisfy (fun c -> c = ‘a’). The
leftmost » that creates the green parser takes the unconsumed string “bcxyz”
from the first brown parser and passes it to the second brown parser. The
green parser’s output is the same as the second brown parser’s output. The
next » that creates the purple parser extracts “cxyz” from the green parser and
feeds it to the third brown parser. The purple parser’s output matches the
third brown parser’s output. Finally, the third » that creates the red parser
takes “xyz” from the purple parser and passes it to the grey parser. The return
true parser adds true to the tuple and places the unconsumed string in the
second position. The true indicates that the parsing has succeeded. Students
are encouraged to consider what abstract syntax tree can be returned at this
point instead of true. The grey parser’s output is also the red parser’s output.
From the red parser’s perspective, it processes the input string “abcxyz” and
returns the tuple Some (true, “xyz”).

To accommodate different parsing requirements, such as allowing zero or
more spaces between characters, I provide an extensive library of parser com-
binators, including the many0 combinator. This combinator takes a parser as
input and runs it zero or more times, allowing it to parse sequences where a
particular pattern may occur multiple times or not at all. This example effec-
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Figure 2: On the left is a box representation of a parser. On the right each
color box represents a parser. For instance the purple parser is a sequence of
the green parser followed by the right most brown parser.

tively demonstrates to students the ease of adapting parser combinators to new
requirements. The new code that accommodates this is shown in Listing 2.

1 let space_parser =
2 satisfy (fun c -> c = ' '))
3

4 let parse_with_zero_or_more_spaces =
5 satisfy (fun c -> c = 'a') >>
6 many0 space_parser >>
7 satisfy (fun c -> c = 'b') >>
8 many0 space_parser >>
9 satisfy (fun c -> c = 'c') >>

10 many0 space_parser >>
11 return true

Listing 2: OCaml code to parse strings with zero or more spaces between the
letter ‘a’ and ‘b’; between ‘b’ and ‘c’ and after ‘c’.

In programming language courses, especially those focused on interpreter
creation and extensive parsing, the inclusion of parser combinators is crucial.
These combinators not only provide practical exposure to functional program-
ming principles like higher-order functions and immutability but also enhance
the readability and maintainability of code. This aligns well with the demands
of modern, agile software development, offering flexibility and ease of use for
rapid prototyping and adapting to evolving project requirements.
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4 Teaching Course Evaluation Data

In Table 1, I present the evaluations for my Summer 2020 programming lan-
guages course at BU, which marked my first time teaching an OCaml course
without parser combinators, over six weeks via Zoom. The following year,
Summer 2021, I introduced parser combinators into the curriculum, dedicating
1.5 weeks to them and incorporating them into half of the assignments, as also
detailed in Table 1. The latest evaluations from my Summer 2023 course at
California State University, Chico, shown in Table 2, continue to reflect the
use of parser combinators over the same six-week Zoom format, allowing di-
rect comparison to the 2020 course without them. I have excluded evaluations
from Fall and Spring semesters due to the different 16-week format and mixed
in-person/online teaching during the pandemic.

Questions Summer 2020 Summer 2021
N SD Mean N SD Mean

The extent to which
you found the class
intellectually challenging:

16 .79 4.5 15 .96 4.13

The extent that
assignments furthered your
understanding of
course content:

16 1.11 4.38 15 .5 4.47

The instructor’s
ability to present
the material is:

16 .58 4.69 15 1.02 4.6

The instructor’s overall
rating is:

16 .77 4.69 15 .34 4.87

Table 1: Course Evaluation data from Summer 2020 and Summer 2021 teaching
at BU on a scale of 1 (poor) to 5 (superior).

Some feedback from students in the Summer of 2020 at BU:

1. I think we could have definitely had a little bit more time for the last few
assignments as they are harder.

2. Problem sets were interesting and challenging.

Some feedback from students in the Summer of 2021 at BU:

1. Professor Attarwala was incredible at teaching this class! 320 with him
was the most engaging remote class I’ve been in during the pandemic.
His color coding, visualizations, and reinforcements really drilled in the
material.

2. Professor has a great way of explaining concepts. His enthusiasm is defi-
nitely infectious and his use of visual aids especially the virtual blackboard
with color-coded notation keeps me excited.
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Questions N SD Mean
The course increased my knowledge of the subject matter: 20 .94 4.55
The assignments helped me understand the material: 20 .94 4.55
The instructor presented in an understandable manner: 20 .93 4.65
How do you rate the overall quality of teaching: 19 .54 4.79

Table 2: Course Evaluation data from Summer 2023 at CSU Chico on a scale
of 1 (poor) to 5 (superior).

Some feedback from students in the Summer of 2023 at CSU Chico:

1. His teaching style allows me to really understand concepts and I love how
he visualizes concepts.

2. I very much enjoyed the prof. drawing on the board gave very good visuals
pointers for the current material that was talked about.

An analysis of the teaching evaluations in Table 1 and Table 2 reveals a
subtle, but informative, trend. The introduction of parser combinators slightly
affected the numerical ratings (especially of “The extent to which you found
the class intellectually challanging” i.e., it decreased slightly at BU, however a
comparable question at CSU Chico suggest that it increased again), but stu-
dent testimonials emphasize the success of my visual and color-coded teaching
methods in enhancing comprehension. When assessing the statement, “The
instructor’s ability to present the material is:”, the numerical ratings decreased
during the two semesters in which parser combinators were introduced. Con-
versely, for “The instructor’s overall rating”, the numerical ratings increased
in the semesters that included teaching with parser combinators. This con-
trast between quantitative and qualitative feedback highlights the complexity
of evaluating teaching effectiveness. While parser combinators increased course
difficulty, effective teaching practices ensured positive learning experiences. Fu-
ture investigations will employ my statistical frameworks [1, 2] to rigorously
assess the benefits of parser combinators in programming education.

5 Impact of Parser Combinators on Teaching Effective-
ness

In our examination of teaching outcomes, we anticipated that incorporating
parser combinators—a notably complex topic—into the programming course
curriculum would challenge students intellectually and improve their compre-
hension of the course material. In our research, the null hypothesis is stated
as there is no difference in teaching effectiveness with the integration of parser
combinators, and the alternative hypothesis, which anticipated a discernible
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impact, whether positive or negative. To investigate these hypotheses, we con-
ducted a two-tailed Welch’s t-test with an alpha level set at 5%, which indicates
the threshold for rejecting the null hypothesis, across four dimensions of teach-
ing effectiveness from the teaching course evaluations, i.e., (1) The extent to
which you found the class intellectually challanging; (2) The extent that as-
signments furthered your understanding of course content; (3) The instructor’s
ability to present the material and (4) The instructor’s overall rating.

In our analysis, we used Welch’s two-tailed t-test and not the Student’s
t-test. The latter assumes homogeneity of variances across compared groups,
the data presented in Section 4 suggests variability in this respect. Therefore,
applying the Student’s t-test might result in misleading outcomes. Welch’s
t-test is more appropriate for our data, as it does not require equal variances,
as supported by the literature [3, 4]. It offers a more accurate analysis by
adjusting degrees of freedom based on the sample sizes and variances of the
groups compared. More formally here is how the t-statistic and the degree of
freedom are calculated for the Welch’s t-test:

t_statistic =
µ1 − µ2√
σ2
1

n1
+

σ2
2

n2
Deg Freedom =

(
σ2
1

n1
+

σ2
2

n2

)2

(σ2
1/n1)2

n1−1 +
(σ2

2/n2)2

n2−1

µ1, µ2 are the means of the two groups, σ2
1 , σ

2
2 are their variances, and n1, n2

are the sample sizes. Table 3 displays the t-statistic, degrees of freedom, and
p-value for each of the four evaluation questions. The comparison is between
courses that included parser combinator instruction at BU in Summer 2021
and those that did not in Summer 2020. The table also presents t-statistics,
degrees of freedom, and p-values for the same four questions, comparing the
Summer 2023 parser combinator courses at CSU Chico with the non-parser
combinator courses at BU in Summer 2020.

While statistical significance was not achieved in the results, it is remarkable
that student evaluations consistently rated highly across all semesters, includ-
ing those following the introduction of parser combinators. This also suggests
a potential ceiling effect due to the high baseline of teaching performance (see
Table 1 when the course was taught without using parser combinators at BU).
Qualitatively, student feedback recognized and valued the increased depth and
rigor that parser combinators brought to the course. This feedback aligns with
my educational objectives of developing analytical skills and equipping students
for the intricacies of real-world programming tasks.

The absence of statistically significant differences might be interpreted as
an indicator of unchanged teaching effectiveness; however, it may also highlight
the robustness of instructional quality in the face of introducing more complex
subject matter. Future studies could explore different teaching methods or
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examine the long-term effects of incorporating advanced computational con-
cepts into the curriculum. This research could provide valuable information on
optimizing educational improvement strategies.

Evaluation Item With Parser Combinators With Parser Combinators
BU in Summer of 2021 CSU Chico in Summer of 2023

T-Stat DF P-Value T-Stat DF P-Value

The extent to which you found
the class intellectually challenging 1.167 27.19 0.2532 -0.173 33.89 0.8634

The assignments helped me
understand the material -0.294 21.13 0.7716 -0.488 29.49 0.6289

The instructor presented in
an understandable manner 0.299 21.90 0.7675 0.158 32.30 0.8756

How do you rate the overall quality of teaching -0.851 20.92 0.4045 -0.437 26.25 0.6658

Table 3: Results from Welch’s test comparing teaching evaluations of BU Sum-
mer 2021 and CSU Chico Summer 2023 against BU Summer 2020.

6 Conclusion

In conclusion, the integration of parser combinators into the curriculum has
been crucial in enhancing both code readability and adaptability, offering stu-
dents a different application of functional programming principles in the con-
text of parsing strings that is used very often in designing interpreter and
compilers. The teaching method I used, which included color-coded diagrams,
seems to have helped make parser combinators easier to understand. It is not
clear if every student preferred this way, but overall, their feedback did not get
worse, even with this challenging topic added to the course.

Although statistical tests did not produce significant results, this should not
overshadow the pedagogical benefits observed. The consistency of high student
evaluations, even with the incorporation of this advanced topic, suggests that
the educational quality was maintained at its usual high standard.

In addition, students have reported that the challenge of engaging with such
high-level material has been a rewarding experience. This qualitative feedback
highlights the value of integrating such advanced topics into the curriculum,
serving as a catalyst for developing critical thinking and problem solving skills.
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Abstract

This paper presents an analysis of freshman retention data for Com-
puter Science (CS) students over a period of seven years at a Midwest-
ern medium-sized public university, with a particular focus on student
demographics and the impact of the COVID-19 pandemic. The study
examines demographic variables such as gender and ethnicity and com-
pares data from pre-COVID and post-COVID times to explore changes
in student retention and demographic representation.

The results show that the retention rates were significantly higher
within the CS department compared to the university overall. Although
it also revealed significant differences among different demographic groups,
highlighting the challenges faced by women and minority students within
the CS department. The onset of COVID further complicated these
trends, disproportionately affecting these groups.

Through a comprehensive analysis of the data, the study aims to
identify the key factors affecting retention within the CS field. In the
future we plan to determine actionable steps to improve diversity and
support strategies for underrepresented groups.
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1 Introduction

In the undergraduate computer science (CS) student population in the United
States, a nationwide trend shows a lower representation of female and minor-
ity students than in the average university population [8]. At Ball State Uni-
versity (BSU), a Midwestern medium-sized public university, the CS student
population follows the national trends but falls short in key demographic ar-
eas. Previous studies have found that women and underrepresented minorities
are more likely to leave a computing major [3], [6]. Since one of the depart-
ment’s goals is to increase diversity participation in CS, it is important to
clearly identify which populations could most benefit from additional support
and opportunities.

Additionally, the impact of COVID on student success, while still being
studied, seems to have had a disparate impact on women and minority students
[4], [5], [7]. This study also examined trends in the data before and after the
COVID pandemic and variations in retention and other key factors for different
demographics and genders.

This analysis focuses on all first-time freshmen at Ball State University with
a special emphasis on declared CS majors. The long-term goal is to identify
actionable steps that can be taken to improve retention, especially for first-time
students. This study’s analysis allows the department to focus efforts on the
areas which may yield the highest impact.

2 Data Set

The dataset for this study consisted of data for 21,624 first-time freshmen at
Ball State University who first enrolled during the Fall semesters 2015 through
2021. Of these students, 8,236 had a declared major within the College of
Sciences and Humanities, and 620 declared CS as their major. Each cohort
(University, College, and Department) was compared based on gender and
race/ethnicity demographics.

Data about students were extracted from university systems in the form of
CSV files and de-identified before analysis. To accomplish de-identifications,
data files including a student ID number, were imported into a database, where
data about the same individual were joined into a single row of a table and
the student ID number was removed, before being further analyzed using pivot
tables.

2.1 Gender Distribution

As shown in Table 1 below, the University and College populations are com-
posed primarily of female students, at approximately 61-62%, with 38-39%
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male students.

Table 1: Gender distribution of cohorts at the University, College, and Depart-
ment levels

Cohort Male Female Other
Count Percent Count Percent Count Percent

University 8,401 38.9% 13,215 61.1% 8 0.04%
College 2,723 38.3% 4,385 61.7% 2 0.03%

Department 530 85.5% 89 14.4% 1 0.16%

The CS department population was heavily skewed in the opposite direc-
tion, with nearly 86% male students, and about 14% female students. In com-
parison, the Computing Research Association 2020 Taulbee Survey [8] studied
151 US CS departments and reported that bachelors-level populations were
composed of 79.1% male students, 20.9% female students, and 0.0% Nonbina-
ry/Other students.

