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Welcome to the 2024 CCSC Rocky Mountain Conference
Welcome to the 2024 CCSC Rocky Mountain Conference. Welcome to the

33rd annual conference of the Rocky Mountain (RM) Region of the Consortium
for Computing Sciences in Colleges. The CCSC RM region board members are
grateful for the authors, presenters, speakers, attendees, and students partici-
pating in this year’s conference.

This year we received 14 paper submissions on a variety of topics, of which
9 papers were accepted for presentation in the conference. Multiple reviewers,
using a double-blind paper review process, reviewed all submitted papers for
the conference. The review process resulted in an acceptance rate of 64%. In
addition to the paper presentations, there are four peer-reviewed tutorials/-
workshops and two posters. We truly appreciate the time and effort put forth
into the reviewing process by all the reviewers. Without their dedicated effort,
none of this would be possible. A special thank you goes to the Submission
chairs Dr. Karina Assiter and Dr. Mohamed Lotfy.

The CCSC RM region board would like to thank our national gold-level
partners CodeGrade, ACM CCECC & ACM2Y, GitHub, Rephactor, and the
Association for Computing Machinery in cooperation with SIGCSE.

We hope you enjoy the conference and take the opportunity to interact
with your colleagues and leave both enthused and motivated. As you plan your
scholarly work for the coming year, we invite you to submit a paper, poster,
workshop, tutorial, or panel for a future CCSC RM region conference, or to
serve as a reviewer or on the CCSC RM region board. Please encourage your
colleagues and students to participate in future CCSC RM region conferences.

Thyago Mota, PhD
Metropolitan State University of Denver

Conference Chair
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Transforming Agriculture with Artificial
Intelligence: Implementations and Technologies∗

Poster Session

Venkata Abhiram Nelluri and Hanieh Shabanian
Department of Computer Science & IT

Western New England University
Springfield, MA 01119

{venkataabhiram.nelluri, hanieh.shabanian}@wne.edu

Artificial Intelligence (AI) is fundamentally transforming agriculture by op-
timizing productivity and addressing critical challenges. This study offers a
comprehensive examination of AI’s applications and technological advance-
ments in agriculture. Key topics include precision agriculture, supply chain
optimization, weed and pest management, crop monitoring, predictive analy-
sis, and emerging innovations like vertical farming and fruit-picking machines.
AI-driven precision agriculture utilizes data analytics to refine the applica-
tion of inputs such as herbicides, fertilizers, and water, enhancing both ef-
ficiency and environmental sustainability[4]. Using advanced algorithms and
data from sensors and satellites, AI facilitates precise crop monitoring and
management, identifying pests, diseases, and weeds at early stages to mitigate
crop losses[6]. Predictive analytics leverage AI to forecast weather patterns,
crop yields, and commodity prices, empowering farmers with actionable in-
sights for better decision-making[3]. The study further explores vertical farm-
ing, an innovative method using AI to optimize controlled environments for
crop growth, and fruit-picking machines that automate harvesting, improving
efficiency and addressing labor shortages[1]. Additionally, plant stress recog-
nition technologies use AI to detect early signs of stress and disease, thereby
enhancing crop resilience[5]. However, the adoption of AI in agriculture faces
challenges, including high initial investment costs, increased energy consump-
tion, and limitations in crop variety and adaptability[7]. High costs of infras-
tructure and energy, particularly in vertical farming, pose significant barriers.

∗Copyright is held by the author/owner.
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Moreover, current AI systems are often optimized for specific crops, with lim-
ited applicability to staple crops and deep-rooted vegetables. The complex-
ity of agricultural ecosystems and the need for extensive, high-quality data
further complicate the development of robust, generalized AI models[2]. Ad-
dressing these challenges requires on-going research, and collaboration among
researchers, policymakers, and industry stakeholders. By overcoming these
barriers, AI has the potential to significantly enhance agricultural productiv-
ity, and food security, paving the way for more resilient and efficient farming
practices.

References
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2021.
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monitoring system integrating with internet of things and artificial intelligence. In
Artificial Intelligence and Smart Agriculture: Technology and Applications, pages
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on urban agriculture: technology, socio-economy, and policy. Heliyon, 8(11), 2022.
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A Learning Module for Shortest Path
Algorithms Using Map-Based Data and

Algorithm Visualizations∗

Poster Session

James D. Teresco
Siena College

Loudonville, NY 12211
jteresco@siena.edu

A learning module to help teach shortest path and spanning tree algorithms
is presented, focusing on Dijkstra’s algorithm and Prim’s algorithm. The mod-
ule consists of a series of questions and tasks for students to work through
in a class or lab session, or as part of a homework assignment. It uses data
representing real highway systems and interactive map-based algorithm visual-
izations (AVs) from the Map-Based Educational Tools for Algorithm Learning
(METAL) project [1]. Students interact with these algorithms in progress on
real data to gain an understanding of how they work, and then use a provided
implementation to experiment on larger data sets, visualizing the results. They
are guided through a series of exercises that show the close relationship among
these two algorithms and the graph traversal algorithms they had previously
studied. In particular, they see that simply by changing the underlying data
structure, the same implementation can compute a spanning tree based on
single-source shortest paths (Dijkstra’s algorithm, with a priority queue based
on cumulative distances), a minimum cost spanning tree (Prim’s algorithm,
with a priority queue based on individual edge lengths), or spanning trees
and paths based on breath-first (with a queue), depth-first (with a stack), or
random-first (with a structure that removes a randomly-chosen element next)
traversals. The module is one of several that have been developed, allowing
instructors to bring METAL’s map-based data and engaging, interactive AVs
into their classrooms with a low barrier for entry. There is nothing to download
or install to use METAL’s data or AVs, and the learning modules themselves

∗Copyright is held by the author/owner.
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along with supporting materials are available from the author. The classroom-
tested modules have been developed in shared documents, and can be used
as-is or modified as needed.

References

[1] James D. Teresco, Razieh Fathi, Lukasz Ziarek, MariaRose Bamundo, Arjol
Pengu, and Clarice F. Tarbay. Map-based algorithm visualization with
metal highway data. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE ’18, pages 550–555, New York,
NY, USA, 2018. ACM. URL: http://doi.acm.org/10.1145/3159450.
3159583, doi:10.1145/3159450.3159583.
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Using a Distinctive Curricular Design Process
for Liberal Arts Computing Programs∗

Conference Tutorial

Jakob E. Barnard1, Grant Braught2, Janet Davis3,
Amanda Holland-Minkley4, David Reed5, Karl Schmitt6,

Andrea Tartaro7, James Teresco8

1University of Jamestown, Jamestown, ND 58405
Jakob.Barnard@uj.edu

2Dickinson College, Carlisle, PA 17013
braught@dickinson.edu

3Whitman College, Walla Walla, WA 99362
davisj@whitman.edu

4Washington & Jefferson College, Washington, PA 15317
ahollandminkley@washjeff.edu

5Creighton University, Omaha, NE 68178
DaveReed@creighton.edu

6Trinity Christian College, Palos Heights, IL 60463
Karl.Schmitt@trnty.edu

7Furman University, Greenville, SC 29690
andrea.tartaro@furman.edu

8Siena College, Loudonville, NY 12211
jteresco@siena.edu

As part of its forthcoming article in the Curricular Practices Volume with
the new ACM/IEEE-CS/AAAI Computer Science Curricula guidelines (CS2023)1,
the SIGCSE Committee on Computing Education in Liberal Arts Colleges
(SIGCSE-LAC Committee) has developed guidance, informed by its sessions at
recent CCSC and SIGCSE conferences, to help with the design and/or revision

∗Copyright is held by the author/owner.
1https://csed.acm.org
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of CS curricula in liberal arts contexts [1]. The committee’s earlier work found
that liberal arts and small colleges approach the design of their computing cur-
ricula in unique ways driven by institutional mission or departmental identity.
This impacts how faculty at these colleges adopt curricular guidelines. Curricu-
lar guidelines like CS2023 inform curriculum design, but are balanced with the
vision for a program, departmental strengths, locale, student populations, and
unique academic experiences. The desire to craft distinctive curricula, com-
bined with the size of curricular recommendations, requires an assessment of
trade-offs between achieving full coverage of curricular recommendations and a
school’s other priorities. SIGCSE-LAC’s guidance encourages faculty to reflect
on their programs and the role of CS2023, beginning with their institutional
and departmental priorities, opportunities, and constraints.

This session will introduce participants to SIGCSE-LAC’s guidance to con-
sider curricular development in the context of the unique features of their pro-
grams and institutions. Following an overview and brief discussion of CS2023,
participants will be guided through an abbreviated design process using the
latest version of the committee’s reflective assessment process. This process is
framed by a series of scaffolding questions that begin from institutional and
departmental missions, identities, contexts, priorities, initiatives, opportuni-
ties, and constraints. From there, participants will be led to identify design
principles for guiding their curricular choices, including the CS2023 recommen-
dations. Examples gathered from the committee’s previous CCSC and SIGCSE
sessions will be available to help articulate identity and program design prin-
ciples, which will then be used to identify distinctive program-level learning
outcomes. A spreadsheet tool that is being developed to aid in the shaping
of curricular choices will be demonstrated. Participants will leave the session
with a better understanding of how CS2023 can impact their programs, and
instruction on how to use the SIGCSE-LACS Workbook, which outlines our
curriculum design process, with their departments. Participant feedback will
be gathered and used to refine the committee’s guidance.

Acknowledgements

This session is supported by the National Science Foundation under Grant No.
2342587.

Presenter Biographies

One or two of this session’s eight co-authors will serve as presenter(s)/facilitator(s).
Jakob E. Barnard is an Associate Professor, Chair of the Computing, De-
sign, & Communications Department, and Director of Online Technology Pro-
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grams at the University of Jamestown. He is a facilitating member of the
SIGCSE-LAC Committee, and his research involves how curricula have been
integrated into Liberal Arts Computing programs. Grant Braught is a Pro-
fessor of Computer Science at Dickinson College. He is a facilitating member
of the SIGCSE-LAC Committee. He has organized committee events focused
on curricula and published widely on CS education issues, particularly within
the liberal arts. Janet Davis is Microsoft Chair and Professor of Computer
Science at Whitman College, where she serves as the department’s founding
chair. She co-organized SIGCSE pre-symposium events in 2020 and 2021 on
behalf of the SIGCSE-LAC Committee. Amanda Holland-Minkley is a
Professor of Computing and Information Studies at Washington & Jefferson
College. Her research explores novel applications of problem-based pedago-
gies to CS education at the course and curricular level. She is a facilitating
member of the SIGCSE-LAC Committee. David Reed is a Professor of Com-
puter Science and Chair of the Department of Computer Science, Design &
Journalism at Creighton University. He has published widely in CS education,
including the text A Balanced Introduction to Computer Science, and served
on the CS2013 Computer Science Curricula Task Force. Karl Schmitt is
Chair and Associate Professor of Computing and Data Analytics at Trinity
Christian College. He has served on the ACM Data Science Task Force and
various Computing, Technology, and Mathematics Education committees for
the MAA, ASA, and SIAM. His interests explore data science education, and
interdisciplinary education between computing, mathematics, data, and other
fields. Andrea Tartaro is a Professor of Computer Science at Furman Uni-
versity. Her computer science education research focuses on the intersections
and reciprocal contributions of computer science and the liberal arts, focusing
on broadening participation. She is a member of the SIGCSE-LAC Commit-
tee, and has published and presented in venues including the CCSC and the
SIGCSE Technical Symposium. Jim Teresco is Chair and Professor of Com-
puter Science at Siena College. He has been involved in CCSC Northeastern
for over 20 years and currently serves as board chair, and has been involved
with the SIGCSE-LAC Committee for 5 years. His research involves map-based
algorithm visualization.
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puter science curriculum guidelines: A new liberal arts perspective. In Pro-
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Contemporary Vector Database∗

Conference Tutorial

Mohammad Amin, Pradip Peter Dey, and Bhaskar Raj Sinha
School of Technology and Engineering

National University
9388 Lightwave Ave., San Diego, CA 92123

{mamin, pdey, bsinha}@nu.edu

Relational databases have played an important role in business for more than
five decades, and the demand for accurate data and its accessibility are on
the rise. In 1970, EF Codd developed the relational database, also known as
SQL database, that uses relational math (set theory) for structured data in
tables. Because of the continuing growth of data usage, NoSQL database was
first introduced by Carlo Strozzi in 1998 for unstructured and big data. There
were some other types of databases that were introduced during this period,
but this paper addresses some important aspects of recently developed vec-
tor databases, which demonstrate flexibility, scalability, performance, and so
forth. These newly developed vector databases have the ability to use millions
and billions of pieces of any type of data (alphanumeric, graphical, images,
audio, video, etc.) for comparison and query to get fast responses or results.
The vector databases are used in AI models, such as Large Language Models
(LLMs), for data training with complex and big data. Vector embedding is a
new type of data representation generated by AI models, using a special type
of mathematical method known as similarity measure. Data existing in the
vector space has both magnitude and direction. In a vector database, several
similarity measures are used to determine how similar two vectors are in the
vector space, for comparison during the query process. Some notable simi-
larity measures are Cosine Similarity, Dot Product, and Euclidean Distance.
The recent surge of popularity of AI chatbots (such as ChatGPT of Open AI)
suggests that innovative exploration of vector databases in LLMs may continue
to provide efficient interactions with users through natural languages, such as
English. In order to serve the users better, relational and vector databases can

∗Copyright is held by the author/owner.
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be combined for addressing diverse query types and data structures in mean-
ingful ways. Challenges and opportunities need to be critically examined in
these AI areas.[1, 2]

Tutorial Description

This tutorial provides an interactive and effective learning session where var-
ious methods will be used for discussion of basic aspects of vector databases.
The main ideas of different database principles and their pros and cons are dis-
cussed. Briefly, principles of big unstructured data are introduced, and then
the tutorial shows how these data can be presented in the multi-dimensional
vector space and processed for producing useful information.

Expected Outcomes

Attendees will gain a good understanding of the concepts of vector databases
and applications. They will have the chance for open discussions, constructive
criticisms, and suggestions.

Target audience

Interested faculty who desires to teach vector database and related topics.

Prerequisites

None. Anybody who has interest in teaching and learning vector databases is
welcome to this tutorial session, where intuitive explanations with examples
are presented about the main constructs of vector databases.

References

[1] B. Biswas. How i converted regular rdbms into vector database to store
embeddings, 2023. https://dzone.com/articles/how-i-converted-

regular-rdbms-into-vector-database.
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[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. NIPS’17: Pro-
ceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, Dec 2017. https://dl.acm.org/doi/10.5555/3295222.
3295349&https://dl.acm.org/doi/proceedings/10.5555/3295222.
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Performing Enumeration as Part of Penetration

Testing Tasks Using Virtual Machines∗

Conference Tutorial

Mohamed Lotfy, Ph.D.
Utah Valley University

Orem, UT 84058
MohamedL@uvu.edu

Teaching offensive security (penetration testing/ethical hacking) is becom-
ing a standard practice in computer science, cybersecurity, and information
technology programs[2, 5]. Penetration testing/ethical hacking allows students
to identify targets and existing vulnerabilities on the targets. They can ex-
ploit the identified vulnerabilities using current offensive tools and practices to
gain access and create presences, thereby acquiring the needed cybersecurity
knowledge and skills that will prepare graduates to be job ready. Through a
hands-on approach, students develop offensive cybersecurity competencies, en-
abling them to later build layered defenses that harden systems to penetration.
The enumeration process is part of the penetration testing active reconnais-
sance phase. The goal of enumeration is to discover as much information as
possible about the target systems and networks, for use in developing an ef-
fective penetration testing plan. In enumeration, usernames, file shares, and
other pieces of information about the systems, domains, networks, and their
configurations are gathered. We will demonstrate several different enumeration
tools (crackmapexec, rpcclient, enum4linux, and smbclient) with an attacking
host and a couple of vulnerable hosts in a virtual environment. Using a vir-
tual environment to enumerate hosts reduces the risk to institutional networks
and systems. Attendees will exit the tutorial with an idea of how to perform
enumeration and active reconnaissance using a working virtual environment
(VMware or VirtualBox) and a Kali Linux attack host.

∗Copyright is held by the author/owner.
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Tutorial Description

In this tutorial we will provide an example of how to enumerate different Win-
dows hosts and demonstrate using different enumeration tools with VMware
Workstation Pro and/or Oracle VirtualBox virtual environments on laptops
or PCs[4, 3]. The virtual environment will include an Offensive Security Kali
Linux VM, a Metasploitable Windows 2008 server, and a customized Windows
XP VM. The following will be demonstrated:

1. Explain penetration testing/ethical hacking and its phases.
2. Describe the enumeration process as a part of the penetration testing

active reconnaissance phase.
3. Introduce crackmapexec, rpcclient, enum4linux, and smbclient tools on

Offensive Security Kali Linux.
4. Show how to gather usernames, file shares, systems information, and

domains and networks configurations.

Target audience

Any computer science, cybersecurity, or IT faculty who desires to learn how to
perform enumeration and active reconnaissance using a virtual environment, as
part of penetration testing/ethical hacking course. Attendees should be famil-
iar with Linux, networking, and have some system administration knowledge.
It is highly recommended that attendees bring their own laptops with VMware
or VirtualBox and a Kali Linux VM installed, to follow along.[1].
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D3 is a free, open-source JavaScript library for visualizing data [1]. The low-
level approach of coding with D3 allows flexibility in creating dynamic, data-
driven graphics; thus, D3 is behind the creation of groundbreaking and award-
winning visualizations. Though the first version of D3 was released in 2011, it is
still relevant for visualizing data in 2024 [4]. D3 is excellent for building data
visualizations that are either standard and familiar (bar charts, line charts,
force-based layouts, etc.) or non-standard and innovative [3]. In this tutorial
we will start with a quick introduction to the field of data visualization [2],
then we will provide an overview of D3, its benefits, structure, development
environment, and methods of adding it to a JavaScript file. Then there will be
opportunities for attendees to get hands-on experience with D3: setting up a
simple server to host data files, adding code to D3 files, loading and building a
visualization from an accessed data file, and adding interaction. Next, we will
explore the myriad of ways that D3 can be (and has been) applied to advanced
interactive data visualization problems. Finally, we will share resources that
attendees can refer to as they get up-to-speed with D3.

∗Copyright is held by the author/owner.
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Keywords

D3, Data Visualization, Information Visualization, Interactive Data Visualiza-
tion.

Tutorial Description

The format of the tutorial will include both formal presentations, as well as
hands-on exploration. The tutorial is estimated to take approximately 2.5
hours.

Audience

This tutorial is intended for attendees who would would like an introduction
to a flexible tool for building dynamic, innovative and beautiful visualizations
that can be used to tell an engaging story with data.

Recommended Knowledge, Skills, Technology

It is recommended that attendees have the following:

• Laptop with a browser (Chrome preferred, but others will suffice).

• Solid understanding of HTML.

• Basic understanding of JavaScript.

• Some experience with data visualization and/or mining would be useful,
but not required.

