
The Journal of Computing
Sciences in Colleges

Papers of the 26th Annual CCSC
Northwestern Conference

October 11th and October 12th, 2024
Willamette University

Salem, OR

Abbas Attarwala, Editor Sharon Tuttle, Regional Editor
California State University, Chico Cal Poly Humboldt

Volume 40, Number 1 October 2024

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2024 CCSC Northwestern Conference 10

Regional Committees — 2024 CCSC Northwestern Region 11

Humans in the Loop: How Wikipedia’s AI Tools Keep Volunteers
at the Helm — Keynote 12

Selena Deckelmann, Chief Product and Technology Officer, Wikimedia
Foundation

Computer Science Assignments and Activities that Support Aca-
demic Belonging — Panel Discussion 13

Shereen Khoja, Pacific University; Tammy VanDeGrift, University of
Portland

An Introduction to MPICH Parallel Programming in C++ —
Conference Tutorial 15

Xuguang Chen, Saint Martin’s University

Debugging Server- and Client-Side Javascript — Conference Tu-
torial 18

Tiva Rocco, Joshua B. Gross, California State University, Monterey
Bay

Bridging the Quantum Computing Skills Gap: Integrating Quan-
tum Education into Computer Science Curricula — Conference
Tutorial 21

Farzin Bahadori, Radana Dvorak, Saint Martin’s University

Designing Contributing Guides to Facilitate Undergraduate Soft-
ware Development Research — Conference Tutorial 23

Anna Ritz, Oliver Anderson, Altaf Barelvi, Reed College

Cybersecurity Exercises in the Age of LLMs — Conference Tu-
torial 25

Richard Weiss, The Evergreen State College; Jens Mache, Lewis Clark

3

College

Investigating Hinge-Points in Computer Science Identity and Ca-
reer Plans 28

Ben Tribelhorn, Shiley School of Engineering, University of Portland,
Nicole Ralston, School of Education, University of Portland

Demographics, Approaches, and Conceptions: Understanding Com-
puter Science Learning 38

Bokai Yang, University of Wisconsin – Eau Claire; Ling Hao, Illinois
State University; Yuqi Song, Xin Zhang, University of Southern Maine;
Fei Zuo, Xianshan Qu, University of Central Oklahoma

Large Language Model-Supported Software Testing with the CS
Matrix Taxonomy 49

Johannah L. Crandall, Spokane Falls Community College; Aaron S.
Crandall, Gonzaga University

An Adaptive, Hint-Driven, Polymorphic CTF Framework for Ed-
ucational Purposes 59

David Pouliot, Southern Oregon University; Nate Balmain, University
of Oregon

An Evaluation on the Impact of Large Language Models on Com-
puter Science Curricula 70

Junghwan Rhee, Aakankshya Shrestha, Gang Qian, Fei Zuo, Jicheng
Fu, Myungah Park, Xianshan Qu, Goutam Mylavarapu, Hong Sung,
University of Central Oklahoma

Investigation of Computing Transfer Students Success 81
Cheyenne Ty, Kay Vargas, California State Polytechnic University Hum-
boldt; Yun Wan, University of Houston-Victoria; Xiwei Wang, North-
eastern Illinois University; Palvi Aggarwal, University of Texas at El
Paso; Shebuti Rayana, SUNY at Old Westbury; Sherrene Bogle, Cali-
fornia State Polytechnic University Humboldt

Résumé Revisions to Document Learning Outcomes in a Compu-
tational Biology Course 92

Tammy VanDeGrift, University of Portland

Undergraduate Perceptions on Attending Interdisciplinary Con-
ferences 102

Anna Ritz, Reed College

4

Student-perspective Observations from the Comparison of Rust
and C++ Languages 112

Josiah Scott, Fei Zuo, Junghwan Rhee, University of Central Oklahoma

The Effectiveness of Coding LLMs and the Challenges in Teaching
CS1/2: A Case Study 122

Alexander Hong, Duke University; Gongbing Hong, Georgia College and
State University

A Practical Approach to Improve CS Curriculum Through Con-
tinuous Assessment to ABET Outcomes 132

Yi Liu, Gongbing Hong, Georgia College and State University

A Machine Learning Based Sentiment Analysis for Twitter Data145
Kazi Abdullah Al Arafat, Mahmudur Rahman Roni, Atish Dipankar
University of Science and Technology; Kode Creer, Imtiaz Parvez, Utah
Valley University

Reviewers — 2024 CCSC Northwestern Conference 158

5

6

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Bryan Dixon, President (2026),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.
Shereen Khoja, Vice
President/President-Elect (2026),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Abbas Attarwala, Publications Chair
(2027), aattarwala@csuchico.edu,
Department of Computer Science,
California State University Chico,
Chico, CA 95929.
Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).
Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative (2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Ben Tribelhorn, Northwestern
Representative (2027), tribelhb@up.edu,
School of Engineering, University of
Portland, Portland, OR 97203.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Mika Morgan, South Central
Representative (2027),
mikamorgan@wsu.edu, Department of
Computer Science, Washington State
University, Pullman, WA 99163.
Karen Works, Southeastern
Representative (2027),
kworks@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

7

Serving the CCSC: These members
are serving in positions as indicated:
Bin “Crystal” Peng, Associate Editor,
bin.peng@park.edu, Department of
Computer Science and Information
Systems, Park University, Parkville, MO
64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of
Computer Science, Hood College,
Frederick, MD 21701.

Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.

Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.

Ed Lindoo, UPE Liaison,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.

Deborah Hwang, Webmaster,
hwangdjh@acm.org.

8

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

Code Grade
GitHub

9

Welcome to the 2024 CCSC Northwestern
Conference Willamette University

On behalf of the Conference Steering Committee and the Northwest Re-
gional Board, it is my pleasure to extend a warm welcome to all attendees
of the Twenty-Sixth Annual Consortium for Computing Sciences in Colleges
(CCSC) Northwestern Regional Conference. We are honored to host this year’s
event at Willamette University and are eagerly looking forward to engaging
with you all in person.

I would like to extend my sincere gratitude to the many individuals and
groups who contributed their time and effort to coordinating and supporting
this year’s conference. Their dedication has been invaluable. This year’s pro-
gram features 11 peer-reviewed papers, six panels and tutorials, and a keynote
address. All submissions underwent a rigorous peer review process, with 12
out of 18 papers being accepted, resulting in an acceptance rate of 67%.

We would like to express our sincere appreciation to our colleagues from
across the region who served as professional reviewers. Their generous contri-
butions of time and expertise were invaluable in shaping the selection of this
year’s conference program. Our Keynote speaker, Selena Deckelmann, Chief
Product and Technology Officer from Wikimedia Foundation, will discuss how
Wikipedia utilizes AI.

Of course, none of this would be possible without the support of our national
and local partners. A heartfelt thank you also goes out to you, the attendees,
whose participation is crucial not only to the success of conferences like this,
but also to fostering continued communication and collegiality among those
dedicated to advancing and promoting our discipline.

We are thrilled to welcome you to our campus and hope you enjoy the
conference, as well as the opportunity to connect with colleagues at this annual
gathering.

Lucas Cordova
Willamette University

CCSC-NW 2024 Conference Chair

10

2024 CCSC Northwestern Conference Steering Committee
Lucas Cordova, Conference Chair .Willamette University
Haiyan Cheng, Site Chair .Willamette University
Bryan Fischer, Program Chair . Gonzaga University
Ben Tribelhorn, Papers Chair . University of Portland
John Stratton, Panels & Tutorials ChairWhitman College
Radana Dvorak, Partners Chair Saint Martin’s University
Fred Agbo, Student Posters Chair . Willamette University

Regional Board - 2024 CCSC Northwestern Region
Ben Tribelhorn, Regional Repr. (on sabbatical)University of Portland
Haiyan Cheng, Regional Repr. (2024-2025) Willamette University
Bryan Fischer, Registrar . Gonzaga University
Lucas Cordova, Treasurer .Willamette University
Sharon Tuttle, Editor . Cal Poly Humboldt University
Stuart Steiner, Past Conference Chair Eastern Washington University
Lucas Cordova, Conference Chair .Willamette University
Paul Pham, Website AdministratorThe Evergreen State College

11

Humans in the Loop: How Wikipedia’s AI
Tools Keep Volunteers at the Helm∗

Keynote

Selena Deckelmann
Chief Product and Technology Officer at the Wikimedia Foundation

For over two decades, volunteers around the world have contributed their
time and expertise to a revolutionary project: Wikipedia, the online encyclo-
pedia anyone can edit. Wikipedia has grown with the internet and, thanks to
these volunteers, is now recognized as the largest digital repository of knowl-
edge ever.

With the recent cascade of accessible generative AI tools, the internet has
entered a new era — one full of possibilities, but also uncertainty about how
broad implementation of these tools will impact the human-built web we know
and depend on for accurate, reliable information.

Selena Deckelmann, Chief Product and Technology Officer at the Wiki-
media Foundation, will speak to how Wikipedians use AI advancements to
support, not replace, human contributions across the Wikimedia projects, and
what lessons can be gleaned from Wikipedia’s open model of global collabora-
tion and connection.

∗Copyright is held by the author/owner.

112

Computer Science Assignments and Activities
that Support Academic Belonging∗

Panel Discussion

Shereen Khoja1, Tammy VanDeGrift2
1Mathematics, Computer Science, and Data Science

Pacific University, Forest Grove, OR 97116
shereen@pacificu.edu

2Computer Science, Shiley School of Engineering
University of Portland, Portland, OR 97203

vandegri@up.edu

1 Abstract

Feeling a sense of belonging is an essential human need that, when met, is
associated with positive outcomes [1]. Academic belonging is defined by Lewis
et al as the extent to which students subjectively perceive that they are valued,
accepted, and legitimate members in their academic domain [2], and a sense of
academic belonging in a course has been consistently linked to engagement in
STEM coursework [3].

Faculty members will share assignments and activities that they use to
foster a sense of belonging in their computer science courses. Each panelist
will provide an overview of the activity or assignment, its goal(s) or learning
objective(s), and any outcomes and observations. After the panelists present,
attendees will be invited to share their ideas and activities they use to foster a
sense of belonging in a computer science classroom.

The assignments and activities fall under the following course and class-
room practices that have been shown to foster a sense of belonging in higher
education:

• Fostering supportive spaces:
∗Copyright is held by the author/owner.

1 13

– Blobs/lines activity.
– Thanking those who support others in group work.
– Allowing multiple modalities for collaborative work in the classroom

(computer, whiteboard, paper).
• Sharing authentic self:

– Sharing personal journey in CS.
– Giving students options for how to present projects (infographic,

video, paper, etc.).
– Start of semester survey where I share about myself and invite stu-

dents to share what they feel comfortable sharing about themselves.
• Embracing an asset-based (anti-deficit) teaching approach:

– Artwork to demonstrate a computing concept.
– In software engineering, students articulate their assets and we dis-

cuss and apply these to their senior capstone projects.
• Cultivating growth mindset:

– Exam reflections.
– Share stories of my own struggles when I was a student.
– Low stake assignments in upper division courses that encourage

seeking critique.
• Avoiding reinforcing stereotypes of who belongs or does not
belong in a discipline:
– Students share non-computing interests.
– Start of semester survey where I share part of my personality or

hobby that does not fit the stereotype.

References

[1] Roy F. Baumeister and Mark R. Leary. The need to belong: Desire for interper-
sonal attachments as a fundamental human motivation. Psychological Bulletin,
117(3):497–529, 1995.

[2] Karyn L. Lewis, Jane G. Stout, Steven J. Pollock, Noah D. Finkelstein, and
Tiffany A. Ito. Fitting in or opting out: A review of key social-psychological
factors influencing a sense of belonging for women in physics. Physical Review
Physics Education Research, 12(2):020110, 2016.

[3] Denise Wilson, Diane Jones, Fraser Bocell, Joy Crawford, Mee Joo Kim, Nanette
Veilleux, Tamara Floyd-Smith, Rebecca Bates, and Melani Plett. Belonging and
academic engagement among undergraduate stem students: A multi-institutional
study. Research in Higher Education, 56:750–776, 2015.

214

An Introduction to MPICH Parallel
Programming in C++∗

Conference Tutorial

Xuguang Chen
Computer Science Department

Saint Martin’s University
Lacey, WA 98503
xchen@stmartin.eduu

Parallel Computing and MPI

Parallel computing is a type of computation where many calculations or pro-
cesses are carried out simultaneously. Hence, a large problem can often be
divided into smaller subtasks that then can be solved at the same time so as to
increase computational speed and efficiency, leveraging multiple processors or
computers working together. Parallel computing has been applied to a variety
of application area such as scientific computing, engineering simulations, image
processing, and big data processing.

Parallel programming models are diverse, with two of the most well-known
being the message-passing model and the shared-memory model. As an ex-
ample of the message-passing model, the Message Passing Interface (MPI) is
a communication protocol and library standard proposed for parallel comput-
ing. It allows different nodes in a distributed computing environment to com-
municate and coordinate with each other by explicitly sending and receiving
messages. MPI includes various operations, for example:

1. Initialization and Termination: MPI_Init and MPI_Finalize
2. Point-to-Point Communication: MPI_Send and MPI_Recv
3. Collective Communication: broadcast (MPI_Bcast), reduction (MPI_-

Reduce), and scatter (MPI_Scatter)

∗Copyright is held by the author/owner.

1 15

4. Synchronization: MPI_Barrier

As a protocol and library standard, MPI can be implemented in different
languages, including C, C++, Java, Python, and Fortran.

MPICH

MPICH is a high performance and widely portable implementation of the MPI
standard. It supports both point-to-point and collective communication proto-
cols, making it suitable for a wide range of applications, for instance develop-
ment of parallel applications running simultaneously on multiple processors or
computers to effectively handling large-scale computations, academic and in-
dustrial research to explore new parallel algorithms and improve existing ones,
testing and benchmarking the performance of parallel systems and applications
so as to provide insights into scalability and efficiency, and deployed in various
high-performance computing (HPC) systems and supercomputers to perform
complex simulations, data analysis, and scientific computations.

Tutorial Overview

MPICH can be implemented in various programming languages. This tuto-
rial focuses on using MPICH with C++. It will begin by explaining where
to obtain and how to install the necessary software on both Windows and
Linux machines. Next, the tutorial will guide the audience through editing,
compiling, and running a C++ MPICH program on these operating systems.
Following this, the basic structure of an MPI program will be outlined. The
tutorial will then cover essential MPI routines for point-to-point and collective
communications, along with their implementations in MPICH. Finally, it will
provide a list and description of materials suitable for further study.

This tutorial is designed for beginners in parallel programming and those
who are interested in MPI programming. Additionally, many universities and
colleges have offered parallel computing classes or incorporated parallel com-
puting topics into other related courses. Hence, this tutorial can also be served
as a module within such course, introducing the basic concepts and operations
of parallel computing to students. It assumes that participants have a basic
understanding of programming languages, especially Java, C#, or C++.

As the learning outcomes, participants should be able to achieve the fol-
lowing:

1. Understand the necessary software for MPI parallel programming with
MPICH, including how to obtain and install it on Windows and Linux
machines.

216

2. Gain knowledge about MPI, especially the concepts of point-to-point and
collective communications.

3. Learn how to edit, compile, and run an MPI program in C++ to imple-
ment basic MPI operations.

At the end of the tutorial, an e-version of the lecture notes, example C++
code, and other materials for self-study can be provided upon request.

References

[1] MPI Tutorial Website. https://mpitutorial.com/tutorials.

[2] MPICH Official Website. https://www.mpich.org.

[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Com-
puting. Pearson Education. Addison-Wesley, 2003.

[4] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk. Using Advanced MPI: Modern
Features of the Message-Passing Interface. Scientific and Engineering Computa-
tion. MIT Press, 2014.

[5] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message-passing Interface. Number v. 1 in Scientific and engineering
computation. MIT Press, 1999.

[6] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[7] T. Rauber and G. Rünger. Parallel Programming: for Multicore and Cluster
Systems. Springer Berlin Heidelberg, 2013.

[8] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI:
The Complete Reference. Scientific and engineering computation series. MIT
Press, 1998.

3 17

Debugging Server- and Client-Side Javascript∗

Conference Tutorial

Tiva Rocco, Joshua B. Gross
California State University, Monterey Bay

Seaside, CA 93955
{trocco,jgross}@csumb.edu

Abstract

Tutorial and hands-on demonstration of debugging tools and techniques for
Javascript and Node.js applications, providing common errors and practical
solutions to improve code quality and development efficiency.

Introduction

Node.js is a runtime environment that executes Javascript code outside of a
browser, often used for building server-side web applications. Many Node.js
and Javascript tutorials provide correct code implementation and compilation,
but few address techniques and tools for finding and correcting errors. Debug-
ging server-side code can be especially difficult because it may not always be
clear if errors are occurring on the host or client side.

We will demonstrate setting up debugging environments and identifying
and handling common errors. Participants will learn to use server-side and
client-side debugging tools by engaging in live debugging exercises to reinforce
their understanding. We will have a public Github repository prepared with
a tutorial guide, sample programs, and solutions. Examples of debugging sce-
narios are derived from existing research[1] and previous experience.

∗Copyright is held by the author/owner.

118

Presenter Biographies

Tiva Rocco is an undergraduate student at CSU-Monterey Bay, pursuing a BS
in Computer Science with a concentration in Software Engineering. She has
served as a Teaching Assistant for the Internet Programming course for mul-
tiple semesters, and is a coordinator for the computer science department TA
program, mentoring and supporting computer science TAs, conducting train-
ing sessions, and contributing to the continuous development of the program.
Tiva has also dedicated over 50 hours of community service related to software
engineering for organizations like the UC-Santa Cruz Life Lab and Community
Builders for Monterey County.

Joshua B. Gross, PhD is an associate professor of computer science at Cal-
ifornia State University Monterey Bay. He teaches courses on introductory
programming, data structures, and databases. His research is in the area of
computer science education, specifically focused on helping students better un-
derstand computational complexity.

Approach

The tutorial will consist of:

• Installing software (all software is free and available for Mac, Windows,
and Linux)

• Example code with common types of errors
• Guided instruction on how to use different tools and techniques to identify

and resolve errors
• Activities for participants to practice their debugging skills

Intended Audience

This tutorial is targeted at computer science students, developers, and faculty
who work with Javascript and Node.js applications, and who would benefit
from learning effective debugging techniques and solutions to common errors.
Participants should be familiar with basic concepts of server-side web develop-
ment. Familiarity with JavaScript language basics would be beneficial but not
required, because the course material will include code for all examples.

Computer Requirements

Computers running Windows, macOS, or Linux with an internet connection
will be able to participate in the hands-on demonstration. Participants should

2 19

be comfortable using a browser, text editor, git, and a command line for their
system.

Participants will install Microsoft Visual Studio Code (available free for
all platforms), the Firefox browser, and various JavaScript libraries, including
Node.js.

References

[1] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. Discovering bug pat-
terns in javascript. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering, pages 144–156, 2016.

320

Bridging the Quantum Computing Skills Gap:
Integrating Quantum Education into Computer

Science Curricula∗

Conference Tutorial

Farzin Bahadori and Radana Dvorak
Department Of Computer Science
Hal and Inge School of Engineering

Saint Martin’s University
Lacey, WA 98503

{fbahadori,rdvorak}@stmartin.edu

The lack of a skilled workforce in quantum computing parallels the current
cybersecurity skills gap. [7], [6], [8] To prevent a similar gap in quantum com-
puting as currently industry is experiencing in filling cybersecurity jobs, we
present proactive education strategies to address the issue. This tutorial will
present current efforts in quantum education and how Saint Martin’s Com-
puter Science Department contributes to these efforts by integrating quantum
computing modules into existing curricula using the KEEN Entrepreneurial
Mindset framework [2]. Participants will be able to implement one of the in-
troductory models utilizing open-source tools and resources to engage students
in solving problems using quantum computing concepts.

The tutorial will address: (1) the parallels between the cybersecurity and
quantum computing skills gaps. (2) explore the role of early and comprehen-
sive curricular integration in mitigating skills deficits, (3) present the KEEN
Entrepreneurial Mindset framework as a tool for enhancing quantum comput-
ing education to instill curiosity about our evolving world of work encourag-
ing students to adopt a critical approach exploring alternative solutions to
today’s problems, and (4) share practical strategies for incorporating introduc-
tory quantum computing modules into computer science curricula.

By the end of this tutorial, participants will be able to analyze the effective-
ness of different educational initiatives aimed at bridging these skills gaps in

∗Copyright is held by the author/owner.

1 21

quantum computing; apply the KEEN Entrepreneurial Mindset (EM) [2], and
design and implement one of the introductory quantum computing modules
[5].

The tutorial content will include the following:

• Educational Framework introduces the KEEN Entrepreneurial Mind-
set framework and how the three C’s (Curiosity, Connections, Creating
Value) foster student engagement.

• Curriculum Development explaining how the quantum computing mod-
ules were designed for computer science students without strong mathe-
matics and physics background. [4], [5]

• Implementation strategies outlines how quantum computing can in incor-
porated in existing courses utilizing open-source tools and resources to
provide hands-on experience such as a brief introduction to Quantum and
Gates; setting Quantum Simulators on a personal computer; overview of
the open source tools and the IBM lab and composer; how to work with
qubits and creating superposition. [1], [3], [5]

References

[1] IBM Commits to Skill 30 Million People Globally by 2030. https:
//newsroom.ibm.com/2021-10-13-IBM-Commits-to-Skill-30-Million-
People-Globally-by-2030.

[2] KEEN - The Framework. https://engineeringunleashed.com/mindset-
matters/framework.aspx.

[3] QUIST. https://qis-learners.research.illinois.edu/.

[4] Sophia Chen. The future is quantum: universities look to train engineers for an
emerging industry. Nature, 623(7987):653–655, 2023.

[5] Radana Dvorak and Farzin Bahadori. Leveraging open source tools to teach quan-
tum computing foundations: Bridging the future workforce gap in the quantum
era. In 2024 ASEE Annual Conference & Exposition, 2024.

[6] Michael FJ Fox, Benjamin M Zwickl, and HJ Lewandowski. Preparing for the
quantum revolution: What is the role of higher education? Physical Review
Physics Education Research, 16(2):020131, 2020.

[7] Owen Hughes. Fixing the next big tech skills shortage will need a quantum
leap. https://www.zdnet.com/article/fixing-the-next-big-tech-skills-
shortage-will-need-a-quantum-leap.

[8] Stefan Seegerer, Tilman Michaeli, and Ralf Romeike. Quantum computing as
a topic in computer science education. In Proceedings of the 16th Workshop in
Primary and Secondary Computing Education, pages 1–6, 2021.

222

Designing Contributing Guides to Facilitate
Undergraduate Software Development Research∗

Conference Tutorial

Anna Ritz, Oliver Anderson, Altaf Barelvi
Biology Department

Reed College
Portland, OR 97202

{aritz,aoliver,abarelvi}@reed.edu

With the rise of collaborative scientific research, new researchers must
quickly and easily contribute to projects. Contributing guides are specialized
tutorials in the software development industry that help new developers with
minimal coding experience quickly contribute to a project’s goals. Contribut-
ing guides differ from general tutorials in their purpose: rather than focusing
on getting a user started with a software tool, contributing guides focus on
facilitating contributions to the development of a tool. During undergraduate
summer research experiences in computer science, students join long-term on-
going projects and contribute code to them, often within a limited time frame
of ten weeks or less. Thus, contributing guides are uniquely suited for under-
graduate summer research projects, as they facilitate quick new contributions
to existing software tools.

In this tutorial, we show best practices for writing contributing guides based
on two examples of contributing guides from computational network biology
projects in an undergraduate summer research experience setting: Protein-
Weaver and Signaling Pathway Reconstruction Analysis Streamliner (SPRAS).
Both projects contain the key elements of a successful contributing guide. First,
new collaborators must familiarize themselves with the project’s overarching
goal. Then, the guide should provide collaborators with the site’s basic archi-
tecture and tutorials for the software tools used to develop the project. Once
new contributors are familiar with the working parts of the project, the goal
of the contributing guide is to get new developers to add to the codebase by

∗Copyright is held by the author/owner.

1 23

slightly modifying the most relevant parts of the code to the project. The
tutorial highlights key components of a contributing guide for summer under-
graduate research experiences in software development.

Acknowledgements

We thank Dr. Tony Gitter (UW-Madison) for being the first to design the
SPRAS Contributing Guide. We also thank Gabe Howland and Schwa Yeleti
for helping improve the contributing guides as summer researchers. This work
was funded by NSF #1750981.

224

Cybersecurity Exercises in the Age of LLMs∗

Conference Tutorial

Richard Weiss1, Jens Mache2

1The Evergreen State College
Olympia, WA 98505
weissr@evergreen.edu

2Lewis & Clark College
Portland, OR 97219

jmache@lclark.edu

In this tutorial, we will introduce a cybersecurity education framework for
developing polymorphic hands-on exercises. Many faculty readily acknowledge
the importance of cybersecurity in the Computer Science curriculum, but there
are still barriers to integrating it into existing courses. One of those barriers is
the fact that in most courses, the current content fills the entire term. Another
issues is that faculty don’t have time and expertise to create new content that
would fit well with their current content and style. The third problem is that
exercises created should be resistant to solution by LLMs. We have developed
cybersecurity exercises that combine two principles: environment specificity
and polymorphism. Environment specificity means that the solutions to the
exercise should depend on the local environment (LLMs don’t have access to
that information). In this context, polymorphism means that they can be
easily modified each time that the class is taught.

Overview

EDURange [2, 6, 3, 7, 5] has been developed over more than ten years, and it
continues to evolve. We have used it to integrate hands-on security exercises in
our own classrooms and will present our exercises and framework that satisfy
the two principles: environment specificity and polymorphism. The exercises
that we will describe are relevant to: introductory courses that use the Linux
command line, Operating Systems, Computer Networking, Database Systems.

∗Copyright is held by the author/owner.

1 25

We will also demonstrate the feedback system that we have added that allows
instructors to interact with students one on one [9, 4, 8, 1].

Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under Grant No. 2216485 and 2216492.

References

[1] Aubrey Birdwell, Jack Cook, Richard Weiss, and Jens Mache. From logs to learn-
ing: Applying machine learning to instructor intervention in cybersecurity exer-
cises. In Proceedings of the American Society for Engineering Education (ASEE)
Annual Conference, 2024.

[2] Jack Cook, Richard Weiss, Jens Mache, Carlos García Morán, and Justin Wang.
An authoring process to construct docker containers to help instructors develop
cybersecurity exercises. Journal of Computing Sciences in Colleges, 37(10):37–47,
2022.

[3] Jelena Mirkovic, Aashray Aggarwal, David Weinman, Paul Lepe, Jens Mache, and
Richard Weiss. Using terminal histories to monitor student progress on hands-on
exercises. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, pages 866–872, 2020.

[4] Quinn Vinlove, Jens Mache, and Richard Weiss. Predicting student success in
cybersecurity exercises with a support vector classifier. Journal of Computing
Sciences in Colleges, 36(1), 2020.

[5] RichardWeiss, Stefan Boesen, James F. Sullivan, Michael E. Locasto, Jens Mache,
and Erik Nilsen. Teaching cybersecurity analysis skills in the cloud. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education, SIGCSE
’15, page 332–337, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

[6] Richard Weiss, Franklin Turbak, Jens Mache, and Michael Locasto. Cybersecurity
education and assessment in edurange. IEEE Security & Privacy, May/June,
2017.

[7] Richard Weiss, Franklin Turbak, Jens Mache, Erik Nilsen, and Michael E Lo-
casto. Finding the balance between guidance and independence in cybersecurity
exercises. In 2016 USENIX Workshop on Advances in Security Education (ASE
16), 2016.

[8] Valdemar Švábenský, Kristián Tkáčik, Aubrey Birdwell, Richard Weiss, Ryan S.
Baker, Pavel Čeleda, Jan Vykopal, Jens Mache, and Ankur Chattopadhyay. De-
tecting unsuccessful students in cybersecurity exercises in two different learning
environments. In Proceedings of the IEEE Frontiers in Education Conference
(FIE), 2024.

226

[9] Valdemar Švábenský, Richard Weiss, Jack Cook, Jan Vykopal, Pavel Čeleda, Jens
Mache, Radoslav Chudovský, and Ankur Chattopadhyay. Evaluating two ap-
proaches to assessing student progress in cybersecurity exercises. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education, 2022.

3 27

Investigating Hinge-Points in Computer Science
Identity and Career Plans∗

Ben Tribelhorn1 and Nicole Ralston2

1Shiley School of Engineering
2School of Education
University of Portland
Portland, OR 97203

{tribelhb, ralston}@up.edu

Abstract
Computer Science (CS) identity is a topic of rising concern as many

believe it is a key contributor to student success. We implemented a
meta-survey to search for events and perceptions that might impact CS
identity and students’ career plans relating to CS.

We found significant differences in CS identity based on the course
level. Across all respondents we found significant improvement in a
performance/competence sub-construct and a recognition sub-construct
that suggest applied computing skills are the area students see their
improvement across all courses. This is furthered by an analysis of qual-
itative responses that suggests CS faculty have an opportunity to shape
the formation of CS identity.

1 Introduction

Student identity is becoming a more frequently studied topic, and is relevant
to Computer Science due to common issues at most institutions. Computer
Science (CS) programs are heavily gender skewed and are often still pervaded
by specific stereotypes that reduce inclusivity.With typical concerns of reten-
tion and adapting to the ever evolving discipline, especially considering the

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

128

impacts of stereotype threat[1], it is timely to consider curriculum design and
implementation’s impact on forging a CS specific identity.

The authors’ motivation for this study was to embark on a longitudinal
study of identity and probable causes that impact the development of a CS
identity, both positively and negatively, across the CS disciplinary courses at
our institution. Identifying hinge points and seminal experiences will help the
faculty improve courses with a more holistic focus. This study used two vali-
dated instruments to collect data from our CS program. We measure identity
with Mahadeo et al.’s tool aimed at helping researchers and practitioners im-
prove student persistence in computer science[6]. Further, we use components
of Hoegh & Moskal’s survey to look at additional variables that could help
improve recruitment and retention[3].

2 Background

Rodriguez & Lehman advocate for a sociocultural perspective on analyzing
identity development in order to create more equitable computing outcomes[7].
Further they suggest that creating greater theoretical understanding of the
computing identity development process will help inform CS educational prac-
tices.

A small study by Kapoor & Gardner-McCune investigated the development
of student’s professional identity and found that CS undergraduates tend to
form this between years 2-3 of their degree programs[4]. Beyond intrinsic and
discipline-specific factors, they found that professional identity is also shaped
by activities such as coursework, informal activities like hackathons, and pro-
fessional development activities including internships and conferences.

Lunn et al. studied the impact of experiences such as technical interviews’
effect on identity[5]. They observed that for the students that did not have
positive experiences with technical interviews they had a reduced computing
identity, but that facing discrimination during technical interviews had the
opposite effect. They also noted that having friends in computing bolsters
computing identity for Hispanic/Latino-a students, as does a supportive home
environment for women. We interpret these results to suggest that one curric-
ular intervention for positive identity formation would be to focus on technical
interview preparation.

Finally, very recent work by Fong et al. has looked at how collaborative
learning courses impact a sense of belonging[2]. They find that collaborative
work does increase a sense of belonging and is malleable beyond the first year
experience. In their study they intervened to assign a majority of women to
groups in most of the courses studied, (allowing for groups of only men), which
was not disentangled from the collaboration intervention.

2 29

The literature shows that studies of identity have found some activities that
impact a computing identity, but there is not yet a clear line of research that
illustrates where these identities are shaped within the curriculum and other
areas of faculty intervention, such as office hours, club advising, etc. This paper
seeks to report initial results focused on locating these impactful experiences.

3 Research Questions and Methods

These goals led to the following research questions that might be answered
using previously validated survey items.

RQ1: To what extent does CS identity change across the curriculum?

RQ2: What events and perceptions relate to CS identity?

RQ3: To what extent do students plan to pursue CS careers and how does
that change?

3.1 Survey implementation

We generated a survey, using a combination of questions from two prior studies
and additional open ended text responses, as both a pre and post instrument
at the beginning and end of our CS 1 (3 sections), CS 2 (3 sections), and CS
Seminar courses (2 sections), in addition to the beginning of the Fall Capstone
and end of Spring Capstone during the AY 2023-24.