2.2 Race/Ethnicity Distribution

The distribution of students at the University, College, and Department level by
race/ethnicity was categorized into four groups: White, Black/African Ameri-
can, Hispanic, and Other/Multiple. The University, College, and Department
populations were composed primarily of students identifying as White, at ap-
proximately 75-77%, with 9-10% of the students identifying as Black/African
American, about 6-7% of the students identifying as Hispanic, and 7-9% of the
students with other or multiple races/ethnicities.

Table 2: Race/Ethnicity Distribution of cohorts at the University, College, and
Department levels

Cohort White Black/AA Hispanic Other/Mult.
Count Per. Count Per. Count Per. Count Per.

Univ. 16,728 77.4% 2,028 9.4% 1,346 6.2% 1,522 7.0%
College 5,323 74.9% 729 10.3% 501 7.0% 557 7.8%
Dept. 462 74.5% 59 9.5% 42 6.8% 57 9.2%

For comparison, the 2020 Taulbee Survey [8] reported that the enrollment in
CS Bachelor’s programs was distributed as 33.7% White, 4.3% Black or African
American, 10.4% Hispanic, 22.7% Asian, and 28.9% Other. At Ball State
University (Table 2), there is a higher Black/African American proportion and
a lower percentage of Hispanic students, than the Taulbee survey. The Asian
population was also lower and is included in the Other category in this analysis.
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2.3 Retention Status

The analysis focused on incoming freshmen retention and was limited to ex-
amining undergraduate students who were first-time freshmen one fall and
continued as students into the following fall. The number of students entering
in the spring and summer semesters was found to be much smaller and so were
excluded from the analysis. A student’s retention status was categorized into
one of three values:

• YES: they were retained in the major from their first fall to second fall
semesters.

• NO: they remained at the university during this time period but switched
majors.

• GONE: they left the university between their first fall and second fall
semesters.

3 Results: Seven Years of Freshmen Retention Data

Table 3 shows that the total retention of students at the university (regardless
of whether a student changed their major) was remarkably consistent, with
approximately 27% of students leaving the university after their first year.
The CS department had a higher YES retention rate than either the university
or the college, so that fewer students changed their majors when starting in
the department, as compared to students in other majors.

Table 3: Freshmen Retention for the University, College, and Department

Cohort YES Retention NO Retention GONE Retention
Count Percent Count Percent Count Percent

University 10,738 49.7% 4,963 23.0% 5,923 27.4%
College 3,665 51.6% 1,488 20.9% 1,957 27.5%

Department 346 55.8% 101 16.3% 173 27.9%

3.1 Retention Grouped by Gender

When the retention status is analyzed by gender, some additional differences
emerge, as shown in Table 4. In this data, it is evident that both male and
female students are retained in the CS major (the YES category) at a higher
rate than at the college or university level. Within the CS major, male students
had a higher rate of YES retention status than females.
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Table 4: Freshmen Retention by Gender

Cohort Gender YES Retention NO Retention GONE Retention
Count Per. Count Per. Count Per.

Univ. Male 4,006 47.7% 1,950 23.2% 2,445 29.1%
Female 6,729 50.9% 3,011 22.8% 3,475 26.3%

College Male 1,432 52.6% 535 19.7% 756 27.8%
Female 2,232 50.9% 953 21.7% 1,200 27.4%

Dept. Male 298 56.2% 80 15.1% 152 28.7%
Female 48 53.9% 21 23.6% 20 22.5%

3.2 Retention Grouped by Race/Ethnicity

When the retention status is analyzed by race/ethnicity, the YES retention
rate for CS students was higher than the university rate for all races/ethnicities
except for Black and African American students, as shown in Table 5. Within
the department, this retention rate (39%) was substantially lower than the
other ethnicities in the department, as well as the college (46%) and university
retention rates (46%) for the Black/African American population. In contrast,
the department’s retention rate for Hispanic students (52%) was markedly
higher than the college (49%) and university (44%) rates.

Table 5: Freshmen Retention by Race/Ethnicity

Cohort Race/Eth. YES Retention NO Retention GONE Retention
Count Per. Count Per. Count Per.

Univ.

White 8,540 51.1% 3,911 23.4% 4,277 25.6%
Black/AA 929 45.8% 407 20.1% 692 34.1%
Hispanic 593 44.1% 294 21.8% 459 34.1%
Other 676 44.4% 351 23.1% 495 32.5%

College

White 2,810 52.8% 1,138 21.4% 1,375 25.8%
Black/AA 337 46.2% 139 19.1% 253 34.7%
Hispanic 244 48.7% 103 20.6% 154 30.7%
Other 274 49.2% 108 19.4% 175 31.4%

Dept.

White 269 58.2% 73 15.8% 120 26.0%
Black/AA 23 39.0% 12 20.3% 24 40.7%
Hispanic 22 52.4% 9 21.4% 11 26.2%
Other 32 56.1% 7 12.3% 18 31.6%
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3.3 Retention Grouped by a Student’s Incoming High School GPA

Several other factors were analyzed in this study and are reported elsewhere
[1], [2]. Of particular interest here is the High School Grade Point Average
(HSGPA) and its relation to the student’s retention status within the CS major.

For this population, the average HSGPA for female CS majors (3.6) was
higher than for male CS majors (3.4). The average HSGPA also varied by eth-
nicity, with White and Hispanic students having the highest incoming HSGPA
for the department (3.45 and 3.63, respectively), and the average HSGPA for
the Black/African American and Other populations averaged 3.28 and 3.35,
respectively.

When a student’s incoming HSGPA is compared to their fall-to-fall reten-
tion status, the average HSGPA for students who are retained in the major
(YES) was 3.54 which is higher than the average of those students in the NO
(3.43) and GONE (3.24) retention categories.

4 Results: Pre-COVID and Post-COVID Analyses

These seven years of data were split into pre-COVID and post-COVID cate-
gories, to look for signs of the impact of the pandemic, where the pre-COVID
range included the falls of 2015-2018 (4 years of data), and the post-COVID
range included the falls of 2019-2021 (3 years of data). At the time of the
analysis, our data set was complete only through fall 2021.

4.1 Pandemic Impact on Gender Demographics

When the gender demographic data is examined through pre-COVID and post-
COVID categories, we see that the percentage of female students in the CS
department increased from a pre-COVID value of 13% to 16% post-COVID.
Similarly, the percentage of female students in the college increased from 62%
to 65% post-COVID.

4.2 Pandemic Impact on Race/Ethnicity Demographics

For students identifying as White, the percentage for the department and the
college pre-COVID were both around 77%, while post-COVID both percent-
ages dropped to roughly 70%. For Hispanic students, the CS numbers increased
from 6% to 8%, similar to the college’s increase from 6% to 9% post-COVID.
Black/African American students, who showed an increased representation in
the CS department from 8% to 12% post-COVID, was a larger increase than
was seen in the college (10% to 12% post-COVID).
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4.3 Pandemic Impact on a Student’s Incoming High School GPA

The HSGPA of males and females showed little change when comparing pre-
COVID and post-COVID categories. However, when the data are examined by
race/ethnicity, the average HSGPA differed pre-COVID and post-COVID for
the CS department and college populations. As shown below in Figure 1, the
HSGPA for Black/African American students decreased post-COVID at both
the department and college level. The White population HSGPA, however,
increased post-COVID. Students identifying as Hispanic had mixed results,
with HSGPA decreasing post-COVID for students who declared CS as their
major, while an increase was observed at the college level.

Figure 1: Pandemic Impact on a Student’s Incoming High School GPA

4.4 Pandemic Impact on Retention Status by Gender

The data in Table 6 show that, before the pandemic, students who first declared
as CS majors were more likely to stay in the YES retention category than the
college cohort, regardless of gender. The largest difference is seen in female
CS students, who were retained in the major at a rate of 59% for CS students,
compared to 50% of students in the college. Additionally, pre-COVID, female
students who first declared as CS students were also more likely to remain
at the university (YES+NO categories) one year later (88%) versus female
students (75%) in general within the college.

However, post-COVID, these trends changed. While male CS students still
showed a higher YES retention rate than male students in the college (59%
for CS vs 55% for the college), female students showed a lower YES retention
rate (45% for CS vs 51% college). Female CS students choose to change their
major (NO category) at double the rate of male CS students. Additionally, at
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Table 6: Pandemic Impact on Retention by Gender

Cohort Gender YES Retention NO Retention GONE Retention
Pre Post Pre Post Pre Post

College Male 52% 55% 22% 17% 26% 29%
Female 50% 51% 25% 19% 25% 30%

Dept. Male 55% 59% 18% 10% 27% 31%
Female 59% 45% 29% 20% 12% 35%

the college level, the percentage of students leaving the university increased by
3% for male students and 5% for female students.

The trend on a year-by-year basis is also intriguing, when the number of
females/males in the GONE category are analyzed as a percent of the total
number of female/male freshmen for that year. These trends are shown in
Figure 2. It should be noted, that post-COVID, the rate at which students left
the college (GONE) increased, though the cause of this relationship cannot be
determined by this study.

Figure 2: Pandemic Impact on Retention (GONE Category) by Gender, year-
by-year

4.5 Pandemic Impact on Retention Status by Race/Ethnicity

Examining the data by race/ethnicity categories (Table 7) shows that CS ma-
jors are more likely to stay in their first major (the YES category), compared to
the college, except for Black or African American students. For these students,
the pre-COVID comparisons are 31% of CS students in the YES category vs
45% for the college. Post-COVID is similar, with 47% percent for CS and 50%
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for the college. This is a positive trend, however, where the rate for the Black
or African American students in the Yes category is approaching the college
value. Interestingly, pre-COVID students switched their major more often,
with the NO retention category having values around 20%. Post-COVID, this
rate dropped into the teens for both CS and the college.

Table 7: Pandemic Impact on Retention by Race/Ethnicity

Cohort Race/Eth. YES Retention NO Retention GONE Retention
Pre Post Pre Post Pre Post

College

White 52% 53% 24% 18% 24% 29%
Black/AA 45% 50% 21% 16% 33% 34%
Hispanic 48% 48% 21% 22% 31% 30%
Other 44% 54% 22% 16% 34% 30%

Dept.

White 59% 56% 19% 11% 22% 33%
Black/AA 31% 47% 24% 17% 45% 37%
Hispanic 45% 65% 27% 10% 27% 25%
Other 52% 63% 12% 13% 36% 25%

Examining the overall rate for those students retained at the university
(YES + NO categories) shows that, pre-COVID, the CS retention rates were
comparable to the rates for the college for most race/ethnicities, except for
Black and African Americans, where the CS retention rate lags the college
rate 55% to 67%. Post-COVID, the CS retention rate for Black and African
American students moved closer to the college rate (63% vs 66%). Some larger
differences were seen post-COVID in white students who remained at the uni-
versity (67% CS vs 71% college) and both Hispanic and Other showed increased
retention of CS over college (75% vs 70%).

5 Conclusion

This paper presents an analysis of freshman retention data for Computer Sci-
ence (CS) students over a period of seven years at a Midwestern medium-sized
public university, with a particular focus on student demographics and the
impact of the COVID-19 pandemic.

In terms of gender, the university population is composed of 61% female
students, while the CS department has a much lower female representation at
14%. When comparing the post-pandemic data to pre-pandemic data, we see
an increase of 3% in the percentage of female students within the department.
These numbers, while trending upward, are still below the national average of
21% of female CS majors [8]. It is desirable to increase female representation in
computing, and so the department will examine student recruitment practices
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to identify methods to potentially influence this gender disparity as well as
explore methods of retaining females on parity with males.

The race/ethnicity demographic distribution of the CS department is sim-
ilar to the university’s distribution. When the data were examined for the
effects of the pandemic, Hispanic and Black/African American representation
increased slightly within the department, improving diversity, though further
improvement is desirable.

When considering the fall-to-fall retention status, students in the CS de-
partment were more likely to be retained in their major than the general
university cohort. This trend holds for both male and female students, but
substantial differences were seen for some race/ethnicity populations, where
students identifying as Hispanic were retained in the major at a higher rate,
and Black/African American students were retained at a concerningly lower
rate, comparatively. The higher retention of students within the department
overall is a positive factor, overall, but some data about the race/ethnicity
retention are concerning.

Additionally, the impact of the pandemic on these demographics and in-
coming HSGPA was examined. In particular, an increase in the representation
of women post-COVID was observed. Changes in the race/ethnicity demo-
graphics were also observed post-COVID, with the representation of White
students decreasing, and minority representation increasing. On average, little
change in the HSGPA by gender was observed; however, after the pandemic,
the incoming HSGPA of Black/African American decreased while the HSGPA
of White students increased.

Retention numbers showed a noticeable decline post-COVID, with an in-
creased percentage of students leaving the university, and a larger impact on
female students than male students. Notably, when the data are examined by
race/ethnicity, overall retention for White students decreased post-COVID, but
retention for minorities increased at both the departmental and college levels,
so that a larger percentage of minority students remained at the university in
the post-COVID data set.