Outline

The following is a draft outline of the tutorial program:

1. Brief introduction to Visualization

2. Introduction to D3

3. Hands-on with basic D3

4. Coding concepts for advanced D3

5. Explore advanced/innovative examples

6. Provide resources and references for attendees
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Abstract

This paper studies the data from RateMyProfessors.com with a fo-
cus on computer science education in the Rocky Mountain region. It
aims to (1) explore specific discoveries related to computing education in
this region, (2) analyze the trends in student comments, and (3) confirm
previously identified biases and relationship between quality and diffi-
culty ratings that are also present in computing education. Our analysis
revealed that while there is a strong correlation between course diffi-
culty and quality ratings, which indicates potential biases, there are also
valuable insights into the evolving preferences and priorities of computer
science students over time. We observed a shift towards increased ap-
preciation for engaging and supportive professors, alongside a growing
trend in the use of Python as a programming language. The findings
underscore the need for a balanced approach in evaluating teaching ef-
fectiveness and the changing patterns in the computing education.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

RateMyProfessors.com (RMP) is a popular online platform where students
rate and review their professors and courses. Numerous studies [1, 3, 2, 6]
have utilized RMP data to analyze various aspects of higher education, such as
teaching effectiveness, student satisfaction, and biases in student evaluations.
This paper focuses on computer science (CS) education in the Rocky Mountain
region, aiming to discover unique insights and to evaluate previous studies
specifically related to computing education.

Several previous studies have explored the relationship between quality and
difficulty of courses and instructors. Paper [3] found a strong negative corre-
lation between perceived difficulty and overall quality ratings. Other studies
have focused on demographic biases in student evaluations. Paper [4] found
that female instructors often receive lower ratings compared to their male coun-
terparts. Similarly, paper [5] identified racial biases in student evaluations, with
minority professors receiving lower ratings.

In the following sections, our study focuses specifically on computer science
education in the Rocky Mountain region. We collected the RMP data from
eight states, identified patterns in computer science courses and languages, ex-
amined the quality and difficulty ratings, observed trends in student comments
over time, and evaluated the biases in the reviews.

2 Data Collection

We collected data from www.ratemyprofessors.com in three steps. In step 1,
we identified the universities and colleges in eight states in the Rocky Moun-
tain region that we wanted to study. Since we are only interested in com-
puter science education with four-year programs, we specifically excluded on-
line schools, community colleges, schools without a computer science depart-
ment, and schools that are too small. In step 2, we dynamically scraped data
for these schools dated from the earliest available year 2001 to current month
May 2024 from the RMP website using the Selenium package in Python. For
each professor at these schools, we scraped their name, overall rating, number
of ratings, overall level of difficulty, and top tags. For each review of these
professors, we scraped the quality, difficulty, course number, post date, com-
ment, and tags. In step 3, we manually supplemented the data by adding
each school’s location, most recent enrollment size, Carnegie classification, and
course numbers for CS1, CS2, Data Structures, and Algorithms for later anal-
ysis. Table 1 shows the number of schools, professors, and reviews we scraped
in each state.
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State University/College Professors Reviews
Arizona 5 356 7666
Colorado 14 468 4605
Idaho 5 192 1647
Montana 5 55 421
Nevada 5 140 2584
New Mexico 5 78 776
Utah 8 402 6991
Wyoming 1 15 157

Table 1: Summary of the distribution of the data

3 Data Analysis

3.1 Analysis of Computer Science Courses and Languages

Computer science students typically progress through a sequence of required
programming and algorithm courses: CS1, CS2, Data Structures, and Algo-
rithms. Understanding students’ attitudes toward these courses is valuable to
educators. Figure 1a shows the average quality ratings for these four courses.
The ratings for CS1, CS2, and Data Structures show an increasing trend. CS1
is often the first exposure to programming and computer science concepts for
many students, which may result in a steep learning curve. However, they
gradually adapt and become more comfortable with subsequent courses, re-
sulting in higher ratings. It is not surprising that there is a drop in ratings
for Algorithms, as this course is more challenging and theoretical than the
introductory-level courses.

On the other hand, the choice of programming languages in CS classes has
changed dramatically over the last two decades. Figure 1b illustrates the an-
nual frequency of reviews mentioning four languages primarily in introductory
programming classes: Python, Java, C, and C++ from 2004 to 2023. Based
on the trend depicted in the figure, we can learn the following:

• Python: Initially, mentions of Python were relatively low but have shown
a steady increase over the years, especially after 2015. This trend indi-
cates a growing popularity of Python in computer science curricula.

• Java: Java has consistently been one of the most frequently mentioned
languages, with a noticeable peak around 2016. Despite some fluctua-
tions, Java remains an important language in computing education.

• C: Mentions of C have been more variable, with some peaks and dips,
but overall, it has maintained a moderate presence over the years.
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(a) Average Quality of CS Courses (b) Trend of Languages Over Time

Figure 1: CS Courses and Languages

• C++: Similar to C, mentions of C++ show variability but with a notable
peak around 2006-2007 and a general decline in recent years, suggesting
a reduced emphasis on C++ in favor of other languages.

The data indicates a shift in the programming languages taught in computer
science over time. Python’s increasing trend highlights its growing importance
and adoption in computer science education, likely due to its versatility and
ease of learning. The trends suggest a dynamic landscape in programming
education, with Python becoming more prominent, C and C++ maintaining
its strong position, and Java experiencing more fluctuating attention.

3.2 Analysis of Quality and Difficulty in CS Courses

Two of the most visible scores rated by students in each review are quality and
difficulty. In the following sections, we’ll analyze their relationship, trends and
tags, and compare them across the states.

3.2.1 Relationship between Quality and Difficulty

As shown in Figure 2a, as the quality rating decreases from 5.0 to 1.0, the per-
centage of difficulty level 5 (purple bar) increases significantly. This indicates
that the most challenging courses are often rated lower in quality. As a result,
for a quality rating of 1.0, the majority of difficulty ratings are at level 5, high-
lighting that students who find a course very difficult are more likely to rate it
poorly in terms of quality. Similarly, as shown in Figure 2b, lower difficulty lev-
els (1.0 and 2.0) have higher median quality ratings with narrower interquartile
ranges (IQR), indicating more consistent and higher quality ratings for easier
courses.
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From Figure 2, we confirmed that, while quality ratings provide some in-
sights into students’ perceptions of a course, they are not entirely reliable in
reviewing CS courses due to their strong correlation with course difficulty. For
a more accurate and fair evaluation of professors, it is essential to consider
other factors such as teaching effectiveness, clarity of instruction, engagement,
fairness in grading, and course organization.

(a) Percentage of Difficulty at Each Quality
(b) Boxplot of Quality at Each
Difficulty

Figure 2: Quality vs Difficulty

3.2.2 Statistics of Quality and Difficulty

Figure 3a indicates that while quality ratings have generally remained stable
with some fluctuations, there was a noticeable dip around 2020, followed by a
gradual recovery afterward. Difficulty ratings, on the other hand, show a more
clear increasing trend starting from 2014 and peaking in 2021, with a decline
in the last few years. The contrast in the opposite movements of these two
ratings further emphasizes the importance of considering both factors when
evaluating courses and professors.

The count distribution for quality and difficulty ratings shown in Figure
3b reveal potential biases. Particularly, the quality ratings exhibit a bimodal
distribution with high counts at both 1.0 and 5.0. This could indicate polar-
ization in student perceptions, where courses are either seen as very good or
very poor, with fewer moderate evaluations. Such a distribution might suggest
that students are more likely to leave extreme ratings, possibly influenced by
strong positive or negative experiences, leading to potential bias in the overall
evaluation.
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(a) Average Ratings in Each Year (b) Count of Ratings at Each Level

Figure 3: Statistics of Quality and Difficulty

3.2.3 Comparison of Tags at Different Quality Levels

The bar plot in Figure 4 shows the frequency of different tags at quality levels 1
(blue) and 5 (orange). There are a variety of significant contrasts between the
two quality levels. At quality level 1, the tags of Tough Grader, Graded by Few
Things, Test Heavy, Lots of Homework, Lecture Heavy, and Get Ready to Read
are significantly higher than the same tags at level 5. At quality level 5, the
tags of Respected, Hilarious, Gives Good Feedback, Extra Credit, Clear Grad-
ing Criteria, Caring, Inspirational, Amazing Lectures, and Accessible Outside
Class are significantly higher than the same tags at level 1.

Besides the potential bias discussed in previous sections, for professors who
want to improve the quality, we can show the following tips learned from this
figure:

• Ensure timely and constructive feedback on assignments and exams.

• Make grading criteria transparent and consistent.

• Demonstrate empathy and support for students’ academic and personal
challenges.

• Engage students with passion and enthusiasm for the subject.

• Focus on delivering engaging, interactive, and well-structured lectures.

• Offer regular office hours and be approachable for additional help.

• Be mindful of the overall workload, including tests and homework.
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Figure 4: Comparison of Tags between Quality 1 and 5.

We hope that by focusing on these areas, professors can enhance the over-
all quality of their courses and create a more positive and effective learning
environment for their students.

3.2.4 Comparison of Quality and Difficulty Across States

Figure 5: Quality and Difficulty by States

The comparison of average quality and difficulty ratings across states is
shown in Figure 5. This figure suggests that there may be a potential negative
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relationship between quality and difficulty across the states too.

3.3 Analysis of the Trend in Comments

2000-2004 class comments, class easy, good teacher, knows stuff,
learned lot, nice guy, willing help

2005-2009 class easy, good teacher, knows stuff, make sure,
nice guy, office hours, willing help

2010-2014 easy class, extra credit, good teacher, make sure,
nice guy, office hours, willing help

2015-2019 cares students, extra credit, great professor, make sure,
office hours, outside class, pay attention, willing help

2020-2024 ask questions, cares students, extra credit, good professor,
highly recommend, make sure, office hours, outside class

Table 2: Top Ranked Meaningful Keywords in Comments Every 5 Years

The comment section in the reviews is more informative than the score of
quality and difficulty. We extracted the top keywords in the comments every
five years using TF-IDF method. The top-ranked meaningful keywords are
shown in Table 2.

This table reveals a consistent appreciation for helpful and accessible profes-
sors, with keywords like "willing help" and "extra credit" remaining important
throughout. Over time, there is a noticeable shift towards valuing professors’
engagement and care for students, particularly in recent years where terms like
"cares students" and "outside class" become prominent. This trend suggests
that student engagement and support have become increasingly critical over
the years.

3.4 Validating the Bias in Reviews in CS Courses

The data scraped from RMP does not contain information on the gender or
race of professors. For gender, we used a package called gender_guesser to
estimate gender based on first names. If the package could not conclusively
determine the gender, we labeled it as "Not Sure". For race, we used a package
called ethnicolr to estimate race based on last names. We also acknowledge
that the race estimator may not be accurate regarding female professors if their
last names are taken from their husbands’ last names of different races. Since
estimating race is more challenging and less accurate, we only retained four
race categories and classified all other last names with an accuracy lower than
60% as "Unknown". For the type of university or college, we identified the
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(a) Gender of Professors (b) Race of Professors

(c) Type of University/College (d) Enrollment of University/College

Figure 6: Bias in the Reviews

Carnegie classification of each school and categorized them into three groups:
R1/R2/Doctorate, Master, and Baccalaureate. For enrollment numbers, we
searched for the most recent overall enrollment of each school online and clas-
sified them into three groups: small (<5,000), moderate (5,000, 20,000), and
large (>20,000).

The four figures shown in Figure 6 highlight potential biases in quality re-
views based on gender, race, school type, and school size. Male professors tend
to receive higher average quality ratings compared to female professors. Re-
garding race, white professors receive the highest average quality ratings, while
Asian/Pacific Islander professors receive the lowest. Professors at Baccalaure-
ate schools receive the highest average quality ratings, followed by those at
Master’s schools, with those at Doctorate-granting schools receiving the lowest
ratings. Finally, professors at smaller schools (less than 5000 students) receive
lower average quality ratings compared to those at larger schools. These find-
ings suggest that student reviews may be influenced by these demographic and
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institutional factors, indicating a potential bias in the ratings.

4 Conclusion

In conclusion, our analysis of RMP data for computer science education in the
Rocky Mountain region observed the quality pattern in programming classes
and the change in the programming languages, studied the statistics and re-
lationship of quality and difficulty, analyzed the trends in student comments
revealed a shift towards increased appreciation for engaging and supportive
professors, and confirmed several previously identified biases and trends.

Overall, our study provides valuable insights into the factors influencing
student evaluations of computer science courses and professors in the Rocky
Mountain region. By discovering the trends in the comments and ratings, pro-
fessors and institutions can catch up the needs of the students. By recognizing
and addressing the biases identified in this study, educators and institutions
can work towards improving teaching effectiveness and student satisfaction in
computer science education.
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Abstract

As the integration of generative artificial intelligence (AI) in educational
settings becomes more widespread, students, teachers, and educational
institutions face the challenge of utilizing these technologies in a respon-
sible manner. The responsible use of generative AI can help CS and IT
students develop critical thinking, enhance their learning experience, fa-
cilitate the learning process, can assist in understanding code concepts,
programming skills, and/or enhancing the programming knowledge. The
aim of this investigation is on how students might utilize, and potentially
abuse, generative AI. In this paper we provide examples of how gener-
ative AI can be used to generate code modules. We discuss the use of
generative AI in programming classes as well as its impact on the future
of programming and programmers.

1 Introduction

The rapid ascent of generative artificial intelligence (AI) in recent years is im-
pacting both the societal economic and cultural spheres. This swiftly advanc-

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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ing technology is reshaping numerous facets of everyday existence, including
the methods by which we educate and absorb knowledge. The results from
Hamilton and Swanston (2023) of a Forbes survey, which involved 500 active
educators across the United States to gauge their encounters with AI in ed-
ucational settings, provided valuable insights into the influence of AI on the
field of education. While Sixty percent of the active educators envisioned that
AI will be used more widely, but not as a central component in the decade,
thirty percent of the active educators envisioned that AI will play a central
role in education. Over half of the participating educators expressed a belief in
the positive impact of AI on the teaching and learning dynamics. Conversely,
less than one-fifth of respondents reported experiencing negative effects at-
tributable to AI [9].

For years, AI-powered educational games have been the most frequently
utilized AI tools among teachers, with adaptive learning platforms, automated
grading, and feedback systems also enjoying popularity among educators[9].
Now we are dealing with ChatGPT, IBM watsonx Code Assistant and simi-
lar tools. After its launch in November 2022, ChatGPT, created by OpenAI,
garnered considerable interest owing to its sophisticated natural language pro-
cessing skills and adeptness in generating code [4]. The promising capacity
of ChatGPT to improve the software development process carries significant
implications for the future landscape of software engineering and programming
professions, especially given the continuous rise in demand for proficient pro-
grammers.

As the integration of generative AI in educational settings becomes more
widespread, students, teachers, and educational institutions face the challenge
of utilizing these technologies in a responsible manner. Chatbots like ChatGPT
have ignited debates among educators regarding their capacity to encourage
academic dishonesty and disseminate misinformation. Additionally, concerns
about data privacy, algorithmic biases, and disparities in access to generative
AI technologies have been raised by professionals and observers alike. At the
forefront of educators’ concerns regarding generative AI in education is aca-
demic dishonesty. Some teachers worry that the growing reliance on generative
AI could result in reduced human interaction for learners [9].

Butterman, Patel, Garvey, Commerford, and Stone (2023) drew compar-
isons between generative AI and other revolutionary technologies. Once, edu-
cators hesitated to embrace the Internet for student use, yet now it stands as
an essential tool for learning. “Why is this so different?” he asks. “We might
one day think of this like other ‘scary’ technologies that today are a normal
part of life” [5]. While ChatGPT is not the sole Large Language Model (LLM)
generative AI tool on the market, it is the one that has garnered the most atten-
tion recently. This paper outlines the findings of a study examining ChatGPT’s
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performance on homework assignments designed for an introductory-level com-
puter programming course.

The aim of this investigation is not to assess ChatGPT’s ability to execute
computer programming tasks, as that has already been established. Rather,
considering the potential for misuse of such tools in academic settings, the focus
is on how students might utilize, and potentially abuse, ChatGPT. Educators
are particularly concerned about whether students will leverage ChatGPT to
contravene the academic integrity policies set forth by their institutions. His-
torically, students have been involved in various forms of academic dishonesty
in higher education, such as plagiarism, unauthorized collaboration, and pur-
chasing solutions to assignments [2].

In the remaining sections we provide examples of how generative AI can be
used to generate Java and VB.NET code modules. We provide a discussion on
COBOL and its existence on organizational and governmental applications on
legacy systems and how these applications can be maintained and updated. We
provide an example of how generative AI can use COBOL code and generate
an equivalent VB.NET code. We discuss how generative AI can be used in
programming classes as well as its impact on the future of programming and
programmers.

2 The Use of Generative AI to Produce Code
Modules

Butterman et al. (2023) stated that “If students master ChatGPT while they’re
in school, they’ll improve the papers they write in their courses—and they’ll
know how to use the technology once they’re on the job”[5]. That led us to
find out what ChatGPT can do. To evaluate its capabilities, we registered for
an account with OpenAI at OpenAI.com. The registration process required an
email address and a mobile phone number for a one-time verification. Next,
we asked the system “can you write a 20-page paper with at least 10 references
on project management” the response from ChatGPT was “I’m sorry but gen-
erating a 20-page paper with references on project management is beyond the
scope of what I can provide in a single response. However, I can give you a
structured outline for such a paper, which you can use as a basis to develop
your own paper.” ChatGPT then went on to provide an outline with a list of
sections/topics. For the references we asked for it gave this: “For the references
section, you should consult academic journals, textbooks, and reputable online
sources that provide insights into project management theory and practice.”
However, taking just one of the many suggestions provided within the sections
it gave us, for example, “Principles of Agile Project Management” and thus
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we asked ChatGPT to write about that with references. Now it generated 10
short paragraphs on the topic along with three references.

It became obvious that by using ChatGPT with just a little effort on our
part, putting the results together, we could easily write that 20-page paper
in less than an hour. And, it would be scholarly, well written with decent
references. Now, imagine a college student whose roommate requests a quick
review of his latest term paper, only to discover that it surpasses the quality
of anything he has ever submitted to you before. Welcome ChatGPT, but is
this ethical? It is a conundrum that instructors worldwide have been wrestling
with most recently. Once confined to the realm of science fiction, artificial
intelligence (AI) has steadily permeated our daily lives over the past decades.
Today, it is woven into the fabric of our homes (just ask Alexa), our vehi-
cles (autonomous driving), our shopping experiences (virtual assistants), and
countless other aspects of modern living. The bottom line, today’s artificial
intelligence cannot be ignored and is only going to grow [5].

If the user engaging with ChatGPT lacks the necessary programming skills,
it cannot be assumed that ChatGPT will generate valid code. For instance, a
study examining ChatGPT’s potential impact on engineering education pro-
posed that users must possess the ability to pose appropriate questions because
generative AI lacks the critical thinking and problem-solving capabilities re-
quired by users [14]. We decided to put Qadir’s theory to the test. We took one
of our homework assignments from an intro to Java class and asked ChatGPT
“Create a java program that asks for user input and writes it to a new file”.
In less than a second we had a perfect program. Figure 1 shows the ChatGPT
produced Java program.