The Computer Science program teaches Java in our CS 1 and does a
semester long project in Android in our CS 2 (using Java). Students may
take the Data Structures in C course before, concurrent, or after CS 2. Typi-
cally they take CS 2 ahead of Data Structures, so surveying these two courses
captures early CS majors and minors in addition to the “CS-interested” on
a space available basis. The ethics and professionalism focused CS Seminar
course requires junior standing, and does not count towards the minor. Fi-
nally, we survey Capstone students, but due to an unforeseen programmatic
change this led to a low completion rate for these students making it difficult
to see significant results from the Capstone perspectives.

3.2 Participants

In sum, 104 students completed the survey at pre and 65 students completed
the survey at post; thus results should be interpreted cautiously as all stu-
dents did not complete at both time points and because the surveys were con-
ducted anonymously to increase honesty and reduce bias the pairs could not
be matched. Students completed the survey as part of four different classes,

330

CS 1 (n = 56, 33%), CS 2 (n = 29, 17%), CS Seminar (n = 55, 33%), and
Capstone (n = 29, 17%). Only those identifying as computer science majors
or computer science minors were included.

4 Results

4.1 Computer Science Identities

First, students were asked the extent to which they identified as computer
scientists on a scale of 1 (do not at all identify) to 10 (fully identify) on a sliding
scale. These were completed at two time points in each class – at the beginning
of the class (pre) and at the end of the class (post). A two-way ANOVA
revealed there were overall statistically significant differences regardless of the
time period by course, F(3, 161) = 5.88, p < .001, with those in CS 1 (the
introductory level course) scoring significantly lower than all other courses.
The two-way ANOVA also revealed a statistically significant interaction effect,
F(3, 161) = 3.29, p = .022. This exhibited as the students with the least
amount of experience with computer science in the lowest level course (CS 1)
experienced the largest amount of change from pre to post, growing about 1.11
points, however the other three courses experienced overall drops from pre to
post (see Table 1) which could have been from a lower completion rate at post
biasing responses.

Table 1: To What Extent Do You Identify as a Computer Scientist?
Pre Post

Course n M(SD) n M(SD)

CS 1 36 5.14 (2.94) 20 6.80 (2.40)
CS 2 19 7.63 (1.92) 10 7.10 (2.51)
CS Seminar 31 7.71 (1.42) 24 7.33 (2.24)
Capstone 18 8.22 (1.48) 11 7.09 (1.56)
Total 104 6.89 (2.49) 65 7.09 (2.20)

Next, to further understand computer identity, the responses to the nine
Computer Identity survey questions were summed to understand how much
computer identity these students felt[6]. Because individual items were on a
4-point Likert scale ranging from Strongly Disagree (1) to Strongly Agree (4),
the total possible was 36 (9 times 4). Table 2 below shows the means and
standard deviations for these total scores again by time period and course. On
this instrument, the scores overall improved from pre to post for the two lower-
level courses, however remained more stagnant for the two upper-level classes,
which a two-way ANOVA revealed to be statistically significant differences by

4 31

class F(3, 161) = 3.43, p = .018. Overall, students felt fairly high computer
identity, with average post scores of 26.79, about 74% of the possible total of
36, or an average score of about ‘Agree’ on the Likert scale for each of the 9
items.

Table 2: Total Sum Scores on Computer Identity Instrument
Pre Post

Course n M(SD) n M(SD)

CS 1 36 22.22 (7.14) 20 25.50 (7.76)
CS 2 19 26.47 (5.45) 10 28.50 (5.95)
CS Seminar 31 27.13 (4.57) 24 27.33 (5.10)
Capstone 18 26.50 (5.09) 11 26.36 (7.02)
Total 104 25.20 (6.14) 65 26.79 (6.40)

Next, we sought to dive deeper into the individual items on the instrument
at pre and post across all of the different classes. A few interesting findings arise
in Table 3 below. First, two of the items demonstrated statistically significant
changes from pre to post via independent samples t-tests. The first was I can
do well on computing tasks (e.g., programming and setting up servers), t(167)
= 3.120, p = .002, which grew almost half a point from pre to post. The second
item was I understand concepts underlying computer processes, t(167) = 2.614,
p = .01, which grew about a third of a point from pre to post. Last, the
item, My instructors/teachers see me as a computer-savvy person experienced
marginal significance, t(167) = 1.967, p = .051, also growing about a third of
a point from pre to post. Notably, both of the significant items were part of
the Performance/Competence sub-construct.

Most of the remaining items also experienced growth from pre to post,
except two items that experienced declines, which were all related to interest
in computer science: I like to peruse forums and Computer programming is
interesting to me. It seems that the more students learn, the less interested
they become in the topic?! Or perhaps being tired at the end of the semester
has reduced their interest.

Lastly of notice, most of the results are high (close to 3 on a 4-point scale)
however these interest items (Computer programming is interesting to me and
Topics in computing excite my curiosity) were also the highest at pre and
post. Besides the perusing forums item already discussed, the lowest items at
post were I understand concepts underlying computer processes, My instruc-
tors/teachers see me as a computer-savvy person (even after experiencing a
third of a point of growth), and interestingly, Others ask me for help with
software (applications/programs). These take-aways may have implications for
programming, in both continuing to incite curiosity in our courses and ensur-

532

ing our students understand these complex processes and feel confidence and
self-efficacy in these worlds.

Table 3: Individual Survey Item Mean Scores: Computer Identity Instrument
Pre n=104 Post n=65

Course M(SD) M(SD)
(r) My family sees me as a computer-savvy 3.18 (1.09) 3.45 (0.90)person.
(r) Topics in computing excite my curiosity. 3.28 (0.77) 3.35 (0.76)
(pc) I can do well on computing tasks (e.g., 2.59 (0.87) 3.02* (0.87)programming and setting up servers).
(r) My friends/classmates see me as 2.76 (0.97) 2.89 (0.95)a computer-savvy person.
(i) I like to peruse forums, social media, or 2.62 (1.04) 2.57 (0.98)online videos about computer-related topics.
(pc) I understand concepts underlying 2.50 (0.89) 2.86* (0.85)computer processes.
(r) My instructors/teachers see me 2.25 (1.08) 2.59** (1.07)as a computer-savvy person.
(i) Computer programming is interesting. 3.44 (0.72) 3.42 (0.68)
(pc) Others ask me for help with software 2.62 (1.20) 2.65 (1.35)(applications/programs).

Notes: r = Recognition sub-construct. i = Interest sub-construct. pc = Performance/Competence
sub-construct. *p < .05, **p = .051.

Students were asked to elaborate through open-ended responses about con-
cepts:

• “I feel like I do not have a thorough understanding of a few fundamental
topics, but rather a rushed, minimal understanding of many different
things; many of which are self-learned as they are only brushed on in
classes.”

• “I am well known to the people around me to be very good with comput-
ers. Certainly, I act as the local IT person for my parents, grandparents,
and less tech-savvy siblings. I constantly try to cultivate and expand my
knowledge of computing, and I spend a lot of time reading and thinking
about it.”

• “As someone who came to [University of Portland] not liking Computer
Science my thought on the subject has completely changed after taking
my first computer science class at University of Portland. In fact, I enjoy
just thinking of ways to code something in my head without typing it on
the regular.”

6 33

4.2 Computer Science Career Plans

After understanding computer science identities, we next employed a Career
Identity survey by using the Usefulness Construct (“students’ beliefs in the
usefulness of learning computer science”) of Hoegh and Moskal’s (2009) At-
titudes Toward Computer Science instrument to understand students’ future
career aspirations in terms of computer science[3]. Again, overall the responses
appeared to go down slightly from pre to post, however because of differences
in sample sizes these data must be interpreted cautiously. Overall, most of
the students agreed that computer science is very important for their careers
– scoring somewhere between a 3 (Agree) and 4 (Strongly Agree) on a 4-point
Likert-scale. A two-way ANOVA revealed that this agreement, unlike the pre-
vious instrument, did not differ by class or level (p = .688), nor did it differ
from pre to post (p = .981).

Table 4: Total Sum Scores on Computer Career Identity Instrument by Course
Pre Post

Course n M(SD) n M(SD)

CS 1 36 3.52 (0.44) 20 3.43 (0.55)
CS 2 19 3.59 (0.55) 10 3.64 (0.41)
CS Seminar 31 3.53 (0.47) 24 3.52 (0.44)
Capstone 18 3.48 (0.54) 11 3.53 (0.57)
Total 104 3.53 (0.48) 65 3.51 (0.49)

When examining these individual items at pre and post across all classes,
it is important to note that three of the items were negatively worded, thus
these items were reverse coded for the above overall average. For these items,
lower scores actually indicate greater identity with pursuing computer science
for a career. Basically all of the items experienced small declines from pre to
post in identifying as a computer scientists as a career, except for Knowledge
of computing skills will not help me secure a good job – for that item only more
students thought that they needed computing skills from pre to post. None of
the changes were statistically significant via independent samples t-tests.

Finally, more simply, we just asked, To what extent do you currently plan
to pursue computer science in your career post-graduation? Overall, it seems
that more students realize they will not pursue computer science across their
courses, with the overall percent at pre of those that probably or definitely
will pursue computer science 81% reducing to 73% at post, and the percent of
those who definitely will not or probably will not pursue computer science as
part of their career increasing from 8% at pre to 12% at post. At the same
time however, the percent of students who definitely will pursue computers

734

Table 5: Individual Survey Item Mean Scores: Computer Career Identity In-
strument

Pre n=104 Post n=65
Course M(SD) M(SD)
Developing computing skills will not play a 1.61 (0.98) 1.54 (0.92)role in helping me achieve my career goals.*
Knowledge of computing will allow me to 3.56 (0.55) 3.48 (0.62)secure a good job.
My career goals do not require that I learn 1.47 (0.67)† 1.60 (0.73)computing skills.*
Knowledge of computing skills will not help 1.51 (0.83)† 1.35 (0.54)me secure a good job.*
I expect that learning to use computing 3.67 (0.51) 3.58 (0.68)skills will help me achieve my career goals.

*Negatively worded and therefore reverse coded for overall average.
† Pre n=103

science solidifies, increasing from 44% at pre to 51% at post. Future work will
investigate if this stabilizes or peaks in later courses.

Students were asked to elaborate through open-ended responses about iden-
tity:

• “It’s who I am professionally and as a hobbyist, but it is not who I am.”
• “I’m slowly learning that I don’t really care about being a computer

scientist and do not want to pursue that career path. I really don’t
consider myself an engineer.”

• “I don’t feel very confident in my abilities as a computer scientist or
engineer.”

• “I’ve been developing software for quite some time before I entered [the
University of Portland], and would already partially identify as a com-
puter scientist. However, working for a degree in CS has only solidified
that identity.”

The next steps of this project include continuing to collect these data and
examine changes over time and over years.

4.3 What are the hinge-points of CS identity?

Across all pre and post responses, 61 included a written response that could
be interpreted as a meaningful event that impacted the student’s CS identity.
The authors coded these roughly into the categories listed in Table 6. We
further grouped these responses by direct: class(es) or work related to a class,
coding-related, or indirect: declaring the major or an outside experience.

8 35

Table 6: Open response, stated hinge-points.
Direct 65.6% Coding 18.0% Indirect 16.4%

n n n
Class(es) 28 Experience,

11

Declaring 8Critical thinking 4 from scratch, the major
Homework 4 without help, Work or 2Group project 3 or similar internship
Other (e.g. lingo) 1

Although most educators would not be surprised by these breakdowns, it
does help give some insight into where the curriculum might be changed in
order to impact identity formation. In many cases we suspect that declaring
the major stems from taking CS 1 and having a positive experience. A very
small number of responses were clearly negative or mentioned the same cause
as a both a positive and negative. “An impossible” assignment is one example
of a negative from a student. We also want to point out that making coding
a separate category emerged naturally, as many of these were also paired with
statements of emerging confidence in other open text responses which could be
a specific proxy for CS identity. In the future we will attempt to disentangle
this effect.

5 Discussion and Future Work

This preliminary work shows hints of a formative change in CS 1, and shows
that there is a significant change between that course and later CS courses.

This work is preliminary as we haven’t yet run the survey long enough for a
longitudinal analysis. The overall drop from pre to post might also contribute
to an enthusiasm bias (based on attendance, willingness to complete rather than
play on their phones, etc.) We also did not have enough Capstone respondents
to deeply understand the year’s graduating seniors’ experiences.

Future work will include additional data collection, and a more detailed
analysis of qualitative responses. Additionally, the authors think that more
descriptive data could help more definitively answer where curricular interven-
tions could have the most impact on developing a CS identity.

Acknowledgements

Thanks to the faculty that taught these courses for taking the time to help
survey the students using class time and for their enthusiastic engagement.

936

References

[1] Sapna Cheryan et al. “Double isolation: Identity expression threat predicts
greater gender disparities in computer science”. In: Self and Identity 19.4
(2020), pp. 412–434. doi: 10.1080/15298868.2019.1609576. eprint:
https://doi.org/10.1080/15298868.2019.1609576. url: https:
//doi.org/10.1080/15298868.2019.1609576.

[2] Morgan M Fong et al. “Exploring Computing Students’ Sense of Belonging
Before and After a Collaborative Learning Course”. In: Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1.
2024, pp. 359–365.

[3] Andrew Hoegh and Barbara M Moskal. “Examining science and engineer-
ing students’ attitudes toward computer science”. In: 2009 39th IEEE fron-
tiers in education conference. IEEE. 2009, pp. 1–6.

[4] Amanpreet Kapoor and Christina Gardner-McCune. “Understanding CS
Undergraduate Students’ Professional Identity through the lens of their
Professional Development”. In: Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education. ITiCSE
’19. Aberdeen, Scotland Uk: Association for Computing Machinery, 2019,
pp. 9–15. isbn: 9781450368957. doi: 10.1145/3304221.3319764. url:
https://doi.org/10.1145/3304221.3319764.

[5] Stephanie Lunn et al. “The Impact of Technical Interviews, and other Pro-
fessional and Cultural Experiences on Students’ Computing Identity”. In:
Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1. ITiCSE ’21. Virtual Event, Ger-
many: Association for Computing Machinery, 2021, pp. 415–421. isbn:
9781450382144. doi: 10.1145/3430665.3456362. url: https://doi.
org/10.1145/3430665.3456362.

[6] Jonathan Mahadeo, Zahra Hazari, and Geoff Potvin. “Developing a com-
puting identity framework: Understanding computer science and infor-
mation technology career choice”. In: ACM Transactions on Computing
Education (TOCE) 20.1 (2020), pp. 1–14.

[7] Sarah L Rodriguez and Kathleen Lehman. “Developing the next generation
of diverse computer scientists: the need for enhanced, intersectional com-
puting identity theory”. In: Computer Science Education 27.3-4 (2017),
pp. 229–247.

10 37

Demographics, Approaches, and Conceptions:
Understanding Computer Science Learning∗

Bokai Yang1, Ling Hao2, Yuqi Song3,
Xin Zhang3, Fei Zuo4, Xianshan Qu4
1Department of Computer Science

University of Wisconsin – Eau Claire
Eau Claire, WI 54703

yangboka@uwec.edu
2School of Teaching & Learning

Illinois State University
Normal, IL 61790

lhao1@ilstu.edu
3Department of Computer Science

University of Southern Maine
Portland, ME 04101

{yuqi.song,xin.zhang}@maine.edu
4Department of Computer Science
University of Central Oklahoma

Edmond, OK 73034
{fzuo,xqu1}@uco.edu

Abstract

Understanding students’ computer science learning conception and
learning approach is essential for improving their learning experience and
performance. By applying qualitative content analysis, machine learning

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

138

techniques and a descriptive approach, this study explores the associa-
tions between demographic characteristics, computer science learning ap-
proaches, and conceptions among undergraduate students. The findings
of this study reveal associations between students’ learning approaches
and demographic factors such as grades, gender, and parents’ education.
Moreover, the study highlights discrepancies between students’ learning
approaches and their motivation and strategy for learning.

1 Introduction

In the rapidly evolving landscape of education, the intersection of technology
and pedagogy has given rise to innovative methodologies for understanding and
enhancing students’ learning experiences. Computer science emerged as an es-
sential discipline in the last century and its technique has been widely applied
to enhance learning. However, as computer science educators, our understand-
ing of students’ computer science learning conceptions remains limited[8],[16].

Learning concepts refer to learner’s beliefs about learning and how learner
makes sense of learning through learning experiences[1], [11], [16]. Previous
research supports the idea that students’ learning conceptions are related to
their learning approach and performance[1], [13]. In addition, many studies
have shown that students’ learning beliefs can be a strong predictor of their
academic performance[8]. Students’ conceptions are important in their learning
processes and need to be considered in teaching. Understanding and address-
ing students’ computer science learning conceptions can lead to more effective
instructional strategies tailored to individual needs.

In education, there is a broad agreement on the importance of incorporating
students’ conceptions into teaching practices[2], [15], [12], [5]. The connection
between students’ learning conception and their approach to achieve it might
persist unaltered unless there is intervention from the instructor[1]. Thus,
to enhance students’ learning experiences and outcomes, educators must be
able to understand students’ learning conceptions and access their learning
conceptions.

In recent years, there has been an increasing interest in applying relevant ed-
ucational research methods into computer science education. Researchers have
been trying to understand and facilitate the learning experience of students[8],
[14], [16], [7]. In the study of [8], the researchers explored how students’ learn-
ing conception influences their computational thinking and programming self-
efficacy. Other researchers in [16] applied a novel draw-a-picture technique to
explore college students’ computer science learning conception. Their results
show differences in computer science learning conceptions across student char-
acteristics. These findings underscore the importance of individual differences
in learning conceptions when designing effective computer science curriculum

2 39

and instructional strategies.
The integration of technology has given rise to innovative approaches aimed

at unraveling the complexities of students’ learning process. Learning analytics,
with its ability to scrutinize datasets, offers an opportunity to unravel patterns,
trends, and potential demographic factors that might impact computer science
students’ learning conceptions. With the goal of optimizing learning experi-
ence, learning analytics usually involves data analysis with the help of statistics
and machine learning. A number of studies attempt to apply learning analyt-
ics to automatically identify, analyze or present students’ learning behavior[3],
[11], [17], [4]. By leveraging insights gleaned from learning analytics, educators
can tailor their teaching methodologies to better align with the diverse needs
and preferences of individual learners.

While researchers have invested significant effort in understanding and en-
hancing students’ computer science learning experiences, only a limited number
of studies have explored students’ conceptions of computer science learning.
Even less research analyzed the associations between student characteristics
and their learning conception. Computer science teachers continue to face the
challenge of elucidating students’ learning processes while respecting their indi-
vidual learning conceptions[12]. Since students’ learning conceptions are con-
sidered to be important to their learning approach and performance[1], [13], it
is critical to help computer science instructors and facilitators to understand
and access students’ computer science learning conceptions. The objective of
this study is to identify students’ computer science learning conception patterns
and explore the association between students’ demographic and their learning
conceptions in computers science courses. We aim to answer the following
research questions:

Q1 What are the patterns of computer science learning conceptions ob-
served among the college students who participated in this research?

Q2 How do specific demographic characteristics align with each computer
science learning conception pattern?

The rest of the paper is organized as follows: Section 2 describes the data
collection method and the data analysis process. Section 3 presents the pat-
terns of students’ computer science learning conception, the data analysis re-
sults and discusses the associations between students’ learning conceptions and
demographic information. Section 4 discusses the limitations of the current
study and provides insights for future research. Section 5 concludes the paper.

2 Methodology

This study applied qualitative content analysis and a descriptive approach. A
49-question survey was distributed to over 150 students majored in computer

340

science at a public comprehensive university located in the middle north part
of the United States. Thirty-six students chose to participate in the research
project. Among the students, 15 were female and 21 were male (with other
gender identity options provided). The age range of the participating students
is 18-24. All students who participated in this study took courses related to
learning computer science. The participating students are at various stages
of their academic studies: 39% freshmen, 19% sophomores, 31% juniors, and
11% seniors. The racial composition of the participating students is as follows:
White (72%), Black (6%), Asian (16%), American Indian (3%), and of Brazilian
or Latino descent (3%). The university’s IRB approved the study, and the
students voluntarily participated in the data collection process.

The survey consisted of three sections. The first section includes 9 questions
related to students’ demographic data. The second section provides 7 questions
about their previous programming experiences and learning preferences. For
the first two sections, the option ’prefer not to answer’ is provided to allow the
students to opt out of answering any question. The third section asks ques-
tions about students’ conceptions of learning computer science and approaches
to learning computer science. The questions in the third section are adopted
from the survey questions of [14]. In section three, the 26 questions related to
students’ conceptions of learning computer science are originally designed by
[7] and further adapted and renamed to COLCS by [10]. This survey was first
developed to investigate students’ conceptions of learning computer science
by [7]. The questions cover factors including memorizing (three items), test-
ing (four items), calculating and practicing (three items), programming (four
items), increasing one’s knowledge (three items), application and understand-
ing (four items), and seeing in a new way (five items). The other 17 questions
in section three are used to measure students’ approaches to learning computer
science; the original version of the questions was designed by [6] and revised
by [9]. The factors for approaches include surface motive (three items), surface
strategy (four items), deep motive (six items), and deep strategy (four items).
All the questions in section three use a 5-point scale measurement system. The
questions in other sections are multiple choice questions.

The survey data were extracted into 2 parts which include the demographic
part (section 1 and section 2) and CSCA (computer science conceptions and
approaches) part (section 3). The CSCA data were analyzed using the K-
Means Clustering method as a technique for performing data groupings. This
analysis was performed usingWeka Software version 3.6.3. The optimal number
of clusters is decided by Euclidean Distance of each approach and the Elbow
method. Based on the K-Means Clustering approach in the previous step, the
optimal clusters will be obtained. The optimal clusters are further analyzed
with the demographic data to summarize the demographic characteristics.

4 41

3 Results and Discussion

Based on the descriptive K-Means analysis, as shown in Figure 1 and Figure
2, we found 5 clusters with different cluster characteristics.

Figure 1 describes the demographic characteristics of each cluster. Af-
ter analyzing the connections between demographic factors and clusters, we
discovered that gender, class year, and parents’ highest education level are
three factors associated with the clusters. Cluster 2 tends to have more female
students, while other clusters are dominated by male students. From the per-
spective of class year, almost all students in cluster 3 are juniors and seniors.
On the other hand, students in lower grade levels are concentrated in clusters
4 and 5. Additionally, parents of students in cluster 3 have higher education
levels compared to those in other clusters. When asked about their common
computer science learning approach, students in cluster 2 tend to learn com-
puter science through tutorials instead of coding practice. The students in
cluster 3 and cluster 5 exhibit a preference for hands-on coding practice over
tutorial-based learning approaches.

On the contrary, academic performance in high school, SAT/ACT score,
and current GPA do not appear to be significant influential factors on com-
puter science students’ learning conception and approach. All clusters tend to
exhibit similar distributions of these factors. Although previous studies show
that a strong background in mathematics is associated with computer science
students’ performance[3], the mathematics background appears to be a less sig-
nificant factor to students’ computer science learning conception and approach
in this study.

The clustering result and the selected attributes of each cluster are shown in
Figure 2. We listed the attributes that reflect the characteristics of the clusters
in Figure 2.

Cluster 1 comprises 4 students, of whom 3 are male, covering three grades.
We observed that students in cluster 1 generally agree with all the question
statements in section 3, except for those related to surface motivation and
surface strategy. Conversely, they strongly agree with the statements regarding
deep motivation and deep strategy. Additionally, analysis of the qualitative
responses provided by students in Cluster 1 revealed common preferences for
self-motivated projects.

The 12 students in cluster 2 tend to agree with all the statements in section
3 except the statements for surface motivation and surface strategy. A note-
worthy point is that 66% of the students in cluster 2 are female students. As
shown in the cluster characteristic result, although students in cluster 2 dis-
agree with the surface strategy statements, they rely more on textbooks and
reading materials compared to coding practice and projects. This suggests a
potential divergence in learning preferences between genders within this clus-

542

Figure 1: Clusters (size) and Selected Demographic

6 43

ter, underscoring the need for further investigation into the underlying factors
leading to these differences.

Cluster 3 has 6 students. The demographic data shows that almost all the
students in cluster 3 are junior and senior students, and their parents tend to
have higher levels of education. The clustering result shows that these stu-
dents disagree with some statements which others agree with. Such statements
include Q1 for memorizing, Q5 for testing, Q17 for learning knowledge, and
Q19 and Q21 for application and understanding. In addition, the students in
cluster 3 do not express positive or negative opinions on the surface motivation
and surface strategy statements. Although not shown in Figure 2, it’s note-
worthy that the students in cluster 3 agree with all the statements related to
deep motivation and deep strategy.

Most of the students in cluster 4 are male students (71%) with 43% fresh-
men and 28% sophomores. These students disagree with the approach of mem-
orizing proper nouns from textbooks and preparing for exams based on test
materials. However, they agree with the surface motivation and surface strat-
egy approaches. Additionally, analysis of their responses indicated a preference
for tutorial-based learning approaches. This indicates an underlying preference
within this cluster for passive learning strategies, highlighting a potential need
for interventions aimed at promoting more active engagement and participation
in the learning process.

There are 7 students in cluster 5 and most of the students are male (86%).
About half of the students in this cluster are freshmen (57%). These students
disagree with the statement that learning computer science is to memorize the
important concepts and do not apply a surface strategy. They prefer both prac-
tical, hands-on learning experiences and tutorial-based learning approaches.

From our clustering result, we can see that students hold different views
on test materials, which may lead to different perspectives on surface strat-
egy. While learning knowledge and application and understanding are highly
related to students’ deep strategy, memorizing and testing were found to be
positive predictors of surface strategy but negative predictors for deep strat-
egy[16]. However, this pattern does not hold true for students in cluster 3 and
cluster 4. Students’ computer science learning approaches may not be con-
sistent with their learning motivation and strategy. The associations between
approaches, motivation, and strategy may vary for students at different phases
of their academic journey. In addition, students hold different views on Q5 and
have different learning approaches. Our findings suggest that undergraduate
students have varying perspectives on how they conceive learning computer sci-
ence. Instructors should take this into consideration when assessing students’
learning outcomes.

Students who agree with surface motivation and surface strategy may be

744

Figure 2: Clusters (size) and Selected Attributes

8 45

more motivated by passing exams, getting higher grades or meeting teacher/-
family expectations. They tend to remember rote information to pass exams.
On the other hand, students who agree with deep motivation and deep strat-
egy appear to be motivated by interest and curiosity. These students tend to
make meaning of the course contents and connect prior knowledge with the
new topics they learnt. According to our findings, students in almost all the
clusters strongly agree with surface motivation and disagree with the surface
strategy except for the students in cluster 4. This result is consistent with the
result of [16] which indicates that students surface motivation drives students’
behavior more than deep motivation.

4 Limitation and Future Research

This study has some limitations. First, the sample size of the student partic-
ipants is limited, and all the student participants are from one university in
the middle north of United States. The result may not be able to represent
all undergraduate students. Second, we only include self-reported academic
performance as the factors. It is possible that the self-reported academic per-
formance may not reflect students’ real performance.

For future work, more data from different universities across different re-
gions could be collected. This would facilitate a broader representation of
computer science students, thereby enriching the findings. In addition, sta-
tistical analysis could be applied to further analyze the relationship between
the demographic factors and learning conceptions and approaches clusters. We
also noticed a potential association between race and the use of surface strat-
egy that could be further investigated. Moreover, incorporating qualitative
methods such as interviews or focus groups could provide deeper insights into
students’ perceptions and experiences, complementing the quantitative data
collected in this study.

5 Conclusion

In conclusion, this study sheds light on how undergraduate computer science
students’ demographic characteristics associate with their computer science
learning approaches and conceptions. Students’ learning approaches are as-
sociated with their grades, gender and parents’ education. Additionally, stu-
dents’ learning approaches may not match with their learning motivation and
strategy. Our findings underscore the importance of understanding these dif-
ferences in order to tailor instructional strategies effectively. Future research
should aim to address these limitations by collecting data from a more diverse
range of universities and utilizing a combination of quantitative and qualita-

946

tive methods. By doing so, we can gain a deeper understanding of the factors
influencing students’ learning experiences and better support their academic
success in computer science education.

References

[1] MA Alkhateeb and OAQB Milhem. Student’s concepts of and approaches
to learning and the relationships between them. Cakrawala Pendidikan,
39 (3), 620–632. 2020.

[2] Tamer G Amin, Carol L Smith, and Marianne Wiser. “Student concep-
tions and conceptual change: Three overlapping phases of research”. In:
Handbook of Research on Science Education, Volume II. Routledge, 2014,
pp. 57–81.

[3] Heidi Burgiel, Philip M Sadler, and Gerhard Sonnert. “The association of
high school computer science content and pedagogy with students’ suc-
cess in college computer science”. In: ACM Transactions on Computing
Education (TOCE) 20.2 (2020), pp. 1–21.

[4] Heeryung Choi et al. “Logs or self-reports? Misalignment between be-
havioral trace data and surveys when modeling learner achievement goal
orientation”. In: LAK23: 13th international learning analytics and knowl-
edge conference. 2023, pp. 11–21.

[5] AA diSessa. “A history of conceptual change research: Threads and fault
lines. comparisons”. In: Science Education 99.3 (2014), pp. 410–416.

[6] David Kember, John Biggs, and Doris YP Leung. “Examining the mul-
tidimensionality of approaches to learning through the development of a
revised version of the Learning Process Questionnaire”. In: British Jour-
nal of Educational Psychology 74.2 (2004), pp. 261–279.

[7] Min-Hsien Lee, Robert E Johanson, and Chin-Chung Tsai. “Exploring
Taiwanese high school students’ conceptions of and approaches to learn-
ing science through a structural equation modeling analysis”. In: Science
Education 92.2 (2008), pp. 191–220.

[8] Silvia Wen-Yu Lee et al. “Students’ beliefs about computer programming
predict their computational thinking and computer programming self-
efficacy”. In: Interactive Learning Environments (2023), pp. 1–21.

[9] Jyh-Chong Liang, LEE Min-Hsien, and TSAI Chin-Chung. “The Re-
lations Between Scientific Epistemological Beliefs and Approaches to
Learning Science Among Science-Major Undergraduates in Taiwan.” In:
Asia-Pacific Education Researcher (De La Salle University Manila) 19.1
(2010).

10 47

[10] Jyh-Chong Liang, Yi-Ching Su, and Chin-Chung Tsai. “The assessment
of Taiwanese college students’ conceptions of and approaches to learning
computer science and their relationships”. In: The Asia-Pacific Education
Researcher 24 (2015), pp. 557–567.

[11] William G Perry Jr. Forms of Intellectual and Ethical Development in
the College Years: a Scheme. Jossey-Bass Higher and Adult Education
Series. ERIC, 1999.

[12] Judith Stanja et al. “Formative assessment strategies for students’ con-
ceptions—The potential of learning analytics”. In: British Journal of Ed-
ucational Technology 54.1 (2023), pp. 58–75.

[13] Imam Suyitno et al. “How prior knowledge, prospect, and learning be-
haviour determine learning outcomes of BIPA students?” In: Jurnal Cakrawala
Pendidikan 38.3 (2019), pp. 499–510.

[14] Karthikeyan Umapathy, Albert D Ritzhaupt, and Zhen Xu. “College stu-
dents’ conceptions of learning of and approaches to learning computer
science”. In: Journal of Educational Computing Research 58.3 (2020),
pp. 662–686.

[15] Stella Vosniadou et al. International handbook of research on conceptual
change. Vol. 259. Routledge New York, 2008.

[16] Zhen Xu et al. “Exploring college students’ conceptions of learning com-
puter science: A draw-a-picture technique study”. In: Computer Science
Education 31.1 (2021), pp. 60–82.

[17] Bokai Yang et al. “Untangling chaos in discussion forums: A temporal
analysis of topic-relevant forum posts in MOOCs”. In: Computers & Ed-
ucation 178 (2022), p. 104402.