This study aims to identify the key factors affecting retention rate and
facilitate ways to improve diversity and support strategies for underrepresented
groups within the CS field. In the future, additional exploration of factors
which may exhibit a causal relationship will be undertaken.
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Abstract

Over the previous 20 years the need for software engineering and
computer security education in undergraduate computing curriculum has
become apparent. At Cal Poly, we have adopted stand-alone courses in
both of these domains but have identified the intersection of software
engineering and cybersecurity as a domain with curricular opportunity.
In this paper, we outline a secure software engineering course and share
our experience with running this course. Our course is focused on prac-
tical hands-on education with three large projects covering producing a
secure software product, threat modelling, and malware design. Lastly,
we cover the ethical considerations of this course and potential pitfalls
of similar secure software engineering courses.

1 Introduction

Over the last 20 years, the need to introduce undergraduate computer science
students to software engineering processes and principles has been recognized
as well as the need for software engineering to exist as an independent academic
discipline from computer science. Simultaneously, over the last decade the need
for computer security as an essential component of undergraduate computer

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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science educations has been recognized and largely adopted. However, the in-
tersection of these two topics presents some unique and exciting opportunities
for novel educational offerings. In this report, we introduce a secure software
engineering course that bridges cybersecurity and software engineering to cre-
ate a rewarding opportunity for undergraduate students.

In our course, we use hands-on education to cover secure software engineer-
ing, secure software development, threat modelling, and malicious software.
This course is complimentary to our existing cybersecurity and software engi-
neering curriculum allowing a deep exploration of the topics. Throughout this
project we emphasize hands-on curriculum, practical and applicable materials,
and concepts over individual tools. We start the course by introducing two
seminal secure software engineering frameworks: the Microsoft Security De-
velopment Lifecycle [3] and Secure-by-Design. These frameworks are applied
by students in a multi-week development project building on their previous
software engineering experience. As the application is being developed stu-
dents are introduced to various detailed topics around secure software project
management, development, deployment, documentation, and testing and apply
these concepts to their ongoing project. Once a project is developed students
are taught methods for threat modelling and apply it to a student’s project.

To round out the course, we cover modern malware design and detection
techniques. For a hands-on and practical experience to malware education
students setup a virtualized environment for Windows and Kali Linux, a cy-
bersecurity focused Linux distribution. The students then develop a Trojan
[5], a malicious program that a user is tricked into running. Students apply
common malware analysis and detection techniques and how they are used in
malware research. Students then apply stealth techniques to understand how
modern malware authors avoid antivirus software.

As with any computer course, and specifically cybersecurity course, ethical
considerations must be presented to the students. At the beginning of the
course, including the syllabus, we introduce students to the need to think
carefully about any actions they take. In particular, we tell students to only
carry out penetration tests or malware analysis on systems they own and have
permission to test. This is reiterated throughout the course as concepts are
introduced with continued emphasis on legal and ethical frameworks.

In the remainder of this report we discuss the course’s curricular context,
the course design, the details of the projects, and lessons learned.

2 Background and Related Courses

Cal Poly has a strong history of undergraduate education in computer science
and software engineering with focus areas in Software Engineering and Com-
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puter Security. In both of these focus areas we have a set of exciting curricular
options for students to learn and practice their craft. The current course report
offers curriculum that will compliment this existing course work.

While each of the existing software engineering and security courses provide
students with in-depth knowledge there is a clear curricular gap. In particular,
students currently do not have a course to develop their skills in the secure
software engineering space which we address here.

2.1 Software Engineering Curriculum

Cal Poly created a Software Engineering major in 2003. The curriculum cov-
ers topics ranging from Software Requirements and Design through Software
Construction and Deployment. All computer science students are required to
take an introductory course in software engineering that covers requirements
elicitation, UI/UX design, development, testing, and DevOps. Students cre-
ate a software web application using Agile methods in teams. As an elective,
students may choose to take additional courses including individual software
design and development or user-centered interface design and development.
In the individual software design course students learn about software design,
construction, and design patterns. In the UI course students are introduced to
the importance of user-centered principles in the design of good interfaces and
effective human-computer interaction.

Software engineering students must take a multi-quarter introduction to
software engineering course that provides deeper coverage of requirements de-
sign, UI/UX design, development, testing, and DevOps. Additionally SE stu-
dents are required to take the individual software design and UI course. Lastly,
SE students take a year long capstone sequence where they work with a client
to deliver a software product. This includes learning about product vision,
user stories, UI/UX mock ups, design patterns, development, code quality,
testing, product versioning, Continuous Integration, Continuous Deployment,
and product delivery.

2.2 Computer Security Curriculum

Cal Poly has developed a concentration in privacy and security for both com-
puter science and computer engineering students with a goal of allowing stu-
dents to choose a set of courses that meet their particular cybersecurity in-
terests. All students in the computer science (CSC), computer engineering
(CPE), and in the future software engineering (SE) programs must take an
introduction to computer security course. This course is designed as a survey
of computer security covering security fundamentals, symmetric cryptography,
public-key cryptography, hash algorithms, authentication, access control, soft-
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ware security, social engineering, network security , web security, and cyberse-
curity ethics. Because of its survey nature, each topic only is allotted one week
of coverage and one assignment. For software security students are introduced
to buffer overflows, integer overflows, types of malware, and security by design.
For security fundamentals students are introduced to Saltzer and Shroeder’s
principles [12] and the CIA triad [13].

Students in all computing programs are also able to take multiple technical
electives in the area of computer security. This includes standalone courses
in cryptography engineering, privacy engineering, binary exploitation, network
security, wireless security, hardware security, and a future course in secure ma-
chine learning. Most relevant to this course are the cryptography engineering
course, privacy engineering and binary exploitation courses.

In the cryptography engineering course students are taught about a broader
set of cryptographic algorithms as well as how to appropriately use libraries
to incorporate these algorithms into their projects. In the privacy engineering
course, students are taught about the technology, ethics, and policies that
govern users data and privacy. Students learn about how to design a system
to empower users to make decisions about their data and the students delve
deeply into the ethical considerations around privacy for users. Lastly, the
course on binary engineering introduces students to reverse engineering and
exploit development against compiled software. This course focuses on low
level code analysis and memory corruption. These three courses, combined
with the secure software engineering course would provide a student with a
very solid background on implementing a software project with appropriate
privacy, security, and cryptographic underpinnings.

3 Software Security: A Learn-by-Doing Approach

In order to fill the curricular gap of secure software engineering identified, we
provide a hands-on, or learn-by-doing, course where students can learn the
theory of secure software engineering and get practical experience. We outline
our course in Table 1. We start with the Software Development Lifecycle
(SDLC) and introduce topics of securing the developer’s environment and the
need and definition of the Software Bill of Materials (SBOM). Then we move
on to how to validate the security of a software solution including static and
dynamic testing. As many projects are employing a Software as a Service
(SaaS) strategy and utilizing cloud services, we cover securing both the local
and cloud run-time environments since any security exposures in these areas
can lead to significant product and business impacts. Then we cover strategies
for designing for recovery and testing and we have students review and test
each other’s projects to highlight blind spots and vulnerabilities that many
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Week Lecture Topics Lab Topics

1 Microsoft SDLC, Git security, SBOM,
and supply chain security

Full stack project ini-
tialization

2 Static software pen test, dynamic soft-
ware pen test, crypto pen test

Adding an SBOM and
Crypto

3
Secure environment management (pass-
words and keys), secure distribution
and signing, web vulnerability scanners

Software pen testing

4 Securing cloud environments Pen testing continued

5 Design for recovery, verification, and
testing Application hardening

6 Threat modelling Threat modelling an
application

7 Threat modelling, CVSS, CVEs, and
ATT&CK

Threat modelling con-
tinued

8 Malware introduction Implementing a Trojan
9 Malware static analysis and evasion Analyzing a Trojan
10 Malware dynamic analysis and evasion Evading Anti-viruses

Table 1: In this table, we outline a secure software engineering course that
teaches students to design and implement secure software.

developers don’t recognize during the development process. Finally, we turn
our focus to learning how the creators of malware think, and explore how
they would create and deploy malware. This helps the students think through
closing other vulnerabilities that malware creators exploit. We anchor these
topics in three large student projects that we discuss in detail below. We
discuss the secure implementation project in Section 4, the threat modelling
project in Section 5, and the malware project in Section 6.

We have four guiding principles for curricular design. First, we introduce
ethical considerations for each new concept or tool so that students consider
the potential use and misuse of them. Second, we design our course so stu-
dents could apply their knowledge in hands-on labs. It has been shown that
students applying their knowledge to a hands-on problem set can help improve
their learning [19]. Furthermore, we design our course using a modern tech
stacks. Anecdotally, we find students are more engaged in technology that
they perceive to be relevant to their future roles. Lastly, we design the course
to introduce general concepts and then allow students to choose from a number
of competing tools. This creates students that are flexible to different future
tech stacks and tools they may encounter in different roles.
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4 Learn-By-Doing Secure Application Design

In our first project, we introduce students to secure software development by
guiding them in implementing and testing a web application. In general, we
introduce students to concepts in lecture with a real-world focus on the impor-
tance of the topic as well as different tools and implementation options. We
then have students implement the concept into their project with flexibility for
their implementation choice. Project-based learning encourages student en-
gagement because they boost student interest and motivation through direct
interaction with projects, knowledge retention from practical experience, and
diversification because they are adaptable to different cybersecurity topics and
effective for teaching technical aspects [8]. To encourage continuous learning
and self-efficacy there were also tasks that were solely the student’s responsi-
bility in the project. For example, students had to setup JSON Web Tokens
and configuring https by using standard documentation. In our curriculum,
this course took the theoretical concepts taught in the Intro to Computer Se-
curity course and combined them with the practical skills learned in the Intro
to Software Engineering course. A core objective of this project was to get stu-
dents to think like a security engineer. Students learned that developers have
to balance security and usability, and that security should be in the back of
a developer’s mind throughout the whole development and production process
in cycles instead of at one or multiple set points.

In our intro to software engineering courses students work to implement a
full-stack web application including backend storage. The software engineer-
ing project focuses on developing a frontend and backend web application and
deploying it in a team. The goal was to learn and apply general software engi-
neering best practices using industry standard tools like GitHub, JavaScript,
React, Express and MongoDB while also experiencing the challenges of a team
environment. For our first project in the secure software engineering course,
students apply cybersecurity best practices to the full-stack development pro-
cess they previously learned. Implementation topics include authentication,
access control, and secure coding practices. Analysis topics include security
focused documentation and testing including developing a software bill of ma-
terials and applying vulnerability scanning tools.

4.1 Exemplar Project

Students start the project similar to a similar project from the Intro to Soft-
ware Engineering Course using the Create React App Template [2]. Their
initial app was just supposed to have a Login page and a protected Landing
page that could only be accessed when logged in, embodying important access
control concept. Students then added the cloud database using MongoDB At-
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las, implemented JSON Web Tokens in the backend to be used as cookies in the
frontend, configured encrypted traffic with https and used a software named
CylconeDx to create a software bills of materials. These exercises followed
relevant lectures. For example, in lecture we discussed details about software
bills of materials including what they were, why they were important and tools
to make them.

Students enjoyed these tasks since they implemented web components they
interact with on a daily basis. Students then partnered up and applied vulner-
ability scanning tools to look for insecurities in each other’s projects, returning
a report to the other person about their project. Students then had to fix at
least five of the reported vulnerabilities. For example, one student achieved
this by adding input sanitization, proper error handling and type checking.
Lastly, students implemented OAuth through Google in their application.

4.2 Ethical considerations

The secure web application project was a way for students to learn about soft-
ware security however there are some important ethical considerations. One
dilemma is that the class teaches students how to use vulnerability scanning
tools. This may be used for malicious purposes if one wanted to scan a project
for vulnerabilities for the purpose of exploiting them. When introducing vul-
nerability scanning we make sure to warn the students about only using these
tools when they have written permission to pen test an application.

In addition, with the timeframe for the course and project there are some
limitations to what can be implemented. For example, students weren’t obli-
gated to encrypt data stored in the database. This would be problematic if the
class was just as is, but usually students learn that data stored in databases
should be encrypted in other classes. If they don’t have this knowledge, though,
the student would be missing a critical security practice. Insecure coding prac-
tices could lead to dire consequences like a data leak or privacy violation. It is
important to help students scope the limitations of their project.

5 Threat Modelling an Application

Students were introduced to threat modeling through lecture on the subject
including what to consider and what questions to ask when threat modeling.
Lecture covered common techniques including STRIDE [1] and PASTA [18],
developing attack trees [15], persona non grata (making personas of potential
threat actors) [7], an introduction to hybrid threat modeling and quantitative
threat modeling [7], and security cards [17].

The goal of the threat modelling project was to take what the students
learned in lecture and apply it to their project, fostering active participation
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and hands-on learning experiences. The timing of the project followed the com-
pletion of the secure web application project providing a familiar target to prac-
tice threat modeling techniques with. This project supported a core objective
of getting students to think like a security engineer. Research done with cyber-
security professionals found that they describe "the security mindset in terms
of three interlocking habitual mental processes: unconscious monitoring for
anomalies and potential threats, deliberate investigating of systems to identify
security flaws, and evaluating the relative risks of those flaws once discovered“
[16]. Students were taught to mimic such habits through the implementation
of developing and threat modeling their application. First, students practiced
monitoring for anomalies by performing explicit analyses on the project. They
were also taught to investigate systems for vulnerabilities through the use of
vulnerability scanning tools including Nessus, Snyk and GitHub Dependabot
in addition to modeling diagrams of the secure web application they created
and analyzing these diagrams for potential security flaws. Lastly, students were
taught to evaluate the degree of risk caused by these flaws and vulnerabilities
through learning about bug bars in lecture in addition to implementing fixes
to found vulnerabilities (i.e. they had to balance danger of bugs with ease of
fixing). In the end, this project served as a great way to morph the students’
mindsets to think like a cybersecurity professional.