Next, we decided to make it much harder, using an even more difficult
assignment from our Java class, we asked ChatGPT: “Create a POJO with
states and behaviors. Make sure that the class is well defined with at least 4
class variables. At least one behavior and at least one class variable that is
an Array. Then create the main class and create a new instance of your class.
Populate the object then print all the populated fields of the object. Use any
values other than cars. Trucks, People, Stocks, really anything that you can
think of.”

We thought this would throw ChatGPT off, however, again in less than
one-two seconds it came back with a full program with everything we asked
for! For sake of space we are not going to show it here as we did above,
however, if handed in by a student this would certainly have received an “A”.
We determined that ChatGPT could write some Java code, but how about
a little harder example of VB.NET? When asked “I need a vb.net program
that will find the month using a case statement”, ChatGPT came back with a
perfect module. Figure 2 shows ChatGPT produced VB.NET program.
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Figure 1: ChatGPT Java Produced Program

Typically, we would be looking for something more sophisticated, a module
that we would pass a variable to and have it return the results to us. Surely
this will throw ChatGPT off! We then asked: “I need a vb.net function that
will accept a number (1-12) as a parameter and use that with a case statement
to determine the month.” Again, ChatGPT produced the following module
including some comments, within just a few seconds, see Figure 3.

So here we are, teaching students how to write object-oriented programming
using ChatGPT. They just need to know how to tie all these modules they
create together, to end up with the one, large program they need. Thus, we
propose a new way of teaching CS students how to program, with the help of
ChatGPT.
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Figure 2: ChatGPT VB.NET Produced Program
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Figure 3: ChatGPT VB.NET Produced Function
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Backing up our findings, Bucaioni et al., (2024) recently conducted a series
of experiments involving ChatGPT, where it was presented with a collection of
240 programming problems [4]. As one can imagine, this was an extensive un-
dertaking, but in the end, they found that ChatGPT demonstrates proficiency
in solving programming problems at lower and medium difficulty levels. How-
ever, its accuracy in generating correct code decreases when faced with more
challenging problems. These challenging problems are typically very large pro-
grams that do many things. In other words, it is akin to our initial task of
asking ChatGPT to write us a 20-page paper, it simply could not do it, yet
it could provide pieces to us that we could put together, much like a jig-saw
puzzle.

3 COBOL Code Conversion using Generative
AI

After demonstrating ChatGPT’s proficiency in coding, we initiated discus-
sions regarding the ongoing demand for COBOL programmers. Nowadays,
whether we’re withdrawing money from an ATM, booking an airline reserva-
tion, or making online purchases, it’s highly likely that a COBOL application
has facilitated the transaction. Remarkably, even the Social Security Admin-
istration continues to rely on 60 million lines of COBOL code, as reported by
[16]. Experts estimate that approximately 70% of all core business applications
worldwide are based on COBOL. Another estimate suggests that these appli-
cations handle around 85% of all ATM transactions. Remarkably, even the
Social Security Administration continues to rely on 60 million lines of COBOL
code, as reported by [16]. Those COBOL applications are still running on
mainframes and legacy systems. Replacing governmental and organizational
legacy systems or moving them to the cloud is not a any easy task. Matthiesen
and Bjørn (2015) empirical study results on replacing legacy systems showed
that global software development outsourcing to update or replace governmen-
tal legacy systems is not a simple and easy task [12]. Gholami, Daneshgar,
Beydoun, and Rabhi (2017) empirical exploratory study identified 27 process
factors that need to be addressed in the process of transitioning legacy systems
to the cloud, thus the transition process is not a simple task [8].

Kizior, Carr, and Helpren (2005) mentioned that at the time of their study
there were between 150 and 200 billion lines of COBOL code in business ap-
plications [11]. Fanelli, Simons, Scott, and Banerjee (2016) estimated 180-200
billion lines of code that are still in use [7]. In addition, companies have been
adding several billions of lines of COBOL code annually to these applications.
Hughes (2022) mentioned that the amount of COBOL code in daily use is be-
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tween 775-850 billion lines according to the results of a Vanson Bourne study
commissioned by Micro Focus company, which is approximately three times
larger than previously estimated [10]. Thus, the utilization of one of the oldest
programming languages could be significantly larger than previously estimated.
The Vanson Bourne study involving 1,104 respondents from 49 countries re-
vealed that more than nine out of ten organizations still consider COBOL to
be a strategic priority [10]. According to Ali, Smith and Mormon (2018) “the
availability of these large volume of code to maintain means that companies
will keep using COBOL for a long time well into the future” [1]. For many years
pundits have questioned why these programs have not been re-written and the
simple answer is that it is not all that easy. However, now with ChatGPT and
similar generative AI programs, the demand for programmers to convert this
code is obviously going to grow.

A question that arises is: why not rewrite COBOL code using a newer
language? The answer is straightforward: if it has been functioning effectively
for over 30 years, where is the motivation to switch? Companies have faced
dire consequences, even going out of business, when they neglected the age-
old advice, “if it is not broken, do not fix it.” Numerous attempts have been
made to rewrite the tried-and-true code, often resulting in substantial time
and financial investments, with many endeavors ending in failure. Subsequent
efforts proved even more costly, and only a few of the new and improved lan-
guages succeeded in replacing COBOL. As stated by Bloom (2013), “many of
these initiatives failed because the systems were (and still are) too big, too
complex, too integrated into critical business processes, and working too well
to replace”[3].

We theorized that with the help of ChatGPT, a VB programmer for exam-
ple could convert COBOL to VB, even with little knowledge of the COBOL
language. No doubt this experiment is going to put ChatGPT into a tailspin,
and so we asked ChatGPT to “re-write this COBOL code into VB”. Figure
4 shows the COBOL code given to ChatGPT. In less that two-seconds, Chat-
GPT had re-written the COBOL code into Visual Basic. Figure 5 shows the
ChatGPT VB generated code.

Note that the code returned also includes comments interspersed through-
out, offering clarification on the meaning of certain lines of code. This was a
real eye-opener, showing us the potential ChatGPT has a programming tool
for programmers.
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Figure 4: COBOL Code
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Figure 5: ChatGPT Generated VB Code from Given COBOL Code
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4 Discussion

4.1 Use of Generative AI in the Classroom

Regardless of whether the use of generative AI tools is permitted in a class,
instructors must understand how students utilize them. Like it or not, students
will try it, and as they try it and like it, they will use it more, and share
it with their peers. And so, as educators we surmise that we need to give
assignments that are building blocks that students must put together and that
ChatGPT (at this writing) can’t figure out on its own. The initial suggestion
involves adjusting the written assignment prompt to be less specific. This
approach complicates the task for students lacking programming knowledge,
preventing them from obtaining a passing score by merely copying and pasting
the assignment instructions into ChatGPT [6].

Further, Ellis, Casey, and Hill (2023) suggested mandating students include
comprehensive comments throughout their program as this tackles issues on
multiple fronts [6]. Firstly, if a student lack’s understanding of the techniques
employed in their program, they will be unable to provide accurate comments
on code generated by an AI engine. Although ChatGPT will produce minimal
comments, it does so in a standardized manner. Requiring students to comment
on their code in a specific manner for each assignment enables instructors to
ascertain if the students created the code themselves. Secondly, if a student
can effectively apply a prescribed method of commenting, as dictated by the
instructor, to code generated by a generative AI tool, then it indicates the
student has likely grasped the techniques required by the assignment. While
it may be disconcerting that they could potentially exploit ChatGPT in this
manner, providing them with the benefit of the doubt if they have thoroughly
and accurately commented throughout is a reasonable approach.

Mollick, Mollick, Acar, and Weiss (2024) provided four ways to incorporate
generative AI in the classroom. The first approach is to enhance the student
critical thinking skills by asking them to critique the ChatGPT produced essays
or code. Allowing students to use different generative AI tools and compare the
produced results is another approach to enhance the learning and allow them to
identify the right generative AI tool for the task. The third approach is to allow
students to use generative AI to evaluate and enhance their understanding of
the concepts. The last approach is to use generative AI to generate practice
tests or study questions, which are useful learning tools, thus facilitating the
creation and grading [13]

In addition faculty should include a generative AI usage policy in their
courses. The policy should include a definition of what generative AI technol-
ogy refers to. Including the learning opportunity, acceptable use, and unaccept-
able use of generative AI. The responsible use of generative AI can help students
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develop critical thinking and ethical decision-making skills. Also, incorporat-
ing generative AI tools and technologies can enhance the learning experience
and facilitate the learning process. In addition, it can assist in understanding
code concepts, programming skills, brainstorming ideas, and/or enhancing the
programming knowledge. The policy should stress that the use of generative
AI to complete graded programming assignments or assessments is not allowed
as well as writing the assignment reports. Students should acknowledge and
agree to adhere to the generative AI policy outlined in the course syllabus.

4.2 Will AI Automation Replace Programmers?

At present, the answer to whether ChatGPT or IBM watsonx Code Assitant
and similar AI tools will replace developers is a resounding ’no’. Technological
advancements invariably lead to the obsolescence of certain jobs while creat-
ing new ones. However, replacing a developer requires a significant undertak-
ing. Software development encompasses more than just coding. Undoubtedly,
ChatGPT can aid in code writing, akin to how Integrated Development En-
vironments (IDEs) assist with code completion, compilation, and debugging.
Yet, like IDEs, ChatGPT cannot supplant human involvement in end-to-end
development [4].

Throughout the evolution of software development, developers have uti-
lized various tools—from text editors in the 80s to IDEs in the 90s. They have
sourced code snippets from Google search results and solutions from platforms
like StackOverflow, all in pursuit of heightened productivity. However, none of
these tools have truly replaced the developer. The same trajectory is expected
with ChatGPT. While it serves as a disruptive and productive tool for pro-
grammers, it neither confers programming expertise nor eliminates the need
for human programmers—at least not at this juncture [15].

5 Conclusion

While the prevalence of readily available Large Language Models (LLMs) may
raise concerns among instructors across various fields of study, the situation
might not be as alarming as many perceive. As generative AI tools and chatbots
become increasingly widespread, educators must acknowledge their existence
and the inevitable use by students. Some educational systems and institutions
have opted to prohibit access to such tools — a tactic we believe is not a
sustainable long-term solution. Students can still access generative AI tools
through other networks not under academic control. Furthermore, these tools
are becoming more accessible to even novice users through internet search
engines and various social media platforms that embed generative AI tools
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into their interfaces. We believe that a more enduring strategy for managing
the impact of LLMs is to integrate them into courses as educational aids.
This approach enables instructors to guide students through the advantages
and limitations of AI-based code generation in a systematic manner. Writing
functional programming code relies on rules and standards, precisely the type
of activity generative AI tools excel at. However, these tools cannot replicate
the individual creativity essential for success in most fields of study [15]. The
ability to creatively solve problems with a computer is the core skill we aim for
our students to develop. When appropriately harnessed, tools like ChatGPT
hold the potential to usher in a new and fruitful era of creative disruption in
education and technology.

Future computer science and information technology education research
needs to provide exploratory studies to identify how generative AI tools will
change how we teach programming in the classroom. Empirical studies are
needed to measure the impact of student use of generative AI on the acquisi-
tion of programming skills. Also, future studies are needed to identify the role
generative AI will play in new application creation, current application main-
tenance and updates as well as its impact on programmers and programming
jobs.

References

[1] Azad Ali, David Smith, and Andrea Morman. Still teaching cobol
programming-underlying reasons and contributing factors. Issues in In-
formation Systems, 19(4), 2018.

[2] Claudio Barbaranelli, Maria L Farnese, Carlo Tramontano, Roberta Fida,
Valerio Ghezzi, and Marinella Paciello. Machiavellian ways to academic
cheating: A mediational and interactional model. Frontiers in Psychology,
9:370835, 2018.

[3] Eric P. Bloom. COBOL will outlive us all, 2013. Visited March
27, 2024. URL: https://www.computerworld.com/article/1603698/
cobol-will-outlive-us-all.html.

[4] Alessio Bucaioni, Hampus Ekedahl, Vilma Helander, and Phuong T
Nguyen. Programming with ChatGPT: How far can we go? Machine
Learning with Applications, 15:100526, 2024.

[5] Eric Butterman, Darshak Patel, Aaron Garvey, Benjamin Commerford,
and Dan Stone. How is AI changing education - and business?, 2023.

1448



Visited March 27, 2024. URL: https://www.aacsb.edu/insights/

articles/2023/11/how-is-ai-changing-education-and-business.

[6] Michael E Ellis, K Mike Casey, and Geoffrey Hill. Chatgpt and python
programming homework. Decision Sciences Journal of Innovative Educa-
tion, 22(2):74–87, 2024.

[7] Timothy C Fanelli, Scott C Simons, and Sean Banerjee. A systematic
framework for modernizing legacy application systems. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), volume 1, pages 678–682. IEEE, 2016.

[8] Mahdi Fahmideh Gholami, Farhad Daneshgar, Ghassan Beydoun, and
Fethi Rabhi. Challenges in migrating legacy software systems to the
cloud—an empirical study. Information Systems, 67:100–113, 2017.

[9] Ilana Hamilton and Brenna Swanston. Artificial intelligence in educa-
tion Teachers’ opinions on AI in the classroom, 2023. Visited April
20, 2024. URL: https://www.forbes.com/advisor/education/it-and-
tech/artificial-intelligence-in-school/.

[10] Owen Hughes. This old programming language is much more important
than you might expect. here’s why, 2022. Visited March 30, 2024. URL:
https://www.zdnet.com/article/programming-languages-how-

much-cobol-code-is-out-there-the-answer-might-surprise-you/.

[11] Ronald J Kizior, Donald Carr, and Paul Halpern. Does cobol have a
future? In Proc. Inf. Syst. Educ. Conf, volume 17. Citeseer, 2000.

[12] Stina Matthiesen and Pernille Bjørn. Why replacing legacy systems is
so hard in global software development: An information infrastructure
perspective. In Proceedings of the 18th ACM conference on computer sup-
ported cooperative work & social computing, pages 876–890, 2015.

[13] E Mollick, L Mollick, O Acar, and M Weiss. 4 simple ways to integrate
”ai” into your class. Harvard Business Publishing Education, pages 4–10,
2024.

[14] Junaid Qadir. Engineering education in the era of chatgpt: Promise and
pitfalls of generative ai for education. In 2023 IEEE Global Engineering
Education Conference (EDUCON), pages 1–9. IEEE, 2023.

[15] Muhammad Shidiq. The use of artificial intelligence-based chat-gpt and
its challenges for the world of education; from the viewpoint of the devel-
opment of creative writing skills. In Proceeding of international conference
on education, society and humanity, volume 1, pages 353–357, 2023.

15 49



[16] Mark Sullivan. Cobol, a 60-year-old computer language, is in the covid-
19 spotlight, 2020. Visited March 10, 2024. URL: https://www.

fastcompany.com/90488862/what-is-cobol.

1650



Replicating a Goal-Congruity Intervention∗

Kathleen Isenegger and Colleen M. Lewis
Computer Science

University of Illinois Urbana-Champaign
Urbana. IL 61801

{kti3, colleenl}@illinois.edu

Abstract

Goal-congruity theory suggests that an intervention that increases
students’ perceptions of whether computing helps society could help
broaden participation in computing. This randomized control study as-
signed 144 undergraduate participants to read one of two texts describ-
ing a computing project and to take a survey. The “communal text”
emphasized communal affordances (i.e., opportunities to help others) of
a project while the “non-communal text” did not. Results indicate that
reading about the communal affordances of a computing project may
not impact students’ beliefs. Still, students may be more likely to pursue
computing if they believe it to afford communal goals.

1 Introduction

Communities underrepresented in computing includes people who identify as
women, Black/African American, Hispanic/Latinx/Latine, Native American,
Native Alaskan, Native Hawaiian, Pacific Islander, and/or disabled [18].12 Stu-
dents from communities underrepresented in computing have contemporarily

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1This study does not specifically consider how a person’s identity around disability relates
to other variables, instead focusing only on racial/ethnic and gender identities.

2In this paper, students who identify as members of racial/ethnic communities under-
represented in computing will be referred to as “Black, Native, and Latinx students”
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and historically been excluded from and harmfully denied access to CS edu-
cation [2]. This study focuses on one cause of underrepresentation: students’
perceptions of whether a career in computing affords opportunities to accom-
plish communal goals.3 Communal goals are aspirations of working with or for
the benefit of others [10]. This study leverages goal-congruity theory as its the-
oretical framework. The theory explains that the desire to accomplish commu-
nal goals may deter individuals from pursuing science, technology, engineering,
and mathematics (STEM) if they think these fields do not afford communal
goals [10]. Relevant to broadening participation in computing (BPC), women
are more likely than men to endorse communal goals [10, 9, 16, 14]. Further,
Black, Native, and Latinx students are also more likely than white students to
endorse communal goals [16, 14, 19].

This study replicates work by Brown et al. [6] testing an intervention that
seeks to enhance students’ perceptions of the communal affordances of STEM.
The research questions for this study are: (1) to what extent does reading about
the communal affordances of a computing project change students’ perceptions
of whether computing can help society?; (2) to what extent does reading about
the communal affordances of a computing project increase students’ motivation
to pursue computing? Results differed from prior work [6]. The intervention
had no effect on students’ beliefs of the communal affordances of computing
or students’ motivation to pursue computing, but students’ perceptions of the
communal affordances of computing predicted their positivity towards com-
puting research. Therefore, an intervention to increase students’ perceptions
of communal goals may still be helpful for BPC.

2 Previous Work: Communal Goals

Students generally perceive STEM occupations to afford communal goals less
than other careers [10, 9]. However, in one study students reported believing
computing could benefit society given its ubiquitous nature, but it was un-
clear if students thought a career in computing actually afforded communal
goals [15]. For students who think STEM does not afford communal goals,
goal-congruity theory describes that endorsing communal goals will cause stu-
dents to see themselves as unfit for STEM [10, 9]. In accordance, researchers
have found that communal-goal endorsement is negatively related to motiva-
tion to pursue science research for women [1], as well as students’ academic
belonging, motivation, and intentions to persist for Native American students
majoring in STEM [19]. In one experiment, student’s interest in STEM de-
creased when researchers experimentally activated (i.e., temporarily increased)
student’s communal-goal endorsement, pointing to a causal relationship [9].

3Affords refers to what an environment offers someone [12].
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Goal-congruity theory suggests that students may be more motivated to
pursue STEM if they believe that STEM does afford communal goals. Indeed,
students’ perceptions of the communal affordances of STEM are correlated
with a sense of belonging in and intention to pursue STEM [5], and women’s
perceptions of the communal affordances of STEM are positively related to per-
sistence in a STEM major [13]. Researchers report evidence for goal-congruity
theory by showing that perceptions of the communal affordances of STEM
moderates the relationship between students’ communal-goal endorsement and
their interest or belonging in STEM [16, 14, 4].