1148

Large Language Model-Supported Software
Testing with the CS Matrix Taxonomy∗

Johannah L. Crandall1 and Aaron S. Crandall2
1Department of Mathematics

Spokane Falls Community College
Spokane, WA 99224

Johannah.Crandall@sfcc.spokane.edu
2Department of Computer Science

Gonzaga University
Spokane, WA 99258
crandall@gonzaga.edu

Abstract

New breakthroughs in code synthesis from Generative Pre-Trained
Transformers (GPT) and Large Language Model (LLM) algorithms are
driving significant changes to software engineering education. Having al-
gorithms able to generate components of a software project means that
software developers will need stronger skills in requirements specifica-
tion to guide code generation as well as stronger skills in code review,
testing, and integration to incorporate AI-generated code into projects.
Shifts in industry and classroom practices are already occurring with the
availability of inline code generation tools like GitHub’s Copilot, which
makes discussion of pedagogical strategies in this area a timely topic.
Of immediate concern in computer science education is the potential for
LLM-generated code and code help to undermine the learning of CS stu-
dents. In order to avoid such undermining in even intentional uses of
LLM-enhanced learning supports, it is necessary to clarify the roles such
supports need to play in the pedagogical process. The Computer Science

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 49

Matrix Taxonomy provides a strong framework for organizing software
testing learning outcomes as well as delineating the operational space in
which LLM-based feedback tools should operate to support those learn-
ing outcomes. In this paper, the authors operationalize the CS Matrix
Taxonomy for software testing learning outcomes and illustrate the inte-
gration of LLM-generated test strategy suggestions as an extension of the
peer coding/testing model. The work includes examples of AI-generated
code testing suggestions that students would use to help guide their own
code synthesis for assignments or projects.

1 Introduction

Software testing has become a keystone of modern software development [8],
and students learning to be software engineers should have a solid set of fun-
damental software testing skills. Historically, software testing was viewed as
an activity done after a project was complete, or as only part of a bugfixing
effort. Today, testing is seen as best done either at the same time as the code
development, or even better through Test Driven Development (TDD) where
tests are written first [1].

To teach students how to write tests, learn their importance [2], and to
gain an understanding of how tests integrate with a project is a significant
pedagogical effort [10, 14]. Garousi et al. [6] summarized the field of software-
testing education where several of their conclusions revealed how “spotty” or
intermittent software testing education remains within curricula. Some of the
reasons for this lack in the classroom is often the series of learning steps new
programming students have to go through before they are able to implement
software tests in code. The students need to have a reasonably functional
level of understanding of how code is written, how data is stored in computing
systems, and have the ability to write functions that are testable. This means
that students need several skills before they are able to start writing tests in
the first place.

Once students can start writing tests, introducing testing to their skill set
presents a scaling problem. Code reviewing and code feedback is a work inten-
sive effort [9]. This work is often abbreviated by faculty and teaching assistants
unless significant resources are spent to hire enough qualified code reviewers.
Alternative routes to code feedback include peer reviewing [7, 15] or some kind
of automated code feedback system [3, 11, 12]. Translating this problem to
teaching software testing skills presents similar problems of scale and complex-
ity of automation.

To help automate software testing education, several approaches have been
tried in the past. For example, Zheng et al. [16] worked to use a combination
of Natural Language Processing and information retrieval to scale software

250

testing suggestion systems to students. These kinds of tools have shown some
success, but prior to Large Language Models (LLM) like ChatGPT or Code
Llama [13] the systems were very limited in what kinds of testing suggestions
they could give. With deep AI models, novel and more complete solutions to
AI-generated and AI-driven teaching models are now possible and should be
explored.

In order to lay the groundwork for assessing LLM-enhanced teaching meth-
ods as well as student learning outcomes using LLM-supported methods, this
paper harnesses the two-dimensional adaptation of Bloom’s Taxonomy by Fuller
et al. [5] called the CS Matrix Taxonomy. We operationalize the CS Matrix
Taxonomy specifically for software testing learning outcomes, which is dis-
cussed in Section 2. To demonstrate how this LLM-based test suggestion sys-
tem works in the context of a student learner, the effects of integrating it into
the coding workflow is outlined in Section 3. The LLM-enhanced feedback ap-
proach built by the authors does not generate the test itself in code form, but
instead generates a description of how the software could be tested, as shown
in Section 4. Overall, this approach supports their traversal through the CS
Matrix Taxonomy on both conceptual and procedural axes, fostering stronger
conceptual understanding than the limited feedback they currently receive or
possible dependency on code completely generated by AI models.

Figure 1: The CS Matrix Taxonomy model applied to software testing educa-
tion.

3 51

2 Operationalizing the CS Matrix Taxonomy for Soft-
ware Testing Learning Outcomes

In a normal software development course at the CS2 or CS3 levels, the concept
of the unit test is often introduced. The students are likely shown the Arrange-
Act-Assert (AAA) pattern for developing tests [4]. They likely receive both
readings and examples on why testing is valuable and how it can be done on
small projects. From there, they ideally have in-class or in-lab experiences
writing tests on example code before applying it to their own projects. Various
interacting stages of conceptual and procedural competency during this process
are shown using the Computer Science Matrix Taxonomy from Fuller et al.’s
work [5] in Figure 1.

The CS Matrix Taxonomy’s horizontal Interpreting axis follows the progres-
sion of conceptual/analytical sophistication while the vertical Producing axis
illustrates implementation and extension at each of those conceptual levels. In
terms of software testing, movement along these two axes together, from the
bottom left to the upper right, comprises the transition from rote mimicry of
prescribed tests to a depth of understanding that facilitates intentional and
strategic test generation.

As CS learners move from left to right on the Interpreting axis in their
software testing work, they progress from simply replicating provided tests, to
adapting tests to new projects, to generating entirely new testing structures
in context. This developmental path involves them remembering how tests
work, mapping the suggestions onto their own code, then understanding the
suggestions, determining how they are built, then evaluating their value in
demonstrating whether their own code is implemented properly.

A learner’s progression through the Matrix is benefited by timely and suffi-
cient feedback of appropriate depth and diversity, which is difficult to get from
graders in large classes. An LLM-enhanced peer-style feedback approach could
help the learner progress through the learning outcomes by providing test strat-
egy suggestions customized to the student’s work. Testing suggestions provided
to the student are generated within the LLM Operational Space illustrated in
Figure 1. The LLM-enhanced feedback to the student is designed to elicit and
further student understanding through test suggestions and partial examples,
without providing explicit code solutions. This is designed to keep the LLM
output confined to the Strategizing and Appraising activities, which are the
primary work done by peer reviewers or teaching assistants. The result is that
the student remains responsible for Synthesizing and Critiquing activities from
the Matrix Taxonomy.

452

3 Integration of LLM-Enhanced Feedback into Student
Software Engineering & Testing Pattern

Software testing ideally occurs as an integral part of a complex software devel-
opment process which poses many challenges for the learner. Students require
the ability to read, parse, and understand project requirements to design a
software solution, write the code to implement their ideas, and generate a test-
ing strategy for the code they have written. This activity workflow is often
introduced in second (CS2) or third (CS3) semester Computer Science classes.

Figure 2: Expected early student learner software testing workflow.

A visualization of the expected student learner workflow is shown in Fig-
ure 2. At every stage of this workflow, there are opportunities for students to
need help in understanding concepts and executing skills needed to generate
a possible approach to solving the stage. To continue through the workflow
to software testing, students are often asked to understand how code works
from both algorithmic and data input/output perspectives to ideate a software
testing strategy for their own code.

When starting to produce unit tests for their own projects, learners are
faced with executing several simultaneous skills to make this happen. Examples
of these skills include, but are not limited to:

1. Understanding their own code and the expected outcomes.
2. A strong grasp of the types of data for input and output.
3. Seeing where side effects might be caught and tested.
4. Looking at the different categories of possible unit testing to pick one to

test for, including at least:
(a) Expected positive cases
(b) Negative cases
(c) Exception handling
(d) File and data handling
(e) User input issues
(f) Branch testing

5. Writing the code for the test in the AAA pattern.
6. Deciding if a given test they can think of is worth trying.

At the software testing stage, many students could use assistance to create a
successful strategy before they try coding it. This is where peer learning strate-

5 53

gies or instructor feedback are very helpful and where this paper’s proposed
LLM-enhanced testing suggestions fit into the student’s workflow.

Figure 3: AI-based LLM tool assisting in software testing strategy ideation.

Students often need to be given a description of how to test a given project
so they continue to develop their conceptual understanding of what to test and
why, not just be given possible working tests for them to emulate. When a
student desires help with their testing strategy ideation, the LLM-based tool
would be able to become part of their workflow as shown in Figure 3. It is able
to read their project, inspect their current tests, and suggest new approaches
to testing the code which gives examples of testing approaches, which is a
Strategizing activity, as well as feedback about the quality of the student’s
current tests, which is an Appraising activity.

As shown in Section 4, the tool writes the suggestions as English prose,
which necessitates the student carrying out the Adaptation, Synthesizing, and
Critiquing activities from the CS Matrix Taxonomy in Figure 1. The effort of
synthesizing the testing code themselves serves to both integrate their coding
skills as well as their ability to understand the computing algorithm imple-
mented in their code itself. Good testing suggestions will also help them see
how the tests tie back to the project requirements, which will be an invaluable
stage in changing from post-hoc testing workflows that we see in Figure 2 and
Figure 3 to then move towards a TDD approach as their skills mature, allowing
them to develop tests as a design specification.

4 Example of a LLM-Based Tool’s Testing Suggestions

The proposed tool from Section 3 uses the student’s code source files and
related test code files to generate suggestions for further testing. To illustrate
how this tool works, Figure 4 shows both a simple class that implements an
airplane simulation along with the output of the LLM-based tool. The tool
was prompted to read the code and suggest a variety of tests that could be
implemented for the given source code.

Note that the suggested tests include descriptions of what categories of
unit tests they are. These include positive, negative, and exception tests in
this case. The categories of testing could be expanded or shrunk as needed.

654

class Airplane:
 def __init__(self):
 self.altitude = 0; self.heading = 0; self.fuel = 100.0
 self.lights_on = False

 def take_off(self, target_altitude):
 if not isinstance (target_altitude , (int, float)) or \
 target_altitude < 0:
 raise ValueError ("Altitude must be a non-negative")
 self.altitude = target_altitude
 self.fuel -= 10 # Assume 10 units of fuel consumed

 def change_heading (self, new_heading):
 if not isinstance (new_heading , (int, float)) or \
 new_heading < 0 or new_heading >= 360:
 raise ValueError ("Heading must be between 0 and 359")
 self.heading = new_heading
 self.fuel -= 5 # Assume 5 units of fuel consumed

 def toggle_lights (self):
 self.lights_on = not self.lights_on

 def refuel(self, amount):
 if not isinstance (amount, (int, float)) or amount <= 0:
 raise ValueError ("Refuel amount must be a positive")
 self.fuel += amount

 def get_altitude (self):
 return self.altitude

 def get_heading (self):
 return self.heading

 def get_fuel(self):
 return self.fuel

 def are_lights_on (self):
 return self.lights_on

Here are some testing strategies you can follow:

Testing `take_off()`

1. Positive Test Case: Pass a non-negative number like 10000 to
`take_off()`. Verify that the altitude has been updated to the passed
number and fuel has been decremented by 10.

2. Exception Test Case: Try passing a negative number to `take_off()`.
You should catch a ValueError exception asserting "Altitude must be a
non-negative number".

Testing `change_heading()`

3. Positive Test Case: Pass a number like 90 to `change_heading()`.
The heading should be updated to new number and fuel has been
decremented by 5.

4. Exception Test Case: Try passing either a negative number or a
number equals to or more than 360. The method should throw ValueError
asserting "Heading must be a number between 0 and 359".

Testing `toggle_lights()`

5. Positive Test Cases: Call `toggle_lights()` once. Verify that
`lights_on` attribute is updated to True. Call `toggle_lights()`
again. Verify that `lights_on` attribute is updated to False.

Testing `refuel()`

6. Positive Test Case: Pass a positive number like 50 to `refuel()`.
Verify that the fuel has been updated with the addition of passed
value.

7. Exception Test Case: Try passing either a negative number or 0 to
`refuel()`. The method should throw ValueError with the message
"Refuel amount must be a positive number".

Figure 4: Example of LLM-generated test suggestions for a simple class.

Running the tool and generating this set of seven unit test suggestions takes
around 45–90 seconds. For larger projects or on self-hosted LLM services like
Ollama, it could take several minutes, which is still significantly faster than
TA-derived feedback which could take hours or days to deliver. While the sug-
gestions are not in-depth testing strategies with code of this complexity, for new
software testing learners, it presents the core philosophies and approaches they
should use for testing their code. Additionally, it is based on their specific code,
instead of being a general description of the approach or an example presented
on other code as they see in lectures and reading materials, which makes this
an AI-driven personalized, tailored output akin to a peer or teaching assistant
giving suggestions after reading the learner’s code and giving suggestions.

5 Summary

Software testing and testing skills hold pivotal roles in modern software de-
velopment. Students face challenges in learning testing due to its intermittent
inclusion in curricula and the prerequisite skills needed before delving into test
writing. Software testing is especially valuable to establish early in a degree
program.

The goal of Bloom’s and the CS Matrix Taxonomy is for learners to traverse
learning stages and for that traversal to be evident to educators. For students
in CS2 and CS3 courses, peer evaluators and course graders should be providing

7 55

feedback to give ideas about what Strategies to test with and Appraisals of the
student’s existing work. This feedback is designed to help the learner Synthesize
and Critique new tests, which demonstrates a high level of competency with
the subject matter.

This work harnesses the CS Matrix Taxonomy to identify learning outcomes
in software testing on both conceptual and procedural axes, then proposes in-
tegrating Large Language Models (LLMs), such as Code Llama or ChatGPT,
into software testing education to facilitate learner progression through the tax-
onomy. The authors have developed such an LLM-enhanced tool that would
generate descriptions of how the software could be tested, fostering concep-
tual understanding of code behavior without generating explicit test code to
the learner. The tool provides strong hints about test categories, data in-
put/output, and areas needing testing, offering students guidance similar to
that provided by peers or instructors.

This paper also outlines the proposed tool’s integration into students’ cod-
ing workflow, as well as examples of testing strategy suggestions for simple
projects. By harnessing a system capable of providing timely and effective
feedback, this approach should improve the student learning outcomes includ-
ing the understanding of unit testing concepts and enhanced skills in executing
simultaneous tasks required for effective testing.

6 Future Work and Ideas

Future work for this project should flesh out the research on several axes.
Notably, it should finish integrating the code testing suggestion tool into various
workflow systems such as GitHub Actions, VS Code or other IDEs, and as a
standalone tool to read files on an ad-hoc basis. All of these implementations
would make the tool more accessible to computer science students and industry
users to help them with simple testing strategy suggestions.

The tool’s output and feedback should be evaluated for use in the classroom,
similarly to other projects using GPT generated code reviews [3, 12]. This
includes research projects evaluating the breadth, depth, and accuracy of the
suggested tests. It should have the parameters tuned to give specific suggestions
and a slate of parameters published to allow teachers to choose what kinds of
suggestions the tool would focus on for their students. A series of in-class
evaluations would be needed to evaluate which kinds and styles of suggestions
are most effective at improving student skill outcomes.

An example future research project would be to develop metrics and evalu-
ate the test suggestions before testing it with student groups. The study would
be centered around generating and reviewing the test suggestions themselves.
This could be done by gathering a corpus of student project code from the

856

target CS2 and CS3 courses. Then generating test suggestions on the project
code. The suggestions would be scored for validity, accuracy, coverage, prose
clarity, and terminology use. Metrics for these scores is a novel field of study
and would be a required step in developing these kinds of systems. After met-
rics and categories of evaluation are developed, then the evaluation process
with the same student code corpus can be used across different LLMs to com-
pare and contrast their abilities to select or train them as needed for use in the
field.

The use of LLM/GPT models to parse and generate code is impressive and
in its infancy. Leveraging these tools to help future generations of coders will
be invaluable to improving student outcomes going forward.

Acknowledgements

Work generously supported by the R.W. Gillette Challenge Fund, the Mc-
Donald Student Work Fund, and the Gonzaga University Bollier Center for
Integrated Science & Engineering.

References

[1] Samar Alsaqqa, Samer Sawalha, and Heba Abdel-Nabi. “Agile Software
Development: Methodologies and Trends”. In: International Journal of
Interactive Mobile Technologies 14.11 (2020), pp. 246–270. doi: 10.3991/
ijim.v14i11.13269.

[2] Alberto Bacchelli and Christian Bird. “Expectations, outcomes, and chal-
lenges of modern code review”. In: International Conference on Software
Engineering. ICSE. IEEE. 2013, pp. 712–721. doi: 10.1109/ICSE.2013.
6606617.

[3] Aaron S. Crandall, Gina Sprint, and Bryan Fischer. “Generative Pre-
Trained Transformer (GPT) Models as a Code Review Feedback Tool in
Computer Science Programs”. In: The Journal of Computing Sciences in
Colleges 39.1 (Oct. 2023), pp. 38–47. issn: 1937-4771.

[4] Erik Dietrich. Starting to Unit Test: Not as Hard as You Think. BlogIn-
toBook.com, 2014.

[5] Ursula Fuller et al. “Developing a computer science-specific learning tax-
onomy”. In: ACM SIGCSE Bulletin 39.4 (2007), pp. 152–170. doi: 10.
1145/1345375.1345438.

9 57

[6] Vahid Garousi et al. “Software-testing education: A systematic literature
mapping”. In: Journal of Systems and Software 165 (2020), p. 110570.
doi: 10.1016/j.jss.2020.110570.

[7] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. “A
review of peer code review in higher education”. In: ACM Transactions on
Computing Education 20.3 (Sept. 2020), pp. 1–25. doi: 10.1145/3403935.

[8] Kainat Khan and Sachin Yadav. “A Literature Review on Software Test-
ing Techniques”. In: Optimization of Automated Software Testing Us-
ing Meta-Heuristic Techniques. Springer International Publishing, 2022.
Chap. 5, pp. 59–75. isbn: 978-3-031-07297-0. doi: 10.1007/978-3-031-
07297-0_5.

[9] Pardha Koyya, Young Lee, and Jeong Yang. “Feedback for programming
assignments using software-metrics and reference code”. In: International
Scholarly Research Notices (2013). doi: 10.1155/2013/805963.

[10] Stephan Krusche, Mjellma Berisha, and Bernd Bruegge. “Teaching code
review management using branch based workflows”. In: Proceedings of
the 38th International Conference on Software Engineering Companion.
2016, pp. 384–393. doi: 10.1145/2889160.2889191.

[11] Zhiyu Li et al. “Automating code review activities by large-scale pre-
training”. In: ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2022, pp. 1035–
1047. doi: 10.1145/3540250.3549081.

[12] Eduardo Oliveira, Shannon Rios, and Zhuoxuan Jiang. “AI-powered peer
review process: An approach to enhance computer science students’ en-
gagement with code review in industry-based subjects”. In: ASCILITE
Publications (2023), pp. 184–194. doi: 10.14742/apubs.2023.482.

[13] Ollama. Ollama Open Source LLM Models. Accessed: 2024.01.14. 2024.
url: https://ollama.ai/.

[14] Saikrishna Sripada, Y Raghu Reddy, and Ashish Sureka. “In support of
peer code review and inspection in an undergraduate software engineering
course”. In: IEEE 28th conference on software engineering education and
training. IEEE. 2015, pp. 3–6. doi: 10.1109/CSEET.2015.8.

[15] Deborah A Trytten. “A design for team peer code review”. In: ACM
SIGCSE Bulletin 37.1 (2005), pp. 455–459. doi: 10.1145/1047124.1047492.

[16] Wei Zheng, Yutong Bai, and Haoxuan Che. “A computer-assisted instruc-
tional method based on machine learning in software testing class”. In:
Computer Applications in Engineering Education 26.5 (2018), pp. 1150–
1158. doi: 10.1002/cae.21962.

1058

An Adaptive, Hint-Driven, Polymorphic CTF
Framework for Educational Purposes∗

David Pouliot1 and Nate Balmain2

1Computer Science Department
Southern Oregon University

Ashland, OR 97520
pouliotd@sou.edu

2Computer Science Department
University of Oregon
Eugene, OR 97403
balmain@uoregon.edu

Abstract

Capture the flag (CTF) challenges are very popular among security
professionals to demonstrate and practice their skills. However, there
are numerous challenges when using most CTFs as an educational tool
in the classroom. Most CTFs are too challenging for beginners, or their
difficulty increases too steeply. The only recourse for these beginners is
to find the complete solution online. Many CTFs use the same flag for
each user, allowing users to share flags rather than solve the level them-
selves. Similarly, most CTFs deploy the exact same challenge to each
user, allowing users to share scripts. Some CTF frameworks have at-
tempted to remedy some of these shortcomings. To address these issues,
we present Penetration-Platoon, An Adaptive, Hint-Driven, Polymorphic
CTF Framework for Educational Purposes. While other systems have
offered features like hint systems or polymorphic challenges to address
these issues, our framework uniquely combines a dynamic hint system,
polymorphic challenges, and the versatility to host any type of challenge
in a unified package.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 59

1 Introduction

Capture the Flag (CTF) challenges have gained widespread popularity among
both computer security students and professionals. These challenges gamify
the process of exploiting vulnerabilities, offering an enjoyable means of honing
one’s skills. However, while CTFs are commonly used as tests of knowledge
and abilities, they often fall short as instructional tools for teaching these skills.
As a result, many novice computer science students find it frustrating to get
started with CTFs. When faced with challenges, their primary option is to
resort to online walkthroughs for guidance, or to quit.

Most CTFs use the same flag for each user. While this is fine for many uses
of CTFs, it is problematic when using a CTF as a graded activity for a course
as users can share flags. For educational use, it is desirable for each user to
have a distinct and unpredictable flag.

In many Capture the Flag (CTF) challenges, solving them is often facili-
tated by writing a short script. Similar to the concept of having distinct flags
for each user, the ideal scenario would not allow a user to use another’s script
without making necessary adjustments to account for the unique conditions or
parameters of their specific challenge instance.

The idea is to encourage participants to develop their own customized so-
lutions, rather than simply copying and pasting pre-existing scripts. This ap-
proach not only reinforces the learning experience, but also aligns with the
spirit of CTF challenges; which is to test and hone one’s problem-solving skills
in a hands-on and practical manner.

An ideal educational CTF framework should cater to beginners with a gen-
tle learning curve and comprehensive hints, while remaining challenging for
experienced users (they can choose not to use hints). It should feature unique
flags per user, polymorphic challenges to prevent script sharing, as well as the
ability to start a CTF without any complex setup. This approach promotes
genuine learning, personalized experiences, and accessibility for all skill levels.

2 Background and Related Work

AutoCTF [4] is a specialized tool for creating exploitable program challenges in
CTFs. It continuously generates new challenge instances with varying difficulty
levels, allowing users to repeatedly practice specific exploit types. While limited
to exploitable programs, AutoCTF enables users to hone their skills until they
master each challenge category.

MetaCTF [3] is a specialized platform for reverse engineering challenges,
featuring: Scaffolded learning with progressive difficulty levels, polymorphic
and metamorphic code generation, unique flags and slightly modified chal-

260

lenges for each user. These features provide individualized learning experiences
and prevent solution sharing. While currently limited to reverse engineering,
MetaCTF’s approach offers valuable training in code analysis skills.

Blinker [1] is a tool that will make numerous random changes to a binary
executable. They implemented eight techniques for introducing variation into
C/C++ binary challenges. This level of randomization is an excellent tool for
enhancing the replayability of challenges.

PWN The Learning Curve [5] offers two key educational contributions: a set
of CTF challenges with a gradual difficulty progression, preventing beginners
from quitting due to overly steep learning curves, and a Jinja template system
for adding randomness to challenges. This system allows easy generation of
slightly different versions for each user or iteration, enhancing the learning
experience and discouraging solution sharing.

Pwn Lessons Made Easy With Docker [6] designed a set of CTF challenges
that aligns with the NSA CAE Cyber Operations Knowledge Units for vul-
nerability research. They utilized Docker containers for each challenge so they
could select specific operating systems as well as specific version of that oper-
ating system. The challenges they created are the same for each user and they
noticed suspicious behavior that led them to believe that students were sharing
scripts to solve challenges. This indicates a real need for each user’s challenge
to have a slight variation.

3 Goals and Approach

Because of the shortcomings of using most CTFs for educational purposes, this
project had several goals for an educational CTF framework:

• Develop a hint/help system tailored for CTFs, aimed at aiding users from
beginners to experts, including a multi-level hint system complete with
customization and tracking.

• Establish a flexible and configurable framework for deploying CTFs to
cloud platforms, integrated with the hint system. This system supports
multiple CTF Formats, accommodates different deployment scenarios,
requires minimal setup and software for the user, and ensures each user
receives a unique and random flag for each level. In addition, this frame-
work also tracks the hint usage, simplifies the creation and deployment
of CTF levels, and is optimized with cost savings in mind.

• Develop a method for introducing randomness into every CTF level. Ide-
ally this would let the overall technique used to solve the CTF be the same
for each user, but would vary on some of the implementation details. This

3 61

randomness should enable each participant’s challenge to have enough
variation so that script sharing without modifying the scripts will not
solve the challenge. In addition, if a user starts, stops and then restarts
the challenge, they should receive the same challenge (though some levels
might want to employ a truely random setup for replayablity).

• Develop CTF levels utilizing the hint system and level randomness. De-
ploy levels from within the framework.

4 Deployment

The foundation of our cloud-based system lies in its deployment. By utilizing
a cloud platform such as Google Cloud, we eliminate many barriers to entry
for beginners, requiring only a web browser and a terminal. This ensures that
deployment is a seamless experience for users starting with CTF challenges.
This section introduces the main web application, detailing the program archi-
tecture, and scoring system.

Main Web Application Our application is a web-based platform hosted
on the Google Cloud infrastructure. Users interact with a web application to
access and view information about Capture The Flag (CTF) challenges hosted
on the platform. Our architecture aims to provide a scalable, secure, and
cost-effective solution for hosting and managing CTF challenges by encompass-
ing the following components: Cloud Run hosts the primary web application,
Cloud Datastore–a fully managed NoSQL document database–is leveraged as
the back-end database, VMs that host the CTF levels are provisioned from
Compute Engine, Artifact Registry is used for storing and managing the CTF
Level containers, Cloud Functions and Pub/Sub are utilized for resource man-
agement.

Flag Generation To facilitate unique flags, the web server generates a ran-
dom seed when a student starts a level. In addition, this seed is stored in the
database so that if a user stops the level and restarts it later, the same flag is
re-generated. We chose this approach to alleviate user frustration, as it would
be irritating to work on a multi-flag CTF level only to lose progress when the
user wants to take a break.

The default flag generation method uses the hashing algorithm SHA3. We
chose SHA3 due to its resilience against recovering its input parameters. The
input to the hash function is the random seed concatenated with the username
and the CTF level name. By concatenating multiple parameters, we avoid
duplicate flags from occurring, even in the extremely rare case a random seed

462

is generated twice. This ensures that all generated flags are unique and not
predictable.

Hint System In order to satisfy the goals of the framework hint system,
we decided to implement the hints on the web application rather than in the
CTF containers. If the hint system was in the container, then the container
would have to communicate with the web application in order to track how
many hints a user obtained for a specific level. Since many of these containers
are vulnerable by design, we did not want the hints stored on the containers
at all. For security purposes we also did not want the potentially vulnerable
containers to have any communication with the web application.

Thus, the user simply requests a hint for a level on the web application.
The web application keeps track of how many hints each user requests for every
level. These hints tie into the scoring system for the purposes of grading or
scoring.

Our solution is not the first CTF solution that offers hints to its users. For
example, Pico-CTF [7] also offers hints to their users to aid in the solution
process. The area that makes us most unique, however, is our use polymorphic
solutions to each CTF level combined with a highly configurable hint system
and the ability to host any type of CTF.

Scoring System To determine the score a user receives after successfully
finding the flags on a level, we utilize two primary factors: the level’s base
score (most influenced by difficulty) and the number of hints used (influenced
by each hint’s weight which is configurable by the instructor). By tying the
base score to the difficulty, we are able to scale the upper bound of the user’s
score for more challenging levels. This makes more challenging levels more
rewarding for the student, and reflects the user’s progress in solving it. The
number of hints used by the student is subtracted from the base score, with
each hint weighted differently based on how much it reveals about the solution.
This incentivizes students to use as few hints as possible to maximize their score
on the level.

Flag Checking The main issue with using dynamically generated flags is
the difficulty of checking if they are correct. In order to keep these flags secure,
we do not store any flags that are generated. We need only store the seed used
to create the flags in order to ensure that the flags are correct.

When the user submits a flag for checking, the system pulls the random seed
for the student’s current level from the database. It then utilizes the seed with
same flag generation procedure to re-create the same random flag. In instances

5 63

requiring multiple flags, we simply use a different seed that is generated from
the original and run the flag generation algorithm once per each seed.

Start CTF After a student logs into the website, they can view all public
challenges and start any CTF. Upon starting a level, the server-side code will
start the VM and container, obtain its IP address, then will provide instructions
for connecting to the container. In addition, this page allows the user to acquire
hints and submit the flag.

Terminate Levels As the vulnerable CTFs are hosted on Google Cloud,
leaving containers running for too long would only increase the cost to the
instructor. In order keep costs down we supply three mechanisms for which
levels can be terminated.

The first, and most often used, method to terminate a level is done by the
student. The student may choose to stop the level which simply deletes the
level from Compute Engine and saves their progress for later, due to the unique
seed being stored in the database. In addition, the level is also automatically
deleted when the student finishes solving it.

The second mechanism is performed automatically behind the scenes us-
ing Google Pub/Sub. At a configurable interval, Pub/Sub triggers a Cloud
Function that checks for VMs that have been running for too long. When
triggered, it checks a configurable metadata variable in each VM against how
long the VM has been running. If the level has been running too long, it will
be deleted.

A manual termination option is provided as a final safeguard, allowing
instructors to delete any level at their discretion, complementing the primary
cost-saving methods for VM uptime.

5 CTF Challenges

We chose to host all of our CTF challenges inside Docker containers, due to
the portability and flexibility offered by containerized environments. Since a
container can run nearly any application, our CTFs are not limited to a specific
category. This makes them easy to deploy and also keeps all challenges isolated
from each other and the main web application. This is very important because
the environments used in many of the challenges requires turning off many of
the security protections that modern systems provide.

Container Templates If our system lacked container templates, it would
be little more than a web app to provide hints and start containers. To make
creating the CTF challenges easier, we also created a few templates to use as

664

starting points in creating levels. Currently we have two distinct templates,
one for terminal access and the other for web/http access. In the future we
plan to add a remote desktop template as well.

The Web template is a simple Flask application. To create a CTF with a
web vulnerability to exploit, it is a simple matter to add a route and template
to the Flask application with the specific vulnerability. For example, we created
a website with a SQL injection vulnerability. The flag is added to a database
when the container image starts, and the only way to retrieve the flag is to
execute a SQL injection to retrieve it.

The terminal-based template includes a base Dockerfile and a bash script.
The script has access to the flag (passed into the container at runtime), and it
is up to the level designer to decide what to do with the flag.

For example, with one of our binary exploitation/buffer overflow challenges,
we change the owner of the flag to a user that also owns the program with the
buffer overflow vulnerability. Once the challenger compromises this executable,
they can now view the flag because it has the same owner as the executable.

In another example, we hide the flag inside a random file in a file system
with numerous folders and files. The idea of this is to teach the challengers
how to use grep.

These terminal-based levels can be nearly any type of CTF. We have created
several binary exploitation levels, cryptography levels, forensics levels and some
basic levels on how to use a shell.

Container Parameters Container parameters are specified by the instruc-
tor when they create a level. We supply arguments in two methods, each used
for its own purpose: as a program input argument passed to the container
upon creation via stdin, and as metadata. Argument parameters are used
by the container for the purpose of flag generation, level variation, for use in
the level, or for some other developer-specified purpose. These arguments are
protected, as they contain necessary information regarding the level’s unique
seed.

Metadata parameters are used by the virtual machine that hosts the vul-
nerable container. These provide instructions to Google Compute Engine for
which hardware to use, which container should be loaded into the virtual ma-
chine, and how long to keep the VM running. These parameters do not need
to be kept secret, as the only information they contain is related to general
VM and container information.

Securing Level Containers Since the containers deployed for each level
contain vulnerabilities, it is necessary to secure them in order to prevent the
challenger from escaping the container. We use a variety of measures to secure

7 65

the containers as much as possible such as removing extra commands, using
additional firewall rules, limiting the lifetime of the container, and minimizing
access to other resources with the use of Google Cloud Service Accounts.