Students threat modeled their projects to emulate a real-world exercise that
often starts with a fully functional product. This means that the system’s re-
quirements and specifications for functionality were defined before considering
security concerns. A research paper about the secure software development
life cycle found that "by integrating security practices from the initial design
phase, employing secure coding practices, conducting regular security testing,
and following secure configuration and patching processes, organizations can
significantly mitigate the risk of security vulnerabilities“ [9].

We ideally aimed to shadow the secure software development cycle through-
out our project, leaving students with practical experience that will hold in
industry. While it is important to think of security from day one through-
out the implementation of an application, it is also important to be able to
connect the classroom experience to the real-world. Performing threat model-
ing techniques on the application they themselves developed allowed students
to understand the related concepts in a practical and immersive manner that
encourages retention.

5.1 Exemplar Project

Students were tasked with keeping meticulous documentation and analyzing
a partner student’s project thoroughly using different thread modeling tech-
niques. First students were asked to conduct an initial interview with the
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partner student in order to get some background on the application the stu-
dent made. Then they performed a manual analysis, systematically analyzing
the architecture of the application including all existing files, the technology
stack used, analysis tools that are being run, documentation available, database
implementation and the pages available in the frontend and backend. This was
mainly an eyeball test, explicitly scrutinizing the code for any threat factors
and getting as clear a picture as possible for the application architecture. Stu-
dents then performed a dynamic analysis on the secure web application. For
this they determined which routes a non-authenticated user had access to, con-
sider where a user could inject data, how stored data is shown to users, how
the database is secured, etc. In addition, the thinking changed in that students
had to switch from looking so much for insecure coding practices to thinking
about if there were threat factors as the application ran.

After the initial analyses, students were tasked with creating three different
diagrams based on the application they were threat modeling. The first was
a diagram of the overall architecture of the application. It was supposed to
show how users interact with the application, how the backend and frontend
connects, how any external applications connect, and how any data stores
connect. The second was a dependency diagram where students could just
use the dependencies listed in the package.json file. It was important to note
the dependencies and their current revision levels because a security engineer
wants the whole software pipeline to be secure, including making sure that
dependencies are up to date with vulnerability patches. The last was a data
flow diagram that denoted how the data was stored in addition to how it
passed through the application. A student reflected that this one took the
longest but it was the most thorough and probably most important because
the vulnerabilities the student ended up fixing were caused by improper data
flow (i.e. no input sanitization and improper error handling) [14]. Learning how
to make such diagrams gave students practical experience that will improve the
future quality of their security analysis tasks. After finishing these diagrams,
students applied each of the STRIDE frameworks to the diagrams multiple
times.

After that all that was left was to create threat actor personas and write an
executive summary. Students started by identifying direct and indirect stake-
holders in the system and then identifying ways that the system could be used
or abused to negatively impact stakeholders. Students came up with different
threat actor scenarios that entailed what resources the threat actor would have,
what method they would execute when attacking, any possible motivations and
the human assets like private data and societal wellbeing that are impacted by
the attacker. Students concluded the project with the mindset that they are
security consultants for a company: writing an executive summary to pitch
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why a hypothetical company should trust their application’s security with us
based on how we secured this application.

5.2 Ethical considerations

Ethical considerations are paramount in cybersecurity education, especially
within the realm of threat modeling and vulnerability analysis. One significant
concern arises from the potential misuse of newfound knowledge, as students
may be tempted to exploit vulnerabilities they uncover during their analyses.
Furthermore, there’s the ethical dilemma of creating threat models for appli-
cations against the owner’s wishes, which can arise when owners are reluctant
to fix existing security flaws due to costs or other motivations. Another ethical
consideration is the possibility of individuals conducting threat modeling ser-
vices privately noting vulnerabilities for future exploitation, raising concerns
about privacy and trust. This highlights that trust between a cyber security
practitioner and those who they are protecting is an important factor to take
care of [6]. Lastly, it is vital to make sure that all stakeholders are correctly
identified as to respect the interests of everyone involved in an application.

6 Learn-By-Doing Malicious Software

For the last project, students implemented and analyzed malware. In lecture,
we discussed different types of malware and how different attacks work, for
example, a command-and-control bot where a server controls a different system
via some sort of implanted software. We then instructed students to set up
a safe environment to practice the concepts they learned including a target
Windows 11 virtual machine and a Kali Linux virtual machine to give them
access to real-world tools a hacker might use.

From here the hands-on approach really takes hold, now that students un-
derstood the concepts of different attacks we instructed them on a progression
of malware development. They work on expanding their malware slowly in-
creasing its trustworthiness in the host Windows 11 computer by rewriting
their C code as C#. Then they hide the malicious code with encryption and
encoding. After that, they used process injection to hijack an existing trusted
process. Next, students work on Virtual machine bypasses by emulating human
behavior to prevent effective dynamic analysis. Students are introduced to the
use of multiple static and dynamic analysis tools that are common in industry.
Finally, student gets free reign to determine an upgrade to their malware and
implement it. This is all in an attempt to show how malware authors think
and implement safeguards to keep their malware from getting discovered and
allowing students to think how a hacker thinks. Along with that, giving them
an opportunity to create their own malware gets them to take ownership of
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the project while doing research in different avenues of software security in an
attempt to find out how they want their malware to function and ultimately
they will demonstrate one of the avenues they researched.

6.1 Exemplar Project

After the completion of the initial projects, one student decided to increase
the malware’s stealthiness. The student evolved their project to increase its
stealthiness by using image steganography, where you hide malicious data in
a benign medium. The student hid their code in four different ways; The first
of the four ways was implemented by hiding shell code at the bottom of a
deceivingly innocent dog photo and keeping that dog file in a folder that had
a script that would read the bottom of the photo and allocate the shell code
inside memory. This method was the least effective at hiding the malware.
Next the student tried a similar where the executable file with all the code
hidden within it was at the bottom of the picture. Then a simple script would
open the picture, recompile the executable, and run it. This was more effective
at hiding the malware but was still detected by some antiviruses.

The next two attempts to maximize stealth utilizing the same idea of hiding
the shell code and executable file. However, the attempts were more stealthy by
hiding both the shell code and executable file in their own respective dog photos
inside the images’ pixels. The student did this by employing a technique called
least significant bit steganography where the least significant bit of each RGB
color is swapped to the bit it needs to be for the hidden code. The downside
to this approach is now the data you want to hide is limited by the size of the
image as you can only hide 3 bits per pixel. For example, a standard HD photo
is 1920 by 1080 pixels which means you have 2,073,600 pixels and you can store
3 bits per pixel leaving you at 6,220,800 bits or 0.741577 megabytes of hidden
data. This is reflective of real-world challenges in malware design where code
size must frequently be minimized. The student ran both of these versions
through various anti-viruses and found none of them were able to detect it.
As demonstrated by the example student’s project, this project allowed for
hands-on learning and an opportunity to be creative in their design.

6.2 Ethical considerations

Although teaching students how to create malicious software can be a great
resource for them to think like a hacker, it does come with inherent risks. The
most obvious risk is “that teaching offensive hacking skills increases the risk
to society by drawing students toward criminal acts” [11]. After learning a
student might take their newfound abilities and try them in the real world
on computers they don’t have permission to attack. These attacks might be
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for learning, entertainment, or economic gain, and this is a serious problem
leading to possible criminal proceedings and or leaked data that could be taken
advantage of. Teaching students to hack “so that they may use these skills in
their future profession is in teaching them the ethical and legal implications
of their skill, and the ramifications of misusing their skill classroom” [10] is
essential to prevent students missteps towards illegal and harmful hacking. We
therefore frequently emphasize the appropriate scope to use these technologies
and the consequences of misusing them.

7 Conclusions and Lessons Learned

We continue to refine this course based on feedback and are working to improve
student experience. In general, the course is well received by students and many
are very excited about the practical hands-on experience gained. To improve
the course in the future, we intend to make the following changes.

• Rescoping the secure design project - In order to spend more time focusing
on the threats and hardening of applications, it may be advantageous for
the students to bring the project they completed in their introduction
to Software Engineering courses and use this as a basis for the secure
application project. This will allow for a more robust application baseline
for more interesting data flows and assessments. Alternatively, we could
supply students with a full-stack application and have them add the
login, security, and perform vulnerability and hardening activities on
that sample application.

• Develop or threat model first? In two offerings of this course we have
swapped whether we focus on threat modelling or secure development
first. These two tasks are intimately inter-related and we believe that
interleaving them are likely to offer the best educational experience. The
exact interleaving is to be determined.

• Splitting the course With the student interest and depth of material in
this area, we plan to split this course into two standalone courses in the
future. The first will focus on the secure software engineering, secure
development, cloud security, and threat modelling. The second will be a
deeper dive into malware design and analysis in diverse environments.

• Handling multi-architecture environments One unique challenge to the
malware design project was the use of shellcode payloads. Most students
will have limited experience with x64 or ARM-v8 native assembly devel-
opment. Because of this, we depend on existing shellcode from tools like
Metasploit [4]. This required us to develop and support labs for both the
Windows X86/AMD64 architecture and the Mac aarch64. Emulation of
x64 on Mac is limited and presented some challenges.
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Abstract

Retention in computer science programs has been, and continues to
be, a critical issue for most higher education institutions. With the com-
ing of the so-called demographic cliff in the next few years, retention
improvement is seen as vital to the long-term health of the institutions
and their programs. Most computer science departments have been work-
ing on retention issues for many years and have had mixed results. At
our university, a mid-sized regional university, historically the loss rate of
students after taking the first programming course (typically called CS1)
has ranged from a third to nearly 50%. Initiatives to improve student
persistence have been many including changes in content delivery, having
more widely available and free tutoring, instituting peer mentoring pro-
grams and embedding student supplemental instructors into the course
sections. At times the retention rate has improved but reversion to the
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mean soon followed. Because of this, the computer science department
created a new course, CS0, over a decade ago with the goal being to
help prepare students to be successful in CS1. The course would pro-
vide a gentle introduction to basic programming concepts using a less
complex programming language than what is used in CS1. The course
would focus on problem solving and algorithm creation that would use
real-world examples in hopes of sparking student interest and increasing
their engagement. Sufficient time has now passed to allow for collection
of years of data that can be used to make judgments on the success and
shortcomings of this initiative. Fourteen years of results are analyzed to
help determine the effectiveness of adding this new course in improving
performance in CS1 and in increasing retention. Additionally, the allo-
cation of departmental resources is discussed and used to consider the
overall effectiveness of having added this course to the curriculum.

1 INTRODUCTION

Improving retention of computer science students in higher education has been
of great importance to departments for many years. Historically, on a na-
tional basis with every incoming cohort, roughly between a third and a half of
students fail to successfully complete the first programming course [11, 5, 6,
3]. This course, typically called CS1, has not been designed to be a weed-out
course but, in effect, it has acted in this manner. There are many initiatives
chronicled in computer science pedagogy literature that have tried to reduce
this drop-out rate [7, 1, 10, 2]. Frequent ideas employed call for curriculum
and programming language changes, teaching approach changes, increased tu-
toring, and using student mentors and supplemental instructors [4, 13, 12].
The thought in these studies is that while there are some students who are
not suited for the challenging pursuit of a computer science degree, there is a
significant number of students who could be successful if new or different teach-
ing techniques and course strategies were employed. At our university, faculty
have been focused on retention issues for at least the past 15 years. In 2011,
several computer science faculty members published a paper that describes the
department’s work in creating a new course, dubbed CS0, designed to provide
a gentle introduction to computing concepts [8]. The course presents real-world
problems hoping to capture student interest that focuses on problem analysis
and algorithm development during the first half of the course. In the second
half, solutions would be developed and coded using a simple programming lan-
guage [8]. The goal was to not overwhelm students with learning programming
language syntax but to engage students by designing and writing algorithms
and then using the computer to solve the problems. In meeting this goal, the
hope was that students would have success not only in this course, but that
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they would be better prepared to succeed in the following CS1 course.
Now that over a decade has passed since the CS0 course has been developed

and made part of the computer science curriculum, this research presents an
analysis of the effectiveness of this course in meeting its founding objectives.
The course designers’ goal was to create a course that would help increase
the students pass rate for the CS1 course. Therefore, of central importance
is to look at the pass rate for students in CS1 who had taken the new CS0
course and to compare it to the rate for students who did not take this course.
Then, any potential improvement would need to be weighed against the cost of
implementing the new course. It is also important to examine the new course
itself and to consider student performance in it. One question to explore is to
see if the traditional drop-out rate of CS1 now applies to this CS0 course.

The organization of this paper is as follows: Section 2 describes the data
collection techniques and the constraints on the data and in gathering it. Sec-
tion 3 presents the data collected along with key observations. After the data
has been presented, in Section 4, an analysis of the departmental resources
required to implement the CS0 course is discussed. In today’s reality of de-
clining enrollment, available faculty resources have also declined. Any benefit
of allocating increasingly scarce faculty resources must be weighed against the
cost and the ability to sustain the effort. Finally, conclusions including ongoing
and future research efforts are presented in Section 5.