Students from communities underrepresented in computing are likely to
strongly endorse communal goals [10, 9, 16, 14, 19] illuminating the implica-
tions of goal-congruity theory for BPC. Indeed, the creators of goal-congruity
theory argue their work is particularly important for STEM, given the chal-
lenges of recruiting women into STEM careers [8]. Additionally, researchers
found that for Black, Native, and Latinx undergraduate biomedical research
assistants, a greater perception of the communal affordances of biomedical re-
search predicted greater interest in the field [21].

Research shows that communal STEM experiences positively impact stu-
dents’ perceptions of the communal affordances of STEM [20, 3]. Another
well-studied intervention asked students to read a text that framed the typical
day of a scientist as highly collaborative, compared to a text that framed it as
highly independent. [9, 7, 4]. Students who read the highly collaborative ver-
sion perceived STEM to afford more communal goals [4], and women who read
it reported a higher positivity towards STEM [9]. Like us, researchers have
examined interventions where students read about the communal affordances
of STEM. One study found that learning about the communal affordances of
several STEM careers was positively related to students’ perceptions of the
communal affordances of STEM [20]. Meanwhile, the intervention replicated
in this study takes minimal time and money by asking students to read a de-
scription of a single STEM project that emphasizes communal affordances [6].
To the authors’ knowledge, this is the first experiment on changing perceptions
of the communal goal affordances of computing, and the first replication of the
work by Brown et al. [6].

3 Methods

Participants were assigned using a between-subjects design and simple ran-
domization to read one of two descriptions of the same research project. After
reading their assigned version, participants completed a survey including self-
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reporting their gender identity4, ethnicity, race, the highest level of education
of their parent(s)/guardian(s), and if they had previously taken a computing
course. This study’s methods and the authors’ hypotheses were pre-registered
with the Open Science Framework (OSF), where a copy of the full survey and
intervention is available [11].

3.1 Intervention Text

The communal and non-communal texts were created to convey information
about a recent and ongoing computing research project that has clear positive
societal impacts [17]. In the communal version, sentences end with words
related to helping the environment and fighting world hunger. Conversely,
sentences in the non-communal version end in ideas focused on efficiency and
saving money.

3.2 Participants

Participants were 144 undergraduate students recruited from an introductory
computing course for non-computing majors at a large public university during
the fall 2022 and spring 2023 terms (women: NT (i.e. N of treatment) = 43,
NC (i.e. N of control) = 40; men: NT = 34, NC = 26; first-generation college
students: NT = 24, NC = 20; previously took a CS course: NT = 50, NC =
44; Hispanic/Latinx: NT = 15, NC = 6; Arab/Middle Eastern: NT = 2, NC
= 1; Caucasian/European/white: NT = 28, NC = 32; Asian: NT = 42, NC
= 29; African American/Black: NT = 2, NC = 2; American Indian/ Alaska
Native or Indigenous or First Nations or Native Hawai’ian/Pacific Islander:
NT = 1, NC = 0; students of another race: NT = 5, NC = 1). Students were
incentivized to participate with extra credit in their course. All students who
volunteered were included. Participants were recruited through in-person and
course webpage announcements and emailed a link to participate in the study
asynchronously online, consistent with the study by Brown et al. [6]. The
purpose of the current study is to determine if the intervention is effective at
increasing students’ perceptions of the communal affordances of CS. Neither
students’ identity, nor their endorsement of communal goals, should change the
extent to which the intervention increases their perception of the communal
affordances of computing. Therefore, it is reasonable to include all students in
this study, and not only students from communities underrepresented in CS.

4The survey asked students, “What is your gender identity?” and they could select: man,
woman, genderqueer/non-conforming/non-binary, agender, or something else (with a text
box to specify).
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3.3 Measures

The authors created four measures by averaging students’ survey item re-
sponses. If a student did not answer all the items for a measure, the aver-
age was calculated with the items that were answered. All students answered
at least one question for each measure, meaning none were dropped from the
analysis. Little’s Test of Missing Completely at Random gave a p-value of
0.42. Therefore, the data missing from the dataset can be assumed to indeed
be random. Each measure was standardized with a mean of zero and standard
deviation of one for the regression analyses. Most questions asked students to
answer on a scale from one to seven, except three of the seven questions for
the future career motivation measure, which were on a scale from one to five.
For all questions, a greater score indicates more a more positive response (i.e.
more agreement with the survey item). The measures are summarized below,
with details available on OSF [11].

Students’ beliefs about the extent to which computing affords communal
goals were assessed with five items, such as “How much does the research that
you just read about fulfill the goal of serving the community?” (Cronbach’s α=
0.88). Agentic affordances of computing refer to opportunities in computing
for self-promotion and self-fulfillment. Students’ beliefs were measured with
five items, such as “How much does the research that you just read about fulfill
the goal of power?” (Cronbach’s α=0.83). Students’ positivity towards the
research project they read about was assessed with four items, such as “What
is your impression of the research that you read about?” (Cronbach’s α=0.77).
Students’ motivation to pursue a career in computing was assessed with seven
items, such as “How likely would you be to look into joining a laboratory
conducting similar research in the future?” (Cronbach’s α = 0.92).

4 Data Analysis

The analysis includes six regression models, all with a statistical significance
threshold set to 0.05. The four outcomes of interest are: Outcome 1 - per-
ception of the communal affordances of computing; Outcome 2 - perception
of the agentic affordances of computing; Outcome 3 - positivity towards com-
puting research; Outcome 4 - motivation to pursue a career in computing.
Models 1-4 determine the effects of reading the communal vs. non-communal
text (treatment) on all four outcomes and had the following form:

Ys = β0 + β1CommTexts + εs (1)

Ys is an outcome variable for student s (outcome 1-4 listed above), CommTexts
is 1 if student s read the communal text and 0 if they read the non-communal
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Table 1: Regression Results
Outcome 1

Comm. Afford.
Outcome 2

Agentic Afford.
Outcome 3
Positivity

Outcome 4
Motivation

Outcome 5
Positivity

Outcome 6
Motivation

Comm. Text 0.001 (0.168) -0.251 (0.167) -0.074 (0.168) 0.079 (0.768) -0.074 (0.123) 0.079 (0.165)
Comm. Afford - - - - 0.669*** (0.100) 0.227+ (0.135)

Interaction - - - - 0.029 (0.127) -0.037 (0.171)
Constant -0.000 (0.124) 0.136 (0.123) 0.040 (0.123) -0.043 (0.123) 0.040 (0.090) -0.043 (0.122)

N 144 144 144 144 144 144
Adj. R-Sq. -0.007 0.009 -0.006 -0.006 0.462 0.023

Note: Values are mean centered and normalized. Standard errors are in parentheses. +p<.10, * p<.05, ** p<.01, *** p<.001

text, and εs is the per-student error. The authors hypothesized that the com-
munal vs. non-communal text (treatment) will increase students’ perceptions
of the communal affordances of computing (outcome 1), positivity towards
computing (outcome 3), and motivation to pursue a career in computing (out-
come 4), but not students’ perceptions of the agentic affordances of computing
(outcome 2).5 Models 5 and 6 sought to determine if there are moderating
effects between measures and had the following form:

Ys = β0 + β1CommTexts + β2CommAffords

+ β3CommTexts ∗ CommAffords + εs (2)

As in Models 1-4, Ys is a particular outcome variable for student s, CommTexts
is 1 if student s read the communal text and 0 if they read the non-communal
text and εs is the error. Model 5 predicts positivity towards computing research
(outcome 3) and Model 6 predicts motivation to pursue a career in computing
(outcome 4). CommAffords is the perception of the communal goal affor-
dances of computing reported by student s, CommTexts ∗ CommAffords is
an interaction term that is the perception of the communal goal affordances
of computing reported by student s if they read the communal text, and 0 if
they read the non-communal text. If the interaction term is statistically signifi-
cant, showing that a moderating effect is present, then the relationship between
students’ perceptions of communal affordances of computing (outcome 1) and
students’ positivity towards computing research (outcome 3) (or motivation
to pursue a career in computing (outcome 4)) depends on whether they read
the communal text (treatment). The authors hypothesized that a moderating
effect would be present in both models.

5 Results

The students in the communal-text vs. non-communal text groups reported an
(unstandardized) average (standard deviations in parentheses) for each mea-
sures of interest: communal affordances perception was 5.4 (0.1) vs. 5.4 (0.1)

5Hypotheses were pre-registered [11]
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out of 7 (outcome 1), agentic affordances perception was 4.6 (0.1) vs. 4.9 (0.1)
out of 7 (outcome 2), positivity towards computing was 4.8 (0.1) vs. 4.9 (0.1)
out of 7 (outcome 3), and future career motivation was 3.2 (0.1) vs. 3.2 (0.2)
out of 6.14 (outcome 4).

Results from Models 1 and 3-6 proved contrary to the hypotheses. There
was no evidence that reading the communal text (treatment) predicted stu-
dents’ perceptions of the communal affordances of computing (outcome 1);
the coefficient was nearly 0 (0.001). Likewise, neither coefficient of interest in
Models 3 nor 4 was statistically significant; the relationships were both small
and positive (< 0.1), with standard deviations of 0.168 and 0.768 respectively.
Therefore, it cannot be concluded if there is a relationship between reading the
communal text and either positivity towards computing research or motivation
to pursue a computing career. There was no evidence of a moderating effect
in Model 5 or 6 as the coefficients for the interaction terms were small and not
statistically significant (< 0.05). As hypothesized, Model 2 shows no statisti-
cally significant relationship between reading the communal text (treatment)
and students’ perceptions of the agentic affordances of computing (outcome 2).

Model 5 revealed an unhypothesized significant positive effect of perceiving
communal affordances in computing (outcome 1) on positivity towards com-
puting research (outcome 3). Students who reported one standard deviation
higher in their perception of the communal affordances of computing (outcome
1) are predicted to have 0.669 standard deviations higher positivity towards
computing research (outcome 3). Additionally, there was a positive, but non-
significant, relationship between students’ perceptions of communal affordances
in computing (outcome 6) and their motivation to pursue a career in computing
(outcome 4). Post-hoc analyses revealed that students who read the communal
text had significantly lower responses for only one item, “How much does the
research that you just read about fulfill the goal of financial rewards?”.

6 Discussion

Contrary to most hypotheses, there was no evidence that reading the communal-
text (treatment) predicted students’ perception of communal affordances (out-
come 1), student’s positivity towards computing research (outcome 3), nor
students’ motivation to pursue computing (outcome 4). As such, it is unsur-
prising that there was no evidence that students’ perceptions of communal
affordances is a moderating variable. There could be multiple reasons why
this study did not replicate the results of Brown et al. [6]. One explanation
is that the participants may have already believed that computing can help
society [15], possibly eliciting a ceiling effect. This may have been the case;
previous work asked students "can computing help society?" and found average
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ratings of 3.64 and 3.61 (5-point Likert scale) [16, 14]. Additionally, the impact
found by Brown et al. [6] may have resulted from two additional differences
in their communal and non-communal texts. First, their non-communal text
has more technical language than their communal text (e.g., “microfabricate”,
“embedded sensors”, “robotics”). Second, the non-communal text by Brown et
al. [6] discusses no goal affordances of the project, while the current study’s
non-communal text includes affordances of the research project that are not
communal (e.g., efficiency, saving money) to isolate the communal aspect as
the only difference. A limitation that may have impacted the answer to the
second research question is the pattern found in previous work that increasing
white men’s perception of the communal affordances of computing may not
increase their interest in computing. The analysis lacked gender and race, and
therefore did not control for this potential impact on the results.

Regardless, this study still yielded important evidence for understanding
the impact of a communal-goal affordance intervention. Aligned with find-
ings by Brown et al. [6], there was a positive correlation between perception
of communal affordances and positivity towards computing research. To be
clear, this did not test the main goal-congruity theory hypothesis (that is not
part of this study), but rather supports a key argument from goal-congruity
theory: increasing student’s beliefs of the communal affordances of computing
is beneficial, especially for students who highly endorse communal goals. As
such, further research to understand how to increase students’ perceptions of
the communal affordances of computing is imperative. This work also speaks
to the replication crisis within science. The authors pre-registered the study
with the Open Science Framework to help ensure the methodology was trans-
parent and trustworthy. Therefore, while the results for the main research
questions were not statistically significant, this study still advances knowledge
on goal-congruity theory and is valuable for the progression of science. It is
still an open question if the results from the work by Brown et al. [6] can be
replicated. Further work is needed to understand the limitations of this inter-
vention towards designing an effective tool for influencing students’ perception
of computing’s communal goal affordances.

7 Conclusion

This work examined if a communal-text intervention increased student’s beliefs
of the communal affordances of computing and, in turn, their positivity towards
and motivation to pursue computing. This study replicated previous work by
Brown et al. [6] with some changes, though the findings were inconsistent with
this prior work. There was no evidence that the communal-text intervention
changed students’ perceptions of whether computing can help society or in-
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creased students’ interest in computing. Consistent with previous work, the
results show a positive relationship between students’ perceptions of the com-
munal affordances of computing and students’ positivity towards computing.
Therefore, understanding how to change students’ perceptions of the commu-
nal affordances of computing may be important for BPC. Additional research
is needed to understand what interventions can increase students’ perceptions
that computing has communal affordances.
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Abstract

Courses typically focus on a single discipline, limiting exposure to
cross-disciplinary topics. To address this, we designed an interdisci-
plinary two-course set within our undergraduate Honors program: an
introductory computing course and an introductory law course. This
initiative breaks down barriers between computing and law, enabling
students to integrate both disciplines and foster a comprehensive under-
standing of complex issues. The Computer Science (CS) course covers
introductory programming and principles, while the Law course surveys
American Law and basic legal reasoning. Initially, the topics are inde-
pendent but they strongly converge in the term’s second half. Students
explore the intersection of CS and Law through discussions, debates,
guest speakers, and a cross-disciplinary project. Conducted for two years
at the United States Air Force Academy (USAFA), this report shares
our curriculum and experiences, aiming to inspire wider adoption of our
inter-departmental model.

1 Introduction

We introduce a dual-course set designed and offered for two years at our
undergraduate-only institution of roughly 4,000 students. An introductory
Computer Science (CS) course and introductory Law course are held as double
period set of back-to-back classes. This interdisciplinary initiative strives to

∗Copyright is held by the author/owner.
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break down artificial barriers between computing and law, allowing students to
integrate topics from both disciplines. The inclusion of diverse subject areas
is intentional. The goal is to foster the development of critical thinking and
problem-solving skills that extend beyond subject-specific knowledge silos. We
expose students to higher-level abstract mental models so that they can create,
evaluate, analyze, and apply these skills to solve multi-domain problems.

This paper outlines our strategy to develop and teach these interdisciplinary
courses in our Honors (aka Scholars) program. Section 2 provides background,
followed by course outlines for CS (3.1) and Law (3.2). Interdisciplinary empha-
sis is discussed (3.3), followed by experiences (4), including student feedback
(4.3), recommendations (5), concluding with our final remarks (6).

2 Background

Our academic leadership tasked us to move beyond a domain-limited approach
and develop a set of classes aimed at educating students to analyze complex
issues and explore the intersections across multiple disciplines. The goal is to
equip students with a broader perspective, enabling them to reason in ways
that transcend traditional academic silos.

We arrived at the joint course guidelines, used to develop the courses,
through discussion between departments and leadership. They are:

• First-year students
• Not major specific
• Honors (Scholars) program students
• Double-period (back-to-back) classes
• Students must take both courses or neither course
• Meets core/general education (GenEd) requirements of each original course

3 Course Outlines

These two, 3-credit hour courses meet for 40 lessons, each with a 53-minute
period (106 min total). Part of our institution’s Honors program, selected stu-
dents participate in Honors designated courses. Both of these courses stream-
line their individual mandatory learning objectives, operating fairly indepen-
dently in the first half of the semester. This deep dive into the individual
subject matter is necessary to create the knowledge baseline. In the latter
half of the semester, the courses dive into interdisciplinary topics, including
Machine Learning (ML)/AI, quantum computing, cybersecurity, and ethics.
Table 1 shows lesson topics, with additional detail in the following subsections.
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Lsn Computer Science Topics Law Topics
1 Binary & Numeric Representation Course Introduction
2 Von Neumann Architecture Why law? and the US Government
3 Boolean Logic The American Judicial System, In-

tro to Legal Reading
4 Algorithms & Algorithmic Think-

ing
Reading/Constructing Legal Argu-
ments

5 Intro to Python and Pseudocode Criminal Law Fundamentals
6 Python: Input and output Homicide Offenses
7 Python: String variables and lists Uniquely Military Crimes
8 Lab: Python: String variables

and lists
Search and Seizure

9 Python: Boolean logic/branching Search and Seizure (cont)
10 Lab: Python: Boolean logic Compelled Self-Incrimination
11 Python: Loops for and while Compelled Self-Incrimination (2)
12 Python: File input and output Oral Arguments
13 Python: Functions & procedures Oral Arguments
14 Lab: Python: Functions Oral Arguments
15* Speaker: Cybersecurity and Career Opportunities

Programming Due Process in Python Assignment
16 Excel Spreadsheets Free Speech
17 Excel Team Project Free Speech (Cont)
18 Exam International Law & Jus ad Bellum
19 Machine Learning The Law of War: Jus in Bello

Joint Course Emphasis Begins
Joint Topic: Artificial Intelligence (AI)

20 AI Overview The Law of War: Jus in Bello (2)
21 AI and ML limitations Intro to AI, Law, and Policy
22* Speaker: AI/ML
23 Lab: AI & ML Using Research Tools
24* Speaker: AI/ML Ethics
25 Privacy and LLMs LAWS: Weapons Reviews, Com-

mand Responsibility, & AI Decision
Making

26* Student-Led Presentations: AI
Joint Topic: Quantum Computing

27 Cryptography IP Law and National Security
28* Speaker: Quantum Computing
29* Student-Led Presentations: Quantum

Joint Topic: Cyberspace
30 Networking Overview Domestic Cyber Law (CFAA)
31 Cybersecurity Awareness and Hy-

giene
International Law related to Cyber
Operations
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Lsn Computer Science Topics Law Topics (Con’t)
32 Computer Networking and Cyber-

security
International Law related to Cyber
Operations (2)

33* Speaker: Cybersecurity and Policy
34* Student-Led Presentations: Cybersecurity
35* Cybersecurity Case Study: NotPetya
36* Career Panel: Cyber Warfare
37 Lab: Hacking a SCADA village Domestic Cyber Law (ECPA)

Joint Law and CS Paper Presentations
38* Final project: Student Presentations
39* Final project: Student Presentations
40* Final project: Student Presentations

Table 1: 40 Lesson Plan Curriculum of most recent offering. An asterisk
(*) indicates joint class periods (106 minutes) used.

3.1 Computer Science

Our “traditional” introductory CS 110 course is a non-Honors, non-combined
course. “Introduction to Computer Science and Cyber Operations” is a combi-
nation of Python programming (∼60% of the lessons, and ∼75% of the grade)
and ∼40% survey class including artificial intelligence (AI), computer networks,
cybersecurity, and ethics.