We use part of the entrypoint script that runs when the container starts
to remove unnecessary commands from the system that could be potentially
abused for nefarious purposes, such as scp, apt, and dpkg. By removing these
commands from the system, they become unavailable for the challenger to use.
This technique of removing commands can be used for either terminal or web
levels. However, the exact programs removed can vary depending on the nature
of the level. For example, allowing the cat command is likely necessary for a
terminal level and not for a web level. It is important to sufficiently restrict
access, or even outright remove, as many commands as possible in order to
sufficiently secure the container as much as possible.

Firewall rules were setup such that they allow normal access to the con-
tainer depending on what type of level the container is used for. With web
vulnerability levels, we restrict all incoming and outgoing TCP connections to
only use ports 80 and 443, thus allowing the user to access the website and
restricting potential communication with other servers.

For terminal-based levels, we disable SSH’s default port 22, only allowing
incoming and outgoing SSH sessions to be held on a separate port. Further,
we also restrict all other TCP and UDP ports in order to further minimize
the chances of communication with other outside services. This combination
disallows students from using SSH to connect to the host VM and only allows
access to the container.

In addition, we also create the Virtual Machines that run the containers in
Google Compute Engine with a custom service account that was assigned a role
with minimal permissions. This Google Service Account only has permissions
to download Artifacts (containers), and disk read access for the host VM. This
way if a user manages to compromise the VM, they would have very limited
access to the cloud resources.

Adding Randomness to CTF Challenges While the framework creates
unique flags per user per level to stop flag sharing, it by itself does not prevent
the sharing of scripts to solve the level. However it does facilitate this.

To prevent the user from simply using another user’s script to solve a level,
the CTF level needs some randomness in the design. But we also want the
user to be able to start a level, stop it, and then come back to the exact same
level to continue their work.

The seeds and flags that are already generated can be used by the level
designers to accomplish this. Here is one example from the Seed [2] project. In
this lab the instructor can change a constant (BUF_SIZE) to make the attack

866

slightly different from a previous version of the course:
/∗ Changing BUF_SIZE changes the l ayou t o f the s tack . Change
∗ t h i s value , so s tuden t s cannot use pas t s o l u t i o n s .
∗ Suggested va lue : between 0 and 400 ∗/
#ifndef BUF_SIZE
#define BUF_SIZE 85
#endif

int bof (char ∗ s t r){
char bu f f e r [BUF_SIZE] ;
/∗ The f o l l ow i n g statement has a b u f f e r over f l ow problem ∗/
s t r cpy (bu f f e r , s t r) ;

}

The startup script in the container could take the flag, and use it as a
generator to pseudo-randomly select a value between 100 and 400, then update
the BUF_SIZE value in the program. Thus the general technique to solve this
level (buffer overflow) would be the same for each student, but each student
would get a slightly different version of program to exploit. In this case, the
location and size of some of the stack frames would vary for each student.

A similar mechanism can be used to change aspects of a web security chal-
lenge as well. For example we could use the seed to dynamically change the
ids of HTML tags, specific URLs, the passwords of specific users, etc.

6 Results

To test this framework, several web-based levels were created that are similar
to levels you might find in the Portswigger [8] web site.

Many of the levels on the Portswigger web site have been used in a web
security course taught by the author. Portswigger is fantastic for learning
about web vulnerabilities. However, using it for a classroom is problematic.
There are many complete walkthroughs available online. Further, there is no
easy way for a student to show that they have completed a Portswigger level.
Taking a screenshot and producing a lab report was the technique for this
course.

In the Fall of 2023, we substituted numerous web-based CTFs using this
framework in place of the previously used PortSwigger CTFs. The result was
that students were able to get help, rather than a complete solution, when they
were stuck. Additionally, showing that a student completed a level, along with
the number of hints they used, was automated, saving both the student and
the instructor the time of creating and grading lab reports.

9 67

7 Conclusion

Learning cybersecurity does not have to be an arduous and tedious task. By
leveraging engaging activities such as CTFs, the learning process becomes more
fun and engaging for students. The highly configurable hint/help system of
Penetration Platoon guides both novice and more experienced students. This
approach reinforces learning better than looking up a solution online, or copy-
ing and pasting some code for an exploit. Using dynamic seeds keeps every
level’s solution unique, thereby eliminating flag and script sharing by students.
Through the use of containers, we can host a CTF of any variety while keeping
the vulnerabilities isolated. While many other previous works offered similar
features such as a hint system or polymorphic challenges, our system combines
a highly dynamic hint system, polymorphic challenges and the versatility to
host any type of challenge in a unified package.

References

[1] Blinker: automatic generation of computer security exercises. https://
gs509.user.srcf.net/blinker/. Accessed: 2024-05-01.

[2] Wenliang Du. “SEED: Hands-On Lab Exercises for Computer Security
Education”. In: IEEE Security & Privacy 9.5 (2011), pp. 70–73. doi: 10.
1109/MSP.2011.139. url: https://seedsecuritylabs.org/.

[3] Wu-chang Feng. “A Scaffolded, Metamorphic CTF for Reverse Engineer-
ing”. In: 2015 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 15). D.C.: USENIX Association, Aug. 2015.
url: https://www.usenix.org/conference/3gse15/summit-program/
presentation/feng.

[4] Patrick Hulin et al. “AutoCTF: Creating Diverse Pwnables via Auto-
mated Bug Injection”. In: 11th USENIX Workshop on Offensive Technolo-
gies (WOOT 17). Vancouver, BC: USENIX Association, Aug. 2017. url:
https://www.usenix.org/conference/woot17/workshop-program/
presentation/hulin.

[5] Connor Nelson and Yan Shoshitaishvili. “PWN The Learning Curve: Education-
First CTF Challenges”. In: Proceedings of the 55th ACM Technical Sym-
posium on Computer Science Education V. 1. SIGCSE 2024. <conf-loc>,
<city>Portland</city>, <state>OR</state>, <country>USA</country>,
</conf-loc>: Association for Computing Machinery, 2024, pp. 937–943.
isbn: 9798400704239. doi: 10 . 1145 / 3626252 . 3630912. url: https :
//doi.org/10.1145/3626252.3630912.

1068

[6] TJ OConnor et al. “PWN Lessons Made Easy with Docker: Toward an Un-
dergraduate Vulnerability Research Cybersecurity Class”. In: Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V.
1. SIGCSE 2024. <conf-loc>, <city>Portland</city>, <state>OR</state>,
<country>USA</country>, </conf-loc>: Association for Computing Ma-
chinery, 2024, pp. 986–992. isbn: 9798400704239. doi: 10.1145/3626252.
3630911. url: https://doi.org/10.1145/3626252.3630911.

[7] PicoCTF. https://picoctf.org/. Accessed: 2024-05-01.

[8] PortSwigger. https://portswigger.net/. Accessed: 2024-05-01.

11 69

An Evaluation on the Impact of Large
Language Models on Computer Science

Curricula∗

Junghwan Rhee, Aakankshya Shrestha, Gang Qian,
Fei Zuo, Jicheng Fu, Myungah Park, Xianshan Qu,

Goutam Mylavarapu, Hong Sung
Department of Computer Science

University of Central Oklahoma, Edmond, OK 73034
{jrhee2,ashrestha51,gqian,fzuo,jfu,mpark5,xqu1,smylavarapu,hsung}@uco.edu

Abstract
Since their introduction, large language model (LLM) services have

been widely used in our society, including the computer science educa-
tion area. While this technology provides various types of intelligent
assistance to users, its capabilities and impact on computer science ed-
ucation regarding students’ learning need further study. In this paper,
we present our manual assessment of LLM services’ ability to solve ques-
tions in various course assignments and projects in our computer science
curriculum. Based on the result of the study, we provide our observa-
tions of the extent of LLM services’ impact on different computer science
disciplines. Suggestions are summarized and offered to computer science
instructors on the possible strategies for dealing with LLMs in current
and future computer science curriculum designs.

1 Introduction

Large language model (LLM) services such as ChatGPT, Gemini, and Mi-
crosoft Copilot [12, 14, 11] have been widely used and affecting our society

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

170

since their introduction. While these intelligent services benefit most areas,
education is one of the areas that need attention because unregulated usage
may cause lost opportunities for proper education and ethical issues. Especially
one of key areas of LLMs is code generation as shown by specialized services
like Github Copilot, OpenAI Codex, Amazon CodeWhisperer, Tabnine, and
Deep Code (by Snyk). Therefore, the instructors in our department have been
continuing discussions on what is our students’ learning experience and what
kinds of directions should our department take to get our curricula aligned
with the new era of AI and stay competitive.

In this paper, we present our initial effort of a collaborative study of multiple
instructors in the department (Computer Science) to evaluate how well modern
LLM services solve samples of our course assignments and project questions.
After that, our instructors evaluate the performance of LLM solutions and
analyze the implications. The result became our preliminary study to provide
inputs and set our department’s directions to react to the LLM services in
terms of our course improvement. This paper has several new contributions.

• We have manually evaluated LLM services’ performance on their solu-
tions to homework assignments and course projects for multiple computer
science topics and disciplines by multiple faculty members who teach such
courses in our institution.

• We present our observations from the study of which types of questions
and courses are more or less affected by LLM services and strategies
to go along with LLM services based on evaluation and comments by
instructors.

2 Design

In this section, we present the design of our study. We start with a list of
courses whose lecturers offer the course for assignments for evaluation. These
problems are fed into a common set of LLM services. Their outputs are sent
back to each instructor who will evaluate the accuracy of the LLMs’ solutions.
Instructors will grade LLMs’ results as a percentage whose value is between
0 (0%, completely wrong) and 1 (100%, entirely correct). The evaluation of
LLMs’ solutions is aggregated and used to extract common insights.

Multiple instructors of our department participated in this study, which
covers topics such as data structures, theory of computing, computer organiza-
tion, programming, and cybersecurity at multiple levels including elementary
courses, advanced courses, and the specialized courses with certain themes
(e.g., fundamentals, advanced, I, II) from multiple instructors.

2 71

Course# |Q| LLM 1 LLM 2 LLM 3
AVG STD AVG STD AVG STD

1 10 0.6 0.52 0.12 0.21 0.405 0.42
2 16 0.75 0.45 0.875 0.34 0.75 0.45
3 105 0.63 0.49 0.49 0.50 0.51 0.50
4 10 0.82 0.33 0.072 0.17 0.325 0.44
5 11 0.86 0.23 0.458 0.38 0.513 0.36
6 12 0.89 0.9 0.7 0.24 0.24 0.29
7 10 0.99 0 0.96 0.07 0.84 0.23

Table 1: Performance of Three LLM Services on Multiple Courses.

3 Evaluation

We evaluated the performance of three major LLM services (ChatGPT, Gem-
ini, and Microsoft Copilot) on our curriculum mainly regarding assignments
and projects. For all LLM services, we utilized the free versions. For Chat-
GPT, version GPT-4o is used for a limited number of questions then GPT-3.5 is
used. Gemini 1.5 Pro and Microsoft Copilot (Free Version) based on ChatGPT
4 Turbo have been used at the evaluation period.

We collected and summarized the evaluation result in Table 1. For a course
number (Course#) and the number of questions (|Q|), we measured the per-
formance of three LLM services with average scores (AVG) and standard de-
viations (STD). We did not specify the course names here because the results
will be greatly different depending on how instructors set up questions that
may not properly represent relevant course characteristics. Instead, this table
illustrates the diversity of LLM services’ performance in different courses. For
the course #3 with 105 samples, the performance of three LLM services is
similar as shown in their average values while some courses such as course #6
show clear performance differences among LLM services. We note that due to
the nature of LLM services’ operations, there is randomness involved meaning
even for the same question, the evaluation result may differ each time. Also,
the performance of the result may vary over time as the LLM companies are
continuously improving their services. This is the result based on the LLM
versions as of the first half of 2024. To avoid any bias from our limited samples
of evaluation, each instructor’s choices of question styles, and the randomness
of LLMs’ results, we extracted observations mainly from instructors’ inputs.

372

3.1 Higher Impact Question Types and Affected CS Disciplines

These question criteria are easier to LLMs and more serious issues for CS
instructors that need immediate attention.

• Questions that are relatively straightforward and/or directly
concept-based. Example: True or false: If L is a regular language and
L′ is a subset of L, then L′ is guaranteed to be a regular language.

• Programming questions involving basic to intermediate con-
cepts. Example: Write a C++ program using dynamic arrays, finding
the second highest and the second lowest without sorting the list and
not using macros.

• Programming questions with requirements (i.e., prompts). Ex-
ample: Generate a search page based on the Flask platform.

• Survey or analysis of knowledge retrievable from public re-
sources (e.g., the Internet). Example: Complete a survey of the
details of Windows Management Instrumentation regarding what WMI
is, where it is applicable, the usage APIs, and any unique characteristics.

Observation #1

Question Types: LLMs provide competitive solutions for concept-
based questions, general programming assignments, and knowledge re-
trieval, comprehension, and summary from textbooks or public sources.

CS Disciplines: Most programming courses as well as courses using
assignment questions involving surveys of information need attention
due to LLM services’ strong capability.

3.2 Lower Impact Question Types and Related CS Disciplines

These question criteria are the harder types to LLMs giving instructors more
time to react at this moment. However, we believe this is only temporary.
The current development and future LLM services are likely to surpass current
limitations.

• Logical reasoning questions. Example: Using the CRC polynomial
1011 and the information word 01001101, (a) compute the CRC code
word for the information word; i.e., the bit pattern that should be sent

4 73

with added redundant bits. (b) When the CRC code word from (a)
is received at the receiver, show that the received code word does not
contain any error.

• Writing regular expressions. Example: Give a regular expression r
such that it represents the set of strings over the alphabet {a, b} with an
even number of a’s and any number of b’s. The regular expression should
include only concatenation, union, and Kleene Star. Use + as the union
operator.

• Questions that require an understanding of a particular con-
cept/property and then use logical reasoning. Example: What
can we conclude from the following statement? Possible answers include
the follows: L is half-solvable, L is solvable, L is regular, Nothing, L is
not regular, L is not solvable, and L is not half-solvable. Give the most
precise answer possible. L1 ∪ L2 = L where L1 is in LNFA and L2 is
regular.

• Questions requiring code comprehension and subsequent logical
analysis. Example: What is the output of the following code snippet if
the user provides “NEW YORK” as the input? ...code example... This
question requires understanding the code first and then deducing the
correct answer based on the understanding.

• Finding logical or general errors. Example 1: When a function of
an incorrect but similar class is used with a different class object, most
LLMs fail. Example 2: If there is a code segment doing something that
does not match with the condition in the conditional statement, most of
LLMs have difficulties finding the error when running with multiple such
test cases.

• Questions about UML diagrams.: Example: As of now, LLMs
couldn’t generate UML class, sequence, component, deployment, and use-
case diagrams. In the future, even if LLMs can, due to the hallucination
issue, they may not present the correct interpretations for software re-
quirements,

• Programming questions with advanced concepts. Example: When
more advanced concepts (such as inheritance, and polymorphism) are
required in the problem statement, LLMs are producing the code that
sometimes does not meet all the requirements.

574

Observation #2

Question Types: LLMs show weakness at logic-based questions such
as regular expressions and logical reasoning, deep reasoning to find er-
rors, code comprehension with logical analysis, programming with ad-
vanced concepts, and UML diagram generation at this moment.

CS Disciplines: Courses with logic theory such as the theory of com-
puting, low division computer organization covering boolean logic, soft-
ware engineering courses with UML, and programming courses with
advanced concepts seem to have more time until LLMs catch up.

4 Multiple Directions for CS Courses

Based on our study, we have determined several suggestions regarding the
strategies how to make our curriculum go along with LLM services.

4.1 Approaches to Promote LLM Usages

This approach is to promote LLMs and actively incorporate them into current
courses to actively utilize their benefits.

• Learn to be competent with high-level abstractions as a software
architect: As code generation is one of the strengths of LLMs, if students
could provide the correct prompts (requirements), LLMs could generate
correct (or almost correct) code. Therefore, we can help students raise
the level of abstractions from coding to higher levels such as requirements
engineering, software design, and project management.

• Build LLM-based tools for guiding students to write better
code: Another approach is to create assistive tools that can give feed-
back to students, where the tool acts as a mentor for students. Woodrow
et al. [15] developed a ChatGPT-based tool that would provide real-
time “style feedback” to help students write better code. This real-time
feedback was found to be five times more effective than delayed feedback
by a human mentor. They encourage human monitoring and input with
this approach since LLMs are known to hallucinate and provide wrong
answers at times.

• Utilize LLMs as an assistant and learn how to evaluate code,
engineer prompts, and manage LLMs’ work: An approach to uti-
lizing LLM is to treat it like an assistant team member. An example

6 75

is to let students use LLM services to generate an intermediate output
(e.g., code) as they take the roles of a reviewer, a mentor by engineer-
ing prompts, and a manager working iteratively for multiple rounds and
generate the final outcome.

Direction #1

A student is encouraged or required to use LLMs as a software architect,
an LLM evaluator, an LLM mentor, and a project manager.

4.2 Approaches to Cooperate with LLMs

This approach gives permission to use LLMs without promoting it or preventing
it.

• Use LLMs like a search engine or a calculator: As students use a
calculator or a search engine nowadays, we can give them permission to
use LLM services to get assistance to complete assignments. However,
the work should be students’ own work. Students should pay effort to
avoid plagiarism rewriting the result with their own language.

• Discussion on ethics and capabilities of AI tools: As the use of
LLM services grows, the discussion on proper use and ethical concerns
should increase in parallel. As educators regardless of our stance on
using AIs in education, we must still understand new AI technology and
their potential impacts [9]. Involving LLMs in academia is still new and
evolving and there hasn’t been any defined rule set to follow [1]. Students
and faculty using LLM services need to be aware of the ethical concerns
surrounding the use of AI.

Direction #2

Students are reminded to be responsible users doing their own academic
work while they may use LLM services.

4.3 Approaches to Make Courses Resistant to LLMs

Another approach is to make the current course material valid and less vulner-
able as long as possible with minimal impact from LLMs. Based on the study,
we found current LLMs may not be strong enough to solve certain types of

776

questions. If we transform existing assignment questions into such types, we
can make them more resistant or confusing to LLMs.

Several experiments with LLMs have shown much more effective perfor-
mance of LLMs after modifying the prompts. While we make the questions
harder for an LLM to decode, students can change the questions so that the
LLMs can understand and generate solutions for them. A recent 2023 study
by Denny et al.[4] found that for CS 1-level questions, Copilot could solve an
additional 31% of the problems after the prompt had been modified.

Direction #3

We can make courses more resistant to LLMs. However, students can
reverse the effort with problem modification and prompt engineering.

4.4 Approaches to Discourage or Prevent LLM Usages

This approach forbids the usage of LLM services. Students will be notified to
refrain from using LLMs for their assignments. Otherwise, any LLM usage will
be a violation of course conduct. A related technique is to fingerprint/detect
any LLM result and penalize students using the evidence. For instance, LLMs
tend to draw UML diagrams in a textual format. Therefore, the textual for-
mat for UML diagrams is a strong indicator that students relied on LLMs to
generate the UML diagrams.

However, with the fast growth of LLM services, this approach is likely to
be temporary. As search engines, the Internet, or a calculator have become so
common in our lives, it will be hard to prevent LLMs in the long term.

Direction #4

We may be able to discourage, penalize, detect and/or prevent LLM
users for the moment. However, it will be hard in the long term.

5 Related Work

LLM’s impact on Software Engineering. The evolution of LLMs like
chatGPT and Copilot will change the way software engineers work, which in
turn should reflect a change in software engineering education [8]. Researchers
expect to see the software engineering field moving towards reading and eval-
uating AI-generated code rather than manually writing code [1][3]. Software
engineers are expected to focus more on understanding the software goals and
thus maintaining and debugging AI-generated code [3].

8 77

As the career itself is facing a change, the academic curriculum should
accordingly change to adapt to these changes. The field requires dedicated time
and research for incorporating LLM tools into software engineering programs
for two main reasons: first is the lack of reliability of LLM models as they are
prone to hallucination and second is that LLM models cannot deal with safety,
privacy and physical reality [8].

The rapid development of AI tools is creating a new era where AI will
impact our everyday lives [5]. A survey from 2023 by Tyna et al. [7] suggests
that approximately 19% of jobs have at least 50% of their tasks exposed to
LLMs.

Academia’s usage of LLMs. ChatGPT alone has introduced multi-
ple problems for educators as they can never be sure if students have used
ChatGPT to solve the assignments [3]. However, in the past couple of years,
many academic institutions around the world have made efforts to make use
of LLMs in their curriculum. Denny et al. [4] explored the performance of
copilot against publicly available coding questions and found that out of the
total 166 questions, 79 of them were solved verbatim, 53 of them were solved
after modifying the prompt and 34 remained unsolved [4]. Likewise, prompt
engineering has also yielded favorable results in Data Science subjects. Shen
et al. [13] found that for intermediate and advanced-level courses, ChatGPT
increased its correctness by 45.65% and 63.98% respectively after modifying
the prompts.

While others have leveraged tools using LLMs to help mentor students, Lan
et al. [9] presented a model for using ChatGPT to create an AI agent using a
series of complex prompts that helps students learn. Liu et al. experimented
with creating a Teaching Assistant using GPT 3.5 from OpenAI [10]. They
found the virtual TAs to be more engaging, clear, and detailed than human
TAs while having similar levels of accuracy, though the answers of the virtual
TAs require cross-checking for optimal and correct performance.

A literature review by Combaz et al. [2] suggests that while using AI tools
as an “assistive tool” is encouraged, a manual review of AI-generated content
is important. However, overuse of such tools can also cause over-reliance and
reduced critical thinking [2]. Likewise, Duarte et al. [6] maintain that while we
can encourage assistance from AI models, peer review and authorship should
be done by humans as using AI can incur risks like algorithmic bias and even
authorship by AI.

6 Conclusion

In this paper, we present our study on LLM services’ impact on student learn-
ing experience. We used three major LLM services to solve our curricula’s

978

assignment and project questions and the results were manually evaluated by
the course instructors qualitatively. We found out that current LLMs are very
competitive at generating code, answering concept-based questions, and the
retrieval of public information. On the other hand, solving logic-based ques-
tions or finding errors is challenging at this moment, but this could be changed
anytime soon due to the fast evolution of LLM services.

We also discussed multiple directions to promote LLMs, cooperate with
LLMs, be resistant to their usage, or prevent their usage completely. However,
due to the strong growth of LLMs’ capability, eventually, we will need to adopt
LLMs as an essential component of curricula.

References

[1] Brett A. Becker et al. “Programming Is Hard - Or at Least It Used
to Be: Educational Opportunities and Challenges of AI Code Genera-
tion”. In: Proceedings of the SIGCSE 2023. <conf-loc>, <city>Toronto
ON</city>, <country>Canada</country>, </conf-loc>, 2023. isbn:
9781450394314. doi: 10.1145/3545945.3569759. url: https://doi.
org/10.1145/3545945.3569759.

[2] Doga Cambaz and Xiaoling Zhang. “Use of AI-driven Code Generation
Models in Teaching and Learning Programming: a Systematic Literature
Review”. In: Proceedings of the SIGCSE 2024. 2024, pp. 172–178. isbn:
9798400704239. doi: 10.1145/3626252.3630958. url: https://doi.
org/10.1145/3626252.3630958.

[3] Marian Daun and Jennifer Brings. “How ChatGPT Will Change Soft-
ware Engineering Education”. In: Proceedings of the ITiCSE 2023. New
York, NY, USA, 2023, pp. 110–116. isbn: 9798400701382. doi: 10.1145/
3587102.3588815. url: https://doi.org/10.1145/3587102.3588815.

[4] Paul Denny, Viraj Kumar, and Nasser Giacaman. “Conversing with Copi-
lot: Exploring Prompt Engineering for Solving CS1 Problems Using Natu-
ral Language”. In: Proceedings of the SIGCSE 2023. Toronto ON, Canada,
2023. isbn: 9781450394314. doi: 10.1145/3545945.3569823. url: https:
//doi.org/10.1145/3545945.3569823.

[5] Paul Denny et al. “Computing Education in the Era of Generative AI”.
In: Commun. ACM 67.2 (Jan. 2024), pp. 56–67. issn: 0001-0782. doi:
10.1145/3624720. url: https://doi.org/10.1145/3624720.

[6] C. C. Duarte. “Authorship and Peer Review in the Era of Artificial In-
telligence”. In: Computer 56.12 (Dec. 2023), pp. 32–41. issn: 1558-0814.
doi: 10.1109/MC.2023.3311729.

10 79

[7] Tyna Eloundou et al. GPTs are GPTs: An Early Look at the Labor Mar-
ket Impact Potential of Large Language Models. 2023. arXiv: 2303.10130
[econ.GN].

[8] Vassilka D. Kirova et al. “Software Engineering Education Must Adapt
and Evolve for an LLM Environment”. In: Proceedings of the SIGCSE
2024. 2024, pp. 666–672. isbn: 9798400704239. doi: 10.1145/3626252.
3630927. url: https://doi.org/10.1145/3626252.3630927.

[9] Yu-Ju Lan and Nian-Shing Chen. “Teachers’ agency in the era of LLM
and generative AI: Designing pedagogical AI agents”. In: Educational
Technology & Society 27.1 (2024), pp. I–XVIII. issn: 11763647, 14364522.
url: https://www.jstor.org/stable/48754837 (visited on 06/19/2024).

[10] Mengqi Liu and Faten M’Hiri. “Beyond Traditional Teaching: Large Lan-
guage Models as Simulated Teaching Assistants in Computer Science”.
In: Proceedings of the SIGCSE 2024. 2024, pp. 743–749.

[11] Microsoft Copilot. Microsoft Research. 2021. url: https://www.microsoft.
com/en-us/research/project/academic/articles/new-feature-
cite/.

[12] OpenAI. ChatGPT. https://openai.com/research/chatgpt. 2020.

[13] Yiyin Shen et al. “Implications of ChatGPT for Data Science Education”.
In: Proceedings of the SIGCSE 2024. 2024. isbn: 9798400704239.

[14] Gemini Team, Jeffrey Dean, and Oriol Vinyals. Gemini: A Family of
Highly Capable Multimodal Models. 2024. arXiv: 2312.11805 [cs.CL].

[15] Juliette Woodrow, Ali Malik, and Chris Piech. “AI Teaches the Art of
Elegant Coding: Timely, Fair, and Helpful Style Feedback in a Global
Course”. In: Proceedings of the SIGCSE 2024. 2024, pp. 1442–1448. isbn:
9798400704239. doi: 10.1145/3626252.3630773. url: https://doi.
org/10.1145/3626252.3630773.

1180

Investigation of Computing Transfer Students
Success ∗

Cheyenne Ty1, Kay Vargas1,
Yun Wan4, Xiwei Wang5, Palvi Aggarwal3,

Shebuti Rayana2 and Sherrene Bogle1
1Dept. of Computer Science

California State Polytechnic University Humboldt
Arcata, CA 95521

{cjt101,kv111,sab30}@humboldt.edu
2Dept. of Mathematics, Computer & Information Sciences

SUNY Old Westbury
Old Westbury, NY 11568

rayanas@oldwestbury.edu
3Dept. of Computer and Information Sciences

University of Texas At El Paso
El Paso, TX 79968
paggarwal@utep.edu

4Dept. of Computer & Information Sciences
University of Houston-Victoria

Victoria, TX 77901
wany@uhv.edu

5Dept. of Computer Science
Northeastern Illinois University

Chicago, IL 60625
xwang9@neiu.edu

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 81

Abstract

Community colleges provide accessibility in the pursuit of higher ed-
ucation, especially for women, underrepresented minority (URM) stu-
dents, and first-generation college students (FGCS). This is especially
true for majors within the STEM field, such as computer science (CS).
However, there is a disconnect between the rates of enrollment at commu-
nity colleges and the prevalence of these underrepresented demographics
in 4-year institutions and the CS industry. The literature suggests that
social and institutional factors affect transferring CS majors. This study
aims to provide an empirical analysis on the different factors affecting
the academic performance of transferring CS students. The study found
that although all measured demographics impacted post-transfer GPA,
the largest disparities are attributed to race/ethnicity, especially among
URM students. These results will help inform an AI-driven counseling
system that caters towards transfer students in CS.

1 Research Problem

Community colleges (CCs) allow higher education to be more accessible to un-
derrepresented students, and transfer systems allow these students to continue
their education at 4-year institutions. In particular, women, underrepresented
minority (URM), and first-generation college students (FGCS) have been the
focus in the impact that the transfer pathway has. Jackson et al. (2013) notes
that in 2008, around 49% of female bachelor’s and master’s degree recipients
in STEM attended a CC, with similar percentages reported for multiple URM
ethnicities [11]. Additionally, FGCS are more likely to start upper education
at a CC in the hopes of transferring [7]. Considering the accessibility that CCs
provide women, URM students, and FGCS, supporting them through their
post-transfer academics may help to decrease the disparities in representation
within the STEM workforce.

In particular, these disparities can be seen in the field of computer science
(CS). Between 2017 and 2019, 25% of people working in the U.S. CS industry
were women [9]. This report also notes that only 7% and 8% of CS workers
in the U.S. were Black or Hispanic, compared to these groups making up 11%
and 17% of workers across all fields. Intersections between underrepresented
groups may also heighten disparities; less than 10% of CS Bachelor’s degrees
were handed to URM women in 2006 [8], while first-generation women in CS
often display a greater lack of support and self-efficacy during their undergrad-
uate years [3]. To foster a workforce representative of the overall population,
it’s important to focus on factors that may influence the academic success of
these three underrepresented groups: women, underrepresented minorities, and
first-generation students. This includes unique barriers that may exist for un-

282

derrepresented transfer students, or the differences that are inherent between
different transfer institutions. The current paper aims to provide a quantitative
analysis of the impact that gender, URM, first-generation status, and trans-
fer institution may have on the academic success of underrepresented transfer
students in the CS field.

2 Review of Related Literature

2.1 Transfer Impact

Transfer students often face challenges that native (non-transfer) students in the in-
stitution do not. This can result in transfer students feeling less satisfied with their
post-transfer institution, which is further amplified for students who are also both
URM and FGCS [10]. One such challenge is the struggle to socially integrate into
a post-transfer student body. Social circles among native students may already ex-
ist, making establishing social connections more challenging. Simultaneously, stigma
within the native student body against transfer students’ academic abilities may fur-
ther reinforce feelings of social isolation and work to prevent integration [2]. These
challenges can be further complicated by the intersectionality of transfer status and
being underrepresented in their field, as is the case with women, URM students,
and FGCS [2, 4, 16]. Transferring into an environment that lacks adequate support
for social integration and academic goals for underrepresented students may hinder
academic success in the post-transfer institution.

2.2 Institutional Differences

The different ways 4-year institutions treat transfer students may impact how well
they integrate into the native student body. Institutions focusing on socialization
among native, freshman students can have the unintended consequence of isolating
transfer students [2, 4]. Opportunities for research and internships are also scarcer for
transfer students, since faculty may not form as close of a relationship with transfer
students compared to native students [18]. Conversely, providing unique transfer
experiences or facilities catered towards underrepresented populations can help foster
integration amongst the native population. Majka et al. (2021) details a boot-camp
experience that helped develop communication and acceptance between transferring
STEM students and native upperclassmen and faculty [13]. Spaces or facilities on
campus that provide support for women, URM students, or FGCS can also help said
students feel more integrated and reduce feelings of isolation in their new institution
[14]. Hence, the programs and facilities that different 4-year institutions provide can
have significant impact on the experience of underrepresented transfer students in
both positive and negative regards.

3 83

2.3 Conceptual Framework

Wang’s STEM Transfer Model [21] aims to identify the factors that influence upward
STEM transfer into 4-year institutions. The model depicted in Figure 1, is also
applicable to the persistence and performance of transfer students after successfully
transferring. Wang’s STEM Transfer Model was chosen instead of models like the
Social Cognitive Theory (SCT) or Social Cognitive Career Theory (SCCT) since
it provides a more specific framework for understanding the potential institutional,
social, and personal factors in STEM transfer success. Its scope is also specific to CC
transfer students, aligning with our research demographic. We focus on two aspects
of the STEM Transfer Model: Person Inputs and Transfer Receptivity.