2 DATA CONSTRAINTS

Data was collected beginning with the Fall 2009 semester and continued through
the Spring 2023 term. The data collected for this study primarily involved in-
formation gleaned from the final grade rosters for the CS1 and CS0 courses. At
this institution, there is both a Computer Science and an Informatics major.
Both programs require students to successfully complete CS1. For this study,
only students who took the CS numbered courses are considered. While it
is true that some Informatics students switch to Computer Science, and vice-
versa, the number is quite small and has virtually no impact on the overall data
collected. Additionally, some science majors take CS1 as either a requirement
(Physics) or as an elective (Math). Because the grade rosters do not explicitly
denote this distinction, the collected data will include these other science stu-
dents. Since there are typically no more than 2-3 of these students per term,
including them has only a minimal effect. Other data required is whether stu-
dents in CS1 have taken the CS0 course. This information was collected from
looking at class rosters for these courses.

There are some issues that need to be considered when analyzing the data.
Up until the Fall 2020 semester, incoming students to the computer science
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Table 1: Pass rate for CS0
Year Total Number Number % %

Students Passing Not Passing Passing Not Passing
F2009-Sp2012 246 170 76 69.1% 30.9%
F2012-F2019 402 265 137 65.9% 34.1%
Sp2020-Sp2021 73 41 32 56.2% 43.8%
F2021-Sp2023 147 107 40 72.8% 27.2%
TOTAL 868 583 285 67.2% 32.8%

program, when meeting with their advisors for the first time, were asked if
they had any programming background. If they said that they had, they were
advised to start with CS1. Otherwise, they were advised to take CS0. Proof
was not requested, and the level of understanding was not explored to any de-
tail. Because the students advised to start with CS1 had claimed programming
in their background, it would seem that they would have a better chance of suc-
cess in the course. What is interesting to see is how these students performed
compared with second-semester computer science students who had taken CS0
as their starting point. Another issue that impacts the data is that, beginning
with the Fall 2021 semester, the department made CS0 required for all students
unless they performed high enough on an optional test-out/placement exam.
Hence, from this point on there would be a fairly large group of students with
at least some programming experience taking CS0, and that makes it natural
to assume that performance in CS0 would improve.

Another issue that has a small impact on the collected data is that it is not
uncommon for students to retake CS1 due to not meeting the department’s
minimum grade requirement. The collected data looks at section-wide results
and does not catch this case. However, when looking at twenty-eight semesters
of data, this amount is negligible.

3 COURSE PASS RATES FOR CS0 AND CS1

The course pass rates for CS0 are given in Table 1 with the data presented in
four parts. (For this study, pass rate is defined as a grade of C- or better as
this is the lowest grade that the computer science program accepts.) The first
row shows data for the first three years that the course was taught. During this
time, it was taught exclusively by two of the course designers. These faculty
members had a strong interest in the course and their level of enthusiasm in
teaching it was very high. They devoted much time to developing and refining
the course projects as well as improving content with each offering. The data
shows that the pass rate for this period was 69.1%. The department’s historical
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pass rate for the CS1 course is less than 60% so this pass rate (for CS0) is nearly
10% higher. Although the CS0 course is admittedly less rigorous than CS1 [8],
it was encouraging to see this amount of improvement.

The second row presents results for the next seven and a half years. In
this time period, additional department faculty members taught the course.
Most used the resources developed by the course designers while only modestly
incorporating their own materials. The pass rate for this time period dropped
to below 66%, which was understandable as the instructors were learning to
teach this course using the active classroom approach of the designers [8].
However, the pass rate was still an improvement over the department’s historic
CS1 pass rate.

The third row in the table shows results for the three semesters that were
greatly impacted by the COVID pandemic. Restrictions were imposed on in-
class teaching and the use of the weekly in-person lab was discontinued. In
keeping with what happened in CS programs all over the country, student
performance declined significantly. Although many efforts were employed to
help students with on-line learning, the pass rate dropped to just over 56%.
The last row in the table shows data for when the COVID restrictions were
lifted and in-person teaching resumed. Additionally, starting with the Fall
2021 semester, the CS0 course was required for all new CS students (with the
exception being those who passed an optional placement/test-out exam). The
data shows that the pass rate rose dramatically to over 72%. Because many
students who had prior programming experience had not been taking CS0 prior
to this time now started taking the course, a good deal of improvement was
expected and did happen.

Next, considering the data for all years the pass rate was 67.2%. As stated,
the traditional pass rate for a first university programming course falls between
50% and 66.7% which puts our results on the high end of this range. When
looking at just our university, the average pass rate has gone up from our
historic 60% mark to this 67.2% rate. It is too early to get a full picture of
how the change to require CS0 for all new students impacts this pass rate, but
based on the last row in Table 1, early indications are promising that it will
have a large positive impact.

To summarize the data in Table 1, students were performing better with
their first university computer science course, CS0, than what they did when
CS1 was their starting point. The loss rate was still high but improvement did
occur. Next, it is important to keep in mind that the primary goal of creating
the CS0 course was to make it so that more students would be able to pass
the CS1 course. Therefore, Table 2 is presented that shows the pass rates for
the CS1 course separated by students who had taken CS0 and those who had
not. The data is divided similarly to what was done in Table 1. Namely, the
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Table 2: Pass rate for CS1 for students starting with and without CS0
Year Total # Stds Num % Passed # Stds Num % Passed

Stds w/o CS0 Passed w/o CS0 w/ CS0 Passed w/ CS0
F2009-F2019 1082 825 543 65.8% 257 172 66.9%
Sp2020-Sp2021 80 28 18 64.3% 52 39 75.0%
F2021-Sp2023 91 14 10 71.4% 77 60 77.9%
TOTAL 1253 867 571 65.9% 386 271 70.2%

first row presents data from the inception of CS0 until the semester before
the COVID outbreak. The second row has the data for the three semesters of
COVID and the third row presents data after CS0 was made a required course
in the computer science curriculum. The first row data in Table 2 shows that
for students taking CS0 as a starting point the pass rate for CS1 increased
by only 1.1% compared to students who did not take CS0. During the three
semesters of COVID restrictions there was a significant change. For this time
period, students who had taken CS0 had over a 10% better success rate than
those without it. It is difficult to ascertain a reason for this, but it could have
something to do with the fact that students who had taken CS0 were in at least
their second semester of college and might have been better able to handle the
COVID changes than first semester students. Additional study is necessary to
find other possible reasons for this uptick.

The last row has the results after CS0 was made a required course. The pass
rate of the students taking CS0 rose to nearly 78%. The gap between students
who took CS0 and who did not was 6.5%. Analyzing this amount is difficult
because the students who did not take CS0 are students who either placed high
on the placement test or whose program (e.g. Physics, Mathematics) would not
count CS0 and therefore needed to begin with CS1. Still, 6.5% improvement
for the CS0 students is a significant amount.

Considering the overall values in the table, the percentage improvement was
4.3%. While such an improvement is a positive step for the department, it must
be noted that this value is aided by the 6.5% gap from when CS0 was made
a required class. More time is needed to see how this 6.5% amount will vary.
The lingering question is whether an approximate 5% pass rate improvement
justifies the department resources dedicated to having this additional course.
That question, along with a detailed analysis of the data presented in these
two tables, is addressed in the next section.
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4 ANALYSIS AND EFFECTS ON DEPARTMENTAL
RESOURCES

Looking again at Table 1 and focusing on the pre-COVID (pre-Spring 2020)
data, the pass rate for the CS0 course was approximately 67%. As stated,
this was an improvement over our university’s historical beginning computer
science pass rate. However, it must be remembered that CS0 was designed to
be a significantly gentler course than the traditional CS1 course. The pace of
the course was far slower, and the amount of programming constructs covered
was less. While this pass rate was better than the pass rate of CS1, a question
is whether the department is simply moving the drop-out course from CS1 to
this new CS0. Our university is a state university and as such, has admissions
requirements that allows some students to enter the computer science program
with relatively weak backgrounds. Therefore, there will typically be a group
of students who quickly learn that computer science is not for them and will
leave the program after an intro course no matter the level (CS0 or CS1). Still,
the departmental belief is that the retention increase is significant enough to
continue offering the course. As for scheduling and offering the course, in order
to implement CS0 the department needed to offer, on average, two sections of it
every semester. Being a 4-credit course, the 16 credits per year amounts to close
to a full-time faculty position. This is a significant teaching investment, and so
it is important to see if this is paying dividends. Also, there is an opportunity
cost as this faculty position could be devoted to other endeavors. In order
to get a more complete picture of whether this investment is paying off, the
full computer science program for students must be considered. The computer
science major requires approximately 55 additional credits of formal coursework
after CS1 is completed. Using this number of credits and multiplying by the
university’s approximate tuition/per-credit charge yields the revenue generated
per student for those completing the program. Based on an average faculty
salary, roughly five additional students would need to be retained in order to
break even. The data shows that for an incoming cohort of 80 students, there
would be these 5 additional students retained if they would take CS0. (Note:
Historically, we frequently have had incoming cohorts that have exceeded 80
students, but this amount is a safe prediction for the coming years.) Of course,
this analysis assumes that all students who move on to CS2 complete the major.
This is clearly not the case as students leave the major for a myriad of reasons
at various times. However, it does significantly increase the odds of students
continuing in the major and as such, makes it a worthwhile investment of
faculty resources.

The department decided that the CS0 course was serving its purpose and
beginning in Fall 2022, this course became required. Students passing a place-
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ment exam would allow CS0 to be bypassed making CS1 the starting point.
By requiring CS0, it ensured that 2 or 3 sections of it would have to be offered
each semester. If this would further increase retention into CS1, there is a pos-
sibility that an additional section of CS1 would also be needed. With budget
restrictions for the foreseeable future, the possibility of adding any additional
faculty, including adjuncts, is small. Therefore, the department may need to
do some shuffling of upper division electives to accommodate these additional
lower-level sections. This presents a challenge, but it is a good one for the
health of the department.

5 CONCLUSIONS AND FUTURE RESEARCH

Looking at the data it is evident that students who take the CS0 course pass
the CS1 course at a markedly better rate than students who started with
CS1. The reasons for this improvement are no doubt many and varied. First,
the CS0 course introduces students to basic programming constructs such as
conditionals, loops, and functions. Then, when they see these again in CS1
they are better prepared to understand and use them. Next, they have been
through the processes of high-level problem analysis, understanding problem
input-outputs, algorithm development and then turning the algorithms into
actual code. They would also be familiar with program testing in addition to
properly documenting and formatting their code. Students in CS1, while they
may have had some prior programming background, simply did not have the
experience of CS0 and may be seeing many of the concepts presented for the
first time.

Another factor to consider is the level of student maturity. Since students
who have taken CS0 are, in general, second semester students, they would be
slightly more advanced. Considering retention into the next course, CS2, stu-
dents who have passed two programming courses are more confident that they
would be able to successfully complete it and that encourages them to carry
on with the computer science program and attempt the course. Additionally, a
concept under much consideration at higher education institutions is students’
“sense of belonging” [9]. Being in a second course, many of the students who
took CS0 would have met other students and developed relationships for study-
ing and working together on projects and assignments. This could definitely
lead to better performance in CS1 and a greater penchant to persist to CS2.

Considering the drop-out rate for the CS0 course, typical trends are ev-
ident. There is a pretty high drop-out rate that mirrors national averages.
Hence, the idea that the drop-out rate has simply shifted from CS0 to CS1
has some merit. However, the drop rate from the CS major is not as high for
the students taking CS0 and the ultimate good effects make taking CS0 worth
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Table 3: Preliminary Data - Persistence to CS2 for students starting with and
without CS0

Year Total # Stds # Taking % # Stds # Taking %
Stds w/o CS0 CS2 Persist w/ CS0 CS2 Persist

2009-2012 234 196 75 38.3% 38 25 65.8%
2013-2017 292 228 69 30.3% 64 44 68.9%
TOTAL 526 424 144 34.0% 102 69 67.7%

it for students. Therefore, the data appears to make a clear case that having
the CS0 course leads to students doing better in CS1 and moving on to CS2.
The question centering on departmental resources is still an important, and
open, one. In order to make a definitive conclusion about whether the expense
and commitment to having this new course is worth it, additional research and
data are needed.

The research being done now is studying the data for retention into CS2.
Table 3 presents preliminary data for the persistence, or retention, of students
who started with CS1 and CS0 and who enrolled in CS2. (The data is prelimi-
nary since it is incomplete showing only 9 years. Full data will be gathered and
analyzed soon.) Looking at this data, students who started in CS1 without
CS0 persisted to take CS2 at just a rate of 34%. The students who did have
CS0 persisted at nearly 68%, or about double. Again, considering historical
averages, there is typically a significant loss of students after taking a CS1
course. The reasons for this include students doing poorly in CS1 and learning
that the field is not for them. However, with the introduction of a CS0 course,
students will now have had 2 semesters of programming before they would take
the CS2 course. Could it be that there will not be as large of a loss after CS1
since the students are, in effect, more invested in their program? If the reten-
tion rate into CS2 and beyond is improved enough, it would certainly justify
the faculty resource commitment for the CS0 course. Further, it could lead
to larger enrollments for upper-division courses. Hence, obtaining complete
data and analyzing it would appear to be a valuable endeavor. When done,
the department will have gained a more complete answer as to whether the
investment of having the CS0 course in the curriculum has been worthwhile.
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Abstract

Aggregate functions are essential SQL constructs. The usage of ag-
gregate functions is limited to certain SQL clauses such as select and
having. They are allowed in the where clause under certain conditions.
Many students are not aware of this. This can lead to writing SQL
queries that look correct but they are not. This paper aims to clarify
this and to show cases where it is allowed to use aggregate functions
in the where clause. It also gives recommendation to educators to help
them clarify this issue to their students.