This interdisciplinary Honors introductory course (CS 110S ) differs signif-
icantly from our “traditional” CS 110. We reduce the Python programming
(30% of the lessons, and ∼40% of the grade) and computing background. The
intersection of law and technology comes in the latter half of the course. A
final paper and presentation replaces the final exam for 25% of the grade.

3.1.1 Computer Science Assignments

The summative assessments for the first half of the CS course have a strong
technical focus. Most points come from: program submissions for each block;
two programming projects–one for Python and one for Excel; and an exam.

The points from the second half of the course are generated through reading
and responding to their readings through writing [1][8], speaking, and actively
discussing the readings. Several writing assignments include researching recent
authoritative papers and providing annotated bibliographies for the intersec-
tional topics (i.e. quantum computing).

The distinct shift midway through the course from very CS hands-on to
reading and evaluating the interdisciplinary intersection of law, policy and
technology (see the curriculum outline in Table 1) was concerning for some
students, which we address in the CS Evaluation Feedback in Section 4.3.1.
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3.2 Law

Similarly, the “traditional” Law 220 course as taught in our institution is a
non-Honors, non-combined course. “Law for Air Force Officers” is a survey of
United States (US) law with a focus on criminal law, due process, individual
rights, and the law of armed conflict. The course is meant to provide an
introduction to several aspects of US law while focusing on the development of
critical thinking skills. Assignments in the “traditional” Law 220 include legal
briefs, oral arguments, and other legal analyses assignments. Since the course
is taught by a number of professors, the amount of class time given to each
topic and the assignments vary widely; however, most of the offerings for the
course include a final exam worth 25% of the final grade.

The Law 220S interdisciplinary offering is an adaptation of its Honors equiv-
alent. This 200-level course is generally taken in the second year. In order to
pair it with the CS course, this variant is taught a year earlier, which we
conclude increases difficulty for first-year students, as indicated in Section 4.3.

The first half of the interdisciplinary offering is essentially an accelerated
standard introductory law course laying the foundation for the application of
law and ethics to emerging technologies. The interdisciplinary Law course be-
gins with an introduction to the nature and purpose of the law, with a focus
on the Enlightenment thinkers who provided the philosophical underpinnings
of the US legal system. This prelude will prove vital later in the course when
contemplating the goals behind legal and ethical approaches to modern techno-
logical advances in quantum, artificial intelligence, and autonomy. The course
then takes a topical approach to US law with an introduction to due process,
privacy, criminal prohibitions, speech, and equal protection, and generally con-
cludes with a brief introduction to international law. Along with the typical
court cases and readings provided for the “traditional” law course, readings
exploring the US approach to technological developments are included. Issues
presented include digital surveillance, biotechnology, and encryption. Addition-
ally, this portion of the course focuses on thinking of the law as an algorithm
through which legal determinations can be made.

3.2.1 Law Assignments

Evaluations in the first half include essays related to the nature and purpose of
the law, a series of written algorithms reflecting the legal analysis, legal briefs
demonstrating legal analysis, and an oral argument or a scenario-based exam
on the application of international law. A culminating exercise of the first half
of the semester is writing a Python program to express a due process legal
analysis based on the input set of facts. Along with the program, students
also complete a notional “walk-through” of their program to explain the legal
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analysis occurring within the program.

3.3 Law and Computer Science Intersection and Intensive Focus

As discussed, there is limited overlap in the two courses for the first half. One
notable (and fun) exception is the Law “Due Process Coding” assignment.

The second half becomes a parallel offering of joint topics between the
courses. Some of the double periods are joined for in-depth learning, including
for student presentations and guest speakers (marked with * in Table 1). This
double period and close coordination enables flexibility.

The general layout follows a pattern of an introduction to the emerging
technology, a basic rendering of how the technology works, and a discussion of
strengths and weaknesses of the technology. The students then explore a set of
readings offering legal, policy, and ethical critiques and solutions to the prob-
lems posed by the technology. An emphasis is placed on both technical and
legal aspects to maximize the benefits of the technology while simultaneously
mitigating the downsides. Of particular focus is how the law could compensate
or account for technological shortcomings potentially resulting in violations of
fundamental human rights. For example, how equal protection laws might ad-
dress potential bias in artificial intelligence systems related to policing, hiring,
or health care. Additional topics include accountability mechanisms under in-
ternational law that address the use of lethal autonomous weapon systems in
armed conflicts and the interaction between domestic national security laws
and private development of quantum computing systems.

3.3.1 Joint Assignments

The joint course portion is evaluated through two primary mechanisms: (1)
in-class debates/presentations related to each special topic and (2) a lengthy
research paper that combines a technical explanation of a student-chosen tech-
nology with an examination of the associated legal and ethical issues.

For the first three offerings, students were asked to debate. Propositions
related to the intersectional topics including predictive policing and AI. De-
bating students submitted a write-up of their objectives, position, position’s
importance, and references. Non-debating students wrote an analysis including
which team had the best argument and why; how they would have improved
the argument of for the team with the lesser argument, and resources. The
joint assignment had separate rubrics and grading for each course.

We found that freshman had difficulty in understanding and holding a true
debate vs. fact sharing. The last offering had student teams lead discussions
of 2-3 papers they selected for a special topic (Lessons 26, 28, and 34).
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The final assessment is a joint paper (10-12 pages) and presentation in lieu
of a final exam for both courses. Students are expected to produce a single
paper that should introduce and discuss the technical aspects of a student-
chosen technology, and then cross over to discuss the policy and legal impli-
cations for that technology. Student topics have included autonomous drone
swarms for military use; neuromorphic computing to replace human judges;
Fifth Amendment concerns regarding emotional recognition technology; and
medical technologies (FMRI, cancer detection) and privacy concerns. The Law
class employs scaffolding assignments to ensure appropriate steps toward the
completion of a scholarly paper (e.g., abstract, bibliography, outline, and draft
paper). The final paper and presentation accounts for 25% of their course grade
in both CS and Law. Presentations are graded jointly, papers independently.

4 Course Experiences

This combination of courses have been offered four times across two academic
years. While generally following the initial model, each semester brings refine-
ment with the goal of increasing integration. Also, the joint topics chosen (see
Table 1) have changed over time in an effort to enhance learning outcomes by
finding subjects that are both appropriate to the students’ educational level
and ideal for blending hard science and social science.

4.1 Challenges

One unexpected challenge is scheduling. Due to the joint coverage and double-
period use, students must take both or neither. Our student scheduling system
does not enable a way to specify this. As a result, students have been placed
into one with a schedule conflict for the other course or students who have
already taken CS 110 are placed into this interdisciplinary Law 220 offering.

Another difficulty is striking a good pedagogical balance, ensuring depth in
each discipline without overwhelming first-year students while maintaining the
GenEd learning objectives. This requires adaptivity and creativity, asking for
intellectual stretching by the students and instructors.

4.2 Class Size

Due to the hallmark of intensive discussion and writing for Honors courses,
scalability is limited. Small class sizes encourage conversations, questions, and
overall interactivity. Enrollment caps for the introductory CS and Law sections
are shown in Table 2. Our average enrollment size across the four offerings has
been 12.25, mainly due to starting with 14 and losing students due to the
mis-enrollment previously discussed.
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Traditional Honors/Scholars
CS 24 14
Law 20 14

Table 2: Section Enrollment Caps for Respective Courses

4.3 Student Feedback

We summarize student feedback below that is submitted through the institution-
administered course evaluations. Instructors receive anonymous quantitative
and qualitative feedback. We report upon feedback for both courses (rated in-
dividually) from the first three concluded offerings. Figure 1 shows the ratings
to the prompt “Overall, this course is:” for both courses.

Figure 1: Overall Course Rating from three previous offerings.

4.3.1 Computer Science Evaluation Feedback

Student feedback has generally been positive. Students enjoyed the CS course
and found it engaging, rating the course high, shown in Figure 1.

When asked for improvements, one strong theme emerged: more program-
ming. This is likely a result of the enrollment selection process. In addition to
the goal of increasing diversity, students with prior programming experience
(based on admissions data) were preferred.

Conversely, every offering has had students with no prior programming
experience. Leveling the playing field for students has led to using differenti-
ated learning approaches. Programming “extensions” are offered in each coding
block, expanding skills for more advanced students. Once one student com-
pletes the graded exercises, the 1-2 extensions per block become accessible, with
the possibility of 0-3 extra credit points. This removes pressure to complete
the advanced exercises, but allows for continued skill growth if desired.

Another concern voiced is the change of the pace and style of teaching that
occurs halfway through the semester. The change from Python programming
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with exact results to discussion and presentations can be jarring. This is a
consistent comment, often from the few who request more programming.

4.3.2 Law Evaluation Feedback

Similarly, student feedback for the Law course is very positive, with over 50%
rating it “Excellent” (see Figure 1). When asked for improvements, a repeated
comment is on the pace of the first half. In the “traditional” Law course, topics
are given substantially more time. The extra time permits more assignments,
giving more opportunity to develop and refine students’ legal writing and anal-
ysis. The interdisciplinary course must prioritize integrating with the CS class
later on, leading to feedback centered on the limited time available for skill
development.

This is a legitimate concern for any skills-based course. As a result, each
iteration aims to increase the opportunity to practice these skills in- and outside
of class, rather than as an assignment. E.g. in our third iteration, we started
requiring students to independently produce “algorithms” they bring to class
based on the law readings. These algorithms encourage students to think of
legal analysis as a step-by-step method through which legal determinations
can be made. While a “traditional” Law class would utilize these algorithms
in some sense, they are less intentional about practicing their development
independently outside of class and reflecting on them during class. In our
experience, these algorithms allow us to more effectively use the in-class time
to further develop and refine their analytical skills.

Similar to the CS course, the other concern expressed by students is the
change of pace and style of teaching that occurs halfway through. Many ex-
pressed how developing their legal writing and analysis skills was more difficult
given the change from court cases to scholarly articles. This change is in-
tentional, as the course moves from looking at the law in response to actions
(violations of the law) to a proactive approach to the law (the development of
new technologies and how best to regulate them). One goal of the latter half
of the semester is to allow students to use the legal skills developed in the first
half to inform their thoughts in the latter half. This could be more clear and
we have incorporated this information into the most recent offering.

5 Course Design Recommendations

Based on the offerings we have taught, we have a several recommendations.
Adapt for your institution: Our enrollment is steady and could increase

if we raised the enrollment caps. Students in the Honors program must take
ten Honors classes to graduate as a designated scholar. These fill two of the
ten slots while meeting specific GenEd requirements. At another school, these
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are likely not required courses for all students. One consideration is to design
a version that fits into a major instead of GenEd requirements. This would
likely move from being a first-year class and count as an elective for one or
more majors (Cyber Sci, Computer Sci, or Law).

Consider different disciplines: Another idea is to leverage local exper-
tise and collaborations. We were fortunate to have professors in Computer
Science and Law with interdisciplinary experience. However, other versions
could use different disciplines, modeling after our interactions and intersections,
combing with history, English and language arts [4], poetry [5, 6], music [7],
social sciences [2], ethics [3], medicine, or other disciplines. This requires sub-
ject matter experts in each area, willing to flex and meet the other discipline
in the middle to build an effective, informative, learning-centered class.

Be flexible: Teaching at the intersection of multiple disciplines is never as
clean and neat as presenting a single subject. Second, the fast-paced evolution
of new rulings, laws, and emerging technology makes course content dynamic.
Readings and assignments should be updated for each offering.

Communicate: Effective communication between disciplines is vital. One
strategy to bridge gaps and facilitate meaningful discussion is for faculty to
attend the other’s interdisciplinary classes.

Be patient: Interdisciplinary courses are not as prevalent. As a result,
successfully combining two seemingly unrelated subjects is challenging. While
we believe we have achieved a level of success, we know there is room for
improvement. There is nothing wrong with a bit of trial and error as you
figure out what works and what does not.

6 Conclusion

In summary, we share our experiences creating interdisciplinary Honors courses
in Computer Science and Law at our undergraduate institution. Our aim is
to break down barriers, empower students to integrate knowledge, and foster a
holistic understanding of complex topics which we believe we have successfully
achieved for the majority of students.

Our suggestions for embracing similar interdisciplinary, paired courses in-
clude customizing the approach to fit your institution’s needs, leverage local
subject matter experts, consider integrating diverse disciplines, maintain flex-
ibility and communication throughout the process, and practice patience.

The structure of this innovative dual-course goes beyond our previous of-
ferings as creators and exceeds our institution’s traditional offerings. May our
endeavors inspire fresh ideas, encouraging you to embark on creating an inter-
disciplinary course that suits both faculty and students at your institution.
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Abstract

Assembly language is a low-level programming language useful for
a number of important computing areas, such as hardware and embed-
ded systems programming, computer architecture, reverse engineering,
and malware analysis. In recent years, generative AI, enhanced by GPT
technology, has been widely adopted in the IT industry as well as com-
puting education. However, little work has been done to investigate
the applicability of GPT to teaching assembly language. In this paper,
we fill in the gap by providing an empirical study of GPT’s ability to
interpret assembly instructions. In particular, we manually evaluated
GPT-4’s per-instruction explanations of code segments for four different
computer architectures, namely x86, x86-64, ARM, and AArch64. Our
study shows that, while inconsistencies and rare errors do exist, GPT’s
interpretations are highly accurate in general, demonstrating a great po-
tential for such tools to be applied in pedagogical practices for tutoring
assembly language.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Assembly language is a low-level programming language that is specific to a
particular computer architecture or microprocessor. It is a symbolic represen-
tation of the machine code instructions that a particular processor understands.
Many educators believe that it is beneficial for students majoring in computer
science to have knowledge of assembly language. A widely recognized reason
is that assembly language is a good educational tool that allows students to
understand the inner workings of a computer, and thus be well prepared for
upper-level courses [4, 12]. We provide a detailed account of how assembly
language is intertwined with the computer science curriculum in Section 2.

In many computing education curricula nowadays, however, assembly lan-
guage is normally an elective course for various reasons. Consequently, despite
assembly language being widely regarded as a good way for learning computer
systems in depth, it is not given sufficient coverage in a modern computer sci-
ence curriculum. One way of dealing with this is to dedicate time to revisiting
assembly language in certain courses. However, it has the disadvantage of di-
verting time from the core material of the course, and may bore students who
are already familiar with the content. We further discuss the observed chal-
lenges brought by assembly language in Section 3. Acknowledging the above
concerns, we need to seek a tool that goes beyond the classroom to provide
tutoring for students who need to learn and interpret assembly language.

In the recent years, the emergence of generative AI based on large language
models (LLMs) has brought a profound impact on our lives. As a specific type
of generative AI models, the Generative Pre-trained Transformer (GPT)[9],
was first introduced early in 2018. Later, OpenAI announced their commercial
chatbot ChatGPT in November 2022, which adopts GPT architecture as the
core model. It should be noted that we interchangeably use the two terms,
ChatGPT and GPT, throughout this paper unless otherwise specified.

Beyond the usage in interactive conversations, GPT also demonstrates ex-
cellent performance in various programming language-related tasks, indicating
its promising application prospects in pedagogical practices. Prior work [2, 3, 8]
has preliminarily explored the potential of GPT in computer science education
scenarios. However, it is still unclear to what extent GPT can help students
learn assembly language. We briefly survey the related literature in Section 4
to showcase the current research gap.

In this paper, we delve into the potential opportunities of leveraging GPT
as tutoring chatbots to interpret assembly language code in a learning envi-
ronment, as well as its limitations. Our empirical study based on instructions
from mainstream CPU architectures demonstrates that GPT’s interpretation
of such instructions can be concise, with high accuracy and few errors, making
it a promising tutoring tool for assembly language. We elaborate the method-
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ology in Section 5, and discuss our findings in Section 6. Finally, we draw the
conclusion in Section 7.

2 Assembly Language in Education

We summarize specific scenarios in certain computer science courses where
knowledge of assembly language is required.

• Computer Architecture: Learning assembly language helps students
understand how the CPU and memory work at a low level. This under-
standing is fundamental for grasping how high-level languages are exe-
cuted by the hardware. Therefore, instruction set architectures (ISAs)
are often involved in computer architecture pedagogy.

• Operating System: When explaining how an OS manages processes
and provides services to applications, it is very helpful to appropriately
use some assembly code snippets. Assembly instructions or code snippets
demonstrate the low-level details of the concepts such as calling conven-
tion, interrupt handling, and race condition.

• Compiler Design: Compilers translate high-level code into machine
code. An understanding of assembly provides insights into what the
compiler is doing under the hood. Especially in machine code generation
and optimization, basic knowledge of assembly language is essential.

• Cybersecurity: Many aspects of computer security [14, 10], including
exploit development and reverse engineering, require a solid understand-
ing of assembly language. This knowledge is necessary to understand
vulnerabilities and how exploits work at a low level.

3 Challenges in Practice

The practical challenge caused by assembly language in the context of com-
puting education is twofold. From the perspective of students, they usually
feel intimidated and discouraged by assembly language, because it has com-
plex syntax and is much closer to the hardware. Therefore, learning assembly
language inevitably requires precise understanding of the low-level concepts
such as instructions, registers, and memory addressing modes.

From the perspective of teachers, it has become increasingly rare to find
a course dedicated solely to teaching assembly language. The first possible
reason is that the job market for assembly programmers is much smaller than
it was in the past. The second reason is that continuously emerging new tech-
nologies have taken up more time originally allocated for assembly language
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in the curriculum [1]. Another challenge when introducing assembly language
in computer-related courses is that assembly language is specific to a partic-
ular CPU architecture or family. Therefore, knowledge of the assembly for
one architecture does not necessarily translate to proficiency in another. For
example, in a current computer organization course, MIPS is widely involved.
By contrast, in a reverse engineering course, x86/x86-64 is more preferable.

It is evident that if GPT could take on the role of a tutor and explain
assembly language code to students outside the classroom, it would greatly
benefit both students and instructors.

4 Related work

The potential applicability of generative AI models has been discussed in the
context of computing education. For example, Crandall et al.[2] leverage GPT
to inspect entry-level programming assignments and provide code review feed-
back to students. Denny et al. [3] empirically explore the capability of Copilot
in answering introductory Python coding questions. Moreover, Jury et al. [6]
investigate the usage of GPT in generating worked examples for an introduc-
tory programming course.

We also have observed some educators explored the impacts and challenges
brought by ChatGPT in various sub-fields, such as IT education [11], cyber-
security education [7], and data science education [13]. In addition, Jalil et
al. studied the effectiveness of ChatGPT in answering typical software testing
questions [5]. However, to the best of our knowledge, it is still unclear how
well GPT can understand assembly language, thus leaving a research gap.

5 Methodology

In this section, we introduce the environment settings that we use for evaluation
and our research methodology in greater detail.

5.1 Settings

In this study, we employ GPT-4, a state-of-the-art multimodal LLM created
by OpenAI. GPT-4 has been trained on data up to April 2023, ensuring its re-
sponses are informed by the most recent and relevant information available. It
also should be noted that all experiments in this work were conducted between
February and March 2024. We are aware that GPT is evolving continuously,
thus it is possible that testing in future improved versions may yield slightly
inconsistent experimental results with this paper.
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Our empirical study is conducted based on SecAtlas[14], which is a dataset
towards research-involved computer science education. In detail, four ISAs in-
cluding x86, x86-64, ARM, and AArch64, are considered. For each different
ISA, we randomly extract 100 basic blocks from SecAtlas. The number of
instructions contained in each resulting basic block varies from 2 to 20.