Person Inputs refers to characteristics such as demographics and previous aca-
demic success. Perceived stereotypes related to these characteristics can impact a
student’s self-efficacy within STEM, both before and after transferring. This can
be seen in Cheryan et al. (2020), where perceived threats to one’s identity may be
enough to deter women from pursuing or continuing to pursue a CS degree [6].

Transfer Receptivity refers to the amount of support that an institution pro-
vides STEM students post-transfer. Institutional support can influence a transfer
student in continuing their education and obtaining a Bachelor’s degree, while a lack
in institutional support can hinder or even halt this pursuit.

Figure 1: The STEM Transfer Model, as seen in Wang 2016 [21]. The horizontal arrow throughout
the entire diagram represents time.

484

3 Methodology

This study uses data derived from five different U.S. institutions: University of
Houston-Victoria (Texas), Cal Poly Humboldt (California), Northeastern Illinois Uni-
versity (Illinois), University of Texas El Paso (Texas), and SUNY Old Westbury (New
York). They are referred to as Institutions 1 through 5 within this paper, in the order
of their appearance.

3.1 Integration of Framework

The data consists of CS students who have successfully transferred into a 4-year
institution, aligning with the group of people the STEM Transfer Model is aimed at.
The statistical analysis takes into account information such as gender, race/ethnicity,
first-generation status, and earned transfer credits, reflecting Person Inputs prior to
transferring. The institution a student transferred into is included as another variable
in our models, highlighting potential institutional differences in Transfer Receptivity.

Figure 2: Student distribution based on earned transfer credits and transfer GPA. Five students
with more than 175 earned credits are omitted in the first histogram, but are included in the final
dataset.

3.2 Data Collection Method

The institutional data was obtained from the five institutions’ respective registrar
offices. The data was anonymized and filtered to only include CS and CS-related
majors, with the most recent data for each student being kept. The comprehensive
dataset was narrowed down to the following predictors: Transfer credits, gender,
race/ethnicity, and post-transfer GPA. Only students who identified as either male

5 85

or female were kept in the final dataset. Gender is not a binary label; however, the
data had a small number of non-binary students (N = 14) and all of these students
belonged to the same institution. Hence, to prevent bias we omitted them from this
study. Additionally, post-transfer GPA refers to the GPA calculated using courses
across all semesters and institutions.

Race/ethnicity was generalized into three categories: URM, non-URM, and Other.
Non-URM consists of students who identified as only White or only Asian, since
there is an overrepresentation of these ethnicities in CS [9]. URM consists of all
other recorded races/ethnicities, which include African American, Hawaiian Pacific,
Indigenous, and Hispanic/Latinx. Although the experiences of each URM group are
unique in their own right, there is evidence suggesting that academic disparities ex-
ist that are consistent across races/ethnicities that fall under the URM category [1].
The URM category also includes undocumented students; although this is not a race
or ethnicity, some institutions recorded it as such and the experiences that undocu-
mented students face are very similar to the experiences that URM students face [14].
The Other category consists of students who either identified as being part of two
or more races, of an unknown race/ethnicity, or students who put "Other" as their
race/ethnicity. This grouping serves to represent the sample student population more
accurately, accounting for the unique experiences of students who do not clearly fall
under URM or non-URM. There also exists evidence that disparities URM students
face may not be identical to the experience that students with unknown ethnicity
have, as seen the large differences in attrition rates between URM and unknown eth-
nicity students in STEM [5]. The final dataset totals to 2056 students. Distributions
of students by earned credits and transfer GPA can be seen in Figure 2, and a table
of student demographics can be seen in Table 1.

Dem.
Inst. 1 2 3 4 5 Total

Male 48 93 946 121 473 1681
Female 14 19 208 27 107 375
White 17 58 269 40 54 438
Asian American 12 9 227 32 13 293
African American 12 3 81 36 19 151
Hispanic/Latinx 7 22 328 33 469 859
Indigenous 0 1 2 2 1 6
Hawaiian Pacific 0 0 6 0 0 6
Undocumented 0 1 70 0 0 71
Two or More Races 10 12 22 1 8 53
Unknown 4 6 149 4 9 172
Other Ethnicity 0 0 0 0 7 7
Total 62 112 1154 148 580 2056

Table 1: Student demographics across all five institutions.

686

3.3 Data Analysis

Two sets of models were created using this data. For Set 1, a factorial ANOVA and a
least-squares linear regression were performed. Post-transfer GPA was the response
variable for both models, and predictor variables were race/ethnicity, gender, and
institution. The linear regression also includes earned transfer credits as a predictor
variable to represent past academic success, which has been shown to predict STEM
persistence [8, 7]. Both models use all 2056 students from the final dataset.

Set 2 is similar to the models from the first set, but also includes first-generation
status. Data used for this analysis only comes from Institutions 1 through 3, since
first-generation status was only recorded for these three institutions. Since approx-
imately one third (N = 387) of the data points report an unknown first-generation
status, data imputation was performed using the k-nearest neighbors algorithm. A
value of k = 1 was used to preserve the binary categories of first-generation and
continuing-generation.This subset of the data includes 1169 students.

Factorial ANOVAs were conducted through the Pingouin Python package [20],
and least-squares linear regressions were performed using the ISLP and statsmodels
packages [12, 17]. The k-nearest neighbors algorithm was conducted using the scikit-
learn package [15]. Significance was evaluated at the p < 0.05 level.

4 Results

4.1 Set 1

The ANOVA found that all main effects are significant on post-transfer GPA for
the predictors of gender (F (1, 2027) = 8.152, p = 0.0043), institution (F (4, 2027) =
205.937, p < 0.0005), and race/ethnicity (F (2, 2027) = 13.488, p < 0.0005). The
interaction between institution and race/ethnicity was also significant, F (8, 2027) =
2.274, p = 0.0202. The main effect of institution accounts for 28.25% of the variance
(η2 = 0.2825). The main effects of gender, race/ethnicity, and interaction between
institution and race/ethnicity each account for less than 1% of the variance in GPA.

The conducted linear regression found that being a URM student significantly
predicted post-transfer GPA (β = −0.2211, p < 0.0005). The amount of earned
transfer credits also significantly predicted GPA (β = 0.0035, p < 0.0005). All other
variables and interactions were deemed insignificant at the p < 0.05 level.

Earned transfer credits were significant in the linear regression as expected, since
previous academic success may predict STEM persistence and achievement [8, 7].
Although race/ethnicity accounted for 1% of the variance in the ANOVA, its statisti-
cal significance alongside URM status being significant in the linear regression imply
that race/ethnicity impacts post-transfer GPA to a degree. Furthermore, a URM
student’s GPA is predicted to be 0.22 points lower than a non-URM student’s GPA,
with all other variables constant. Institution having a high effect on post-transfer
GPA in the ANOVA may be attributed to the uneven sample sizes for each institu-
tion, as seen in Table 1. As outlined in Figure 2, earned credits has inherent bias
since most transfer students will have around two years of credits before transferring,

7 87

Variable DF F p η2

Institution 2 9.921 <0.0005 0.0091
Ethnicity 2 382.430 <0.0005 0.3513
Gender 1 6.607 0.0103 0.0030
Institution * Ethnicity 4 7.030 <0.0005 0.0129
Ethnicity * Gender 2 69.858 <0.0005 0.0642
Institution * Ethnicity * Gender 4 8.079 <0.0005 0.0148
First Gen. * Ethnicity * Gender 2 11.398 <0.0005 0.0105
Institution * First Gen. * Eth. * Gender 4 3.354 0.0097 0.0062

Table 2: Variables with significant effects for Set 2’s ANOVA, evaluated at the p < 0.05 level. The
residual degrees of freedom was 1134.

especially among CC transfers. To better determine the effects of the post-transfer
institution, more even sample sizes may be preferred. Additionally, pre-transfer GPA
may provide a better measure of previous academic success, if it is available.

4.2 Set 2

With the inclusion of first-generation as a predictor, Table 2 shows all predictors
that were deemed significant at the p < 0.05 level. Of note is that the main effect of
ethnicity accounts for 35.13% of the variance (η2 = 0.3513). Additionally, the inter-
action between race/ethnicity and gender yields a moderate effect size, accounting
for 6.42% of the variance (η2 = 0.0642). Two interactions involving first-generation
status were significant, but the main effect was not (F (1, 1134) = 0.104, p = 0.7468).

The conducted linear regression found that being a URM student significantly
predicted post-transfer GPA (β = −0.1802, p = 0.005). Earned transfer credits
were also significant in predicting post-transfer GPA (β = 0.0046, p < 0.0005). The
interactions that significantly predicted GPA were between URM ethnicity and first-
generation status (β = −0.1424, p = 0.025) and between gender, first-generation
status, and URM ethnicity (β = −0.1789, p = 0.005).

The results indicate that although first-generation status may not have a signifi-
cant effect on post-transfer GPA by itself, its intersection with other underrepresented
groups can amplify effects on post-transfer GPA. Race/ethnicity is of significance in
this set of models as well, accounting for a high percentage of the variance in the
ANOVA and URM status being significant in the linear regression. This consistency
further indicates that race/ethnicity is of importance when considering the factors we
have taken into account, though intersectionalities between underrepresented groups
can still be worth noting.

5 Conclusion

This paper first reports on the effects that institution, gender, first-generation sta-
tus, and race/ethnicity can have on transfer student success, and why certain groups

888

are underrepresented in the CS academic field. Using themes from Wang’s STEM
Transfer Model, two sets of ANOVA and linear regression models were created to
analyze the effects that these demographics can have on post-transfer GPA. The re-
sults suggest that although every demographic analyzed had some effect on a student’s
post-transfer GPA, URM status had the greatest effect. Intersectionality between be-
ing URM and another underrepresented group further amplifies gaps in GPA. Based
on these results, more support towards URM students in particular may bridge the
largest gaps in GPA for the transfer student population. Future analyses using pre-
transfer GPA or additional data on students’ pre-transfer academic success may yield
clearer results on the effects of each demographic. Ultimately, these results will help
design an AI-driven counseling system catered towards transfer students and tailored
to their specific needs [19]. We expect that this system will allow CS transfer students
to realize their full potential within higher education.

6 Acknowledgments

This material is based upon work supported by the National Science Foundation
under CNS-2219623. Any opinions, findings and conclusions, or recommendations
expressed in this material are those of the authors, and do not necessarily reflect the
views of the National Science Foundation.

References

[1] David J. Asai. “Race matters”. In: Cell 181.4 (2020), pp. 754–757.

[2] Peter Riley Bahr et al. “A review and critique of the literature on com-
munity college students’ transition processes and outcomes in four-year
institutions”. In: Higher Education: Handbook of Theory and Research:
Volume 28 (2013), pp. 459–511.

[3] Jennifer M. Blaney and Jane G. Stout. “Examining the relationship be-
tween introductory computing course experiences, self-efficacy, and be-
longing among first-generation college women”. In: Proceedings of the
2017 ACM SIGCSE technical symposium on computer science education.
2017, pp. 69–74.

[4] Jennifer M. Blaney et al. “Transfer Student Receptivity in Patriarchal
STEM Contexts: Evidence of Gendered Transfer Student Stigma in Com-
puter Science From a Mixed Methods Study”. In: Community College
Review (2024), p. 00915521231218233.

[5] Marguerite Bonous-Hammarth. “Pathways to success: Affirming oppor-
tunities for science, mathematics, and engineering majors”. In: Journal
of Negro Education (2000), pp. 92–111.

9 89

[6] Sapna Cheryan et al. “Double isolation: Identity expression threat pre-
dicts greater gender disparities in computer science”. In: Self and Identity
19.4 (2020), pp. 412–434.

[7] Sandra L. Dika and Mark M. D’Amico. “Early experiences and integra-
tion in the persistence of first-generation college students in STEM and
non-STEM majors”. In: Journal of Research in Science Teaching 53.3
(2016), pp. 368–383.

[8] Lorelle Espinosa. “Pipelines and pathways: Women of color in under-
graduate STEM majors and the college experiences that contribute to
persistence”. In: Harvard Educational Review 81.2 (2011), pp. 209–241.

[9] Richard Fry, Brian Kennedy, and Cary Funk. “STEM jobs see uneven
progress in increasing gender, racial and ethnic diversity”. In: Pew Re-
search Center 1 (2021).

[10] Melissa Hawthorne and Adena Young. “First-Generation Transfer Stu-
dents’ Perceptions: Implications for Retention and Success”. In: Journal
of College Orientation, Transition, and Retention 17.2 (2010).

[11] Dimitra Lynette Jackson, Soko S. Starobin, and Frankie Santos Lanaan.
“The Shared Experiences: Facilitating Successful Transfer of Women and
Underrepresented Minorities in STEM Fields.” In: New directions for
higher education 162 (2013), pp. 69–76.

[12] Gareth James et al. An introduction to statistical learning: With appli-
cations in python. Springer Nature, 2023.

[13] Elizabeth A. Majka, Merrilee F. Guenther, and Stacey L. Raimondi. “Sci-
ence bootcamp goes virtual: a compressed, interdisciplinary online CURE
promotes psychosocial gains in STEM transfer students”. In: Journal of
Microbiology & Biology Education 22.1 (2021), pp. 10–1128.

[14] Mayra Nuñez Martinez. “Cultivating transfer receptivity for undocu-
mented and DACAmented Latina/o/x students at 4-year institutions.”
In: Journal of Diversity in Higher Education (2023).

[15] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[16] Marie-Elena Reyes. “Unique challenges for women of color in STEM
transferring from community colleges to universities”. In: Harvard Ed-
ucational Review 81.2 (2011), pp. 241–263.

[17] Skipper Seabold and Josef Perktold. “statsmodels: Econometric and sta-
tistical modeling with python”. In: 9th Python in Science Conference.
2010.

1090

[18] Bertin Solis and Richard P. Durán. “Latinx community college students’
transition to a 4-year public research-intensive university”. In: Journal of
Hispanic Higher Education 21.1 (2022), pp. 49–66.

[19] Northeastern Illinois University. AI-driven Counseling System for Trans-
fer Students. url: https://cs.neiu.edu/acosus/Home.html.

[20] Raphael Vallat. “Pingouin: statistics in Python”. In: The Journal of Open
Source Software 3.31 (Nov. 2018), p. 1026.

[21] Xueli Wang. “Upward transfer in STEM fields of study: A new conceptual
framework and survey instrument for institutional research”. In: New
Directions for Institutional Research 2016.170 (2016), pp. 49–60.

11 91

Résumé Revisions to Document Learning
Outcomes in a Computational Biology Course∗

Tammy VanDeGrift
Computer Science, Shiley School of Engineering

University of Portland
Portland, OR 97203

vandegri@up.edu

Abstract

Computer science courses, and higher education courses in general,
have learning outcomes for skills, knowledge, and mindsets. These out-
comes are usually publicized on course syllabi, websites, labs, projects,
and other assignments. Faculty often assess learning outcomes on spe-
cific assignments, exam questions, and projects. This paper presents an
assignment in which students document the skills and knowledge they
developed in a course through several revisions of a résumé. The pur-
pose of this assignment is not to assess learning outcomes directly, but
to see how students characterized their experiences in the course. Even
though students were not explicitly asked to include skills tied to course
learning outcomes, all course learning outcomes appeared on at least
one student’s résumé. The learning outcomes that were more general
(implementing/extending solutions, tracing/executing algorithms, team-
work/collaboration) appeared often on students’ résumés. In addition
to résumé revisions, the assignment required students to apply to at
least one job, internship, or summer research experience. The résumés
helped the instructor learn about students’ backgrounds, goals, and in-
terests and could advise them toward more specific internships and job
opportunities throughout the semester. The assignment also showed the
instructor what made it into the résumé, which were likely the course
experiences that students valued the most.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

192

1 Introduction

College courses help students build knowledge, gain experiences, and explore
interests. Computer science learning is often done through readings, videos,
assignments, projects, labs, and in-class activities. While course learning
outcomes are usually transparent, what students experience and value about
courses may not be as visible to the students and to the instructor.

This paper presents a résumé assignment that benefits both the instructor
and the students: the instructor sees what students value and students prac-
tice summarizing newly acquired skills and knowledge. The assignment was
designed so students could document their learning journey; furthermore, the
assignment had other unanticipated benefits. First, even though this course
enrolled third and fourth year college students, a few students had not yet
prepared a formal résumé. This assignment required them to build their first
formal résumé. Second, the instructor provided feedback about potential ré-
sumé improvements. Third, the instructor got to know students early in the
term since the first version of the résumé was due at the beginning of the second
week of the semester. The résumés helped the instructor create project teams
to include diverse skills and expertise among teammates. Fourth, the assign-
ment may have helped students get internships and jobs, since one part of the
assignment was to use the résumé to apply for at least one internship or job.
Lastly, the instructor could see which skills and knowledge students valued the
most based on what students added to their résumé. The résumé represents
a condensed version of a person’s experiences, so it naturally documents what
the person deems as most valuable.

The remainder of this paper is organized into several sections. Section 2
discusses how résumés are used in other college courses, how résumés can tie to
larger curricular goals, and how résumés are supported by educational theory.
Section 3 describes the university, course, and the assignment. Next, Section 4
details the questions that were studied, showcases students’ employment after
the semester, and describes how the résumés documented learning outcomes.
Section 5 concludes the paper with a summary and recommendations.

2 Related Work and Educational Theory

Résumés have been part of higher education, appearing in both research stud-
ies and as course deliverables. Petersheim and others studied computer science
students’ understanding of the résumé screening process [7]. Both CS students
and recruiters screened résumés. Students generally moved more résumés to
the next screening stage and students overestimated prior work experience as
compared to recruiters. Berdanier and her colleagues studied engineering ré-

2 93

sumés for writing style in order to develop better pedagagogical content in
technical writing courses [2]. Crowne and others share an educational model
that includes résumés and career preparation in business courses in paper [5].
The educational literature includes several instances of using résumés in busi-
ness, engineering [3], and chemistry courses [10]. Thummaloor and Mutyala
designed a course to help CS students prepare a résumé and consider job op-
portunities [9]. This paper is complementary to these projects in that this work
focuses on using résumés to document skills and experiences in a course..

Professional organizations recognize the importance of preparing students
for professional practice. For example, ABET accredits computer science pro-
grams and one of the student outcomes is Communicate effectively in a variety
of professional contexts [1]. This résumé assignment could be used as an assess-
ment tool to evaluate if students can communicate effectively in a professional
context. The ACM CS curriculum 2023 has a list of dispositions for CS grad-
uates: adaptable, collaborative, meticulous, persistent, proactive, responsible,
and self-directed [4]. The résumé assignment could help students practice the
dispositions of being meticulous, proactive, and self-directed.

The learning theory of metacognition states that learners should reflect on
how they learn, so they can better plan, monitor, and evaluate their own learn-
ing [8]. There are many examples of educational interventions that promote
metacognition in computing students. For example, Mani and Mazunder asked
students to rate their confidence of answers on exams to reflect on their own
learning and understanding of the material [6]. The use of résumé revisions can
provide a process to scaffold metacognition in students, so they can evaluate
what was important in their learning.

3 Educational Context

The résumé assignment was part of a Computational Biology course at the
University of Portland. The University is a small, private, regional university
in the USA, offering majors and minors in Computer Science and Biology.

The Computational Biology (CB) course is a cross-disciplinary course, of-
fered both as CS and BIO. The prerequisite structure supports multiple path-
ways into the course. Biology students must take an introduction to CS course
and a cell/molecular biology course prior to CB. Computer science students
must take Data Structures prior to CB. Therefore, the computing background
can vary from one course to many courses. The CS students may have no bi-
ology experience. The instructor reminds students of the diverse backgrounds
and to help by sharing their own expertise throughout the semester.

The full set of course assessments along with grade contributions is shown
in Figure 1. The résumé and job application assignment, a small component of

394

Figure 1: Computational Biology course assessments.

the overall grade, was posted to the course management site at the beginning
of the semester. Below is the text of the assignment:

Background: Computational biology (also called Bioinformatics) is
a field that combines systems thinking, systems integration, statis-
tics, mathematical modeling, algorithms, software skills, and bio-
logical understanding. The course attracts students with a wide
range of interests and skills. In order for the instructor to get to
know you a little bit better, you will submit your résumé (and up-
dates) throughout the semester. You will also apply to at least
one job, internship, or REU that relates to computational biology
in some way. Note: you do not need to move further in the job
application process for this assignment.

Grading was based on completion and not quality. Students who had al-
ready committed to a summer internship or full-time job could submit an offer
letter (with details omitted) instead of applying to a job/internship/REU. The

4 95

deliverables, dates, and point values were as follows:

• Original Resume, due Jan 22, 2 points
• Comp Bio Resume v1, due Feb 21, 1 point
• Apply to job/internship/REU, due Feb 21, 2 points
• Comp Bio Resume v2, due Apr 5, 1 point
• Comp Bio Resume v3, due Apr 26, 2 points

4 Evaluation

The questions guiding this work are: 1) Did the résumé and job application
assignment impact students’ employment? and 2) How did résumé content
reflect course learning outcomes? These questions are answered in the subsec-
tions below.

4.1 Q1: Students and Summer Employment

The course had 14 students enrolled, two of which were taking the course as
auditors. Thus, a total of 12 students took the course for credit and are the
participants of this study. Of the 12, eight were computer science majors, two
were biology majors, and two were electrical engineering majors.

Eight of the 12 students completed all five components of the assignment.
One student earned 50% (did not complete v1, v2, and v3), one student earned
62.5% (did not complete v2 and v3), one student earned 75% (did not complete
v3), and one student earned 87.5% (did not complete v2). The completion rates
may have been low for some students since this assignment was worth a total
of 4% of the overall grade; the grade impact may have been worth the time
saved. Three of the four students who did not submit at least one deliverable
were graduating seniors, so they may not have valued updating a résumé with
a full-time job already secured.

Table 1 shows that 10 of the 12 students had summer or full-time employ-
ment after the CB course. Note that four of the employers are in computational
biology, indicated with + in the table. The application deliverable included the
following companies: Leatherman Tool Group, HDR, Oregon Health Sciences
University (three applications), FM Global, Stanford Bioinformatics, Pacific
Northwest National Laboratory, and Think-Cell. Students 3 and 5 had in-
ternship offers and Student 6 had a full-time offer before Feb 21, when the
assignment was due. Student 6 did not submit written proof of the offer, so
did not earn the points for this part of the assignment. Table 1 has a star in
column three if the student’s application led to employment. It appears that
this course assignment impacted at least two students, since they took intern-

596

ships they applied for as part of this assignment. However, it is unknown if
these students would have applied anyway.

Table 1: Students’ Destinations
ID Major Internship or Full-Time Company
1 Biology Full-Time Still Looking
2 CS Internship (*) HDR
3 CS Internship Microsoft
4 CS Full-Time Fisher Investments
5 CS Internship Cambia Health Solutions (+)
6 CS Full-Time Thermo Fischer Scientific (+)
7 Biology Internship Providence Cancer Research (+)
8 EE Internship EE consulting company
9 CS Full-time Government agency
10 CS Internship (*) Oregon Health Sciences Univ (+)
11 EE Internship Leidos
12 CS Full-time Still Looking

4.2 Q2: Résumé Content and Learning Outcomes

Content on students’ final computational biology résumé was analyzed for
themes related to the seven course learning outcomes:

1. LO1: Create and extend code to analyze and model biological data
2. LO2: Use databases to find biological data
3. LO3: Describe the functions of DNA, RNA, genes, transcription factors, and

proteins
4. LO4: Analyze, trace, and execute computational biology algorithms through

code and pseudo-code
5. LO5: Use software tools to analyze and interpret biological data
6. LO6: Synthesize, create, and communicate information related to biology and

computation
7. LO7: Demonstrate planning, implementation, research, testing, analysis, team-

work skills, and communication skills

Table 2 shows the learning outcomes that appear in v3 of the computational
biology résumés. Students 1, 6, and 12 did not submit résumé v3, so they are
not included in Table 2. Students worked on semester-long, team projects with
biology and biochemistry faculty members. As expected, all nine submissions
included the computational biology course project on the final résumé. The
development of new code or extending code (LO1) appeared on all final ré-
sumé submissions. Tracing and execution of algorithms (LO4) appeared on

6 97

all submissions. Using software tools (LO5), such as BLAST, Jalview, and
Cluster 3.0 appeared on seven of the nine submissions. While the project was
done in teams, only six of the nine students explicitly mentioned teamwork or
collaboration (part of LO7) with regard to the computational biology project,
shown in the right-most column of the Table. Some part of LO7 was addressed
in the project description on all nine submissions. Just one student explicitly
mentioned communication skills (LO6) in the form of developing reports, de-
mos, and presentations, which were required project deliverables. One student
included using databases to find biological data (LO2). One student included
biotechnology systems (LO3) on the résumé.

Table 2: Students’ Final Résumés and Learning Outcomes
ID LO1 LO2 LO3 LO4 LO5 LO6 LO7 Teamwork
2 x x x x x x
3 x x x x x
4 x x x x
5 x x x x x
7 x x x x x
8 x x x x x
9 x x x x
10 x x x x
11 x x x x x

To demonstrate how the coding was completed, here are example résumé
excerpts showcasing each learning outcome.

1. Developed a Python Program that takes a collection of FASTA files and auto-
mates BLAST searches on these files, as well as marking samples that contain
certain organisms [student 9]

2. Made use of various genome databases to compare the yeast, fruit fly, and
human genome [student 2]

3. Understand the uses of RNA-sequencing and DNA microarrays [student 10]
4. Proficient with String Algorithms, Sequence Evolution and Motif Finding [stu-

dent 7]
5. Used Google’s AlphaFold to predict structures of unknown proteins [student 4]
6. Communicated with research professor and group members to deliver project

results, which were composed of Python functions, summaries, and other de-
liverables consistently [student 11]

7. Collaborated with interdisciplinary teams to extract insights from large-scale
datasets. [student 3]

The instructor was curious about which tools appeared on the résumés,
since the course primarily used python (biopython as a main library), some

798

R, and several specific computational biology tools. The tools that appeared
on students’ résumés included Python (9 of 9), BLAST (7 of 9), R (3 of 9),
AlphaFold (2 of 9), Clustal Omega (2 of 9), Jalview (2 of 9), JavaTreeView (2
of 9), and Cluster 3.0 (1 of 9). All the software tools used in course activities
appeared in at least one résumé. Otherwise, the frequency of appearance on
résumés matched the frequency of tool use in the course.

4.3 Students’ Reflections

Eight students earned extra credit (less than one percent of the overall grade)
by completing an end-of-semester, online survey about all course deliverables.
The survey study was approved by the Institution’s Review Board.

Three survey questions asked about the résumé assignment. Students rated
the statement: “The résumé and job application assignment supported my
learning of computational biology course material.” Of the eight students,
two ranked "not descriptive", two ranked "minimally descriptive", two ranked
"somewhat descriptive", one ranked "mostly descriptive", and one ranked
"very descriptive". The instructor did not intend for this assignment to directly
support student learning, but rather document what students experienced. It is
not surprising that the rankings varied across all choices. Students ranked the
other course activities (prelabs, labs, biotech briefing, project, exams, lectures)
higher than the résumé assignment in terms of supporting learning.

Students rated the statement “The résumé and job application assignment
accurately demonstrated my understanding of computational biology course
material.” Of the same eight students, one ranked "not descriptive", three
ranked "minimally descriptive", one ranked "somewhat descriptive", two ranked
"mostly descriptive", and one ranked "very descriptive". The assessment ques-
tion had a slightly more positive overall ranking than supporting learning.

Students wrote free text to the following: “How did creating a computa-
tional biology version of your résumé impact your consideration of the com-
putational biology field as a future endeavor? (no impact is a fine answer)”.
Of the eight students, five stated that it did not have much impact. Three
said it had some impact. One said, “This task helped me to critically think
about how the knowledge I have attained will benefit me beyond this course.
It also helped me decide between data science and bioinformatics as career
choices.” [student 10] Another student stated, “It made some impact. A lot of
the python focused parts and biological algorithms were interesting and were
good to put on my resume.” [student 11] Finally, a third student stated, “By
creating a biology focused resume, it allowed me to see specifically where I
applied those skills and made it easier for me to find internships that required
these skills.” [student 3] Even though the assignment appears to have minimal
impact, overall, it assisted some students consider future pursuits.

8 99

5 Conclusions and Recommendations

The résumé assignment was designed to encourage students to reflect upon and
document computational biology knowledge and skills during one semester.
Four of seven learning outcomes were documented on the majority of final
submissions. The job application deliverable required students to look for po-
sitions related to computational biology. By doing this assignment, students
researched a variety of companies/organizations and reviewed the knowledge
and skills that employers were seeking. Even though the assignment did not
directly support learning new skills in computational biology, the assignment
provided value for students in terms of career readiness. Creating a formal
résumé was a new process for two students. Having this assignment opened
conversations between the instructor and students about the variety of career
pathways in computational biology. Students helped each other by sharing job
advertisements with classmates and often asked the instructor to post adver-
tisements to the course website.

This assignment can be used in any college course, especially in disciplines
that have a direct tie to a profession, such as engineering, nursing, business,
and education, where internships and co-op training are common co-curricular
opportunities. The instructor did not provide specific guidelines regarding the
length and appearance of the résumé. Some students made a one-page résumé,
so they kept the information about the computational biology course very brief.
Some students created longer résumés to include more detail about the course.
Instructors who adopt this assignment may want to establish a résumé page
limit that is consistent with their profession for entry-level jobs and internships.
In addition, the instructor may want to refer students to the campus career
center and provide links to online resources for how to prepare a résumé. For
this study, the instructor had four résumé deliverables (original, v1, v2, and
v3). Having just the original, v1, and v3 versions is probably sufficient. The
instructor intentionally did not remind students of the learning outcomes when
presenting the résumé assignment, so that students were not guided in terms of
what to include. Instructors may want to have students annotate the mapping
of resume content to learning outcomes, so they practice meta-cognition [8] by
reflecting on how they achieved the goals of the course.

References

[1] ABET. “Criteria for Accrediting Computing Programs, 2023 – 2024”. In:
ABET Accreditation (2023). url: https://www.abet.org/accreditation/
accreditation-criteria/criteria-for-accrediting-computing-
programs-2023-2024/.

9100

[2] Catherine G. P. Berdanier, Mary McCall, and Gracemarie Mike Fillen-
warth. “Characterizing Disciplinarity and Conventions in Engineering
Resume Profiles”. In: IEEE Transactions on Professional Communica-
tion 64.4 (2021), pp. 390–406. doi: 10.1109/TPC.2021.3110397.

[3] Catherine G. P. Berdanier, Mary McCall, and Gracemarie Mike. “Ré-
sumés in the development of undergraduate engineering identity: A genre
analysis with teaching implications”. In: 2016 IEEE International Pro-
fessional Communication Conference (IPCC). 2016, pp. 1–9. doi: 10.
1109/IPCC.2016.7740488.

[4] The Joint Task Force on Computer Science Curricula. Computer Science
Curricula 2023. 2023. url: https://csed.acm.org/final-report/.

[5] Kerri A. Crowne et al. “A program for embedding career activities in
multiple core business courses”. In: International Journal of Management
Education 18.3 (2020). doi: https://doi.org/10.1016/j.ijme.2020.
100421.

[6] Murali Mani and Quamrul Mazumder. “Incorporating metacognition into
learning”. In: Proceeding of the 44th ACM Technical Symposium on Com-
puter Science Education. SIGCSE ’13. Denver, Colorado, USA: Associ-
ation for Computing Machinery, 2013, pp. 53–58. isbn: 9781450318686.
doi: 10.1145/2445196.2445218. url: https://doi.org/10.1145/
2445196.2445218.

[7] Corbin Petersheim et al. “Comparing Student and Recruiter Evaluations
of Computer Science Resumes”. In: IEEE Transactions on Education 66.2
(2023), pp. 130–138. doi: 10.1109/TE.2022.3199685.

[8] MIT Teaching and Learning Lab. “Metacognition”. In: Teaching Resources
(2024). url: https : / / tll . mit . edu / teaching - resources / how -
people-learn/metacognition/.

[9] Sreevani Thummaloor and Suresh Mutyala. “Improving resume writing
skills of the final year undergraduates”. In: AIP Conference Proceed-
ings 2794.1 (Oct. 2023), p. 020051. issn: 0094-243X. doi: 10.1063/
5.0165704. eprint: https://pubs.aip.org/aip/acp/article-pdf/
doi/10.1063/5.0165704/18153302/020051_1_5.0165704.pdf. url:
https://doi.org/10.1063/5.0165704.