1 Motivation

In an undergraduate databases exam, the author of this paper noticed that
several students wrote an SQL query that uses an aggregate function in what
seemed to be a logical way. However, when trying the query in a database
management system (DBMS) such as PostgreSQL or Oracle, the query did not
work. Based on the fact that this query was given by several students and
the instructor was initially confused by the mistake, this clearly indicates that
such usage of aggregate functions must be confusing to students. The author
investigated the reason behind the error in the query to understand the mistake
and to help students avoid such pitfall in the future.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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2 Introduction

Databases is an essential course in the computer science undergraduate cur-
riculum [1]. One of the fundamental subjects that students learn in this course
is Structured Query Language (SQL). The basic structure of an SQL query is
given in Figure 1, where Ai represents an attribute, ri represents a relation,
and P is a predicate [5]. An SQL query can contain subqueries and other
constructs such as exists, set operations, and forming groups.

select A1, A2, ..., An

from r1, r2, ..., rm
where P

Figure 1: Basic structure of an SQL query.

In an exam, students were asked to answer the following question:
Given the following database, where primary key attributes are underlined:

supplier(SID, name, city)
product(productID, description, color)
catalog(SID, productID, price)

Use the set membership operator to find names of suppliers that supply less
than 10 products. Notice that the purpose of the table catalog is to show
products supplied by different suppliers.

A solution that was provided by several students is as follows:

select name
from supplier
where SID in (select SID

from catalog
where catalog.SID = supplier.SID
and count(productID) < 10);

Figure 2: SQL solution given by several students as an answer for an exam
question.

This solution is logical and looks to be correct. It uses the set membership
operator, in. Since the inner query is a correlated subquery that has the con-
dition catalog.SID = supplier.SID, then the inner query will be evaluated
once for every tuple from the outer query. To explain this, let us consider
the instances of the tables supplier and catalog shown in Table 1 and Table 2,
respectively.
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Table 1: Instance of the supplier table.
SID name city
100 Mark Omaha
200 Mary Springfield
500 George Dallas
150 Russ Dallas

Table 2: Instance of the catalog table.
SID productID price
100 P100 10.45
100 P200 15.79
100 P300 14.50
200 P400 14.75
200 P200 14.95
...

...
...

200 P213 29.95
...

...
...

The DBMS will consider the first tuple from the table supplier, and will
execute the inner query for that. I.e., the query will be translated to the query
shown in Figure 3.

select name
from supplier
where SID in (select SID

from catalog
where catalog.SID = 100
and count(productID) < 10);

Figure 3: The query in Figure 2 after substituting supplier.SID by the SID of
the first tuple in the table supplier.

The first three tuples in the catalog table satisfy the inner query, and the
count is less than 10. So, the system would give the name Mark as part of the
answer. On the other hand, when considering the second tuple in supplier, and
assuming that Mary supplies more than 10 products, when the inner query is
evaluated for Mary who supplies more than 10 products, the name Mary would
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not be produced as part of the output. So, logically the above query makes
sense.

Nonetheless, when trying the query in Figure 2 in PostgreSQL or Oracle,
it does not work. For example, PostgreSQL gives the error message shown in
Figure 4.

ERROR: aggregate functions are not allowed in WHERE
LINE 114: and count(productID) < 10);

Figure 4: PostgreSQL error message produced by the query given by students.

3 Pitfall of Aggregate Functions

The error message in Figure 4 indicates that the usage of the aggregate function
– count() in this case – is not allowed in the where clause. However, this is
not always true. For example, an aggregate function is allowed in a subquery
in the where clause as shown in the query in Figure 5, which uses the max()
aggregate function to find the productID of the most expensive product.

select productID
from catalog
where price = (select max(price) from catalog);

Figure 5: Valid usage of an aggregate function in the where clause.

The queries in Figure 2 and Figure 5 show that the usage of aggregate
functions can be confusing to some students.

4 Correct Solution

To understand why the answer provided in Figure 2 is not correct, let us look
at a correct solution to the exam question, which is shown in Figure 6.

The inner query in this solution forms groups based on SID. It then uses
the having clause to keep groups that have less than 10 tuples. I.e., it keeps the
tuples for suppliers that supply less than 10 products. After that, the inner
query gets the SIDs for these suppliers. Then, the outer query uses the set
membership operator, in, to get the names of these suppliers.

4 121



select name
from supplier
where SID in (select SID

from catalog
group by SID
having count(*) < 10);

Figure 6: Correct query that uses the set membership operator to find names
of suppliers that supply less than 10 products.

5 Discussion

A general SQL query can use groups, where, having, subqueries, as well as
other constructs. A more general structure of an SQL query than what is
given in Figure 1 is shown in Figure 7, where Ai and Bj represent attributes,
ri represents a relation, and P and Q are predicates [5].

select A1, A2, ..., An

from r1, r2, ..., rm
where P
group by B1, B2, ..., Bl

having Q

Figure 7: General structure of an SQL query.

Predicates in the where clause are applied before the formation of groups,
while predicates in the having clause are applied after the formation of groups.
The purpose of the having clause is to impose conditions on groups where
groups that do not satisfy the having predicate are filtered out.

Aggregate functions are used to aggregate information on groups. Examples
of aggregate information include finding the sum, average, and count for a
group of numbers. For example, to find the number of products supplied by
each supplier, one needs to form groups over SID in the relation catalog, as
shown in the inner query in Figure 6. Then, the having clause is used to keep
the groups that have less than 10 tuples, i.e., the count is less than 10.

If an aggregate function is used in a query that does not include a group
by construct, then the system assumes that there is only one group consisting
of the tuples that satisfy its where clause [6]. An example of this is shown in
Figure 8.

In the absence of a where clause, the group consists of all the tuples. For
example, the query in Figure 9 works fine because the whole relation is consid-
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select count(*)
from supplier
where city = ’Dallas’
having count(*) > 2;

Figure 8: Valid SQL query that includes where and having clauses but not a
group by clause. In this case, the input to the aggregate function is one group
consisting of the subset of the tuples that satisfy the where clause.

ered as one group, and the system uses the having clause to impose a condition
on that group.

select count(*)
from supplier
having count(*) > 2;

Figure 9: A query that uses having clause with an aggregate function but
without group by clause.

If keyword having is replaced by keyword where in the query in Figure
9, which would give the query in Figure 10, the system would give an error
message similar to what is shown in Figure 4. Although simpler, this query
has the same mistake as the query in Figure 2, which was provided by students
in the exam.

select count(*)
from supplier
where count(*) > 2;

Figure 10: Replacing having by where in the previous query.

If keyword having is replaced by keyword where and a subquery is used to
retrieve the result of the aggregate function as given in Figure 11, the query
works fine.

The main mistake that students committed in the solution in Figure 2 is
writing where count(productID) < 10. To avoid this mistake, students need to
know the SQL constructs where aggregate functions can be used. They also
need to understand when it is possible to use aggregate functions in the where
clause and the correct syntax to do that.
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select count(*)
from supplier
where (select count(*) from supplier) > 2;

Figure 11: Using a subquery in where clause to get result of an aggregate
function.

6 Where Aggregate Functions can be Used

SQL aggregate functions can be used in the select clause and in the having
clause [2, 3, 4, 5, 6]. Examples of this are shown in Figures 5, 6, and 8. An
aggregate function can be used in the where clause if the aggregate function is
used in a subquery and if the result of the subquery is a single value that can
be computed before the outer query executes [3]. An example of this is shown
in Figure 5. In that example, the inner subquery executes first and finds the
maximum price, which is stored in memory. Then, the outer query executes
and compares the price for each tuple with that stored value. This case can be
generalized to explain the situation in Figure 6, where the result of the inner
subquery is a set of values that can be computed and stored in memory before
the outer query executes. Notice that, the query in Figure 6 uses the aggregate
function count in a subquery in the where clause of the outer query.

Another case [4] states that an aggregate function can be used in the where
clause if that is part of a correlated subquery. An example of this is given in
Figure 12. Here the inner subquery will be computed once for every tuple from
the outer query, as was explained in Section 2. The query in Figure 12 finds
names of suppliers that supply less than 10 products. Nonetheless, it does not
use the set membership operator.

select name
from supplier
where (select count(*)

from catalog
where catalog.SID = supplier.SID) < 10;

Figure 12: Example of using an aggregate function in a correlated subquery in
the where clause.

Notice that, the inner query in Figure 12 uses the aggregate function count
in the select clause. Therefore, the aggregate function is used properly in
this inner query. On the other hand, the inner query in Figure 2 uses the
aggregate function count directly in its where clause. Therefore, it violates the
rules discussed above (i.e., the rules mentioned in [3]) about using aggregate
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functions.

7 Helping Students Avoid the Pitfall and Recommenda-
tions to Educators

To help students understand the correct usage of aggregate functions and avoid
the pitfall mentioned in this paper, the author developed a homework assign-
ment that he used the following semester that he taught the databases course.
Part of the assignment is given in Figure 13. The assignment starts by re-
minding the students about the constructs where aggregate functions can be
used. It also reminds students by the rules about when aggregate functions
can be used in the where clause. The assignment includes several questions
that required students to use aggregate functions in the select, having, and
where constructs. It also required them to use the set membership operator
and correlated subquires.

SQL aggregate functions can generally be used in the select and having clauses. An aggregate 

function can be used in the where clause if this usage is done in a subquery and if the result of the 

subquery can be fully computed and the result is known before the outer query executes. Also 

remember that for many correlated subqueries, the inner query is computed fully for each tuple 

from the outer subquery. Keeping this in mind, answer the following questions using the following 

database where primary key attributes are underlined:

student(id, name, dept_name, total_credits)

takes(id, course_id, semester, year, grade)

course(course_id, title, dept_name, credits)

1. Find the number of students in each department. 

2. Find department name and number of students for departments that have at least three students.

3. Use the set membership operator to find the names of students that have taken at least three 

courses.

4. Use the exists construct to find the names of students that have taken at least three courses.

5. Use a correlated subquery in the where clause to find the names of students that have taken at least three 

courses.

Figure 13: Part of a homework assignment designed to help students under-
stand the correct usage of aggregate functions.

When the assignment was graded, the instructor made sure that students
received feedback explaining the mistakes they made. Then, in the exam, the
instructor gave a question very similar to the question in Section 2. None of
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the students committed the same mistake that was committed by the students
in the previous semester. Based on this, the author of this paper recommends
that when teaching aggregate functions, educators need to make sure that:

• Their students know the SQL constructs where aggregate functions can
be used.

• They also need to explain to the students the rules regarding how aggre-
gate functions can be used in the where clause. This is important because
many database textbooks do not mention these rules.

• Provide students with an activity such as a homework assignment or a lab
emphasising these rules, to help them practice using aggregate functions
in different constructs. In particular, practice using aggregate functions
in the where clause is important in helping the students avoid the pitfall
mentioned in this paper.

8 Conclusion

Although the logic of an SQL statement may seem correct, this does not nec-
essarily mean that it is correct. There are rules that an SQL query needs to
adhere to. One such rule is regarding using aggregate functions. Students need
to know these rules and to adhere to them. Aggregate functions can be used
with or without a group by clause. In the absence of a group by clause, ag-
gregate functions are applied to either all or a subset of the tuples in an input
relation. Usually a group by clause is used to apply aggregate functions to
groups of the tuples. Conditions imposed on groups are done using the having
clause. Aggregate functions are usually used in the select and having clauses.
When an aggregate function is used in the where clause, that must be done
in a subquery. Moreover, the DBMS must be able to fully execute the inner
subquery before it executes the outer query. It is important for students to un-
derstand these rules so that they avoid the pitfall of using aggregate functions
inappropriately in the where clause.
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Abstract

We present an OpenCV-based app for segmenting and measuring
cells in tissue images, and we illustrate its application for generating
hypotheses in genetics research. The app is used to process thousands
of tissue images to identify genotypes with large cell size. These selected
genotypes will be further studied to identify genes responsible for cell
size.

1 Introduction

Discovering what genes regulate size and shape in tomato fruit is important
because it helps breeders to create new plant crosses for various consumer
needs. For instance, small tomato fruit varieties like the cherry tomatoes are
appreciated for salads and snacking, medium and meatier sized ones like the

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Roma tomatoes are used for caning and sauces, while very large beefsteak
tomatoes are used for sandwiches.

Recent advancements [4], [1], [8], [6] have identified several size and shape
genes, however the developmental stage at which these genes are expressed is
still unknown. Ongoing research [3] addresses this by generating microscopic
images of tissue in the tomato fruit ovary at various developmental time points
and by evaluating the cell size to identify how early these genes are expressed.
Using OpenCV [2] and Python scripting, we have developed an app for au-
tomating this laborious cell tissue evaluation. Precisely, our tool detects cells,
labels them, and computes their corresponding areas. While this tool is specif-
ically developed for ovary and pericarp tissue in tomato fruit, it can be applied
to other tissue types and other plants.

Figure 1: Manual (expert) segmentation of top seven largest pericarp cells
(left) and automated segmentation of pericarp cells (right).