5.2 Prompt Engineering

When interacting with GPT-4 via the API provided by OpenAI, we select
“gpt-4-turbo-preview” as the model. The request messages are structured to
include two types of content: one for the “system” role and another for the “user”
role. The “system” role content outlines general instructions, detailing the input
required from the user and the expected output from GPT-4. Meanwhile, the
“user” role content provides assembly code as a query.

In particular, we can submit a basic block, namely a sequence of assem-
bly instructions, to GPT-4 for inquiry, as Figure 1 shows. It should be noted
that the constant values in assembly code from SecAtlas[14] were intention-
ally normalized to reduce redundancy and control vocabulary size. Therefore,
POSITIVE in Figure 1 represents a numeric value, while ADDRESS represents the
local destination of a branch instruction or a memory address.

messages=[
{"role": "system",
"content": "You will be provided with a piece of AArch64 assembly code.

Please generate a single-sentence explanation for each
assembly instruction."},

{"role": "user",
"content": "mov w20,wzr\ncmp w5,POSITIVE\norr w2,w21,w2\nb.eq ADDRESS"}

]

Figure 1: A basic block is provided as a query.

messages=[
{"role": "system",
"content": "You will be provided with a single instruction of x86-64

assembly code. Please generate a single sentence which
briefly explains the provided instruction."},

{"role": "user",
"content": "XOR EBX,EBX"}

]

Figure 2: A single instruction is provided as a query.

Additionally, we can submit a single assembly instruction to GPT-4 for
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inquiry, as Figure 2 shows. The advantage of this query method is evident:
it can significantly reduce repeated inquiries about the same instruction. We
establish a local dictionary to record each instruction and its corresponding
explanation. Only when an instruction cannot be found in this dictionary do
we initiate a query to GPT-4. Based on this approach, we obtained the textual
explanations for all 4×100 basic blocks in our dataset.

It is also worth noting that OpenAI API provides a few parameters to con-
trol the diversity and randomness of its output. The first parameter top_p
represents probability mass, that determines the portion of the highest prob-
ability tokens to select from. This value is set to 1 by default, and can range
from 0 to 1, where lower values increase determinism, and higher values in-
crease randomness. The second parameter is temperature, between 0 to 2,
which can help to achieve the desired trade-off between coherence and cre-
ativity. Lower values for temperature result in more consistent outputs. The
OpenAI manual generally recommends altering this or top_p but not both.
Therefore, we empirically set temperature as 0.2 as the OpenAI suggests to
make the results more deterministic.

6 Results and Discussion

We manually evaluate the correctness of assembly code explanations generated
by GPT using the 5-Point Likert scale. The numerical values from 1 to 5
respectively correspond to the following descriptions:

1) The explanation makes no sense
2) Serious mistakes exist, which cannot be acceptable
3) Generally acceptable, and mistakes can be fixed easily
4) Overall correct with very tiny mistakes
5) No mistakes can be found

Figure 3 shows the evaluation results in terms of average scores across different
ISAs. We can observe quite positive performance. Furthermore, the accuracy
obtained on x86/x86-64 generally surpasses what we got on ARM/AArch64.

6.1 Case Study

We take advantage of a few case studies to illustrate the strengths and limita-
tions of leveraging GPT as an assembly instructions interpreter. Some concrete
results are shown in Table 1.

Case 1 and Case 2 are two positive results. In particular, for the x86-
64 instruction “XOR EBX,EBX”, GPT can not only accurately understand the
meaning of the XOR mnemonic but also infer that the instruction is actually
a zeroing operation based on the fact that the two operands involved are the
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Figure 3: The correctness of assembly code explanations generated by GPT-4.

same. Furthermore, for the instruction “mov w20,wzr”, GPT recognizes that
wzr is the zero register in the AArch64 architecture, and further interprets it
as the zero value.

By contrast, Case 3 and Case 4 are two negative results. In the x86 archi-
tecture, the instruction “FSTP ST(i)” copies ST0 to the destination location
ST(i) and pops the stack top. But for the given instruction “FSTP ST0”, it
only pops the data off the top of stack with no data transfer. Therefore, the
explanation given by GPT is incorrect. Likewise, the explanation for Case 4
is also misleading. In the ARM architecture, addle is a conditional arithmetic
operation. Namely, only if the LE condition (i.e., Less Than or Equal) is true,
the addition operation will be performed.

A noteworthy finding is that GPT tends to generate diverse and nondeter-
ministic outputs. In our application scenario, for the same type of instructions,
the explanations it provides are often not consistent. Taking the conditional
arithmetic operations in ARM including addle, addne, and addlt as examples,
most of the time, GPT can correctly interpret the execution conditions. How-
ever, in a few cases, errors similar to aforementioned Case 4 may occasionally
occur. Furthermore, although some differences do not affect correctness, they
may lead to some details about the meaning of the instruction being overlooked.
For instance, when interpreting the x86-64 instructions containing key words
such as dword (double word) and qword (quad word), sometimes GPT may
emphasize the differences, sometimes may not. For the instructions involving
CMP/TEST, how those related flag are modified, sometimes GPT provides an
explanation, but other times it does not.

We also note that absolute incorrect answers by GPT are rare. While there
may be inconsistency in its explanations for various instructions, our obser-
vation shows that errors were only limited to a small subset of the assembly
instructions, such as adrp and ldur for ARM/AArch64. This property can
potentially be exploited to enhance the effectiveness of GPT as a tutoring tool
for students.
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Table 1: The results of our case studies

# ISA Instruction Explanation from GPT-4

1 x86-64 XOR EBX,EBX
It performs an exclusive OR operation
between the EBX register and itself,
effectively setting EBX to zero.

2 AArch64 mov w20,wzr It moves the zero value into register w20.

3 x86 FSTP ST0
It stores the value from the top of the
floating-point stack into a specified
location and then pops the stack.

4 ARM addle r2,r2,POSITIVE

It adds the value of the constant
POSITIVE to the value in register r2
and stores the result in r2, updating
the condition flags based on the result.

6.2 Insight

Overall, GPT models show great promise in offering tutoring of explaining
assembly instructions to students outside a classroom. More importantly, GPT
demonstrates extensive knowledge of different ISAs, which can broadly fulfill
different requirements across courses in computer-related disciplines.

On the other hand, we should notice that GPT does not always provide
reliable answers. In the absence of manual fact-checking, students can be easily
misled by inaccurate answers given by GPT that appear to be plausible on the
surface. This can be especially true for beginners with a weak foundation
of knowledge who may lack the ability to discern reliable information. The
findings provided by this study can make good examples for reminding students
to use GPT with caution.

7 Conclusion

Although acquiring some assembly language knowledge can help students to
understand computer systems in depth, and well prepare them for upper-level
courses, both instructors and students still face challenges in reality. Mean-
while, the emerging AI technology, GPT, is bringing revolutionary changes
in today’s computing education. However, the potential of integrating GPT
into pedagogical practices for generating assembly code explanations is unclear.
This work piloted the use of GPT as an assembly language tutoring chatbot
for students outside the classroom. We empirically explore the capability of
GPT in interpreting assembly instructions. Overall, GPT’s interpretations are
accurate and helpful across four different ISAs, showing great promise in this
aspect. Specifically, our findings also revealed its limitations, which should be
noticed by students when referring to the outputs provided by GPT.
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In future work, we will perform additional testing and evaluation on differ-
ent AI platforms such as Google’s Gemini. We also plan to adopt GPT in our
teaching practice and investigate its effect on student learning outcomes.
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Abstract

In this research, the effects of various teaching methodologies such
as solo teaching, parallel coordinated teaching (PCT), and sequential
teaching (SEQT) on student perceptions in a third-year programming
language course at Boston University (BU) are studied. PCT and SEQT,
as variants of co-teaching, contrast with the independent approach of solo
teaching. This research uses student evaluation data to analyze eight
distinct evaluative questions, including areas such as fairness in grad-
ing, stimulation of student’s interest in the course material, and overall
instructor ratings. These eight questions are analyzed using student
course evaluations across the three aforementioned teaching methodolo-
gies to determine if there are statistically significant differences in per-
ceptions. The results show that consistent instructor presence through-
out the semester, as seen in solo teaching and PCT scenarios, signifi-
cantly enhances student perceptions of fairness and overall satisfaction.
In contrast, SEQT, which involves instructor changes in the middle of

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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the semester, is associated with less favorable student evaluations. The
study highlights the importance of instructor consistency and the poten-
tial disruptions caused by changing instructors mid-course.

1 Introduction

In higher education, it is common for multiple instructors to teach different
sections of the same course (referred to as co-teaching) or for one instructor
to handle multiple sections (referred to as solo teaching). In this paper, we
look at two different kinds of co-teaching: (1) Parallel coordinated teaching
(PCT) when two instructors operate separate sections of the same course, in-
dependently managing their classrooms while engaging in a highly collaborative
process. They share a common set of lessons, assignments, and resources to
maintain consistency across sections. Coordination meetings on a weekly basis
ensure synchronized instructional planning. Despite sharing a unified course
structure, each instructor independently executes their teaching responsibil-
ities. (2) Sequential Teaching (SEQT) on the other hand involves a single
instructor leading the instruction for both sections during the initial half of
the semester, with the other instructor observing and providing feedback. At
the semester’s midpoint, a role reversal occurs: the observing instructor takes
over teaching duties for both sections, while the initial instructor assumes the
role of observer.

These variations, PCT and SEQT, represent distinct forms of co-teaching
strategies that diverge significantly from the solo teaching approach. Solo
teaching is defined as a single instructor teaching multiple sections of the same
course for the entire semester. This research aims to evaluate which of these
strategies is most effective from the students’ perspective. By analyzing stu-
dent course evaluations, this study seeks to understand students’ perceptions
regarding the effectiveness of these teaching methods and determine which is
deemed most conducive to their learning.

In the fall of 2020, PCT was employed, where I1 and a colleague indepen-
dently taught different sections of CS 320, sharing the same teaching assistants,
tutors, assignments, and projects. We held weekly meetings to ensure consis-
tent progress across both sections, allowing students in different sections to
learn the same material and collaborate on identical assignments. This method
aimed to leverage collaborative efforts to improve teaching results, regardless
of the hybrid format required by pandemic restrictions, where students partic-
ipated both in person; remotely and asynchronously. The spring of 2021 saw
the continuation of the hybrid model as I took on solo teaching responsibilities
for two separate sections of CS 320. This period allowed for an evaluation of

1First person use in this paper refers to Abbas Attarwala
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the effectiveness of a single instructor managing multiple course sections. In
fall of 2021, while most students had returned to campus, the SEQT method
was introduced. I taught the initial half of the semester, and my colleague, the
same from the previous year, took over for the latter half. This structure in-
cluded a complete handover and mutual class observations to provide feedback,
ensuring continuity and instructional coherence.

This study examines how these different teaching formats affected student
perceptions across eight questions: (1) The instructor’s effectiveness in explain-
ing concepts; (2) The instructor’s ability to stimulate interest in subject; (3)
The instructor’s encouragement in class participation; (4) The instructor’s fair-
ness in grading; (5) The instructor’s promptness in returning assignments; (6)
The instructors quality of feedback to students; (7) The instructor’s availability
outside of class; and (8) The overall rating of the instructors. By examining
student feedback gathered across these eight questions from teaching evalu-
ation, the study aims to gain understanding into the most effective teaching
methods among solo, PCT, and SEQT.

2 Literature Review

Co-teaching is a multifaceted approach that adapts to various educational set-
tings, as detailed in the literature by [7] and [1, 2]. These authors delineate
several co-teaching strategies, such as: (1) One Teach, One Observe, where one
instructor leads the class while the other observes; (2) Parallel Teaching, where
instructors teach multiple sections of the same course; (3) Teaming, where both
instructors share the instructional space equally, often teaching and interact-
ing together with the students; and (4) One Teach, One Assist, where one
instructor primarily leads the lesson while the other provides targeted sup-
port to students as needed. [8] introduces other variants of co-teaching such
as (1) Supportive, where one instructor provides assistance to individual stu-
dents while the other delivers the main content; (2) Complementary, which
sees one instructor enhancing the lessons of the other with additional informa-
tion or learning activities; and (3) Synergetic, a dynamic approach where both
instructors merge their expertise to create an enriched learning environment
for the students. Despite the variations in terminology, there is considerable
common ground among these co-teaching models, reflecting the adaptability
of co-teaching to suit diverse educational needs.

In their exploration of collaborative teaching in large computer science
classes in India, [8] discuss the effectiveness of various collaborative teaching
methods, including parallel teaching where multiple instructors teach different
sections of the same class. Drawing from these insights, my research presents
three distinct approaches to teaching CS 320 at BU. The first scenario serves as
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a baseline, where I alone taught multiple sections of CS 320 during the spring
of 2021. This instance provides a reference point for comparing the impact
of solo versus co-teaching instructional approaches. Data from course evalua-
tions were analyzed across these three teaching methodologies. We conducted
Welch’s t-test on student ratings to analyze the data, and this approach re-
vealed statistically significant differences in the evaluations across the teaching
methodologies. To the best of our knowledge, no other research has examined
students’ views from course evaluations on co-teaching in a 3rd-year computer
science course, using solo teaching as a benchmark.

[4] mentions that co-teaching is a powerful but often overlooked way to
encourage deep and thoughtful discussions. When instructors reflect together,
they bring up important questions and issues, leading to discussions that can
result in changes and improvements in teaching. In the fall of 2020, the other
instructor and I held weekly meetings where we reflected and discussed effective
teaching pedagogy and what should be included in the curriculum. Through
these discussions, we decided to enhance the curriculum to include a topic on
parser combinators. We had both noticed in our previous teaching experiences
that students often wrote ad-hoc parsers that did not scale well, and students
struggled to write effective parsers. The inclusion of parser combinators was
inspired by our collaborative reflections on improving teaching methods and
curriculum content.

[2] found that middle school 6th graders preferred co-teaching over a tra-
ditional single-instructor approach. Our research takes a similar inquiry into
co-teaching’s efficacy but focuses on 3rd-year computer science students at the
university level. Using course evaluations, we examine student perceptions
of teaching effectiveness using both co-teaching strategies and traditional solo
teaching methods within the same course. As presented in Section 3, stu-
dent evaluations consistently rated the sections I taught solo more favorably
compared to those taught using PCT and SEQT. Personally, I noticed an im-
provement in my lesson organization during SEQT, when I was responsible for
teaching only the first half of the semester. I would receive regular feedback
from my co-instructor as he would observe my teaching and give me construc-
tive feedback. [3] also mention that one of the benefits of co-teaching is to
provide ongoing supportive feedback based on direct observation of the other
instructor teaching throughout the semester. SEQT also allowed me more time
to also observe and learn from the other instructor when the other instructor
took over both sections in the second half of the semester. Other instructors as
mentioned in [9] observed similar gains. One of the instructor mentions that
her co-instructor allows her to observe her teaching, where she notice strategies
and methods she’d like to try. However, the statistical analysis in Section 4 of
this paper suggests that students do not prefer SEQT, finding PCT and solo
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teaching to be much more effective for their learning.

3 Data

In the fall of 2020, I taught one section of CS 320 at BU, while my colleague
taught another section concurrently. I refer to this arrangement as PCT. The
course evaluations for my section are documented in Table 1. In the spring of
2021, I independently taught two sections of CS 320 at BU, a scenario I refer
to as solo teaching of multiple sections of the same course. The evaluations
for these sections can be found in Table 2. During the fall semester of 2021,
I began teaching two sections of CS 320 at BU but only continued until mid-
semester. At that point, my colleague took over and completed the semester.
This method is termed SEQT, another variant of co-teaching. Evaluations for
the portion of the semester I taught are available in Table 3.

Students completed course evaluations separately for me and my colleague
during the last week of the semester. For SEQT, students completed evalu-
ations for both instructors also in the last week of the semester. The course
evaluations presented in this paper are solely mine, as I did not have access to
my colleague’s course evaluation data. In these tables, N is the sample size,
SD is the standard deviation and M is the mean.

Table 1: Parallel Coordinated Teaching of CS 320 in Fall 2020 for section A.
My colleague taught the other section B.

Question # Faculty Evaluation N SD M

1 Effectiveness in explaining concepts 42 0.65 4.62
2 Ability to stimulate interest in subject 42 0.70 4.52
3 Encouragement of class participation 42 0.98 4.26
4 Fairness in grading 42 0.73 4.50
5 Promptness in returning assignments 42 0.83 4.21
6 Quality of feedback to students 42 0.82 4.43
7 Availability outside of class 42 0.92 4.33
8 Overall rating of instructor 42 0.53 4.76

Table 2: Solo teaching of CS 320 in Spring 2021 for sections A and B.
Question # Faculty Evaluation Section A Section B

N SD M N SD M

1 Effectiveness in explaining concepts 52 0.69 4.58 45 0.56 4.64
2 Ability to stimulate interest in subject 52 0.91 4.44 45 0.85 4.62
3 Encouragement of class participation 51 0.75 4.51 45 0.70 4.64
4 Fairness in grading 51 0.69 4.59 45 0.85 4.60
5 Promptness in returning assignments 51 0.85 4.43 45 0.91 4.42
6 Quality of feedback to students 51 0.78 4.51 45 0.86 4.47
7 Availability outside of class 51 0.85 4.43 45 0.64 4.62
8 Overall rating of instructor 50 0.65 4.68 45 0.57 4.73
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Table 3: Sequential Teaching of CS 320 in Fall 2021 for sections A and B.
Question # Faculty Evaluation Section A Section B

N SD M N SD M

1 Effectiveness in explaining concepts 32 0.96 4.34 45 0.83 4.40
2 Ability to stimulate interest in subject 32 0.91 4.28 45 1.12 4.11
3 Encouragement of class participation 32 0.89 4.38 45 1.10 4.18
4 Fairness in grading 32 1.01 4.19 45 1.22 4.07
5 Promptness in returning assignments 32 0.97 4.00 45 1.12 4.18
6 Quality of feedback to students 32 0.90 4.25 44 1.23 4.07
7 Availability outside of class 32 1.08 4.22 45 0.99 4.33
8 Overall rating of instructor 32 0.79 4.44 45 0.88 4.38

In the evaluations, students rated my performance on a scale from 1 (poor)
to 5 (superior) across eight questions. Specifically, in Question #8, “Overall
rating of instructor,” I received my highest mean rating of 4.76 during the
fall 2020 semester, under the PCT method. The lowest I received is 4.38 in
Section B of the SEQT teaching in the fall of 2021 semester. A key question
arises from this observation: Is the difference in mean ratings of eight questions
across Table 1, Table 2 and Table 3, statistically significant? Understanding
whether these differences are statistically significant is crucial. It enables us to
determine whether the variations observed between solo teaching of multiple
sections, PCT, and SEQT are due to the teaching methods themselves or if
they occur purely by chance. This analysis is not just academic; it has practi-
cal implications. Confirming that different co-teaching strategies such as PCT
and SEQT significantly affect student perceptions could influence future ped-
agogical approaches in computer science education. Such insights could guide
universities and educators in structuring their courses to enhance learning out-
comes and student satisfaction. However, it is essential to acknowledge that
other factors could be at play between semesters that might affect my ratings,
including changes in class size, different student cohorts; otherwise, I had the
same course material, similar assignments and delivery methods.