[10] Valerie K. Tucci, Abby R. O’Connor, and Lynn M. Bradley. “A Three-
Year Chemistry Seminar Program Focusing on Career Development Skills”.
In: Journal of Chemical Education 91.12 (2014), pp. 2071–2077. doi:
10.1021/ed400667q. eprint: https://doi.org/10.1021/ed400667q.
url: https://doi.org/10.1021/ed400667q.

10 101

Undergraduate Perceptions on Attending
Interdisciplinary Conferences∗

Anna Ritz
Biology Department

Reed College
Portland, Oregon, 97202

aritz@reed.edu

Abstract

Attending computer science conferences can give students insight into
the research process and how academic work is disseminated. This study
examines undergraduate student perceptions about attending an inter-
disciplinary computational biology conference. The study was conducted
over four academic years with a mix of participants who attended a con-
ference as part of a course and participants who received an undergradu-
ate travel award. Results from 70 students enrolled in nearly 30 different
institutions indicate that attending conferences helped them learn about
different careers, gave them a sense of what computational biology re-
search entails, and provided insight into giving an effective oral presen-
tation. We found that students who received a travel award felt more
comfortable at the conferences than students who attended as part of a
course. Based on these findings, we provide guidance about developing
programs for undergraduate conference attendance.

1 Introduction

Computer science research is largely communicated through scientific meetings
and conference proceedings. Thus, computer science conferences offer unique

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1102

opportunities for students to learn about the research process and the re-
searchers themselves. Previous work has shown that undergraduates who have
attended scientific conferences report increased confidence and an increased
sense of belonging [15, 4, 5, 6], and guides on how to support undergraduates
at conferences exist [2, 4, 8]. However, there have been few studies on how to
best plan a conference experience for undergraduates.

As computer science matures as a field, interdisciplinary subfields have
emerged. Computational biology has seen tremendous growth in the past few
decades, and is a ripe area for undergraduates in biology and computer sci-
ence to explore [12, 11, 13]. However, interdisciplinary research is rare at the
undergraduate level [3], and undergraduate conference attendance is even rarer.

This paper examines undergraduate perceptions about attending an inter-
disciplinary computational biology conference. Many studies on student per-
ceptions in conference attendance involve students who present research [5, 10],
whereas our study includes students who attend conferences without presenting
research. This work follows up on a pilot study about undergraduate confer-
ence attendance in 2016, which showed promise in integrating a conference
experience in a course [7].

We surveyed two types of student experiences over four years: students
who attended a conference as part of a course and students who attended
a conference with a national travel award. We found that students who at-
tended the conferences as part of a travel award had self-perceived better out-
comes than students who attended the conferences as part of a course. In
fact, whether a student was a travel awardee or a class participant was the
only feature that produced statistically significantly different survey responses
across demographic groups. This survey provides some guidance for developing
programming around undergraduate conference attendance.

2 Conference Experiences and Survey Design

From 2018-2022, we offered two conference experiences to undergraduate stu-
dents. In the Class Model, students enrolled in an upper-level computational
biology class at Reed taught by the author and attended a conference as part
of the course. Under this model, students attended an in-person conference or
a virtual conference (all fully paid for) and completed scaffolded assignments
designed to encourage them to network and engage in different aspects of the
conference.

In the Award Model, the author organized a national undergraduate
travel award in partnership with an annual computational biology conference.
Undergraduates from any US-based institution were invited to apply and re-
ceived conference registration and housing if they were selected. The applica-

2 103

Name, conference, student or awardee?

Survey Start

Pre-Survey

Previous conference experience
Motivation for attending
Demographics & institution

Current Information

Current major/job, career plans

Post-Survey
Perceived gains (research activities)
Perceived gains (interdisc. science)
Belongingness
Professional preparation

Figure 1: Survey design. The data analyzed in this paper are for pre-post
matched surveys.

tion was intentionally short, and we advertised the award to undergraduates
at institutions within driving distance to the conference venue.

In both models, there was an emphasis on lowering the barrier for students
to attend: any students at Reed with the prerequisites could register for the
course and attend the conference, and the travel award prioritized students
who hadn’t previously attended a conference or had limited resources at their
institution for computational biology. In both models, the author attended the
conference, met with all the students, and held sessions for the students to get
to know each other and learn about conference logistics [8].

2.1 Survey Design and Data Analysis

Students were prompted to complete a pre-survey before the conference, a post-
survey immediately after the conference, and a post-survey annually thereafter.
The full study design is available in the Supplementary Information S1 online.1
for this paper, we focus on the matched pre-survey and post-survey that was
completed within 6 months of the conference (Figure 1). The pre-survey asked
respondents questions about their prior experience attending conferences, their
reasons for attending, their demographics, and their institution and institu-
tion type (primarily undergraduate institution or research institution). The
Likert-style post-survey questions were selected from Grinnell’s Research on
the Integrated Science Curriculum (RISC [9]) and CU Boulder’s Undergrad-
uate Research Student Self-Assessment (URSSA, [14]), with some additional
questions specific to computational biology and interdisciplinary science. The
full list of questions and aggregated responses are available as Supplementary
Information S2 and S3 online.

1See the “Supplementary Information” section for the URL.

3104

The post-survey contains 35 Likert-style questions. When comparing two
groups of Likert-style responses, we use the Mann-Whitney U rank test which
is used to analyze Likert data [1]. We used Python’s scipy implementation of
the test and used the Benjamini-Hochberg procedure for multiple hypothesis
correction.

2.2 Predictions and Confounding Factors

We hypothesized that students in the Class Model would see larger self-perceived
gains in research activities, interdisciplinary science, and belongingness due
to the additional scaffolded assignments and the dedicated time for reflect-
ing about the experience as a class. We also expected that student expe-
riences would be different along demographic lines (e.g., gender, institution
type, whether the student had previously attended a conference), but it was
unclear which groups would see larger self-perceived gains.

There are several confounding factors that should be considered when in-
terpreting the results of this study. First, there is a strong selection bias since
the participants were not randomly chosen from a population of students. The
computational biology course in the Class Model is an elective, so Reed students
opt-in to take it. In the Award Model, students chose to apply by completing
the travel award application. All students who participated in either model
were invited to complete the survey. Second, the survey was administered be-
tween fall 2019 and spring 2023, which spanned the virtual/remote conferences
during the COVID-19 pandemic. Three of the seven conferences in this study
were virtual, which means that many of the answers to questions involving in-
person events and networking may not be relevant. On the other hand, the low
cost of virtual conferences provided opportunities for more students to attend
these meetings. Finally, not all students who went to conferences responded to
the survey. Students who had overall better conference experiences might be
more willing to complete a follow-up survey years after the conference.

3 Survey Results and Discussion

One hundred and three students attended a conference between 2018-2022 (Fig-
ure 2). Seventy of these students (68%) took the survey at least once between
fall 2019 and spring 2023. There were a total of 140 survey responses among
these 70 individuals.2 Fifty-two of the respondents (72%) completed the survey
two or more times, usually in the immediate pre/post surveys (Supplementary
Information S3 online).

2We record 71 respondents because one individual attended two different conferences.

4 105

08/2018
ACM-BCB

Washington,
D.C.

09/2019
ACM-BCB
Niagara
Falls,NY

11/2019
BIBM

San Diego,
CA

09/2020
ACM-BCB

Virtual

08/2021
ACM-BCB

Virtual

11/2021
MLCB
Virtual

08/2022
ACM-BCB

Chicago, IL

0

5

10

15

20

of
 R

es
po

nd
en

ts

2

8
10

8

20

10

13

Computational Biology Conferences in this Study
Non-Reed
Reed

Figure 2: Computational biology conferences in this survey.

The respondents attended one of seven computational biology conferences
(Figure 2). Most of the conferences were the ACM Conference on Bioinformat-
ics, Computational Biology, and Health Informatics (ACM-BCB). One group
of students attended the IEEE Conference on Bioinformatics and Biomedicine
(BIBM) and another group of students attended the Machine Learning in Com-
putational Biology (MLCB), which grew out of a NeurIPS workshop. The
travel award was administered for ACM-BCB 2019, ACM-BCB 2021, and
ACM-BCB 2022, whereas the Reed course took students to BIBM 2019, ACM-
BCB 2020, and MLCB 2021. The ACM-BCB 2018 conference was a pilot study.

The 70 respondents came from 28 different institutions. Fifty-three (76%)
of the respondents were from primarily undergraduate institutions (PUIs),
with 31 (44%) from Reed. The remaining 17 were from research institutions.
Twenty-six (37%) respondents participated for Reed course credit and 44 (63%)
received a travel award (Figure 2). Fifty-two (74%) of the students had never
attended a national conference, and thirty-eight (54%) had never attended a
poster session or regional conference. Only nine of the respondents presented
work at the conferences they attended. Of the individuals who chose to disclose
their gender, 33 respondents were gender minorities (47%) and 25 respondents
were male (36%). Of the individuals who chose to disclose their race/ethnic-
ity, 32 respondents were White (46%), 19 respondents were Asian (27%), two
respondents were Black or African American (3%), and four were multi-racial
(6%). Additionally, three respondents were Hispanic/Latino (4%).

5106

3.1 Post-survey trends confirm prior research

We examined the post-surveys for the 47 respondents who completed the survey
within six months of the conference being held (Supplementary Information S4
online). Overall, students felt that they gained some experience in making and
giving oral presentations (median Likert value 4), which is expected in a con-
ference setting. Students strongly felt that the experience gave them a better
sense of what computational biology research entails (median Likert value 5 and
no score below 3) and they learned about different scientific careers (median
Likert value 4). Regarding questions surrounding conference dynamics and be-
longingness, the respondents overall felt that the conferences were welcoming,
the talks were relevant to their interests, the experience helped them clarify
career path, and that it made them more likely to try research (median Likert
value 4). Many of these perceived benefits have been noted elsewhere [15, 4, 5,
6]. All 70 respondents indicated they would want to attend another conference
in the future. However, some responses were not as positive: students felt that
the conference assumed too much prerequisite knowledge (median Likert 4),
and there was high variance in whether the respondents felt out of place at the
conference.

3.2 Differences between the Class and Award Model participants

We then measured the differences in responses between the 26 students who
attended a conference under the Class Model and the 44 students who attend
the conference under the Award Model (Supplementary Information S5 online).
There were two statistically significant differences between the two groups (Fig-
ure 3). First, students in the Class Model felt that the conferences were less
welcoming than travel awardees (Mann-Whitney U corrected p-value 0.007).
Second, students in the Class Model felt less comfortable talking with other
attendees in a professional networking session (Mann-Whitney U corrected p-
value 0.028). Responses to other questions showed similar trends: students
in the Class Model felt slightly less confident in their ability to contribute to
science, and the conference made them slightly less excited about research and
less likely to try research (Figure 3).

These results suggest that the students who attended under the Award
Model felt more comfortable at the conferences than students who attended
under the Class Model. There are many differences between these two groups,
but four potentially contributing factors stick out. First is the motivation for
attending the conference in the first place. The students who received a travel
award had the interest to apply, whereas the Class Model group opted in by
simply enrolling in the class. Second is the sense of community: students who
received a travel award met at the conference in an initial awardee dinner,

6 107

1 2 3 4 5

What did you GAIN from the conference? (Research Activities)

What did you GAIN from the conference? (Interdisciplinary Science)

Giving an oral presentation

Making an effective oral presentation

Comfort in talking with other attendees
(professional networking)

Comfort in discussing scientific concepts

Confidence in ability to contribute to science

Likert Scale

Likert Scale

1 2 3 4 5

*

Figure 3: Select responses for students with course credit vs. travel award.
Boxes indicate median and quartile ranges and the whiskers indicate 1.5 times
the interquartile range. ∗: Mann-Whitney U corrected p-value< 0.05; ∗∗:
corrected p-value< 0.01.

which offered built-in networking with a new group of people before the con-
ference even began. Third, the two groups prepared very differently: travel
awardees received information specific to the conference and attended new at-
tendee sessions. Students in the course, on the other hand, had scaffolded
assignments to prepare them for the meeting (and ultimately earned a grade in

7108

the course). Finally, the response rate for the two groups is also dramatically
different. Students in the Class Model had a 100% response rate, since they saw
the instructor after the conference and were given many in person reminders.
Travel awardees did not have a similar pressure to complete the survey, so
those who would have reported negative experiences may have chosen to not
participate in the survey.

3.3 Demographic groups did not differ in responses

While our study focused on evaluating the differences between the Class Model
and the Award Model, it is possible that a response may be due to a student’s
experience and background (such as prior interests, demographics, and mo-
tivation for attending). We found no significant differences in responses for
gender minorities vs. men, White students vs. non-White students, students
from PUIs vs. students from R1 institutions, and students who had previously
attended a conference vs. students who had never attended a conference be-
fore (Supplementary Information S5 online). Some of the groups have small
sample sizes; however, these results are reassuring in that students with dif-
ferent preparation, affiliations, and interests generally had similar conference
experiences, according to the responses.

4 Conclusions and Recommendations

This paper presents a four-year survey about undergraduate perceptions of
conference attendance, with respondents representing a broad range of under-
graduates by institution type, gender, race, and motivation for attending a
conference. Based on the survey responses, students who received a travel
award felt more comfortable at the conferences than students who attended as
part of a course. While it is challenging to draw additional conclusions from
data, attending the conferences clearly helped some respondents clarify their
career paths and gain a better understanding of computational biology as an
interdisciplinary field.

The Award Model may foster belongingness in a way that is absent from the
Class Model. Students who apply for and receive travel funds might already
feel more included in the community, even if the travel award process is quite
short. The Award Model also sets different expectations than the Class Model:
travel awardees met a dozen other students from different schools in a profes-
sional setting, compared to traveling to a meeting with classmates. Tying the
conference experience to a course grade in the Class Model may have decreased
the motivation of students to explore options on their own; more work could
be done to improve the scaffolded conference experience in the classroom to
make students feel better prepared for the conference. This study suggests that

8 109

developing a program that incentivizes students to opt-in to conference atten-
dance will be a good first step towards community building through conference
experiences. For example, providing department funds for students to attend
conferences might be a better approach than offering it as a class assignment.

Some limitations of the study makes it hard to understand the impact of
conference attendance. The survey included optional open-ended responses,
but did not provide enough information to compare the two models properly
(Supplementary Information S6 online). There was a longitudinal component
to the survey to determine how conference attendance might impact career
choice, but again there was limited data to draw larger inferences. Disaggre-
gating the survey results by virtual vs. in-person conferences may help untangle
the benefits of those experiences, specifically the balance between professional
development opportunities for in-person conferences and the lower cost more
accessible environment for virtual conferences.

Regardless of the model, preparing students through pre-conference sessions
and helping them navigate travel or professional networking is critical to help
them feel like they belong at the conference. Connecting undergraduates with
each other early on in the conference helps them navigate the experience with
peers. Finally, it is important to encourage students early in their time in
college to take advantage of these opportunities, even before they might have
had formal research experience.

Supplementary Information: Information about the full study design,
survey questions, aggregated responses, and a full set of all results can be
found as Supplementary Information S1-S6 online at https://www.reed.edu/
biology/ritz/ccsc-supplementary-info.html.

Acknowledgments: This work was supported by NSF-DBI-1750981. The
project was deemed exempt by Reed’s IRB in April 2018 and remains active
as of July 2024. We thank the students who participated in the conferences
and in the follow up surveys.

References

[1] Dane Bertram. “Likert scales”. In: Retrieved November 2.10 (2007), pp. 1–
10.

[2] Janet Davis and Christine Alvarado. “Supporting undergraduates to make
the most of conferences”. In: ACM Inroads 8.3 (2017), pp. 32–35.

[3] S. N. Davis et al. “Mentoring Undergraduate Scholars: A Pathway to
Interdisciplinary Research?” In: Mentoring & Tutoring: Partnership in
Learning (2015), pp. 1–14.

9110

[4] Elizabeth A Flaherty, Rachael E Urbanek, Darren M Wood, et al. “A
Framework for Mentoring Students Attending Their First Professional
Conference”. In: Natural Sciences Education 47.1 (2018).

[5] Herbert W Helm and Karl GD Bailey. “Perceived benefits of presenting
undergraduate research at a professional conference.” In: North American
Journal of Psychology 15.3 (2013).

[6] Anne-Barrie Hunter, Sandra L Laursen, and Elaine Seymour. “Becoming
a scientist: The role of undergraduate research in students’ cognitive, per-
sonal, and professional development”. In: Science education 91.1 (2007),
pp. 36–74.

[7] Amy R Lazarte and Anna Ritz. “Lowering the Barrier for Undergraduates
to Learn about Computational Research through a Course-Based Con-
ference Experience”. In: 2020 Research on Equity and Sustained Partici-
pation in Engineering, Computing, and Technology (RESPECT). Vol. 1.
IEEE. 2020, pp. 1–4.

[8] Elizabeth Leininger et al. “Ten simple rules for attending your first con-
ference”. In: PLOS Computational Biology 17.7 (2021), e1009133.

[9] David Lopatto. RISC Survey. https://sure.sites.grinnell.edu/
risc-survey/. Accessed: 2023-08-01.

[10] Patricia Ann Mabrouk. “Survey study investigating the significance of
conference participation to undergraduate research students”. In: Journal
of Chemical Education 86.11 (2009), p. 1335.

[11] Nicola Mulder et al. “The development and application of bioinformatics
core competencies to improve bioinformatics training and education”. In:
PLoS computational biology 14.2 (2018), e1005772.

[12] Layla Oesper and Anya Vostinar. “Expanding undergraduate exposure to
computer science subfields: Resources and lessons from a hands-on com-
putational biology workshop”. In: Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 2020, pp. 1214–1219.

[13] Lonnie Welch et al. “Bioinformatics curriculum guidelines: toward a defi-
nition of core competencies”. In: PLOS computational biology 10.3 (2014),
e1003496.

[14] Timothy J Weston and Sandra L Laursen. “The undergraduate research
student self-assessment (URSSA): Validation for use in program evalua-
tion”. In: CBE?Life Sciences Education 14.3 (2015), ar33.

[15] Heather M Wright and N Burçin Tamer. “Can Sending First and Second
Year Computing Students to Technical Conferences Help Retention?” In:
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. ACM. 2019, pp. 56–62.

10 111

Student-perspective Observations from the
Comparison of Rust and C++ Languages∗

Josiah Scott, Fei Zuo, Junghwan Rhee
Department of Computer Science

University of Central Oklahoma, Edmond, OK 73034
{jscott70,fzuo,jrhee2}@uco.edu

Abstract
Rust language has been widely adopted in industry, government agen-

cies, and education sectors because of its secure features that reduce
memory errors while maintaining fast performance. However, many
first-time learners including undergraduate students experience a high
learning curve in this language compared to other programming lan-
guages such as C++, Java, and Python. In this paper, we present a
student-driven study to compare the code of the implementation of a
webserver written in two different languages, C++ and Rust. Specifi-
cally, we present our observations with the pairs of code snippets written
in C++ and Rust regarding what are the major differences highlighting
the main factors causing difficulty for new learners.

1 Introduction

Rust programming language has gained significant traction in recent years,
across various sectors because of its focus on memory safety and performance [4].
Despite the advantages the language offers, it is often regarded as having a
steeper learning curve than more established languages like C++, Java, or
Python. Learning the Rust language is beneficial to students, but we would

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1112

Figure 1: Process of a Comparison Study.

like to find what are the major differences and roadblocks perceived by under-
graduate students so that we can design an effective course in the future and
such studies need further work.

This paper aims to compare Rust with another widely used programming
language to identify and analyze language design features and pieces of the
development experience that provide insight into the learning challenges and
benefits of Rust. To do this, we have a study where an undergraduate student
writes pairs of code snippets in Rust and C++ that offer the same functionality
and evaluate the differences between the two languages.

The contribution of this paper includes the following:

• We conduct a study from an undergraduate student’s point of view re-
garding the experience of writing code to implement the same function-
ality in two different languages.

• From this study we extracted a set of observations by the student regard-
ing the different characteristics of two languages that give us insight on
how we need to design our future Rust course.

Section 2 presents the design of our comparison study. Section 3 presents
the comparison analysis of C++ and Rust code. Our discussion is presented
in Section 4. Related work is discussed in Section 5. Finally, this paper is
concluded in Section 6.

2 Design of a Comparison Study

Figure 1 presents the process of our comparison study. A computer science
undergraduate student implemented a program in two different languages, Rust
and another one for comparison, performing the same functionality. For this
comparison, C++ was chosen as the contrasting language due to its widespread
use in education and industry, as well as its non-functional similarities to Rust,
such as common use cases and performance. To systematically compare Rust

2 113

and C++ from a learner’s perspective, we selected key areas of difference where
new developers to each language may encounter difficulties. We selected the
development of a simple web server as the comparison medium. A web server
was chosen because it encompasses a wide range of programming concepts,
and is a reasonable use case for both languages. The web servers have the
same basic structure and features, with request parsing, response generation,
file serving, and routing.

During and after development, notes for complications and language dif-
ferences were taken and used to compile a list of areas for comparison. These
areas are (1) the compilation and run process, (2) mutability, (3) control flow,
(4) error handling, (5) input and output, (6) memory references and borrowing,
(7) concurrency with threads, and (8) compiler messages. From this list, we
compiled code snippets that illustrate the differences between the languages in
these areas. These code snippets are compared and evaluated based on ease of
use, learning curve, readability, and safety.

3 Comparison Analysis of C++ and Rust Code

In this section, we present our comparison of web server code written in C++
and Rust languages regarding eight different areas.

3.1 Compilation and Execution Process

Rust provides a much simpler compilation and run step. Thus learning Rust
does not need to know anything about linkers, object files, or manual installa-
tion of custom libraries. Similar to Python’s pip, Rust comes with a package
manager, cargo, installed out of the box. Cargo allows for easy installation of
dependencies and a simple run command. This is not unique to Rust, but is
certainly an advantage in terms of ease of use when compared to C++.

g++ main.cpp -I"C:\Program Files\Boost\
boost_1_85_0" -L"C:\Program Files\Boost\
boost_1_85_0\stage\libs" -lws2_32

./a.exe

Figure 2: C++ build and run process.

cargo run

Figure 3: Rust build and run process.

Figure 2 shows two steps to build C++ code and execute it. In comparison,
Rust provides a supporting program to simplify the build process and execution
called “cargo” shown in Figure 3.

3114

Cargo is especially useful for integrating third-party modules/libraries that
further have their own dependencies.� �
Observation #1: Rust integrates software component management and runtime
tools together with the compiler. � �

3.2 Mutability

Most programming languages have support for immutable variables, like with
the const keyword in C++. Variables in Rust however, are immutable by de-
fault. This encourages a style of programming that reduces unintended mod-
ifications and bugs. Because immutability by default is not the norm in most
languages including C++, this is a feature that may cause confusion among
learners for a short time until they get familiar with it.

std::string response = "Hello, World!";
response = "New response";

Figure 4: C++ code.

let response = "Hello, World!";
//response = "New response";

let mut response = "Hello, World!";
response = "New response"; //This is allowed

Figure 5: Rust code.

Figure 4 shows no restriction of an assignment of a new string in C++.
Figure 5 shows that an auto variable will not allow a new assignment while an
explicit mutable (“mut”) string can be overwritten.� �
Observation #2: Rust prevents unintended modifications by explicitly expressing
mutability, which helps developers think about the mutability of variables . � �

3.3 Control Flow and Pattern Matching

C++ has traditional conditionals for control flow, while Rust has these same
conditionals as well as pattern matching. Pattern matching using the “match”
keyword allows you to compare a value against a series of patterns and execute
code based on which pattern matches. This feature is powerful but the syntax
and the idea of matching patterns instead of evaluating conditions is harder to
grasp.

C++ will need to utilize nested if and else statements for multiple patterns
(Figure 6). Rust offers a clean choice for multiple patterns as shown in Figure
7. As we have a higher number of matching patterns, Rust’s syntax will have
a higher advantage showing lower complexity with concise code.

4 115

if (routes.find(url) != routes.end()){
// Handle route...

}
else {

// Handle 404...
}

Figure 6: C++ code.

match routes.get(url) {
Some(route) => {

// Handle route...
}
None => {

// Handle 404...
}

}

Figure 7: Rust code.� �
Observation #3: Rust's pattern−matching structure and syntax provide
convenience to avoid cumbersome nested if−else statements. � �

3.4 Error Handling

C++ uses exception-based error handling, which can be caught using try and
catch blocks. Rust uses the “Result” type which enforces error handling at
compile time. This makes for more robust code but adds to the learning curve
of Rust.

try{
std::string content =

read_html_file("path/to/file");
} catch (const std::exception&) {

std::cerr << "Error: " <<
e.what() << std::endl;

}

Figure 8: C++ code.

match read_html_file("path/to/file"){
Ok(content) =>

println!("File content: {}", content),
Err(e) => println!("Error: {}", e),

}

Figure 9: Rust code.

Figure 8 shows a basic example of error handling in C++ using try and
catch keywords. Figure 9 illustrates error handling in Rust using the “Result”
type. The “read_html_file()” function returns a Result which can either be
“Ok” if successful, or “Err” if the function has any errors. Pattern matching is
then used to handle both cases.� �
Observation #4: Rust provides clear pattern−matching syntax and Ok/Err
syntax to support error handling concisely in the language level . � �

3.5 Input and Output, File Handling

C++ reads files using std::ifstream and std::stringstream, which are
straightforward for C++ developers. The concepts of streams and buffers are
being used less and less in modern programming languages, so this approach

5116

may be unfamiliar to many developers. Rust uses more straightforward “open”
and “read_to_string” functions. Rust’s approach returns a Result type,
incorporating error handling into the function signature.

std::string read_html_file(
const std::string &path){

std::ifstream file(path);
std::stringstream buffer;
buffer << file.rdbuf();
return buffer.str();

}

Figure 10: C++ code.

fn read_html_file(path: &str) ->
Result<String, std::io::Error> {

let mut file = File::open(path)?;
let mut contents: String = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

Figure 11: Rust code.

Figure 10 shows C++ code for a file input using the stream insertion oper-
ator and a buffer. Figure 11 shows Rust instead using a File type and simple
functions on that type.� �
Observation #5: Rust provides an explicit way to express "read a file to a
string " using its standard library API. � �

3.6 Memory References and Borrowing

Rust and C++ have similar syntax for taking memory allocated in scope and
utilizing it in another scope (the & operator in function headers), but the
rules surrounding this concept is very different across the languages. C++ has
references (and pointers) that allow programs to reference the same memory
across scopes without copying it. Rust instead has borrowing, which has strict
rules and compile time checks to make sure a reference is always valid. This
prevents issues like dangling references, but the strict rules can be confusing.
In Rust each value has a single owner at a time. Ownership can be transferred
or temporarily borrowed.

void accept_connections(
io_context &io_context,
tcp::acceptor &acceptor){
// Function body

}

Figure 12: C++ code.

fn handle_request(filepath: &str,
mut stream: TcpStream) {
// Function body

}

Figure 13: Rust code.

Figure 12 demonstrates passing references in C++. The “io_context” and
“acceptor” are passed by reference, allowing the body of the function to mod-

6 117

ify the original objects. Figure 13 shows borrowing in Rust. The “filepath”
is borrowed immutably and the “stream” is borrowed mutably.� �
Observation #6: Rust's ownership and borrowing are one of unfamiliar and
cumbersome concepts, however they are helpful to defeat memory errors. � �

3.7 Concurrency with Threads

Both Rust and C++ provide support for concurrency with threads in their
standard library. C++ uses a relatively simple function to spawn and move an
object to the new thread. Rust on the other hand uses a spawn function that
accepts a closure, and requires a special “move” keyword to transfer ownership
of the captured variables into the new thread. This requires a solid grasp of
closures, as well as Rust’s ownership and borrowing principles.

void accept_connections(
io_context &io_context,
tcp::acceptor &acceptor){

while (true){
tcp::socket socket(io_context);
acceptor.accept(socket);
std::thread(handle_request,

std::move(socket)).detach();
}

}

Figure 14: C++ code.

fn main() {
let routes = create_routes();
let listener =

TcpListener::bin("127.0.0.1:3000").unwrap();
for stream: Result<{unknown}, {unknown}>

in listener.incoming() {
match stream{

Ok(stream) => {
let routes = routes.clone();
thread::spawn(move || {

handle_client(stream, &routes);});
}
// Handle Error

}
}

}

Figure 15: Rust code.

Figure 14 demonstrates thread creation in C++ with the “move” function
moving the TCP socket to the new thread, and the “detach” function which
allows the thread to execute independently. Figure 15 shows thread creation
in Rust, in which a variable must be cloned, captured by a closure, and have
its ownership transferred into the closure.� �
Observation #7: Concurrency with threading in Rust requires knowledge of
more advanced programming concepts. � �

7118

3.8 Compiler Messages

Compiler error messages exhibit a disparity in clarity, relevance, and helpful-
ness between Rust and C++. The Rust compiler is known for having clear and
helpful compiler error messages. The Rust compiler often gives specific line
numbers, detailed explanations of the mistake, and suggests solutions. C++
compiler messages are often less clear and require more specialized knowledge
to decipher.

std :: ifstream file(path);

incomplete type "std :: ifstream " is not allowed C/C ++(70)

Figure 16: C++ code and an error message.

Figure 16 shows the code and the resulting error from attempting to cre-
ate a variable of type “ifstream” without the necessary library import. The
compiler error message simply says that “ifstream” is not allowed.

let mut file = File :: open(path)?;

error [E0433]: failed to resolve : use of undeclared type `File `
--> src\main.rs :53:20

|
53 | let mut file = File :: open(path)?;

| ^^^^ use of undeclared type `File `
|

help: consider importing this struct
|

1 + use std :: fs :: File;
|

Figure 17: Rust code and an error message.

In contrast for the same mistake, Figure 17 shows Rust giving a much more
detailed and helpful compiler message, even suggesting that the correct import
statement is necessary.� �
Observation #8: Rust offers more detailed and context−rich error messages that
are helpful for debugging. � �

4 Discussion

In our analysis, we identified several key differences between Rust and C++
that impact the learning experience. Rust’s default immutability, and enforced

8 119

error handling contribute to safer and more robust code but require learning
more concepts up front to use the language. The same is true for Rust’s owner-
ship and borrowing based memory management. Rust’s helpful compiler aids
in reducing confusion in debugging situations, but is not perfect. The Cargo
tool for Rust also makes adding packages or libraries and running programs
much easier than C++’s more manual approach.

5 Related Work

Coblenz et al. [2] analyzed Stack Overflow posts and found that users struggle
with ownership, borrowing, standard library and the “try operator”. They
proposed some solutions for these struggles in the form of potential tools that
could be created. Likewise, Zhu et al. [7] manually analyzed 100 Stack Overflow
posts to find what safety features were difficult to understand and apply, and
whether or not the compiler was helpful enough in debugging. They also did
a survey with Rust developers to validate their findings. They concluded that
ownership and lifetimes were the most difficult to understand and apply.

Zeng et al. [6] used Reddit and Hacker News posts to investigate why Rust
is difficult for many to adopt. The study found that main factors are that
Rust has good tooling that is not promoted enough, and the cost of migrating
existing codebases is too high. The survey [5] performed in 2023 shows that
the learning curve of Rust was still a common reason why developers have not
started to learn the language. The top three areas of Rust that developers
seem to struggle with are asynchronous programming, traits and generics, and
the borrow checker. Abtahi et al. [1] observed how experienced developers
learn Rust. They also proposed some ideas to make the learning process easier
for package and language designers. These included providing ample example
code, create inline compiler messages for packages, and linking error messages
to explanations of the relevant concepts.

In the computing education context, Dixon [3] discussed the potential of
Rust and believed that integrating Rust programming into operating system
courses would benefit students.

6 Conclusion

In this paper, we conduct a comparative study by an undergraduate student
to write a web server program in Rust and C++. We find Rust, as a new
language, has multiple advanced and convenient functions, code structures,
and syntax integrated into its design. While learning new functions, especially
memory-related features takes a high learning curve, we found that it will be
beneficial to implement a program with fewer bugs and less amount of code.