Currently, our geneticist collaborators hand-circle cells with the help of a
general-purpose image analysis software like ImageJ [5]. Figure 1 illustrates
seven cells manually annotated by a human expert. This is tedious, time con-
suming, and error-prone work as many times the human expert has a difficult
time deciding the next largest cell among many cells of similar size. In this
case, the expert simply chooses one, and moves along with this tedious work.
Our tool, exemplified in Figures 1 and 2, speeds up this stage of researching
genes regulating size and shape, by allowing to rapidly compare hundreds or
thousands of tissues to identify the most likely time-point at which these size
and shape genes are expressed.

There are several image processing tools available like the macro in ImageJ,
for instance, but this macro requires high contrast images and therefore does
not work well for our images which are a bit on the faded spectrum. Since
working on this project, another similar software was published, namely Cell-
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Figure 2: The app outputs an image with labeled cells (middle picture) and a
text file listing the cell areas (right picture).

pose [7]. This tool uses deep learning, and it is trained on 540 images. At a
first glimpse, Cellpose works well on a variety of tissues including ours, but our
software processes images faster than Cellpose.

2 Development of the OpenCV app for cell segmentation

As illustrated in Figure 2, the app reads a pericarp tissue image of a mature
green fruit and generates two outputs, namely an image with labeled segmented
cells and a text file listing the cells and their corresponding areas. If the
researcher is interested in processing only the top 10% largest cells, they will
sort the cells in decreasing order of their size and select only the top 10% part
of the text file. Alternatively, one can run the app requesting the segmentation
of a specific number of largest cells. For instance, Figure 3 shows an output of
10 largest cells in a pericarp tissue.

Our cell detection and measurement app is written in Python and uses
extensively OpenCV functionality. The app accepts .tif images but also works
with other image types recognized by OpenCV, a free and open-source library
of functions for real-time computer vision [2]. The main five steps of the app
are included below and illustrated in Figure 3.

1. Convert input image to RGB, and extract grayscale Color Chan-
nel.

2. Extract local maxima to capture cells using a Gaussian Thresh-
old Noise-resistant Peak. Here we apply cv.GaussianBlur(), a Gaus-
sian filter to blur out sharp edges. Then we select those pixels from the
original grayscale image with a value lower than the blurred image. In
other words, we select many more core white pixels situated in the mid-
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dle of the cell and fewer pixels situated at the edge of the cell. This step
produces an OpenCV mask of the image.

3. Fill holes in Cell Mask with morphological operations. Here we
use cv.floodFill(), a floodfill technique that removes holes inside of a cell.
In brief, we start with one black background pixel and set to white all the
reachable background pixels. In this new mask, the only remaining black
pixels are the holes in the cells. Next, we do an OR operation between
the mask from step 2 and the negative of the floodfilled mask to obtain
a new mask that includes all the cells without any hole.

4. Extract individual cells using the OpenCV cv.findContours()
routine.

5. Filter cells with OpenCV contour properties – in this step we
remove cells that are intersecting the margin of the image, and we use
the solidity measure from OpenCV to remove concave objects and long
line objects, as they usually are margins of the tissue.

6. Output the annotated image and write into a text file the cell
area.

Figure 3: Various steps in our OpenCV app for detecting tissue cells and
computing their areas.

The OpenCV app described above is run in command line and accepts three
parameters:

1. The folder with all the images to be segmented.
2. A scale if using one; this is given as a number and the program uses it

defined as the number of pixels per unit.
3. The number of largest cells to highlight/detect in the image; if this pa-

rameter is missing, the app detects all cells.

Currently, we are working on creating a user-friendly tkinter graphical user
interface for the app.
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3 Comparing segmentations obtained with the OpenCV
app and the human expert

With an automation tool in place, next, we focus on evaluating if its output
is comparable to the human expert one. For this, we compare the areas of
the eight largest cells computed via the two methods. As shown in Figures
4, 5, 6, we use three different sections from the same fruit, namely images
4360, 4361, and 4363. In these figures, for each of the eight cells shown on the
x-axis the three bars correspond to areas in square millimeters computed (1)
by the human expert; (2) by the app; and (3) by the app corrected by a 1.7
multiplicative factor, respectively.

Figure 4: Cell area comparison for the eight largest cells in the first section of
a single fruit (image 4360). For each cell, the three bars correspond to area
computed by the human expert, by the app, and by the app*1.7, respectively.

Our app consistently underestimates the cell areas because it creates thicker
intercellular walls visible in output images such as the ones shown in Figures
2 and 3. However, the areas computed by the app follow the same trend
as the ones computed by the human expert. Further, by multiplying the app
calculations with a corrective factor of 1.7, we observe that these new estimates
approach the human expert evaluations – see Figures 4, 5, 6. From a genetics
expert point of view, we have two remarks about this result:

1. The human experts are not an absolute truth, they too have biases
in selecting by eye the largest cells, and at times, could not decide the
largest of multiple cells of seemingly similar size. In addition, there are
various biases between two or more human experts in segmenting these
tissues, consistency of evaluation being one of them.
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Figure 5: Cell area comparison for the eight largest cells in the second section
of a single fruit (image 4361). For each cell, the three bars correspond to area
computed by the human expert, by the app, and by the app*1.7, respectively.

Figure 6: Cell area comparison for the eight largest cells in the third section
of a single fruit (image 4363). For each cell, the three bars correspond to area
computed by the human expert, by the app, and by the app*1.7, respectively.
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2. Both, the app and the human expert generate same hypothe-
sis. This automated model is used to generate hypotheses that can be
further researched, so its main purpose is to analyze efficiently hundreds
or thousands of tissues to select candidates for additional genetic stud-
ies. For instance, let’s assume that the task is to compare tissues from
varieties A and B to decide which one develops larger cells. If the hu-
man expert evaluates the average cell area of the top ten largest cells to
0.04 and 0.09, respectively, this will direct the researcher to study the
variety B for identifying genes that regulate cell size. However, the au-
tomated model arrives to the same hypothesis as both average cell areas
are smaller by a factor of 1.7, i.e. 0.024 for variety A and 0.053 for variety
B.

4 Generating hypotheses with the OpenCV app

The next example illustrates one way in which our collaborators from Univ. of
Georgia use this app to identify worthy hypotheses that are further investigated
via more time-consuming lab experimentations. In this example, our plant
geneticist collaborators utilized a tomato population 20S87 with plants mostly
identical in their genome. Only a small region containing a few genes are
different between those noted as genotypes A, B, and H. The genotype A plants
carry larger fruits than genotypes B and H plants. The hypothesis is that the
larger fruits from genotype A is caused by larger cell size. If such hypothesis
is proven, we may further deduce that one of the genes in the differed genomic
region regulate cell size.

Table 1: The 135-image data for population 20S87 are obtained from 3 geno-
types x 5 plants x 3 fruit x 3 sections

Tissue Plant number Fruit number Section number
name “pl” “fruit” “sect”

A-20S87-pl-fruit-sect 17, 23, 29, 31, 33 1, 2, 3 1, 2, 3
B-20S87-pl-fruit-sect 20, 26, 27, 30, 66 1, 2, 3 1, 2, 3
H-20S87-pl-fruit-sect 07, 15, 16, 19, 35 1, 2, 3 1, 2, 3

To compare the cell size in tomato fruits, pericarp tissue (flesh tissue) was
sectioned from each fruit and imaged under microscope. The geneticists pro-
vided us with 135 images (3 genotypes * 5 plants * 3 fruit * 3 sections). For
each genotype, we collect fruits from five different plants denoted by “pl” in
Table 1. From each plant we collect three different fruits, labeled as “fruit” in
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the table, and from each fruit we dissect three pericarp sections to view under
microscope.

The research question we are interested in answering is: which (if any) of
these three genotypes carry a gene allele that produces large cells? To answer
this, we use the OpenCV app for identifying the 10 largest cells in every image
and then compute their areas. Next, for each genotype, we compute with a
Python script the per-plant minimum, average, and maximum areas (in pixels),
as shown in Figure 7. On this figure we observe that genotype A-20S87 has
the largest cells while genotype H-20S87 has the smallest cells; however, a
statistical test will tell how relevant these differences are.

Figure 7: Per-genotype minimum, average, and maximum area; genotype A-
20S87 has the largest top 10 cells.

Table 2: Pairwise ANOVA between A, B and H genotypes, analysis of the 10
largest cells; The A vs H experiment rejects the null hypothesis meaning there
is a significant difference between the cell areas in these two genotypes, namely
there are larger cells in genotype A than in H.

ANOVA statistics for A and B A and H B and H
the OpenCV app

F 0.993 8.881 2.670
p 0.348 0.017 0.140
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Table 2 shows the pairwise results of an ANOVA analysis for areas of these
three genotypes. Based on F and p values, the two genotypes to be further
explored are A and H. Namely, ANOVA for these two entities rejects the null
hypothesis, meaning there is a significant difference between the cell areas in
genotypes A and H. This further implies that the dominant allele in A creates
significantly larger cells than the allele in H, thus answering the question posed
above. Therefore, the gene allele or mutation that will be researched further
is the one in genotype A.

Table 3: Pairwise ANOVA between A, B and H genotypes, analysis of the 100
largest cells; Only the A vs H experiment rejects null hypothesis meaning there
is a significant difference between the cell areas in these two genotypes, namely
there are larger cells in genotype A than in H.

ANOVA statistics for A and B A and H B and H
the OpenCV app

F 4.753 10.831 2.493
p 0.060 0.011 0.152

Table 4: Pairwise ANOVA between A, B and H genotypes, analysis of all cells;
none of the three comparisons reject the null hypothesis.

ANOVA statistics for A and B A and H B and H
the OpenCV app

F 4.452 4.001 2.915
p 0.067 0.080 0.092

Table 3 summarizes the ANOVA analysis when looking at the largest 100
cells. In this experiment, again, we observe that the largest cells are in genotype
A and the smallest ones in H. In fact, the same hypothesis is generated as in
the 10 largest cells experiment, but with even better statistics: a larger F-value
and a lower p-value. However, when repeating the experiment using all cells
(see Table 4), this hypothesis is no longer evident. Namely, while the F-value
of 4.001 might suggest some differences between the cell sizes from the two
genotypes, the p-value of 0.080 is larger than the confidence threshold of 0.05
to be able to reject the null hypothesis. At a second look, this result is not
surprising if considering the average per-plant cell count plotted in Figure 8.
On average, genotype A has the larger number of cells (an average of 582 per
plant), and genotype H has the fewest number of cells (463 cells per plant).
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This suggests the following two hypotheses which are evident in the tissue
samples from Figure 9:

1. Genotype A consists of many large cells and of many small cells ready to
grow.

2. Genotype H has fewer cells in general, and these cells are of average size.

Figure 8: Per-plant (x-axis) minimum, average, and maximum number (y-axis)
of cells; on average, genotype A-20S87 has the largest number of cells ( 582
per plant) and genotype H-20S87 has the least number of cells ( 463 cells per
plant).

When we incorporate all cells in the ANOVA analysis, we work with overall
similar total tissue areas in both genotypes A and H. Further, under the two
hypotheses described above, the cell area average in the entire genotype A
tissue can be similar to the one in genotype H. For instance, an average of
4 can be generated by cell areas of 7, 7, 2, 2, 2, an A-like genotype area
distribution with large variance of cell sizes, some cells being large and others
being small. However, an average of 4 can also be generated by cell areas
of 4, 4, 4, 4, an H-like genotype area distribution consisting of less cells of
medium size. Figure 9 shows actual tissue examples of the two genotypes.
These samples are consistent with the above analysis and hypotheses. Also,
as the cells get smaller, they are harder to segment from the background in
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the image. Therefore, including more of the cells past a certain point would
decrease the effectiveness of the experiment – this is another deterrent for using
all cells in the tissue for this type of tissue comparison.

Figure 9: Tissue samples from genotypes A-20S87 (left) and H-20S87 (right).

The above analysis leads to an important observation. Namely, to gener-
ate hypotheses about tissue cell-size, it is best to compare the top
10% or 20% largest cells in the tissues; it is not recommended to compare
all cells in the tissues.

Another important note is that, when this type of tissue comparison is
done by the human researcher, the top 10 largest cells experiment is what the
human would normally do, because segmenting the 100 largest cells would be
too tedious. But with this app, the largest 100 cells analysis is completed
within a few minutes, demonstrating the usefulness of this app.

5 Conclusions and future work

Here we present an efficient OpenCV app written in Python which is useful in
segmenting cells in fruit tissues and in computing their area. In addition, we
illustrate on a real example how this app generates hypotheses to be further
researched by genetics experts. With recent advancement in deep learning
for image analysis, similar tools were recently developed using this powerful
technology. One such tool is Cellpose developed in 2021. Our next step is to
compare our tool with Cellpose, in terms of recognition power and speed of
processing. We will also look at how these tools fare against the human expert
in many tissue images. An initial comparison reveals that Cellpose is more
accurate in evaluating cell areas, but it is much slower than our OpenCV app.

Acknowledgement: This work is funded from the research grant NSF
Award 2048425.
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Abstract

This experience report describes the author’s use of the classic man-
cabbage-goat-wolf (MCGW) riddle to teach the main elements of compu-
tational thinking in CS1. Instead of teaching each computational thinking
element individually, in the process of solving the MCGW problem the
students are able to understand the process of abstracting a problem to
a representation that can be understood by computer, finding a suitable
algorithm to solve the abstracted problem, and decomposing the problem
into different logical and more manageable parts. The survey responses
from two recent classes clearly validate the effectiveness of this problem-
driven approach even for a large class of very diverse backgrounds.