To address these questions, student course evaluation data from Table 1,
Table 2, and Table 3 were analyzed using a two-tailed Welch’s t-test. The
results of these statistical tests are detailed in Section 4 of this paper.

4 Results and Discussions

In this study, we perform a statistical analysis to evaluate the effectiveness of
different teaching methods in CS 320. The methods compared include solo
teaching, PCT, and SEQT. In the case of solo teaching and SEQT, each in-
volved two sections of the same course, which are treated as distinct entities
for the purpose of analysis. Conversely, for PCT, I taught one section while
my colleague taught the other; hence, only the course evaluation data from my
teaching is considered in this analysis, not my colleague’s.

We set up our null hypothesis (H0) and alternative hypothesis (H1) as:
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• H0: There is no difference in the mean ratings of each of the 8 evaluation
questions across the different teaching sections and methods.

• H1: There is a significant difference in the mean ratings of the 8 evalua-
tion questions across the different teaching sections and methods, which
could be either positive or negative.

To assess these hypotheses, we employ a two-tailed Welch’s t-test for each
of the 8 evaluation questions. A two-tailed test is chosen because it allows us
to detect both increases and decreases in teaching effectiveness, regardless of
the direction. The traditional Student’s t-test assumes equal variances between
the groups being compared. From the data available in Section 3 this is not
the case. Consequently, relying on the Student’s t-test could lead to inaccurate
conclusions. In contrast, Welch’s t-test does not require the assumption of equal
variances, making it more suitable for the teaching course evaluation data [5,
6] in this paper. This test provides a more reliable assessment by adjusting the
degrees of freedom according to the sample sizes and variances of each group.
Here is how the t_statistic and Degree of Freedom are calculated for the
Welch’s t-test:

t_statistic =
µ1 − µ2√
σ2
1

n1
+

σ2
2

n2

Degree of Freedom =

(
σ2
1

n1
+

σ2
2

n2

)2

(σ2
1/n1)2

n1−1 +
(σ2

2/n2)2

n2−1

µ1, µ2 are the means of the two groups, σ2
1 , σ

2
2 are their variances, and n1, n2

are the sample sizes.
We conducted a total of 10 pairwise comparisons for each of the eight ques-

tions.
1. Solo Section A vs. Solo Section B
2. Solo Section A vs. PCT
3. Solo Section A vs. SEQT Section A
4. Solo Section A vs. SEQT Section B
5. Solo Section B vs. PCT
6. Solo Section B vs. SEQT Section A
7. Solo Section B vs. SEQT Section B
8. PCT vs. SEQT Section A
9. PCT vs. SEQT Section B
10. SEQT Section A vs. SEQT Section B
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The data for Solo Section A and Solo Section B is sourced from Table 2.
Data pertaining to PCT is detailed in Table 1, while the data for SEQT Section
A and SEQT Section B can be found in Table 3.

The significance level for rejecting the null hypothesis is set at 5%, aligning
with standard practices for statistical significance. This means that if the test
results show less than a 5% probability, we reject the H0 in favor of H1. By
conducting this analysis, our aim is to identify precisely whether specific teach-
ing approaches in these various setups significantly impact student evaluation
outcomes.

The pairwise comparison results of performing the Welch’s t-test for the
evaluative questions are systematically presented across several tables. On
each of the table, we present the t-statistic, p-value and the degree of freedom.
p-value that are statistically significant i.e., less than 5% are bolded in the
table. Table 4 details the comparisons for Questions 1 and 2. Similarly, Table 5
outlines the results for Questions 3 and 4, Table 6 for Questions 5 and 6, and
Table 7 for Questions 7 and 8. Each table provides insights into 10 pairwise
comparisons, illustrating the variances in student perceptions across different
teaching methodologies.

Table 4: Comparison of Questions 1 and 2 across all sections
Comparison Question 1 Question 2

t-statistic p-value Degrees
of Freedom t-statistic p-value Degrees

of Freedom

Solo. Sec A vs. Solo. Sec B -0.473 0.6377 94.63 -1.007 0.3167 94.43
Solo Sec A vs. PCT -0.289 0.7736 89.80 -0.482 0.6312 91.81
Solo. Sec A vs. SEQT. Sec A 1.232 0.2237 50.73 0.783 0.4367 65.76
Solo. Sec A vs. SEQT. Sec B 1.151 0.2530 85.87 1.577 0.1186 84.77
Solo Sec B vs. PCT 0.153 0.8786 81.18 0.601 0.5497 83.73
Solo.Sec B vs. SEQT. Sec A 1.586 0.1195 45.92 1.660 0.1017 64.03
Solo. Sec B vs. SEQT. Sec B 1.608 0.1119 77.18 2.433 0.0171 82.06
PCT vs. SEQT. Sec A 1.420 0.1615 51.67 1.239 0.2206 56.56
PCT vs. SEQT.Sec B 1.381 0.1709 82.56 2.062 0.0427 74.53
SEQT. Sec A vs. SEQT. Sec B -0.286 0.7761 60.64 0.733 0.4657 73.59

Table 5: Comparison of Questions 3 and 4 across all sections
Comparison Question 3 Question 4

t-statistic p-value Degrees
of Freedom t-statistic p-value Degrees

of Freedom

Solo Sec A vs. Solo Sec B -0.878 0.3821 93.69 -0.063 0.9501 84.81
Solo Sec A vs. PCT 1.358 0.1785 75.66 0.606 0.5458 85.55
Solo Sec A vs. SEQT. Sec A 0.687 0.4947 57.68 1.970 0.0544 49.20
Solo Sec A vs. SEQT. Sec B 1.695 0.0942 76.21 2.525 0.0139 67.60
Solo Sec B vs. PCT 2.068 0.0421 73.76 0.590 0.5569 84.43
Solo Sec B vs. SEQT. Sec A 1.377 0.1739 56.56 1.873 0.0660 59.46
Solo Sec B vs. SEQT. Sec B 2.367 0.0205 74.62 2.391 0.0192 78.57
PCT vs. SEQT. Sec A -0.550 0.5841 69.73 1.468 0.1478 54.11
PCT vs. SEQT. Sec B 0.359 0.7207 84.82 2.010 0.0481 72.74
SEQT. Sec A vs. SEQT. Sec B 0.880 0.3817 73.68 0.471 0.6392 73.19
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Table 6: Comparison of Questions 5 and 6 across all sections
Comparison Question 5 Question 6

t-statistic p-value Degrees
of Freedom t-statistic p-value Degrees

of Freedom

Solo Sec A vs. Solo Sec B 0.055 0.9559 90.58 0.238 0.8128 89.54
Solo Sec A vs. PCT 1.258 0.2116 88.36 0.479 0.6334 85.80
Solo Sec A vs. SEQT. Sec A 2.060 0.0438 59.50 1.347 0.1830 58.98
Solo Sec A vs. SEQT. Sec B 1.219 0.2263 81.55 2.045 0.0446 70.69
Solo Sec B vs. PCT 1.126 0.2635 84.96 0.222 0.8248 84.96
Solo Sec B vs. SEQT. Sec A 1.921 0.0592 64.22 1.077 0.2856 65.01
Solo Sec B vs. SEQT. Sec B 1.116 0.2677 84.46 1.774 0.0800 76.79
PCT vs. SEQT. Sec A 0.981 0.3304 60.90 0.885 0.3792 63.43
PCT vs. SEQT. Sec B 0.143 0.8870 80.94 1.604 0.1130 75.25
SEQT. Sec A vs. SEQT. Sec B -0.752 0.4544 72.03 0.737 0.4636 73.99

Table 7: Comparison of Questions 7 and 8 across all sections
Comparison Question 7 Question 8

t-statistic p-value Degrees
of Freedom t-statistic p-value Degrees

of Freedom

Solo Sec A vs. Solo Sec B -1.246 0.2161 91.82 -0.399 0.6905 92.94
Solo Sec A vs. PCT 0.540 0.5908 84.62 -0.650 0.5172 89.93
Solo Sec A vs. SEQT. Sec A 0.933 0.3547 54.66 1.435 0.1566 56.92
Solo Sec A vs. SEQT. Sec B 0.527 0.5992 87.34 1.873 0.0647 80.41
Solo Sec B vs. PCT 1.696 0.0943 72.60 -0.254 0.7998 85.00
Solo Sec B vs. SEQT. Sec A 1.874 0.0672 46.38 1.774 0.0818 53.08
Solo Sec B vs. SEQT. Sec B 1.650 0.1031 75.31 2.239 0.0281 75.39
PCT vs. SEQT. Sec A 0.462 0.6455 60.72 1.977 0.0534 51.34
PCT vs. SEQT. Sec B 0.000 1.0000 85.00 2.458 0.0163 73.01
SEQT. Sec A vs. SEQT. Sec B -0.456 0.6501 63.21 0.313 0.7551 70.93

In Table 8, we provide a summary of the statistically significant results
from Table 4, Table 5, Table 6, and Table 7. Additionally, Table 8 includes the
frequency of statistically significant results, indicating how often each teaching
method was perceived by students as either positive or negative.

The questions regarding Question #1 i.e., “Effectiveness in explaining con-
cepts” and Question #7 i.e., “Availability outside of class” have zero occurrences
of statistically significant results across all comparisons as shown in Table 8.
This statistical insignificance indicates that these questions are less sensitive
to changes in teaching methods. For instance, the ability to explain concepts
effectively is related to individual instructor skills and less to the mode of deliv-
ery (Solo vs. PCT vs. SEQ). Similarly, availability outside of class is influenced
by the instructor’s commitment to student interaction outside formal teaching
sessions, rather than how the content is delivered. This consistency could be
seen as a strength, suggesting that my core teaching competencies are stable
across different teaching environments. However, it might also imply a ceiling
effect, where improvements are harder to achieve because students cannot rate
any of the questions above 5.

For Question #4 i.e., “Fairness in Grading,” it is noteworthy that Solo Sec-
tions A and B, as well as the PCT section, consistently outperformed SEQT
Section B. This observation indicates that sections taught by a single instruc-
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tor throughout the semester are perceived as more fair in their grading prac-
tices compared to those experiencing an instructor transition. Furthermore,
the lack of statistically significant differences in grading fairness perceptions
between Solo Sections A, B, and the PCT method suggests that consistency
in instructor presence throughout the semester creates a stable environment
for equitable grading practices. In contrast, in SEQT where the instructor
changes midway through the semester, may introduce elements of uncertainty
or perceived inconsistency in grading criteria among students. This difference
highlights the potential challenges posed by instructor transitions in main-
taining perceived grading fairness and underscores the importance of ensuring
that both instructors in a SEQT arrangement closely align their grading stan-
dards and transparently communicate any necessary transitions in assessment
strategies to the students. Although the differences in “Fairness in Grading”
for SEQT Section A do not reach statistical significance at the conventional
5% level, they are notable at the 10% level. However for Section B of SEQT,
statistical significant results are observed at the 5% level. This suggests a
trend towards significance, indicating that while SEQT Section A’s grading
perceptions are not as clearly differentiated as those in SEQT Section B, they
still do not align as favorably when compared to the more consistent outcomes
observed in Solo Sections A and B, and the PCT section. This finding high-
lights a potential area for improvement in ensuring grading consistency across
different teaching formats, particularly in sections experiencing instructional
transitions.

For all statistically significant results involving SEQT Section B, SEQT
Section B performed worse. Specifically, for Questions #2, #3, and #8, i.e.,
“Ability to stimulate interest in the subject,” “Encouragement of class par-
ticipation,” and “Overall rating of instructor,” SEQT Section B was worse off
compared to Solo Section B and PCT. However, SEQT Section A also performs
less favorably compared to sections taught by a single instructor throughout
the semester. It does not reach the conventional threshold for statistical sig-
nificance at the 5% level, but is significant at the 10% level. This implies that
the instructional transition in the middle of the semester transition in SEQT
Sections A and B may disrupt the continuity that students seem to prefer,
impacting their engagement and overall satisfaction with the course. Students
prefer a single instructor to teach for the entire semester whether the instruc-
tor is teaching both sections of the same class or the instructor is engaged
in PCT but is still responsible for the entire section for the entire semester.
These findings reinforce the idea that consistent instructor presence, whether in
solo-taught sections or in PCT where the instructor remains the same through-
out the semester, is critical to maintaining student interest, participation, and
overall satisfaction.
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Table 8: Comprehensive Summary of Statistically Significant Results. In this
table, ‘+’ represents the number of statistically significant results within the
count of that method that are perceived positively by students, while ‘-’ indi-
cates those results perceived negatively.

Summary of Results Frequency of Methods Frequency by Question
Category Count Method Total Count Perception Question Count
Total # of significant
results at the 5% level: 11 Solo Sec A 3 +3 Question 1 0

Solo Sec B 5 +5 Question 2 2
PCT 4 +3 and -1 Question 3 2
SEQ. Sec A 1 -1 Question 4 3
SEQ. Sec B 9 -9 Question 5 1

Question 6 1
Question 7 0
Question 8 2

The three major findings of this research are that: (1) Universities should
maintain the same instructor throughout a course to enhance perceptions of
fairness and grading, as well as overall instructor ratings. Our study shows that
solo teaching and PCT outperform SEQT. (2) To ensure smooth transitions
in SEQT, have instructors collaborate closely, communicate changes clearly
to students, and select instructors with similar teaching styles to minimize
disruptions. (3) PCT is preferred over SEQT due to consistent instructor
presence, which enhances student comfort and engagement. This preference
is reflected in higher overall learning experience and satisfaction in student
evaluations.

We acknowledge the limitations of our research. I lacked access to my
colleague’s teaching evaluations, which could have provided more insight into
correlations. Expanding the study to include different disciplines and course
formats could also enhance the generalizability of the findings.

5 Conclusions

This research explored the impact of two specific co-teaching methods, PCT
and SEQT, compared to solo teaching. The study examined how these dif-
ferent instructional strategies affect student evaluations across eight questions.
Solo teaching and PCT, where a single instructor is responsible for the course
throughout the semester, consistently led to more favorable student percep-
tions. This was particularly evident in the areas of grading fairness and the
overall rating of the instructor. Students valued the consistency and continuity
provided by having the same instructor, suggesting that frequent changes in
instructional personnel can disrupt student satisfaction and engagement.

SEQT, especially in Section B where the instructor changes midway through
the semester, often resulted in less favorable evaluations. This method ap-
peared to introduce a level of disruption that negatively impacted student
perceptions, particularly in terms of grading fairness and the encouragement
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of class participation. For courses that must be taught by multiple instructors,
our research suggest that it is probably best to use PCT and not SEQT form
of co-teaching.
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Abstract
This work aims to investigate the influence of AI tools, specifically

ChatGPT, on assignment submissions for an undergraduate program-
ming course. The study evaluates the variance between MATLAB code
submissions supported by ChatGPT and those based solely on traditional
classroom resources such as instructor notes, textbooks, and class exer-
cises. By analyzing these differences, the research seeks to highlight the
advantages of using AI as an assistant tool, including enhanced efficiency
and personalized feedback. However, it also examines the drawbacks,
such as potential over-reliance on AI and its impact on achieving stu-
dents’ learning goals. Additionally, the study provides recommendations
on how to manage and integrate this new technology effectively to ensure
that it complements rather than detracts from the educational experi-
ence. Through this comprehensive evaluation, the paper seeks to offer
insights into balancing AI assistance with traditional teaching methods
to optimize learning outcomes in programming education.

1 Introduction
In the current era of artificial intelligence, the submission of assignments, par-
ticularly in programming courses, has become more challenging and affects

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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academic performance. Traditional teaching methods often struggle to engage
students and meet their needs effectively. This has led to growing interest in
innovative strategies such as using ChatGPT, its ability to generate convinc-
ing responses and provide personalized feedback offers significant potential to
enhance programming education. By utilizing ChatGPT, instructors can cre-
ate dynamic educational environments that efficiently address students’ needs,
thereby transforming the learning process [7]. ChatGPT, an AI model that is
globally recognized for its expertise in handling complex language tasks through
conversation [8]. Its capabilities show significant promise in education across
various areas: it excels in generating accurate mathematical and programming
statements, responding to related questions, and solving problems successfully.
Numerous studies confirm its superiority over other models in these tasks [1, 2].
Additionally, ChatGPT is time-efficient and delivers precise answers [5]. In
many cases this use led to increased motivation, better outcomes, and greater
satisfaction, particularly for those with special educational needs [4]. How-
ever, ChatGPT also faces several ethical and operational challenges. These
include blind trust without verification, regulatory restrictions, dehumaniza-
tion in human-machine interactions, prioritizing metrics over societal norms,
and information overload. Its self-referential evaluation lacks transparency and
oversight, posing accountability issues. Additionally, concerns about data and
model bias, misinformation, and privacy underscore the need for responsible
deployment and ethical use [9, 3, 6]. The present study aims to evaluate two
types of assignment submissions in an undergraduate MATLAB programming
course: one based on learned commands and traditional classroom resources,
and the other utilizing ChatGPT. The comparison focuses on the pros and
cons of using AI models for class assignments and explores how to leverage this
technology positively for future hands-on learning.

2 Class Assignment
The following is an in-class assignment designed to teach the MESHGRID
command in the MATLAB® programming class. The volume of a circular
cylinder is calculated using the formula

volume = πr2h (1)

where r is the radius and h is the height. For this assignment, students are
tasked with calculating the volume of cylindrical containers with radii ranging
from 0 to 14 meters and heights ranging from 12 to 22 meters. The radii and
heights should be incremented by 2 meters within these specified ranges. This
exercise will help students understand how to use the MESHGRID func-
tion to create matrices of radius and height values, and subsequently apply
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the volume formula across these matrices to compute the volumes of multi-
ple cylinders efficiently. The meshgrid function in MATLAB is used to create
two-dimensional grids that are essential for evaluating functions of two vari-
ables and for 3D plotting. Given two vectors that define the ranges for x
and y coordinates, meshgrid generates matrices X and Y, where each element
in X represents the x-coordinate and each element in Y represents the corre-
sponding y-coordinate, in the next two subsections, I will explain two different
submissions for the aforementioned class assignment.

2.1 Regular Submission
A regular submission for an in-class assignment covers a comprehensive en-
gagement with various educational resources and a consistent demonstration
of student effort. Students are expected to thoroughly review and integrate con-
tent from instructor-provided notes, which serve as a primary source of detailed
information and guidance. The course textbook plays a crucial role, provid-
ing essential readings, theoretical concepts, examples, and practice problems
that students should reference and incorporate into their assignments. Active
participation in lectures, whether conducted face-to-face or online, is vital.
These sessions offer direct instruction and opportunities for interaction, help-
ing students to better understand the material presented. Additionally, active
involvement during class discussions and group activities enhances learning by
allowing students to engage with the content and with their peers.