9120

References

[1] Parastoo Abtahi and Griffin Dietz. “Learning Rust: How Experienced Pro-
grammers Leverage Resources to Learn a New Programming Language”.
In: Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems. 2020, pp. 1–8.

[2] Michael Coblenz et al. “A Multimodal Study of Challenges Using Rust”.
In: the 13th Annual Workshop at the Intersection of PL and HCI. 2023.

[3] Bryan Dixon. “Position Paper on Teaching Operating Systems Using the
Rust Programming Language”. In: Journal of Computing Sciences in Col-
leges 39.1 (2023), pp. 11–17.

[4] Ralf Jung et al. “Safe systems programming in Rust”. In: Communications
of the ACM 64.4 (2021), pp. 144–152.

[5] The Rust Survey Team. 2023 Annual Rust Survey Results. https://
blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-
results.html. Accessed: 2024-06-25. 2024.

[6] Anna Zeng and Will Crichton. “Identifying Barriers to Adoption for Rust
through Online Discourse”. In: the 9th Workshop on Evaluation and Us-
ability of Programming Languages and Tools. 2018.

[7] Shuofei Zhu et al. “Learning and programming challenges of Rust: a mixed-
methods study”. In: the 44th International Conference on Software Engi-
neering. 2022, pp. 1269–1281.

10 121

The Effectiveness of Coding LLMs and the
Challenges in Teaching CS1/2: A Case Study∗

Alexander Hong1 and Gongbing Hong2
1Computer Science
Duke University

Durham, NC 27708
alexander.hong@duke.edu

2Information Systems and Computer Science
Georgia College and State University

Milledgeville, GA 31061
gongbing.hong@gcsu.edu

Abstract

This paper presents a case study that evaluates the effectiveness of
coding Large Language Models (LLMs) in introductory computer sci-
ence courses at the university level. The study assesses six different
AI-powered code generators. The evaluation focuses on the accuracy of
these AI code generators in solving ten programming problems from a
set of problems that instructors at Duke University can assign to stu-
dents for weekly completion. The results demonstrate the effectiveness
of coding LLMs in solving these problems.

Based on the findings, the paper discusses the challenges faced by
the computer science education community and potential strategies to
address them. The advent of coding LLMs poses significant challenges
to traditional teaching and learning methods in computer science. These
challenges include the need for strategies to mitigate any negative impact
of LLMs on the learning process. At the same time, these code LLMs
also offer tremendous opportunities for enhancing teaching and learning.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1122

1 Introduction

Computer science education plays a fundamental role in shaping the program-
ming skills and problem-solving abilities of future software developers. Tra-
ditionally, students have learned programming through a process of writing
code, testing, and debugging their solutions to programming problems. This
meticulous process helps students develop critical thinking skills, learn how to
develop solutions, and enhance their coding abilities.

However, the advent of Artificial Intelligence (AI) and Machine Learning
technologies has introduced new tools, such as Large Language Models (LLMs),
that have gained popularity in the coding community for their potential to
assist coders with repetitive tasks. These AI-powered coding assistants can
generate code snippets, provide suggestions, and improve code quality. They
can even generate complete solutions to many simple programming problems,
including those commonly used as assignments in classrooms. The wide avail-
ability of these AI tools raises concerns about their impact on computer science
education, the challenges they pose to educators, and the integrity of the edu-
cational process.

On the other hand, LLMs also present opportunities for educators to en-
hance the learning experience for students. By integrating LLMs into their
curriculum, educators can provide additional support and resources to help
students learn programming concepts more effectively.

In this paper, we present a case study evaluating the effectiveness of cod-
ing LLMs in university-level introductory computer science courses. We assess
the accuracy of six AI-powered code generators in solving programming prob-
lems commonly used in introductory computer science courses. The results
of the study provide insights into the performance of these LLMs in solving
programming problems and their potential impact on computer science educa-
tion. Additionally, we discuss the challenges faced by educators and students in
the context of AI-powered coding assistants and potential strategies to address
these challenges.

2 Background and Related Work

Recent advances in AI have led to the development of large language models
(LLMs) that have demonstrated impressive performance in various domains,
including code generation. This has raised concerns about the potential impact
of LLMs on education, particularly in introductory programming courses.

Several studies have evaluated the ability of LLMs to solve programming
problems. Wang et al. [14] conducted a study to assess the performance of
ChatGPT on 187 problems from six undergraduate computer science courses.

2 123

They found that ChatGPT was able to solve around 61% of the problems,
including multiple-choice, short-answer, and programming questions.

In another study, Denny et al. [3] examined the effectiveness of GitHub
Copilot, an AI-powered code generator integrated into the Visual Studio Code
(VSCode) editor, in solving 166 publicly available programming problems for
CS1. They found that Copilot was able to solve half of the problems on its
first try and 60% of the remaining problems with some additional prompting.

Denny et al. [4] also discussed the challenges and opportunities that com-
puting educators and students face with the rise of coding LLMs. They argue
that it is important to incorporate these tools into the curriculum from the
beginning to help students learn how to use them effectively and responsibly.

Lau and Guo [7] conducted a study to investigate the perspectives of intro-
ductory programming instructors on the use of AI-powered code generators.
They found that instructors were initially hesitant about the use of these tools
but later shifted their focus to how to integrate them into their teaching prac-
tices.

Codio [2] conducted a survey of 371 students to understand their perspec-
tives on the use of generative AI in education, including computing education.
The survey found that the majority of students (76%) were aware of generative
AI, and many (47%) had used it for school-related work. The survey also found
that students generally care about academic integrity when using generative
AI tools.

3 Methodology

3.1 Selection of the Programming Problems

In introductory computer science courses at Duke University, students com-
plete weekly Algorithmic Problem-solving Testing (APT) problems assigned
by their instructors. These problems assess students’ understanding of pro-
gramming concepts and problem-solving skills. The problems encompass a
broad range of topics, including programming techniques, data structures, and
algorithms. Examples of APT problems can be found in [12, 13]. Students are
required to solve these problems using the programming language specified by
the instructors, which is Python for CS1 and Java for CS2. Students submit
their solutions to an internal online judging platform, where the uploaded code
is automatically executed against a set of test cases. These test cases have
been validated through years of use.

For this study, we selected ten programming problems from the APT set
to evaluate the performance of coding LLMs in solving these problems. The
problems were chosen to represent varying levels of difficulty and a variety of
topics covered in introductory computer science courses. The problems are

3124

divided into two subsets (Table 1): five problems from CS101 (Introduction
to Computer Science) and five problems from CS201 (Data Structures and
Algorithms).

Table 1: Selected APT Problems
Problem Description

CS 101
ChangeMoney Given exchange rates, convert one currency amount into an-

other.
LengthMost Given a phrase, calculate which word length occurs the most

number of times.
PopularCategory Calculate the most popular category of a group of words,

returning a string of sorted and alphabetized words in that
category.

SwapParts Given a phrase, return a copy of the phrase with individual
words in the same order but changed according to a set of
predefined rules.

WordChoices Given four phrases of words, determine which words fit with
a given algorithm.

CS 201
Aaagmnrs Given a list of phrases, remove each phrase that is an anagram

of an earlier phrase.
MergeLists Takes two lists with the same number of nodes and weaves

them together alternatingly.
SortedFreqs Given a list of strings, calculate how frequently each unique

string occurs.
Starter Determine how many unique words in an array of words start

with a specified letter.
StringCuts Filter strings out of a list that satisfy a minimum acceptable

length.

3.2 Code Generators

This study evaluates the performance of six AI-powered code generators in solv-
ing the selected programming problems. The six code generators are GitHub
Copilot [5], OpenAI ChatGPT-3.5 [9], StarCoder [15], Meta Llama [8], Amazon
CodeWhisperer [11], and Replit AI [10]. The versions used in the study and
their training are listed in Table 2. These code generators were chosen based
on their availability, popularity, and potential to assist students in complet-
ing programming assignments. The coding tools were tested in their default
configurations without additional training or customization.

4 125

Table 2: Code Generator Details
Code Generator / Version Training
GitHub Copilot / v1.140.0 Trained on a selection of the English language,

public GitHub repositories, and other publicly
available source code. [5]

ChatGPT-3.5 / v3.5 Trained using a large amount of text data from
web pages, books, and articles. [6]

StarCoder / 15.5B Trained on permissively licensed data from
GitHub. [15]

Llama / 13b Trained on web pages, open source repositories
of source code, public domain books, scientific
papers, Q&As from Stack Exchange. [8]

CodeWhisperer / 1.9 Trained on billions of lines of Amazon and pub-
licly available code. [11]

Replit AI / 2023.10 (Initial) Trained on publicly available code and tuned by
Replit. [10]

Standard prompts were generated and executed once for all code generators
to ensure that they did not learn or adapt to any specific prompts through rein-
forcement learning. All tests were conducted between September and Novem-
ber 2023.

3.3 Evaluation Metrics

The study assesses the performance of the code generators based on how ac-
curately they can solve the selected programming problems. The evaluation is
conducted by uploading the generated code to the same online judging platform
used by Duke students. The accuracy of the code generators is measured as
the percentage of test cases for which the generated code produces the correct
output.

4 Results

4.1 Accuracy

Table 3 presents the accuracy of the code generators in solving the selected
programming problems. The results indicate that ChatGPT-3.5 and Replit
AI exhibited superior performance, both achieving an average accuracy rate of
approximately 89%. Notably, both generators performed better when solving
Python problems than Java problems. This disparity can be attributed to the
underlying LLMs being trained on a larger volume of Python data compared

5126

to Java data. Copilot ranked as the third-best performer, attaining an average
accuracy of 76.8%. For each programming problem included in the study, at
least one code generator demonstrated the ability to solve the problem with
100% accuracy. This finding suggests that AI-powered code generators can
effectively solve programming problems commonly encountered in introductory
computer science courses.

Table 3: Accuracy (%) of Code Generators
Problem (Test Cases) Copilot ChatGPT StarCoder Llama CodeWhisperer Replit AI

CS101 Problem Set (Python)
ChangeMoney (24) 100.0 100.0 100.0 100.0 100.0 100.0
LengthMost (20) 75.0 100.0 0.0 0.0 50.0 100.0
PopularCategory (23) 56.5 100.0 0.0 0.0 4.3 100.0
SwapParts (27) 100.0 100.0 0.0 3.7 11.1 100.0
WordChoices (27) 96.3 100.0 0.0 14.8 3.7 100.0

CS201 Problem Set (Java)
Aaagmnrs (50) 0.0 100.0 14.0 8.0 4.0 14.0
MergeLists (8) 100.0 25.0 0.0 0.0 0.0 100.0
SortedFreqs (13) 69.2 100.0 100.0 30.8 100.0 100.0
Starter (14) 71.4 71.4 100.0 71.4 71.4 71.4
StringCuts (10) 100.0 100.0 70.0 30.0 70.0 100.0

Average Accuracy % (Stddev %)
CS101 (Python) 85.6 / 19 100.0 / 0 20.0 / 45 23.7 / 43 33.8 / 42 100.0 / 0
CS201 (Java) 68.1 / 41 79.3 / 33 56.8 / 47 28.0 / 28 49.1 / 45 77.1 / 37
Overall 76.8 / 32 89.6 / 24 38.4 / 48 25.9 / 34 41.5 / 41 88.5 / 28

4.2 Experience on Usability and Speed

All code generators under study, except ChatGPT, are accessible as plug-ins
within code editors such as VSCode. Users can effortlessly enable and disable
the code generators within the editor, except for StarCoder and Llama. Once
the plug-in is enabled, users can prompt the code generators by simply writing
blocks of comments in the editor. As users continue editing their code, the code
generators, based on the current context, often provide suggestions in the form
of code snippets in real-time. Users can choose to accept or reject a suggestion.
When a suggestion is deemed useful (which is often the case) and accepted,
users experience a significant increase in productivity. All platforms use a
system of tab, enter, and arrow keys to choose among the options regarding
the generated code, making it intuitive for any programmer to use.

Code generators such as Replit AI and the newly updated Copilot also
provide a chat interface as an additional feature, enabling users to prompt the
AI through either chats or block comments in the editor. ChatGPT-3.5 relies
solely on the chat interface, and the generated code must be manually copied
into a code editor.

The speed of the code generators was commendable, with most of them
producing results within a few seconds. This is crucial for a code generator
integrated into a code editor. The mode in which the code was generated was
also noteworthy. In early tests, Llama and StarCoder appeared to produce

6 127

code in “chunks” (1-5 lines at a time), while the other code generators would
produce all the answers at once in a large block. In real coding scenarios, the
mode in which the editors produce code depends on the amount of context
present. With more initial context (code, block or line comments, etc.), code
generators are capable of generating more code.

5 Discussion

5.1 The Impact of AI-Powered Code Generators on CS Education

The advent of AI-powered code generators poses significant challenges to com-
puter science education. Studies have demonstrated the efficacy of these lan-
guage models (LLMs) in solving programming problems commonly encoun-
tered in introductory computer science courses [3, 14]. This situation raises
concerns for various stakeholders, including instructors, students, and admin-
istrators. As discussed in previous literature [14, 4], the use of AI-powered code
generators raises serious concerns about their impact on the learning process.
Students may opt to utilize these tools to complete assignments, potentially
bypassing the intended learning experience. This raises concerns about the in-
tegrity of computer science education, as it can disadvantage students who do
not use these tools and create an uneven playing field. Furthermore, there is a
risk that students may develop a dependency on these tools, which could hinder
their ability to develop independent problem-solving and coding skills. Educa-
tors must be cognizant of these challenges and develop strategies to mitigate
their negative impact on the learning process.

5.2 Strategies for Addressing the Challenges

Several strategies can be employed to address the challenges posed by AI-
powered code generators [7]. Each strategy presents its own advantages and
disadvantages. One approach is to prohibit the use of LLMs in completing as-
signments. However, this may not be feasible or practical given the widespread
availability of these tools. Additionally, enforcing such a ban would be chal-
lenging unless assignments are conducted as in-class activities under proctored
conditions. This approach may only be viable for introductory computer sci-
ence courses where assignments are relatively simple and can be completed
within a single class session. However, even in this context, not all assignments
may be suitable for completion within a single class session, depending on their
complexity and the abilities of individual students.

An alternative approach is to modify assignments to make them less sus-
ceptible to automated solutions. This could involve creating more open-ended

7128

problems that require students to demonstrate their understanding of program-
ming concepts and problem-solving skills. However, these open-ended problems
may require more manual grading, making them less scalable for larger classes.

Another strategy is to embrace the use of LLMs as a learning tool and teach
students how to utilize them effectively. Educators can provide guidance on the
ethical use of these tools and encourage students to leverage them as resources
to enhance their learning experience. This approach can help students develop
their problem-solving and coding skills while benefiting from the assistance of
AI-powered coding assistants.

5.3 Opportunities for Computer Science Education

The availability of AI-powered coding assistants also presents opportunities
for educators to enhance the learning experience for students [4, 7, 14]. By
integrating LLMs into the curriculum, educators can provide students with
additional support and resources to help them learn programming concepts
more effectively. LLMs can assist students in understanding complex topics,
debugging code, and improving their coding skills. By leveraging these tools,
educators can create a more engaging and interactive learning environment that
encourages students to explore new concepts and develop their problem-solving
skills.

Students enrolled in introductory programming courses often encounter
challenges in devising effective coding strategies. When faced with debug-
ging an error, students may find themselves at an impasse without immediate
assistance. Traditional static learning resources, such as tutorials and text-
books, often fall short in providing immediate, contextualized, and interactive
support. While teachers and teaching assistants (TAs) play a crucial role, their
availability may be limited, and existing automated hint generation systems
have inherent limitations. LLMs have the potential to address these issues by
offering round-the-clock, contextualized support [1], thereby overcoming the
limitations of traditional learning and tutoring methods.

6 Conclusion

In conclusion, our study assesses the performance of AI-powered code gener-
ators in solving introductory programming problems commonly used in com-
puter science education. The findings reveal that these tools can be effective,
with at least one generator solving each problem with 100% accuracy. While
this presents challenges, such as students using AI-powered code generators by-
passing the learning process and concerns about academic integrity, we believe
that banning their use is not a viable solution. Instead, we propose incorpo-

8 129

rating these tools into the curriculum and teaching students how to use them
effectively and ethically.

AI-powered code generators offer opportunities to enhance the learning ex-
perience by assisting students with complex topics, debugging, and improving
their coding skills. Future work should focus on developing best practices, eval-
uating their impact on student outcomes, and addressing the challenges they
pose. By leveraging these tools effectively, we can transform computer science
education and empower students to succeed in the age of AI.

Acknowledgments

The authors would like to acknowledge the anonymous reviewers of the CCSC
Southeast Conference for their invaluable feedback and constructive sugges-
tions, which helped enhance the quality of this paper.

References

[1] Codio. Codio Coach. https://www.codio.com/features/coach-ai-
learning-assistant. Accessed: 2024-06-05.

[2] Codio. Student Perspectives and Use of Generative AI. https://www.
codio.com/research/student-perspectives-and-use-of-gen-ai.
Accessed: 2024-06-05.

[3] Paul Denny, Viraj Kumar, and Nasser Giacaman. “Conversing with Copi-
lot: Exploring prompt engineering for solving CS1 problems using natu-
ral language”. In: Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1. 2023, pp. 1136–1142.

[4] Paul Denny et al. “Computing education in the era of generative AI”. In:
Communications of the ACM 67.2 (2024), pp. 56–67.

[5] GitHub. GitHub Copilot · Your AI pair programmer. https://github.
com/features/copilot. Accessed: 2024-06-05.

[6] Shreya Johri. The Making of ChatGPT: From Data to Dialogue. https:
//sitn.hms.harvard.edu/flash/2023/the-making-of-chatgpt-
from-data-to-dialogue/. Accessed: 2024-06-05.

[7] Sam Lau and Philip Guo. “From ‘Ban it till we understand it’ to ‘Resis-
tance is futile’: How university programming instructors plan to adapt
as more students use AI code generation and explanation tools such as
ChatGPT and GitHub Copilot”. In: Proceedings of the 2023 ACM Con-
ference on International Computing Education Research-Volume 1. 2023,
pp. 106–121.

9130

[8] Meta. Meta Llama. https://llama.meta.com/. Accessed: 2024-06-05.

[9] OpenAI. Introducing ChatGPT. https://openai.com/index/chatgpt/.
Accessed: 2024-06-05.

[10] Replit. AI – Replit: Turn natural language into code. https://replit.
com/ai. Accessed: 2024-07-05.

[11] Amazon Web Services. AI Code Generator – Amazon CodeWhisperer –
AWS. https://aws.amazon.com/codewhisperer/. Accessed: 2024-06-
05.

[12] Duke University. ComSci 101, Fall 2022: APTs. https://courses.cs.
duke.edu/fall22/compsci101/apt.php. Accessed: 2024-06-05.

[13] Duke University. ComSci 201, Spring 2023: APTs. https://courses.
cs.duke.edu/spring23/compsci201/apt/secure/. Accessed: 2024-06-
05.

[14] Tianjia Wang et al. “Exploring the Role of AI Assistants in Computer Sci-
ence Education: Methods, Implications, and Instructor Perspectives”. In:
2023 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). IEEE. 2023, pp. 92–102.

[15] Leandro von Werra and Loubna Ben Allal. StarCoder: A State-of-the-Art
LLM for Code. https://huggingface.co/blog/starcoder. Accessed:
2024-07-05.

10 131

A Practical Approach to Improve CS
Curriculum Through Continuous Assessment to

ABET Outcomes∗

Yi Liu and Gongbing Hong
Department of Information Systems and Computer Science

Georgia College and State University
Milledgeville, GA 31061

{yi.liu,gongbing.hong}@gcsu.edu

Abstract

This paper introduces a practical methodology to improve our CS
curriculum using the continuous assessments conducted over the past
decade. This methodology not only ensures effective improvements to
curriculum, but also aims to reduce faculty workload associated with
assessments. The approach includes integrating ABET-enabled student
outcomes and the online assessment system from the university, optimiz-
ing the frequency of assessments by rotating a subset of student learning
outcomes, focusing on the important components of our curriculum, es-
tablishing a routine meeting at the beginning of each fall semester aligned
with the university’s schedule, and consistently applying the collected re-
sults to restructure and refine the CS undergraduate curriculum at our
college. As a result, the prerequisites of CS courses have been clarified,
and the connections among CS courses have been strengthened. These
curriculum improvements also help to enhance the quality of our CS
program, as shown by ABET re-accreditation and higher rank from U.S.
News and World Report.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1132

1 Introduction

Given the rapidly evolving nature of computing, the CS curriculum—including
the courses, course subjects, and course interconnections—must be continually
updated in order to ensure that students are well-prepared upon graduation
[4, 10]. However, despite the necessity and importance of regularly revising the
curriculum for student success, there have been some notable challenges that
arise.

First, any proposed changes must take into account various factors including
expectations, program size, faculty resources, course schedules, and so on [11,
12]. For example, if a CS program faces budget constraints that may limit
some upper-level CS courses to being offered only once a year, requiring such a
course as a prerequisite could significantly negatively impact graduation rates.
It could delay graduation for students who are under-performing, transferring,
or changing their major to CS during their college years.

Second, curriculum changes can unintentionally introduce some unforeseen
issues, causing confusion or new problems. One example is our modification of
the course, Software Engineering(SE), which only required Data Structures as
a prerequisite. But in order to align with the university’s mission and the goal
of refining the Knowledge-Skill-Disposition (K-S-D) framework [3, 7], we made
this course as a capstone class, asking students to develop real-world projects
with industrial clients. However, most projects required extensive database
design and web programming. With Data Structures as the only prerequisite,
many students lack the essential knowledge of database design, leading poor-
quality or failed projects. Some even failed the course by the end.

Third, any curriculum changes require supports from faculty. Faculty must
revise their courses by adding or removing related contents and spend time to
implement these changes confidently. Oftentimes there is not enough time or
opportunity for faculty to build the necessary collaboration and trust to sup-
port these changes [13]. Some studies [5, 10, 8] indicate that some resistances
can occur due to perceived barriers to curriculum changes.

All the above challenges can be effectively addressed by using assessments.
Assessment-data can help to overcome obstacles and boost confidence of faculty
in the modified curriculum [6, 8, 13]. For example, after examining the data,
our faculty discovered a higher than expected failure rate in the SE course.
The data strongly supported revising the SE course prerequisites. Moreover,
assessments collected after revising further verified that the change was neces-
sary and effective.

However, faculty are usually busy with their teaching, research, and service
responsibilities. Adding excessive assessment tasks can overwhelm them, lead-
ing to resistance to the assessment. To address this issue, it is important to
design an assessment system that is both effective and manageable. The as-

2 133

sessment process in our department aims at a simple implementation, and can
easily adopted by the faculty without imposing unnecessary extra workloads
for them.

In this paper, we share and summarize how ABET-guided assessments are
used to effectively improve our curriculum. First, we introduce our Student
Learning outcomes(SLOs) and the Performance Indicators(PIs) we have tailed
from ABET. Second, we describe our structured assessment plan that aligns
with ABET evaluation cycle. We provide some examples of the assessment
data we have gathered. Then we discuss several examples of the major im-
provements made to the curriculum based on the assessment data, with our
effort to minimize the workload of the faculty from the assessments. We con-
clude the paper by summarizing our key findings and their implications for
ongoing curriculum development.

2 Methodology

2.1 Student Learning Outcomes Adopted from ABET

SLOs define the knowledge and skills that students are expected to possess
by graduation. Our program, being ABET-accredited, benefited from directly
adopting ABET’s SLOs, which not only helped us on maintaining our accredi-
tation status but also reduced the faculty’s effort required when preparing the
ABET re-accreditation, as this alignment simplified the assessment process.
Our program’s SLOs were tailored versions of the official ABET ones, as ref-
erenced in documents [2, 4]. In general, these outcomes were briefly reviewed
in the CS assessment meeting. However, when ABET updated its criteria,
we then allocated more time to update ours. Each SLO was associated with
two PIs, which provided measurable metrics to evaluate the associated SLOs,
ensuring an effective assessment process. Our SLOs are listed below.

SLO1: Apply computer science theory and software development funda-
mentals to produce computing-based solutions.

PI 1. Students will be able to demonstrate and apply knowledge of
mathematical functions to analyze a given algorithm.

PI 2. Students will be able to recognize appropriate algorithm to solve
a problem.

SLO2: Design, implement, and evaluate a computing-based solution to
meet a given set of computing requirements in the context of the program’s
discipline.

PI 1. Students will be able to recognize design and development
principles.

3134

PI 2. Students will be able to implement and evaluate the designed
solution for a given problem.

SLO3: Function effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline.

PI 1. Students will be able to share in work of team .
PI 2. Students will be able to fulfill duties of team roles.

SLO4: Recognize professional responsibilities and make informed judg-
ments in computing practice based on legal and ethical principles.

PI 1. Students will be able to identify professional, legal, and ethical
issues.

PI 2. Students will be able to understand professional, legal, and eth-
ical responsibilities.

SLO5: Communicate effectively in a variety of professional contexts.
PI 1. Students will be able to produce a variety of documents for

technical and nontechnical audiences.
PI 2. Students will be able to prepare and deliver oral presentations.

SLO6: Analyze a complex computing problem and apply principles of com-
puting and other relevant disciplines to identify solutions.

PI 1. Students will be able to analyze a complex computing problem.
PI 2. Students will be able to apply computing principles to identify

solutions.

2.2 Assessment Plan

After defining the SLOs and the corresponding PIs, we quickly laid out the
curriculum maps from CS courses to SLOs. The maps showed the alignments
between the SLOs and what were taught in our curriculum. One of the maps
was specifically for assessment, and shown in Table 1. A detailed assessment
plan was then developed based on the map to ensure the successful evaluation
of learning. [2, 6]. The assessment plan included the following steps:

1) Select the subsets of SLOs to assess each year on a rotating basis.
2) Select courses from the curriculum map to evaluate for the upcoming

academic year.
3) Choose course specific learning outcomes, means of assessment, desired

standard of achievement based on PIs of the chosen SLO.
4) Collect the assessment data and perform analysis.

4 135

Table 1: CS SLOs Assessed by Degree-Required Courses
CS Courses

C
S
C
I
28
00

C
S
C
I
32
11

C
S
C
I
32
12

C
S
C
I
33
41

C
S
C
I
33
42

C
S
C
I
33
43

C
S
C
I
43
20

C
S
C
I
43
30

C
S
C
I
45
20

C
S
C
I
47
10

SLO1: Apply computer science
theory and software development
fundamentals to produce
computing-based solutions.

X

SLO2: Design, implement, and
evaluate a computing-based
solution to meet a given set of
computing requirements in the
context of the program’s
discipline.

X X X X

SLO3: Function effectively as a
member or leader of a team
engaged in activities appropriate
to the program’s discipline.

X X X X X

SLO4: Recognize professional
responsibilities and make
informed judgments in computing
practice based on legal and
ethical principles.

X X

SLO5: Communicate effectively
in a variety of professional
contexts.

X X

SLO6: Analyze a complex
computing problem and apply
principles of computing and other
relevant disciplines to identify
solutions.

X X X X X X X

5) Discuss the assessment results at the beginning of the next fall semester
and propose necessary improvements to curriculum, faculty resources, sched-
ules, and other related areas.

To manage the faculty’s assessment workload effectively, we only focused on
degree-required upper-level courses. Lower-level courses and elective courses
were excluded from the assessment scope in general. The only lower-level course
to be assessed was CSCI2800, which focused on social and professional issues
in computing. This approach enabled us to target our assessment efforts on
the critical elements of our curriculum.

Table 1 showed our curriculum map used for assessments. Typically, direct
assessments were carried out by collecting data from our major-required upper-
level courses. This map specified which courses were used to evaluate each of
SLOs. The detailed assessment plan was defined accordingly and revised as
needed. Our initial plan was defined in 2010 and was revised in 2015. In
general, only half of the SLOs were assessed each year.

5136

2.3 Assessment Data Collection

The process of the curriculum improvement needs effectively to use assessment
data. The quantitative data from assessments measure the students’ knowledge
and skills being taught in CS courses. In our department, the assessment data
were collected using the form as shown in Table 2. The form was also used
across the college and the university. By using the same form as the university,
we were able to reduce faculty workload when integrating assessments with the
university’s online assessment system. At the beginning of each fall semester,
faculty members selected courses to assess a rotating subset of SLOs. One
faculty member usually assessed one course per year. The faculty could define
their own metrics to assess with the flexibility to choose the course components,
the measurement methods, and the desired outcomes. Since this plan spanned
multiple years, a metric could be as simple as a quiz question, an assignment, a
project, or one exam component. There were no specific requirements regarding
the number of questions or assignments for assessment. Table 2 provided an
example of the assessment data we collected.

Table 2: Example of the Assessments to PI1 of SLO2 Using the
Course Software Engineering

SLO2 Design, implement, and evaluate a computing based
solution to meet a given set of computing require-
ments.

PI1 Students will be able to recognize design and devel-
opment principles.

Measure Final Exam Question -: Provide a description of the
Design Patterns that were mentioned in the required
videos.

Details/Description Describe how you were able to use them (or could
have used them) in code that you have completed in
any of the required courses for CS majors.

Desired Standard of
Achievement

80% of students should answer the questions cor-
rectly.

Summary of Find-
ings

Only 60% students successfully described usage of
design patterns in current or former projects on the
final exam.

Was this outcome
met?

No

6 137

Explain your re-
sults

Students needed to be able to demonstrate under-
standing of design patterns and recognize where they
have been use in former projects. The results did not
turn out as expected because of the length of the test.
By the time that students got to this question, there
was little attention paid to making sure the question
was completely answered

Action more work is needed

2.4 Improving CS Curriculum Using Assessment Data

Table 3: Example of Major Improvements to CS Curriculum

Meeting
Time

10/21/16

Improvement Add a new course CSCI 3343 Computer Systems Security
Details The assessment data showed that using several courses to

cover the different topics of security was not satisfactory.
The connections were missing among some security tech-
nologies. Some core security topics were covered without
sufficient depth. The new course computer system security
should be offered.

If the curriculum needs to change, the assessment data help to reduce resistance
to the changes, and provide confidence when faculty doubt about whether such
change is worth or not [4, 7]. At the beginning of each fall semester, our annual
assessment meeting was held where faculty reviewed data, discussed issues re-
lated to the assessment, and shared their insights. If needed, changes to courses
or the curriculum were proposed during these discussions. The meeting pro-
vided a platform to promote collaboration, enhance confidence among faculty,
and support improvements to the curriculum. The discussions of many related
issues in the meeting ensured that the changes to the curriculum were imple-
mented correctly. Any changes were then assessed in subsequent assessment
cycles. These assessment cycles provided continual feedback on the improve-
ments and helped faculty decide if the changes were beneficial.

7138

3 Discussions of Effectiveness of the Methodology

3.1 Major Improvements of the Curriculum

Continuous improvements across multiple years are essential to help CS gradu-
ates remain competitive and relevant. With the methodology described above,
our program made many improvements. Some of the major improvements were
listed in Table 4. The table listed the dates these changes were made and the
reasons for them. The major improvements in our paper were defined as the
ones which usually needed to approve by the college and the university. Ex-
amples include altering prerequisites, adding, deleting, and replacing courses.

Changing prerequisites of a course typically occurs after substantial updates
to course components, aiming to align with current educational outcomes and
maintain relevance in this rapidly evolving field. But there are challenges
related to changing prerequisites. One is whether it is necessary to use an
upper-level CS course as a prerequisite. This change could delay graduation
for students who are under-performing, transferring, or changing majors. Po-
tentially, it may lead to a negative impact on the overall graduation rate. It
may also create unnecessary barriers for students intending to switch into CS,
especially in the programs where some major-required upper-level courses are
offered only once per year.

Our approach to address the above challenge was to assess the course before
and after the change, and then compare the assessment data to ensure that
the change was necessary and beneficial. For example, when the course, SE,
was chosen to be a capstone class, one of the course components was to require
students to engage with real-world projects, which often needed to design and
implement a database system. After several years of assessments, substituting
CSCI3410 Data Structures with CSCI4710 Database Systems as the prerequi-
site was proven to be very beneficial. This modification was documented in the
first row of Table 4. Similar changes involving new prerequisites or co-requisites
were recorded in rows 3, 4, 7, and 8 of the table.