1 Introduction

Computational thinking (CT) has long been recognized to be a necessary skill
in this information era [9]. There have been many initiatives in making CT as
part of the K-12 education. For example, Switzerland recently introduced a
national curriculum, called Lehrplan 21, mandating Computer Science Edu-
cation [4]. In the higher education, on the other hand, a lot of effort has been
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tributed for direct commercial advantage, the CCSC copyright notice and the title of the publi-
cation and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.
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spent on teaching CT to first-year, non-CS majors [6], such as Science majors
[3]. This paper concerns teaching CT to a CS1 class which consists of 80% CS
majors and 20% non-CS majors. Moreover, a majority of the CS majors did
not have any prior exposure to CT and computer programming.

Recently, there have been reflections on how to deliver CT more effectively
mostly to the K-12 education. Denning points out that the current definition
of CT is still vague and confusing [2]. This causes the teachers in the field to
wrestle with what to deliver and how to assess CT. A more fundamental chal-
lenge is to substantiate the benefit of CT to everyone. Yaşar suggests that the
problem lies with “linking CT to electronic computing devices and equating
it with thinking by computer scientists” [10]. In this paper, by CT, the author
means data abstraction, algorithm design, and problem decomposition—the
three major tools for solving problems using a computational approach.

In the rest of this paper, the author will first describe the overall approach
to teaching CS1 on CT. After that, a problem-driven learning approach using
the classic man-cabbage-goat-wolf to teach the entire problem-solving process
is introduced. Finally, survey results are presented to evaluate the effective-
ness of this problem-driven approach.

2 A Problem-Driven Approach

The course to be presented in this paper is a CS1 course. Every CS Freshman
is required to take this course. The class size ranges from 150 to 170 taught
in two sessions. The main goal of this course is to equip them with CT and
practical skills to solve problems computationally. This course is expected to
lay a good foundation for them to study other CS courses. Although some
students already have experience on computer programming or other related
knowledge before enrolling into this course, most of them do not. Moreover,
around 20% of them major in the business side of Financial Technology and
Accountancy. Learning CS subjects requires them to change their thinking
process and learning approach.

Owing to the students’ very diverse backgrounds, the major challenge is
to find an effective approach for all students to acquire CT and practical skills.
The author has been experimenting with several approaches, ranging from a
programming-oriented approach to an algorithm-oriented approach. Starting
from several years ago the author devised a problem-driven approach which by
far is the most effective one.1 In a nutshell, this approach demonstrates the
major elements in CT through the process of solving problems. These prob-
lems must be big enough to apply most, if not all, of the major components.

1This approach is more commonly known as problem-based learning [7]. Problem driven
approach is used in this paper to emphasize that the entire course is based on this approach.

2 141



However, the problem cannot be too difficult for the students. The author has
used the man-cabbage-goat-wolf (MCGW) problem [1] and the stock span
problem [8] which meet the aforementioned requirements. Due to the page
limitation, this paper reports the experience only for the MCGW problem.

Figure 1: The course structure of CS1. The vertical arrow indicates that the
horizontal subject blocks are taught bottom up. The vertical block of Python
programming is taught throughout the course.

Figure 1 shows the structure of CS1. There are four major blocks to cover:
preliminaries, the meaning of computation, and the two problems (MCGW
and stock span). In addition to that, the author also teaches them the ba-
sics of Python programming, so that they could code the solutions to the two
problems. Except for the first two weeks, the author covers the four blocks
and Python programming in parallel. The author covers the four blocks us-
ing a bottom-up approach. First of all, the students are taught computer ar-
chitecture, number representations in computers, iterations, and functions.
Students often have problems with using for loops and functions. An early
exposure of these two important constructs will help them master them.

Teaching CT starts from the block on Introduction to Computation. The
key question to answer in this block is “What is computation?” The answer to
that is “Computation is the automation of our abstractions” [9]. The author
in [5] uses a simple and yet revealing example to illustrate the meaning of
computation. The example is to develop a function to add a number of mul-
tidigit numbers. The students are shown that the starting point to solve the
problem is a given addition table for two single digits. The example thus in-
troduces how a complex problem can be solved by building functions based
on a simple two-digit addition table. Moreover, the “addition” could be re-
placed by any operation. Therefore, the abstraction (i.e., understanding what
the table represents) is performed by us. On the other side, the machine,
which is oblivious to the meaning of the data, carries out the mechanical cal-
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culation to produce the expected results, thus the automation part.

Figure 2: The problem-solving cycle. The cycle starts with the human-
readable problem and ends with a Python program that solves the human-
readable problem.

Figure 2 shows the entire problem-solving cycle that covers the three major
elements in CT: data abstraction, algorithm design and problem decomposi-
tion.

1. The goal of data abstraction is to transform a human-readable problem
(input (1)) to a computer-readable problem (output (2)). This step is cru-
cial to solving many problems, including the MCGW problem. How-
ever, this step could be trivial for other problems, such as Tower of
Hanoi.

2. The goal of the algorithm design is to design an efficient algorithm to
solve the computer-readable problem obtained from the data abstrac-
tion. The algorithm required for solving the MCGW problem is a shortest-
path algorithm. However, this algorithm is too difficult for first-year
students to understand the importance of time complexity. The author
therefore chooses the stock span problem for the algorithm design.

3. The problem decomposition concerns how to decompose the problem
into a set of “smaller” problems, each of which could be tackled inde-
pendently from each other. Many of these smaller problems come from
the data abstraction process, while others from the algorithm design.
The MCGW problem is a good example to illustrate decomposition. We
put the algorithm design and decomposition in the same block because
they can be carried out at the same time. The output of this block is a
pseudocode program consisting of abstract functions.

Finally, the abstract functions are coded to solve the human-readable problem
at the end of this problem-solving cycle.
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3 The MCGW problem

The MCGW problem is a classic riddle that has been told in different ways. It
is simple to understand and at the same time is sufficient for demonstrating
the entire problem-solving process. The classic problem calls for a man to
bring a cabbage, a goat and a wolf from the east side of a river to the west side
in a smallest number of trips. Several constraints make this problem harder
to solve: (1) Besides the man, the boat can accommodate at most one more
party. (2) The goat and the wolf cannot be left alone without the man. (3) The
cabbage and the goat cannot be left alone without the man.

This paper reports the author’s two recent years of experience. The au-
thor covered the data abstraction and decomposition process in the class and
assigned the coding task to the students as a class project in the first year. Be-
sides the code, the students were also required to hand in a two-page report to
document the entire problem-solving process. In the second year, the author
covered it in the class and also made the code available. The author assigned
a three-couple river crossing problem, which is an extension to the MCGW
problem, as a class project.

3.1 Data abstraction

The data abstraction phase is a crucial step in solving this problem. In go-
ing through the entire problem-solving process, the students have learned a
number of useful abstraction techniques. First of all, the students learn how
to abstract away nonessential details about the problem and retain those that
are essential to solving the problem. Second, the students pick up the idea of
modeling the problem using a 4-tuple (state): (E/W E/W E/W E/W) which
indicates the respective locations (E: east; W: west) of the man, cabbage, goat
and wolf. Third, out of the 16 distinct states, they apply the problem con-
straints to classify the states into a set of legal states and a set of nonlegal
states. Finally, they connect those legal states together to form a ten-node
bidirectional graph as depicted in Figure 3. At the end of this phase, the prob-
lem is abstracted to finding a shortest-path on the graph with the starting state
(EEEE) and the ending state (WWWW).

Figure 3: A graph representation of the data in the MCGW problem. The
graph consists of 10 nodes and 10 bi-directional links. Each node is a state of
the problem. A link connecting two nodes if they can transition to each other.
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Throughout this process, the students are also exposed to a number of ab-
stract data types: boolean for the locations, set for the set of legal/illegal states,
sequence for the state and the shortest path, and graph for the interconnection
of the legal states. Those students who have prior experience on computer
programming are often confused about the relationship of the abstract data
types and the data types supported by a programming language.

3.2 Algorithm design and decomposition

To solve the shortest-path problem, most of the students use the code pro-
vided to them, because devising such algorithm is out of the scope of this
introductory course. More “advanced” students apply the breadth search al-
gorithm to solve the problem. The author also does not require the student to
evaluate the time complexity of the provided algorithm which will be taught
in the stock span problem.

After abstracting the MCGW problem to a shortest-path problem, the stu-
dents are ready to develop a solution by decomposing it into a set of subprob-
lems. It is not hard for them to recognize the need to form the graph, to find
the shortest path, and to print out the solution in a human readable format.
Moreover, when solving the graph-forming problem, they need to pick up
two more important skills. First, they need to decide the input for solving this
problem which is either the set of all possible states or the set of legal states.
Second, they learn how to further decompose the graph-forming problem. At
this point, they are taught two ways of creating a graph: adjacency list and ad-
jacency matrix. Since the graph is sparse, they use the adjacency-list method,
and they learn to identify a subproblem of finding the neighboring states for
each legal state. The solution to each subproblem is expressed as a function.
Figure 4 shows the abstract functions to solve the problem.

3.3 Coding with Python

As mentioned before, Python programming is taught in parallel to the CT
elements. By the time the students are required to code the solutions to the
MCGW problem, they have already learned various Python built-in data types,
such as list, tuple, set, and dictionary. At this stage, the students learn the best
way to implement the abstract data types identified in the data abstraction
phase. It presents less problem for them to implement boolean, sequence, and
set using the corresponding Python data types with the same names. To im-
plement the graph, the students are first asked to implement the graph in the
form of adjacent list with Python list. Since each state is a 4-tuple of characters,
a single list cannot implement the graph. It turns out that adding another list
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Figure 4: The structure of abstract functions to solve the MCGW problem. A
solid blue line AB shows that function A calls function B. A dotted red line
AB shows that the output of executing function A is passed to function B as
an argument.

will be able to implement it. The students are then shown that Python dictio-
nary can implement the graph in a much more straightforward manner. This
self-exploration process helps them appreciate the dictionary data type.

4 Evaluation

This section presents the evaluation results for two years. Both classes were
taught the MCGW problem with several differences. First, although the MCGW
problem was presented in both classes, it was given as a class project only for
the first year. The students were required to code the solution by themselves.
In the second year, the class project is an extended version of the MCGW prob-
lem. They were given the code for the MCGW problem as the base.

A set of 6 statements (S1, S2, · · · , S6) were given to both classes in an
online survey. The statements are given in Figure 5, 6, and 7. For the first year,
26 responses were received out of around 140 students (response rate: 19%).
For the second year, 40 responses were received out of around 160 students
(response rate: 25%). The difference in the response rates is not too large to
compare them. Furthermore, the author could reach only the CS majors in
the first year but not the students in the business side of Financial Technology
who generally need more help. Therefore, the survey results could possibly
be biased by these uncontrollable factors.

Figure 5a shows the responses to S1. Around 70% of the responses agree
or strongly agree that the MCGW problem helps them understand the pro-
cess of abstracting a human-readable problem to a machine-readable prob-
lem. The results for both classes are surprisingly similar. More than 10% in
the second year strongly disagree to this statement. By examining the individ-
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(a) Survey results for statement 1. (b) Survey results for statement 2.

Figure 5: Survey results for statement 1 and 2. The vertical axis is the percent-
age of the responses.

(a) Survey results for statement 3. (b) Survey results for statement 4.

Figure 6: Survey results for statement 3 and 4. The vertical axis is the percent-
age of the responses.

ual responses, the author found that five responses rated all statements with
‘strongly disagree.’ Therefore, there is always more than 10% ‘strongly dis-
agree’ responses in other figures. Moreover, S2 is designed to measure their
understanding of abstract data types. The results in Figure 5b are less favor-
able, but there are still more than 60% in ‘strongly agree’ and ‘agree’.

The next two figures, Figure 6a and Figure 6b, are overwhelmingly posi-
tive for S3 and S4, respectively. S3 assesses whether the students understand
the difference between abstract data types and their implementation through
the MCGW problem. Almost 40% of them strongly agree. For the first class,
almost 90% of them strongly agree or agree to this statement. The results
for the second year would be similar if excluding the five always-strongly-
disagree responses. The responses to S4 are even more positive. By working
through the entire problem-solving process, it is not difficult for students to
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(a) Survey results for statement 5. (b) Survey results for statement 6.

Figure 7: Survey results for statement 5 and 6. The vertical axis is the percent-
age of the responses.

see that coding is just one of the steps.
As shown in Figure 7a, their responses to S5 about the class project is not

as positive as for the last two statements. They are more similar to that for S1.
There are still between 65% and 70% indicating ‘strongly agree’ and ‘agree’.
Finally, the last statement S6 is to link the MCGW problem and the stock span
problem (not discussed in this paper) to the understanding of computation
defined as the automation of our abstractions. We unfortunately cannot sep-
arate the results for the MCGW problem. Here we see a more significant dis-
tinction between the two years. The second year that was attended only by CS
students responded much more positively in the category of ‘strongly agree’.
For the first year, slightly over 50% (strongly) agree to that statement.

5 Conclusions

In this paper, the author presented his two years of experience of using a
problem-driven learning approach to teach a CS1 course on the main elements
in CT: data abstraction, algorithm design, problem decomposition, and cod-
ing. The student survey results from 66 students in two years indicate that
the approach is effective. By going through the MCGW problem, the students
are taught the whole process of problem-solving and understand the meaning
and importance of data abstraction, algorithm design, and problem decompo-
sition. Future exploration of this approach includes trying different kinds of
problems and introducing more opportunities for student feedback at differ-
ent milestones in the project.
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