Another challenge is about whether to add a course as required. Adding
more major-required courses can be as complicate as using upper-level CS
courses as prerequisite, potentially increasing students’ educational costs and
time commitments, and reducing flexibility to choose electives. For example,
the course on Computer Security was introduced due to increasing vulnerabil-
ities to cyber threats for companies, and a requirement emphasized by ABET.
There was a high demand if students can be proficient in computer security
too. Originally, several courses in our program covered aspects of security, but
assessments revealed that there were some gaps in topic interrelations, result-
ing in insufficient breadth and depth. Collecting all assessment data for the
topic during the ABET review were also time-consuming and sometimes con-

8 139

fusing. So the course, Computer System Security was proposed in 2016 and
became a required one in 2017. Meanwhile, the course, Parallel & Distributed
Computing, remained an elective. These changes were recorded in Table 4.
There was no major improvements in 2020, 2021, and 2022 due to the dis-
ruptions caused by the pandemic. Taking actions could be challenging if the
assessment results were not met, as classroom settings and teaching methods
had changed. No major improvement was proposed in 2023 either. The minor
improvements including updating course components to assess SLOs, adjust-
ing course schedules, and so on, were not mentioned in the paper due to page
limits, but can then be found on our web site [1].

Table 4: Examples of Major Improvements to CS Curriculum

Date Change Reason
10/6/2015 Changed the prerequisite

of CSCI4320 Software En-
gineering from CSCI3410
Intro to Data Structures
to CSCI4710 Databases

The students who did not take
the course related to database
usually did not do well on the
real-world course projects.

10/6/2015 Reactivated the following
courses: CSCI2800 Social
& Professional Issues

Several CS courses provided pro-
fessional, ethical, legal, security,
and global issues and responsi-
bilities in computer science re-
lated fields. However, fulfilling
the ABET requirement related
to SLO4 was time-consuming,
and insufficient. The simple solu-
tion was to reactivate the course
CSCI2800.

11/3/2015 Changed prerequisite of
CSCI3342 System & Net-
work Programming from
CSCI3410, to CSCI3341.

The assessment results showed
that it was difficult to ad-
dress advanced topics without
the foundations of OS.

Continued on next page

9140

Date Change Reason
11/3/2015 Added CSCI3341 Operat-

ing System as a prerequi-
site to CSCI4950 Special
Topics

CSCI4950 was an option for the
CS capstone course and should
require knowledge of the upper-
level CS courses. Allowing stu-
dents to take a “capstone” course
without knowledge of Advanced
CS courses was an issue raised
especially during the ABET re-
view.

10/21/16 Add a new course
CSCI3343 Computer
Systems Security

The assessment data showed that
using several courses to cover the
different topics of security was
not satisfactory. The connec-
tions were missing among some
security technologies. Some
core security topics were covered
without sufficient depth. The
new course for security should be
offered.

1/20/17 Changed the prerequisite
for CSCI3342 Systems and
Networking Programming
(Added CSCI2350 Pro-
gramming II)

To complete the programming
assignments, students needed
knowledge of C/C++ provided
in CSCI2350.

1/20/2017 The co-requisite
CSCI2350 Program-
ming II was added for
the course CSCI3211
Assembly Language.

Upon completing an assessment
cycle, the instructor of CSCI3211
concluded that some knowledge
of C/C++ programming was
necessary.

9/8/2017 CSCI3343 computer sys-
tems security became one
of the major required
courses.

The course resolved the prob-
lems encountered in the previ-
ous assessment cycle. Given
the importance of cyber security,
the course was made a major-
required course.

Continued on next page

10 141

Date Change Reason
9/8/2017 CSCI4800 Parallel & Dis-

tributed Comp was con-
tinued to be offered as an
elective.

Topics in parallel and distributed
computing were adequately cov-
ered in the current required
courses, including network pro-
gramming, operating systems,
and Algorithms.

5/10/2019 CSCI3212, CSCI3341,
CSCI4520 provided
sufficient exposure to
parallel and distributed
computing topics.

The assessment data further in-
dicated that the goal of expos-
ing students to parallel and dis-
tributed computing topics was
achieved through several existing
courses. Therefore, it was unnec-
essary to make parallel comput-
ing as required.

3.2 Ease Faculty Workload When Developing Practical Assessment
Plan

Considering that an assessment plan usually extends over multiple years, it
is important to minimize unnecessary faculty workload during this time. Our
strategy involved simplifying the complexity of assessment tasks by implement-
ing the following aspects.

First, we adopted ABET’s SLOs and made minor adjustments to align
them with our program and the university’s mission. We updated our SLOs
only when ABET updated theirs and enforced the new requirements.

Second, we optimized the frequency of assessments to each SLO, and fo-
cused on the important components of curriculum. To do so, We assessed
half of the SLOs each year, allowing each SLO to be assessed three times be-
fore the next ABET review. Generally, a faculty member assessed only one
course per year. This method enabled us to complete at least one assess-
ment cycle, and implemented some improvements when the outcomes didn’t
meet expectations. In terms of selecting courses for assessment, we focused
on major-required upper-level courses. Since these courses integrated various
critical aspects of CS field, assessing them could quickly identify strength and
weakness of students’ knowledge and skills. Therefore, it further simplified the
assessment process and reduced the faculty’s time needed for assessments.

Third, faculty members were given the flexibility to select the course, course
components, and methods to assess the SLOs. They even could choose a sin-
gle assignment or an exam/quiz question for the assessment as long as they
considered it as appropriate. In general, each faculty member only needed to

11142

complete a form similar to table 2 each year.
Fourth, we adopted the university’s online assessment system for data man-

agement. By using the same online assessment system with the university,
faculty assessment workloads could be further reduced by eliminating the need
for duplicate data entry and additional training.

Fifth, our annual assessment meeting was limited to 1-2 hours. In the initial
years of implementing the assessment plan, we encountered more curriculum
issues than expected, resulting in a longer meeting. However, after 2017, fewer
curriculum changes were needed, and consequently, the length of the meeting
was significantly reduced. A one-hour meeting per year was sufficient to discuss
the collected assessment data, update the curriculum, and plan the assessment
for the next academic year.

Generally, each faculty member was expected to spend approximately 6-
8 hours annually for assessment. However, the assessment coordinator needed
additional time to generate a summary report and ensured that the assessment
data were collected completely and consistently.

4 Conclusion

A practical methodology to improve our curriculum based on a decade of as-
sessments is introduced in this paper. Establishing a multi-year assessment
strategy is essential for continuous curriculum improvement. Meanwhile, im-
plementing an assessment plan that minimizes faculty resistance is equally
important. This paper first introduces our assessment plan, addresses several
challenges in curriculum development through these assessments, and demon-
strates the improvements to our curriculum. It also shares strategies to lighten
the assessment workload for our faculty. After several years of conducting
assessments, we conclude that our approach not only provides consistent guid-
ance for improving the curriculum, but also simplifies the assessment process
for faculty. As a result, the course prerequisites have been clarified, and the
inter-course collaborations are enhanced. Moreover, these improvements have
helped us to obtain and maintain the ABET accreditation, and to move our
ranking to No.#1 among public regional universities in the state of Georgia at
the year of 2024 by US News & World Report [9].

References

[1] ABET. ABET Self-Study Report for the Bachelor of Science Computer
Science. (be added after blinded review). 2021.

12 143

[2] ABET.ABET-Assessment Planning. https://www.abet.org/accreditation/
get-accredited/assessment-planning/.

[3] ABET. Criteria for Accrediting Computing Programs, 2017 – 2018. https:
//www.abet.org/accreditation/accreditation-criteria/criteria-
for-accrediting-computing-programs-2017-2018/.

[4] ACM. Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science. https://www.acm.org/binaries/content/assets/
education/cs2013_web_final.pdf.

[5] Charlotte L. Briggs. “Curriculum collaborations: A key to continuous pro-
gram renewal”. In: The Journal of Higher Education 7.6 (2007), pp. 679–
711.

[6] Loretta Donovan, Tim D. Green, and Candice Mason. “Examining the
21st century classroom: Developing an innovation configuration map”. In:
Journal of Educational Computing Research 50.2 (2014), pp. 161–178.

[7] Stephen Frezza et al. “Modelling competencies for computing education
beyond 2020: A research-based approach to defining competencies in the
computing disciplines”. In: Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education. 2018, pp. 148–174.

[8] Gene E. Hall and Shirley M. Hord. Implementing change: Patterns, prin-
ciples, and potholes. 4th. Upper Saddle River, NJ: Pearson, 2015.

[9] US News & World Report. Rank by 2024 US News & World Report.
https://www.gcsu.edu/about/recognitions.

[10] Mehran Sahami and et al. “ACM/IEEE-CS computer science curriculum
2013: reviewing the ironman report”. In: Proceedings of the 44th ACM
Technical Symposium on Computer Science Education. 2013.

[11] Shingo Takada, Ernesto Cuadros-Vargas, and et al. “Toward the visual
understanding of computing curricula”. In: Education and Information
Technologies 25 (2020), pp. 4231–4270.

[12] Leslie J. Waguespack. “Adopting Competency Mindful of Professionalism
in Baccalaureate Computing Curricula”. In: EDSIGCON. 2019.

[13] Jon W. Wiles and Joseph C. Bondi. Curriculum development: A guide
to practice. 9th. Boston, MA: Pearson, 2014.

13144

A Machine Learning Based Sentiment Analysis
for Twitter Data∗

Kazi Abdullah Al Arafat1, Kode Creer2,
Mahmudur Rahman Roni1, Imtiaz Parvez2

1Dept. of Computer Science and Engineering
Atish Dipankar University of Science and Technology

Dhaka, Bangladesh
{cse2010004,mahmud.roni}@adust.edu.bd

2Dept. of Computer Science
Utah Valley University

Orem, UT 84058
{kode.creer,imtiaz.parvez}@uvu.edu

Abstract

Sentiment analysis, also known as opinion mining, is a computational
study of people’s opinions, sentiments, evaluations, attitudes, and emo-
tions expressed in textual data. This study explores the application
of machine learning algorithms for sentiment analysis on a preprocessed
dataset. The study employs Support Vector Machines (SVM), Maximum
Entropy (Max Ent), Convolutional Neural Networks (CNN), and Recur-
rent Neural Networks (RNN) for sentiment classification. The process
includes feature extraction, model training, and evaluation using stan-
dard classification metrics. Out of the four algorithms, SVM, CNN, and
RNN scored 97% accuracy, while Max Ent achieved a slightly lower 95%
accuracy. More specifically, in sentiment analysis, SVM demonstrated
overall better performances.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 145

1 Introduction

Sentiment analysis, a branch of natural language processing (NLP), is essen-
tial for interpreting beliefs, attitudes, and feelings that are present in textual
information. Opinion analysis has become increasingly important in today’s
digitally driven world, as it offers a vital tool for understanding public opinion,
interpreting consumer feedback, and monitoring social media trends.

Sentiment analysis can interpret feelings in textual data, which has become
essential for a variety of applications, including the predictive understanding of
market trends, the strategic management of brand reputation, and the detailed
analysis of consumer feedback. Machine learning techniques show promise as
solutions since they can improve and automate sentiment analysis. Businesses
and scholars can gain valuable insights from the large amount of textual data
available in the digital sphere by utilizing these tools.

In this modern era of rapid communication and exchange of information,
the analysis of sentiments holds great importance for decision-makers in dif-
ferent fields. It acts as a crucial instrument in assisting them to gauge the
emotions and attitudes exhibited by the general public. Moreover, sentiment
analysis aids in determining the most appropriate funding agency for a specific
situation or project entities to negotiate the complex terrain of human expres-
sion in the digital era, whether it be for predicting market dynamics, measuring
social responses to unfolding events, or knowing the pulse of consumers. The
goal of this research is to evaluate the efficacy of traditional machine learning
and state-of-the-art neural network models for sentiment analysis in classify-
ing textual input into positive, negative, and neutral feelings. Situated at the
real-world application crossroads, where technological innovation thrives.

Many researchers have worked extensively in the field of sentiment analysis
in recent years, employing a variety of methodologies. To polarise the opin-
ions, binary classification techniques were initially employed. Researchers use
a variety of classification techniques to categorize the sentiments because of
the diversity of data available nowadays. In [3, 8, 10, 13], the authors explore
diverse machine learning methods on sentiment analysis in Twitter data. They
contrasted different machine-learning techniques to classify tweets as neutral,
negative, or positive. Tokenization and removing non-English words are the
preprocessing steps for the data in [10]. The machine learning model is then
fed processed data in order to classify the emotions. Of the classifiers used in
this article, the Naive Bayes Classifier has an accuracy of 86%. An algorithm
to categorize the emotions tweeted in daily life has been proposed in [13]. They
first examine the sentiment polarity of every tweet in the dataset of [3]. Then,
the tweet is classified as positive if the sentiment polarity is greater than zero,
and as neutral if it is equal to zero. The tweet is negative otherwise. The
real-time data set gathered by the Twitter API was the subject of all three of

2146

these articles.
The study [18] includes a brief review of the following topics: data collec-

tion, preprocessing, different sentiment analysis approaches, feature extraction
techniques, assessment metrics, real-world applications, and challenges in sen-
timent analysis. In [4, 16], the authors use the natural language processing
toolkit (NLTK) to illustrate the sentiment analysis for a specific product that
was posted on Twitter. Bag of Words (BoW) and Term Frequency-inverse
(TF-IDF) have been integrated to analyse sentiments as neutral, negative, or
positive. They discovered that the accuracy of sentiment analysis increased
when they took advantage of the TF-IDF vectorizer. According to simulation
results, the suggested system’s efficiency was 85.25%.

In [5, 14], authors gathered information on movie reviews and Twitter API
from IMDB. To categorize the sentiments, they used Artificial Neural Net-
works (ANN), Support Vector Machines (SVM), and Naive Bayes (NB). When
compared to the other two classifiers, ANN performed the best in terms of
accuracy in both datasets. In [1], a deep recurrent network with long short
term memory (LSTM) is used to classify various emotions within the bangla
text. This method’s accuracy in categorising emotions was 94%.

In this study, we scrutinized a contemporary dataset using four distinct
machine learning algorithms, resulting in the attainment of remarkable accu-
racy levels. Our exploration contributes valuable insights into the efficacy of
these algorithms for sentiment analysis on current datasets, underscoring their
potential in real-world applications.

The paper is organized as follows: Section 2 discusses the methodology,
Section 3 presents the simulation and results analysis, and Section 4 includes
concluding remarks and future work.

2 Methodology

In this segment, we will put forth our suggested technique for scrutinizing
emotions expressed on Twitter. To provide visual clarity to our approach,
Figure 1 showcases the framework that serves as our guide. To handle the
information collected for this assignment, we made use of the natural language
processing toolkit (NLTK). Following the processing of the data, we employed
a machine learning classifier to classify it.

2.1 Data Collection

We obtained a raw dataset from Kaggle to conduct sentiment analysis. The
data collection process occurred in April and May of 2023, deliberately chosen
to encompass a wide array of tweets that could potentially reveal changing

3 147

Figure 1: Sentiment Analysis Process Framework

trends in sentiment. Throughout this time frame, data gathering was con-
ducted consistently, resulting in a varied collection of tweets. At present, the
dataset comprises 66,375 tweets that are prepared for further examination and
analysis. From the total data set, 75% is used for training while the rest data
is used for testing. A statistic of data utilization is shown in Table 1.

Table 1: Statistics of Dataset

Dataset Positive Negative Neutral Total
Training 8620 3254 41226 53100
Test 2164 821 10290 13275

2.2 Data Preprocessing

Sometimes it can be difficult to extract keywords from a dataset due to the pres-
ence of several factors, including stop words, emojis, junk data, misspellings,
stop words, hashtags, special characters, and more. A successful data analysis
may be significantly hampered by these factors. Hashtags, for instance, are
frequently used on social media sites to aid in content discovery; however, they
may make keyword extraction more difficult. But, by serving as linkers or clar-
ifiers, special characters fill in the blanks where words alone might fail to fully
express a phrase’s meaning. Although they can be challenging to correctly
interpret, emojis give words a more sentimental feel.

In order to get around these obstacles, a thorough pretreatment process
is carried out before using keyword extraction methods. The data cleaning
process involves removing any duplicate tweets, irrelevant information, and
spammy content that might have been unintentionally collected. Also, efforts
were made to standardise text encoding and resolve character encoding prob-
lems, which are prevalent in data sourced from social media platforms. A
crucial step in text processing was achieved by extracting partially separated
tokens (words or subwords) from the tweets. The particularities of social me-
dia conversation, like the use of emojis, hashtags, and mentions, were taken

4148

into account during the tokenization process. Distracting text elements like
acronyms and uncommon abbreviations that are commonly used on Twitter
were also given special attention, along with spelling mistakes. To further im-
prove the quality of the dataset, stopwords—words that are frequently found
in text but rarely have a significant impact on sentiment analysis—were also
filtered out. The objective of preprocessing decisions was to remove superfluous
noise while preserving the important content of tweets. The thorough pretreat-
ment ensured that the sentiment analysis data was of the highest calibre and
appropriate for further analysis and modelling.

2.3 Feature Extraction

Figure 2: Data Processing and Feature Extraction Framework

As it entails transforming unprocessed textual data into a format appropri-
ate for machine learning models, feature extraction is a crucial preprocessing
stage in sentiment analysis. Two methods for feature extraction are used in
this study:

• Count Vectorization: This technique uses a matrix of word counts to
represent the text. Every document is converted into a vector, with
every element denoting the number of that word in the document.

• TF-IDF Transformation: Word importance in a document is evaluated
in relation to its frequency across the entire dataset using the term
frequency-inverse document frequency (TF-IDF) method. It aids in em-
phasizing words that are unique to a given document.

By converting textual data into numerical representations, these methods seek
to improve the efficiency with which machine learning models process and
recognize patterns.

2.4 Sentiment Analysis Algorithms

Support Vector Machines (SVM) Support Vector Machines (SVM) excel
in classification tasks by finding the optimal hyperplane that separates data

5 149

points into different classes [17, 15]. In the realm of sentiment analysis, SVM is
a powerful tool for discerning the sentiment polarity of a given text, classifying
it as positive, negative, or neutral. SVM’s strength lies in its ability to handle
high-dimensional data efficiently and find clear decision boundaries, making it
well-suited for the nuanced task of sentiment classification.

Maximum Entropy (Max Ent) MaxEnt, frequently implemented using
Logistic Regression, stands as a probabilistic model gauging the likelihood of a
sample belonging to a particular class [2, 6]. This method proves itself valuable
in sentiment analysis, foreseeing the probability of a text being categorized into
positive, negative, or neutral sentiment classes. While embracing simplicity,
Logistic Regression demonstrates effectiveness in capturing intricate relation-
ships within textual data. Its capability offers insights into nuanced sentiments,
making a meaningful contribution to the broader sentiment analysis field.

Convolutional Neural Networks (CNN) Originally designed for image
processing, Convolutional Neural Networks (CNNs) have demonstrated re-
markable efficacy in processing sequential data, including text [9, 7]. In sen-
timent analysis, CNNs leverage convolutional layers to capture local patterns
and hierarchical representations of textual features. Their ability to discern in-
tricate details and relationships between words makes CNNs a powerful choice
for sentiment classification tasks, allowing them to effectively capture the nu-
anced sentiment expressed in natural language text.

Recurrent Neural Networks (RNN) Recurrent Neural Networks (RNNs),
specifically Bidirectional Long Short-Term Memory (LSTM) networks, are de-
signed to handle sequential data by maintaining memory of previous inputs [11,
12]. In sentiment analysis, RNNs excel at capturing contextual dependencies
between words in a sentence. The Bidirectional LSTM enhances this capa-
bility by processing the input sequence in both forward and backward direc-
tions, allowing the network to capture dependencies from both past and future
contexts. Despite facing challenges like vanishing gradients, RNNs, including
Bidirectional LSTMs, remain valuable tools in sentiment analysis, providing a
nuanced understanding of sentiment-related information in natural language
text.

2.5 Model Training and Evaluation

A crucial stage in the process of developing sentiment analysis models is the
training phase, which entails using labeled datasets to help each model learn
to identify patterns linked to neutral, positive, or negative sentiments. This

6150

training process is carried out on a variety of models in the context of the pro-
vided code, such as Support Vector Machines (SVM), Maximum Entropy (Max
Ent), Convolutional Neural Networks (CNN), and Recurrent Neural Networks
(RNN) with Bidirectional LSTMs. In the process of training, the models learn
from the features that are extracted from the textual data to optimise their
parameters, which enables them to identify the subtleties of sentiment found
in the training dataset.

In order to achieve accurate sentiment classification, model parameters must
be optimized. This allows the models to adjust to the unique features of the
dataset. Improving the model’s capacity to effectively generalise to untested
data is the goal in order to guarantee reliable sentiment analysis for a variety
of textual inputs. Weights and biases are adjusted during the training pro-
cess, especially for neural network models, in order to reduce the discrepancy
between the true and predicted sentiments in the training set.

Every sentiment analysis model is tested on the same dataset set aside for
evaluation after the training phase is over. In order to evaluate how well the
models generalize to new, unobserved examples, this test dataset acts as a
benchmark. Evaluation metrics are used to quantify each model’s performance
in sentiment classification, including accuracy, precision, recall, and F1-score.
These metrics offer a thorough evaluation of the model’s efficacy in precisely
predicting positive, negative, and neutral sentiments in real-world textual data,
as well as insightful information about the model’s advantages and disadvan-
tages.

3 Simulation and Result

The precision metric in sentiment analysis is crucial for understanding the
reliability of positive, negative, and neutral predictions made by each model.
It measures the ratio of correctly predicted instances of a sentiment class to the
total instances predicted for that class. Here’s a detailed discussion of precision
scores for each sentiment class and their implications:

Support Vector Machines (SVM) SVM achieves high precision for neu-
tral sentiments (0.98), indicating its proficiency in correctly classifying neutral
texts. However, the precision for negative sentiments is slightly lower (0.94),
suggesting a small proportion of false positives. The comprehensive findings are
encapsulated in Figure 3 and Table 2, where they respectively provide visual
and tabular representations summarizing key metrics and outcomes.

Maximum Entropy (Max Ent) Logistic Regression, representing Max-
imum Entropy, demonstrates strong precision for positive (0.89) and neutral

7 151

Table 2: SVM Classification Performance

Categories Precision Recall f1-score Support
Negative 0.94 0.76 0.84 821
Neutral 0.98 0.99 0.98 10290
Positive 0.92 0.93 0.92 2164
Accuracy 0.97 13275
Macro avg 0.95 0.89 0.92 13275

Weighted avg 0.96 0.97 0.96 13275

Figure 3: (a) SVM Classification Accuracy and Macro Avg Values Bar Graph
(b) SVM Classification Accuracy and Macro Avg Values Pie Chart (c) SVM
Sentiment Precision Values Bar Graph (d) SVM Sentiment Precision Values
Pie Chart

(0.96) sentiments. However, it exhibits higher precision for negative sentiments
(0.96), implying some false positive predictions for negativity. The comprehen-
sive findings are encapsulated in Figure 4 and Table 3, where they respectively
provide visual and tabular representations summarizing key metrics and out-
comes.

Table 3: Max Ent Classification Performance

Categories Precision Recall f1-score Support
Negative 0.96 0.63 0.76 821
Neutral 0.96 0.99 0.97 10290
Positive 0.89 0.89 0.89 2164
Accuracy 0.95 13275
Macro avg 0.94 0.83 0.87 13275

Weighted avg 0.95 0.95 0.95 13275

Convolutional Neural Networks (CNN) CNN consistently displays ro-
bust precision across all sentiment classes, with notable precision values for

8152

Figure 4: (a) Max Ent Classification Accuracy and Macro Avg Values Bar
Graph (b) Max Ent Classification Accuracy and Macro Avg Values Pie Chart
(c) Max Ent Sentiment Precision Values Bar Graph (d) Max Ent Sentiment
Precision Values Pie Chart

positive (0.93) and negative (0.86) sentiments. This indicates its effectiveness
in avoiding false positives for both polarities. The comprehensive findings are
encapsulated in Figure 5 and Table 4, where they respectively provide visual
and tabular representations summarizing key metrics and outcomes.

Table 4: CNN Classification Performance

Categories Precision Recall f1-score Support
Negative 0.86 0.82 0.84 821
Neutral 0.98 0.99 0.99 10290
Positive 0.93 0.94 0.94 2164
Accuracy 0.97 13275
Macro avg 0.93 0.91 0.92 13275

Weighted avg 0.97 0.97 0.97 13275

Recurrent Neural Networks (RNN) Bidirectional LSTMs in the RNN
model exhibit high precision for neutral (0.98) and positive (0.93) sentiments.
However, the precision for negative sentiments is comparatively lower (0.88),
suggesting some misclassification. The comprehensive findings are encapsu-
lated in Figure 6 and Table 5, where they respectively provide visual and
tabular representations summarizing key metrics and outcomes.

Comparative Analysis Positive Sentiments: CNN and RNN with Bidirec-
tional LSTMs perform well, with precision scores of 0.93, respectively.

9 153

Figure 5: (a) CNN Classification Accuracy and Macro Avg Values Bar Graph
(b) CNN Classification Accuracy and Macro Avg Values Pie Chart (c) CNN
Sentiment Precision Values Bar Graph (d) CNN Sentiment Precision Values
Pie Chart

Table 5: RNN Classification Performance

Categories Precision Recall f1-score Support
Negative 0.88 0.79 0.83 821
Neutral 0.98 0.99 0.99 10290
Positive 0.93 0.94 0.93 2164
Accuracy 0.97 13275
Macro avg 0.93 0.91 0.92 13275

Weighted avg 0.97 0.97 0.97 13275

Figure 6: (a) RNN Classification Accuracy and Macro Avg Values Bar Graph
(b) RNN Classification Accuracy and Macro Avg Values Pie Chart (c) RNN
Sentiment Precision Values Bar Graph (d) RNN Sentiment Precision Values
Pie Chart

10154

Neutral Sentiments: RNN with Bidirectional LSTMs achieves the highest
precision (0.98), equivalent to SVM (0.98).

Negative Sentiments: CNN and SVM exhibit precision scores 0.86 and 0.94,
respectively, while Logistic Regression lags slightly behind 0.96. The compre-
hensive findings are encapsulated in Figure 7, where they respectively provide
visual representations summarizing key metrics and outcomes.

Overall Assessment: While CNN and RNN with Bidirectional LSTMs show-
case competitive precision values, the choice between them may depend on
other factors like computational efficiency and interpretability.
SVM, despite slightly lower precision for negative sentiments, maintains a
strong overall performance, especially in discerning neutral sentiments. Lo-
gistic Regression excels in precision for positive and neutral sentiments but
may benefit from improvements in predicting negative sentiments.
The precision metric provides valuable insights into the strengths and weak-
nesses of each model in handling specific sentiment categories, aiding in the
selection of the most suitable model based on task requirements and priorities.

Figure 7: (a) Comparison Classification of SVM, Max Ent, CNN, RNN Bar
Graph (b) Comparison Classification of SVM, Max Ent, CNN, RNN Pie Chart
(c) Comparison Sentiment Categories of SVM, Max Ent, CNN, RNN Bar
Graph (d) Comparison Sentiment Categories of SVM, Max Ent, CNN, RNN
Pie Chart

4 Conclusion

This study explores various machine learning algorithms for sentiment analysis
on textual Twitter data, revealing that SVM, CNN, and RNN have achieved

11 155

remarkable accuracy of 97%, while Max Ent has scored slightly lower accuracy
of 95%. Notably, SVM exhibited superior precision in sentiment classification,
making it a robust choice. The findings guide model selection and lay a founda-
tion for advancing sentiment analysis techniques. Additionally, this study can
be used as classroom material for demonstrating the various machine learning
algorithms and their comparative performance. Future work may involve de-
veloping an automated system, integrating these models for real-time analysis
of diverse textual data across evolving language patterns.

5 Acknowledgement

To improve the readability and quality of language, all parts of this paper have
been grammatically revised using Quillbot AI tool.

References

[1] Afrin Ahmed and Mohammad Abu Yousuf. “Sentiment analysis on Bangla
text using long short-term memory (LSTM) recurrent neural network”.
In: Proceedings of International Conference on Trends in Computational
and Cognitive Engineering: Proceedings of TCCE 2020. Springer. 2020,
pp. 181–192.

[2] Owusu Fordjour Aidoo et al. “Model-based prediction of the potential
geographical distribution of the invasive coconut mite, Aceria guerrero-
nis Keifer (Acari: Eriophyidae) based on MaxEnt”. In: Agricultural and
Forest Entomology 24.3 (2022), pp. 390–404.

[3] Sanjeev Dhawan, Kulvinder Singh, and Priyanka Chauhan. “Sentiment
analysis of Twitter data in online social network”. In: 2019 5th Inter-
national Conference on Signal Processing, Computing and Control (IS-
PCC). IEEE. 2019, pp. 255–259.

[4] Sahar A. El Rahman, Feddah Alhumaidi AlOtaibi, and Wejdan Abdullah
AlShehri. “Sentiment Analysis of Twitter Data”. In: 2019 International
Conference on Computer and Information Sciences (ICCIS). 2019, pp. 1–
4. doi: 10.1109/ICCISci.2019.8716464.

[5] Ali Hasan et al. “Machine learning-based sentiment analysis for twitter
accounts”. In: Mathematical and computational applications 23.1 (2018),
p. 11.

[6] Edwin T Jaynes. “On the rationale of maximum-entropy methods”. In:
Proceedings of the IEEE 70.9 (1982), pp. 939–952.

12156

[7] Zhao Jianqiang, Gui Xiaolin, and Zhang Xuejun. “Deep convolution neu-
ral networks for twitter sentiment analysis”. In: IEEE access 6 (2018),
pp. 23253–23260.

[8] Mantasha Khan and Ankita Srivastava. “Sentiment analysis of Twitter
data using machine learning techniques”. In: International Journal of
Engineering and Management Research 14.1 (2024), pp. 196–203.

[9] Zewen Li et al. “A survey of convolutional neural networks: analysis,
applications, and prospects”. In: IEEE transactions on neural networks
and learning systems (2021).

[10] Lokesh Mandloi and Ruchi Patel. “Twitter sentiments analysis using ma-
chine learninig methods”. In: 2020 international conference for emerging
technology (INCET). IEEE. 2020, pp. 1–5.

[11] Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design
and applications. CRC press, 1999.

[12] Dibakar Raj Pant et al. “Recurrent neural network based bitcoin price
prediction by twitter sentiment analysis”. In: 2018 IEEE 3rd Interna-
tional Conference on Computing, Communication and Security (ICCCS).
IEEE. 2018, pp. 128–132.

[13] V Prakruthi, D Sindhu, and S Anupama Kumar. “Real time sentiment
analysis of Twitter posts”. In: 2018 3rd international conference on com-
putational systems and information technology for sustainable solutions
(csitss). IEEE. 2018, pp. 29–34.

[14] Muhammet Sinan Ba Sarslan and Fatih Kayaalp. “Sentiment analysis on
social media utilizing machine learning methods”. In: Advances in Dis-
tributed Computing and Artificial Intelligence Journal. 2020. doi: https:
//doi.org/10.14201/ADCAIJ202093515.

[15] CP Selvi and R Pushpa Lakshmi. “SA-MSVM: Hybrid Heuristic Algorithm-
based Feature Selection for Sentiment Analysis in Twitter.” In: Computer
Systems Science & Engineering 44.3 (2023).

[16] Amrita Shelar and Ching-Yu Huang. “Sentiment analysis of twitter data”.
In: 2018 International Conference on Computational Science and Com-
putational Intelligence (CSCI). IEEE. 2018, pp. 1301–1302.

[17] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer
Science & Business Media, 2008.

[18] Rasika Wagh and Payal Punde. “Survey on sentiment analysis using
twitter dataset”. In: 2018 Second International Conference on Electron-
ics, Communication and Aerospace Technology (ICECA). IEEE. 2018,
pp. 208–211.

13 157

Reviewers — 2024 CCSC Northwestern Conference

Nathaniel Kremer-HermanSeattle University, Seattle, WA
Chadd Williams . Pacific University, Forest Grove, OR
Zachary Dodds . Harvey Mudd College, Claremont, CA
Paul J. BonamyWashington State University, Vancouver, WA
Anna Ritz . Reed College, Portland, OR
Alain Kägi . Lewis & Clark College, Portland, OR
Anonymous Reviewers .

158