Attending office hours is another important component. These sessions
provide a platform for students to seek clarification on complex topics, re-
ceive personalized guidance, and address any academic challenges they may
face. Utilizing these opportunities helps solidify their understanding and im-
prove their performance. Consistently completing homework assignments is
also critical. These tasks reinforce the material covered in lectures and read-
ings, enabling students to apply their knowledge and identify areas where they
may need further practice or clarification. Overall, a regular submission should
reflect a well-rounded and diligent approach to learning. It should be timely,
ensuring adherence to deadlines, and it should be complete, addressing all
parts of the assignment comprehensively. Accuracy is paramount, with cor-
rect answers and well-reasoned explanations. Clarity and organization are also
essential, making the assignment easy to follow and understand. Finally, the
submission must demonstrate originality, showcasing the student’s own under-
standing and effort while being free from plagiarism. This holistic approach
ensures that the assignment is a true representation of the student’s capabilities
and their engagement with the course material. the class assignment regular
submission solution is shown in Figure 1, this code calculates the volumes of
cylindrical containers for a range of radii and heights. The radius vector is
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defined from 0 to 14 with increments of 2 (0:2:14), and the height vector is
defined from 12 to 22 with increments of 2 (12:2:22). Using meshgrid, matrices
R and H are created to represent all combinations of these radii and heights.
This results in a matrix volume containing the volumes for each radius-height
combination

Figure 1: Regular Submission

2.2 ChatGPT Submission
A ChatGPT submission is an assignment completed by students through iter-
ative communication and prompt engineering with the ChatGPT AI model. It
involves creating and refining prompts to obtain detailed, accurate responses
from the AI, integrating these responses into a well-structured submission, and
critically evaluating the content for accuracy and relevance. This submission
type reflects the student’s ability to interact effectively with AI and engage-
ment with the technology. It should be noted that the prompt used here is the
same as the class assignment mentioned in Section 2 . Figure 2 and Figure 3
represent the ChatGPT submission.

The script calculates the volumes of cylindrical containers for given ranges
of radii and heights, incorporating several sophisticated elements to enhance
functionality and readability. The script begins by defining the radii (0 to 14
meters, incremented by 2 meters) and heights (12 to 22 meters, incremented by
2 meters). It then employs a try-catch block to handle potential errors grace-
fully, ensuring that any issues with input validation are captured and reported
without abruptly terminating the program. The validateInputs function checks
that all radii are non-negative and heights are positive, safeguarding against
invalid inputs. Next, the calculateVolumes function uses meshgrid to create
matrices of all possible combinations of radii and heights, then computes the
corresponding volumes. This vectorized operation is efficient and avoids the
need for nested loops. The calculated volumes are organized into a table by the
createResultsTable function, which also uses meshgrid to ensure consistency in
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Figure 2: ChatGPT Submission Part 1

formatting. The table includes columns for radii, heights, and volumes, with
clear, descriptive variable names. To visualize the data, the visualizeResults
function generates a 3D surface plot, illustrating how the volume varies with
different radii and heights. The plot includes labeled axes and a color bar for
easy interpretation. Finally, the script saves the results table to a CSV file,
enabling further analysis or record-keeping. This modular, robust, and well-
documented approach ensures the script is both powerful and easy to maintain,
making it suitable for advanced MATLAB users who need reliable and com-
prehensive calculations and visualizations.
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Figure 3: ChatGPT Submission Part 2

2.3 Codes Comparison
The regular submission for the MATLAB code serves as an introductory ex-
ample suitable for classroom settings aimed at teaching basic programming
and numerical computation skills, particularly dealing with vectors of differ-
ent dimensions. It begins by defining two vectors, radius and height, which
respectively represent ranges of cylinder radii and heights using simple arith-
metic sequences. The code uses the meshgrid function directly to create two
matrices, R and H, establishing a grid of radius and height combinations. This
demonstrates foundational concepts of data representation and manipulation
in MATLAB, illustrating how matrices can efficiently handle structured data
processing. The calculation of cylinder volumes reinforces fundamental prin-
ciples, providing beginners with a clear and concise introduction to volume
computation.

In contrast, the ChatGPT-generated code presents a more advanced ed-
ucational approach, covering a broader range of programming concepts and
practices. Encapsulated within a try-catch block, the script introduces ad-
vanced topics such as error handling—an essential skill often overlooked in
introductory programming courses. The inclusion of the validateInputs func-
tion emphasizes data validation in programming. The calculateVolumes func-
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tion encapsulates the core computation of cylinder volumes using meshgrid,
showcasing advanced techniques in function abstraction and modular program-
ming. Functions such as createResultsTable and visualizeResults expand on
data management and visualization, enhancing understanding of structured
programming practices. The script concludes by demonstrating proficiency in
file handling through the writetable function, reinforcing practical skills in data
management and output.

While the first code focuses on foundational MATLAB skills and basic
mathematical operations typically taught in classrooms, the second code ad-
vances to cover more complex programming concepts such as error handling,
function abstraction, and practical applications like data visualization and file
management, all extending beyond introductory levels.

As an instructor, the ability to distinguish between code written manually
and code generated by an AI becomes evident through the inclusion of advanced
commands and techniques not typically covered in early programming educa-
tion. The presence of constructs like loops, try-catch, and advanced function
usage in the AI-generated code serves as a marker that this code was generated
by an advanced computational model.

3 Students Experience Evaluation
In Utah Valley University (UVU) one of the most important assessments is
evaluating students’ experience in all the courses, several key criteria are con-
sidered in the survey. Firstly, timely completion of course assignments, demon-
stration of students’ ability to manage deadlines effectively and fulfill academic
responsibilities on schedule. Secondly, preparation for class involves students
proactively engaging with course materials, readings, and exercises in advance
of each session. This readiness ensures active participation and deeper un-
derstanding during classroom activities. Lastly, the initiative to contact the
instructor when assistance is needed reflects students’ proactive approach to
learning and their commitment to overcoming challenges with guidance. To-
gether, these criteria provide insights into students’ engagement, preparedness,
and ability to navigate academic demands effectively throughout the course.
Over the years, student experience evaluations for the MATLAB course have
consistently been high. However, this year, there has been a noticeable decline
in these evaluations compared to previous years, indicating a drop in students’
perceived experience. The incorporation of ChatGPT or similar AI tools in
student problem-solving processes can have significant implications for their
learning experiences and evaluations. While these tools provide efficient so-
lutions, they may diminish students’ sense of personal accomplishment and
engagement in the learning process. Students relying heavily on AI-generated
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solutions may experience less opportunities for critical thinking and involved
learning engagement. As a result, their evaluations of the learning experience
could reflect a reduced sense of mastering course content that led students to
question the depth of their own understanding and learning outcomes. Ed-
ucators in academia must consider these factors carefully when they teach
programming courses and the possibility of integrating AI tools, ensuring they
complement rather than overshadow students’ learning experiences and per-
ceptions of academic achievement. Balancing the use of AI with opportunities
for independent exploration, conceptual understanding, and skill development
remains crucial for fostering meaningful and fulfilling learning experiences for
students.

4 Recommendations
As an instructor, I believe that integrating ChatGPT into the learning process
can significantly enhance students’ critical thinking skills if used thoughtfully.
One effective strategy is to require students to submit two solutions for their
assignments: one based on their understanding and application of classroom
resources, and another generated by ChatGPT. They should then provide a de-
tailed explanation of both solutions, analyzing the differences and similarities
between them. This approach encourages students to engage deeply with the
material, fostering a better understanding of the subject matter while leverag-
ing AI as a supplementary tool. By comparing their own work with the AI-
generated output, students can identify areas for improvement, understand di-
verse problem-solving methods, and develop a more nuanced perspective. This
method not only motivates students to use AI responsibly but also enhances
their learning outcomes by promoting critical analysis and self-reflection.

5 Conclusion
The Bad: using AI tools such as may reduce students’ prospects for critical
thinking and problem-solving. By automating the creation of complex code
structures that include for example, error handling, the AI minimizes the cog-
nitive load on students who might otherwise benefit from grappling with these
challenges independently. This could potentially hinder the development of
deeper understanding of foundational programming principles among students.

The Good: exposure to AI-generated code expands students’ exposure to
advanced programming techniques beyond what is typically covered in intro-
ductory courses. It accelerates their experience with complex concepts.This
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exposure prepares students for real-world programming scenarios and fosters
a more comprehensive understanding of how to develop robust, efficient so-
lutions in MATLAB and other programming environments. Additionally, the
AI’s ability to generate sophisticated code can serve as a valuable educational
tool, providing students with examples of best practices in programming and
demonstrating how to effectively utilize advanced features to enhance code
quality and functionality. Finally, AI codes can accelerate learning by expos-
ing students to advanced concepts and practices, instructors should seek a
balance to ensure that students still engage meaningfully in problem-solving
and critical thinking exercises. It is essential to supplement AI-generated con-
tent with opportunities for hands-on practice, discussions, and exercises that
encourage students to apply their knowledge and develop their programming
skills independently. This approach ensures that students not only benefit
from technological advancements but also develop the essential cognitive and
analytical skills required for success in programming and beyond.

6 Future Directions
While the paper provides initial suggestions to mitigate the risk of students
becoming overly dependent on AI, future research will focus on developing
additional strategies to enhance critical thinking and problem-solving skills.
The next steps will involve collecting more data and conducting focus group
meetings to incorporate diverse student feedback. This approach aims to offer
a comprehensive understanding of AI’s impact on learning. Furthermore, the
discussion will expand to address the ethical and operational challenges posed
by AI in education.

References
[1] H. Gimpel et al. Unlocking the power of generative ai models and systems

such as gpt-4 and chatgpt for higher education: A guide for students and
lecturers. Hohenheim Discussion Papers in Business, Economics and Social
Sciences, 2023.

[2] I. Jahic, M. Ebner, and S. Schön. Harnessing the power of artificial intelli-
gence and chatgpt in education–a first rapid literature review. EdMedia+
Innovate Learning, pages 1489–1497, 2023.

[3] Z.N. Khlaif et al. The potential and concerns of using ai in scientific
research: Chatgpt performance evaluation. JMIR Medical Education,
9:e47049, 2023.

9 103



[4] G. Kiryakova and N. Angelova. Chatgpt—a challenging tool for the univer-
sity professors in their teaching practice. Education Sciences, 13(10):1056,
2023.

[5] A. Koubaa et al. Exploring chatgpt capabilities and limitations: A survey.
IEEE Access, 2023.

[6] J. Lambert and M. Stevens. Chatgpt and generative ai technology: A mixed
bag of concerns and new opportunities. Computers in the Schools, pages
1–25, 2023.

[7] M. Vukojičić and J. Krstić. Chatgpt in programming education: Chatgpt
as a programming assistant. InspirED Teachers’ Voice, 2023(1):7–13, 2023.

[8] T. Wu et al. A brief overview of chatgpt: The history, status quo and
potential future development. IEEE/CAA Journal of Automatica Sinica,
10(5):1122–1136, 2023.

[9] J. Zhou et al. Ethical chatgpt: Concerns, challenges, and commandments.
arXiv preprint arXiv:2305.10646, 2023.

10104



Integrating ChatGPT in Cybersecurity
Education: Use Cases and Implications∗

Basil Hamdan
Department of Information Systems & Technology

Utah Valley University
Orem, UT 84058
basil.hamdan@uvu.edu

Abstract

This paper examines the integration of ChatGPT into cybersecurity
courses, emphasizing practical applications and ethical considerations
within educational settings. Through use case in malware development
and web application security, the study explores ChatGPT’s dual role in
cybersecurity education. It addresses ethical AI behavior, challenges in
contextual awareness, and the risks associated with AI-generated content
misuse. This paper aims to provide educators with insights to navigate
the complexities of AI-enhanced cybersecurity education effectively.

1 AI and Cybersecurity

The integration of Artificial Intelligence (AI) into various domains has brought
about transformative changes, and the field of cybersecurity is no exception.
Of special interest to this work is the dual nature of AI and ChatGPT in
cybersecurity; offering promising benefits in enhancing security measures and
posing potential threats from the malicious use of AI.

Concerns over the malicious use of AI in cyber attacks are widespread, im-
pacting numerous sectors, including education [2]. AI’s potential to enhance
malicious activities is significant, offering various avenues for exploitation.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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From generating phishing attacks [8] to creating sophisticated malware [6], the
misuse of AI poses a substantial threat. This technology can be weaponized
to automate and scale cyber attacks, making them more efficient and harder
to detect, thereby amplifying the risks and challenges faced by cybersecurity
professionals.

Conversely, AI is pivotal in enhancing cybersecurity defenses. The incorpo-
ration of machine learning algorithms showcases the deep connection between
AI and cybersecurity [10]. These algorithms continuously adjust to combat
advanced cyber threats, thereby improving threat detection, anomaly identifi-
cation, and incident response. Furthermore, by automating routine tasks and
empowering security professionals, AI promotes a proactive defense strategy
against evolving cyber risks and substantially enhances overall security mea-
sures.

ChatGPT, an AI language model, has also been integrated into the cy-
bersecurity landscape, revealing a diverse range of applications, encompassing
both defensive and offensive measures. Researchers have utilized ChatGPT
to emulate honeypots [6], analyze code and identify vulnerabilities [1], gener-
ate malware [3], and create high-quality phishing emails that can evade spam
filters [5]. These applications raise significant ethical concerns, highlighting
the need for the responsible use of such powerful models. For an extensive
review of ChatGPT’s applications and its versatility in cybersecurity, see [4].
On the positive side, ChatGPT functions as an effective vulnerability scanner,
detecting flaws and suggesting remedies [1][7]. Additionally, it aids in drafting
cybersecurity policies and reports, such as risk management plans and pene-
tration testing reports.

In summary, the deployment of AI and ChatGPT in cybersecurity showcase
their versatility, from defensive measures like emulated honeypots to offensive
capabilities like crafting sophisticated phishing emails and generating malicious
code. This dual nature highlights the need for responsible and ethical use.

2 AI and Cybersecurity Education

Beyond its use in offensive and defensive cybersecurity, the integration of AI
in cybersecurity education presents challenges and opportunities into learning
environments. On one hand, educational institutions and training programs
are increasingly leveraging AI-powered tools to provide students with realistic
hands-on and practical experiences in controlled environments and offer de-
tailed information and explanations, promoting rapid learning, and encourag-
ing effective action. On the other hand, AI can be used to create sophisticated
educational cyber threats, automate attacks on educational platforms, or in-
advertently introduce new vulnerabilities [2]. There are also concerns about
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its potential misuse for academic misconduct and cheating in online exams [9].
This paper investigates the intersection of AI and cybersecurity through

the lens of ChatGPT, an AI language model, specifically within cybersecurity
education. By presenting use cases of ChatGPT integration in educational
settings, we illustrate its dual role—enhancing learning experiences while ad-
dressing ethical considerations and potential misuse in cybersecurity education.

3 ChatGPT in Cybersecurity Education: Use Cases

The following sections will detail the use of ChatGPT in cybersecurity courses
and illustrate its dual role in cybersecurity education.

3.1 Malware Attacks: Malicious Macro

This use case involved tasking ChatGPT with generating malicious code for
a Macro that integrates multiple functionalities typical of modern malware.
Initially, ChatGPT did not generate the malicious code, acknowledging the
potential harmful and unethical implications of such a request. As with any
AI solution, ChatGPT can be influenced through a form of social engineering.
We successfully manipulated ChatGPT by framing the request as being for
educational or hypothetical purposes. Additionally, we segmented the code
request into seemingly innocuous and unrelated operations or functionalities,
which when combined, constituted malicious code.

Figure 1 illustrates the initial prompt where ChatGPT was requested to
generate VBA code for an MS Word Macro designed to download an executable
from a web server. ChatGPT declined to fulfill this request, citing ethical and
security guidelines.

Figure 1: Prompt 1 - ChatGPT Declined to Provide Macro Code

The acknowledgment of the potential consequences, such as harm to the
user’s computer, data loss, or other malicious activities, reflects the commit-
ment to user safety and responsible AI use.
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Despite its initial ethical stance, demonstrating responsible behavior ex-
pected from AI systems, ChatGPT was manipulated into providing malicious
code. The prompt was reframed to request a "Macro to send HTTP request",
to which ChatGPT did not object and subsequently provided the code (See
Figure 2).

Figure 2: Prompt 2 - ChatGPT Provided Macro Code to Send HTTP Request

ChatGPT was then asked to modify the macro to save the downloaded
object to a file, and it provided the corresponding code (see Figure 3). However,
it appeared to overlook the potential harm such a macro could cause to the
user’s computer, potentially leading to damage or data loss. The updated
version of the macro now included functionality to download a file from a web
server. Finally, ChatGPT was subsequently asked to modify the macro so that
the downloaded file would be automatically executed (see Figure 4).
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Figure 3: Prompt 3 - ChatGPT Updated Macro Code to Download a File

Figure 4: Prompt 4 - ChatGPT Updated Macro Code to Run Downloaded File
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This use case highlights a form of circumvention where a user reframes
a request, and the AI model, lacking contextual memory, may provide infor-
mation that, when combined, could have unintended consequences. In this
case, the reframing of the prompt to focus on a seemingly benign action like
"sending an HTTP request" allowed the user to obtain the initial macro code.
Subsequently, modifying the request to save the downloaded object to a file
highlights a potential gap in the model’s contextual awareness. ChatGPT,
lacking the ability to retain a consistent context across prompts, may not al-
ways exhibit the same level of ethical considerations in subsequent responses.
This example further underscores the importance of responsibility in deploying
AI technologies, especially when they have the potential for misuse.

3.2 Malware: Code Injection

This use case involved prompting ChatGPT to generate malicious code for an
executable program capable of implementing code injection or DLL injection.
Such malicious programs can inject code into legitimate processes running on
a target system, thereby concealing themselves and complicating detection by
antivirus software and reverse engineers on the infected system.

When asked to "provide C code for programs that implement both tech-
niques," ChatGPT declined, stating that "these techniques are often used ma-
liciously and could be harmful. Moreover, providing code for such programs
could violate ethical and legal boundaries" (See Figure 5).

Figure 5: ChatGPT Declined to Provide Code.

In an attempt to manipulate ChatGPT, the prompt was reframed to ask
for ChatGPT to "Provide c code for a program that writes code into another
process". However, ChatGPT objected and did not provide the code, citing
concerns over the malicious use of code injection (see Figure 6).

Given ChatGPT’s initial refusal to provide the code, the approach pivoted
towards generating code snippets for individual steps involved in implement-
ing code injection. These steps encompassed enumerating running processes,
allocating memory within the address space of a selected process, writing data
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Figure 6: ChatGPT Declined to Provide Code.

into the allocated memory, and executing injected code within a new thread of
the target process. Despite ChatGPT’s earlier ethical hesitation and lacking
the ability to retain a consistent context across prompts, it eventually provided
the requested malicious code (See Figure 7).

Figure 7: ChatGPT Generated Code (Partial Snippet) for Code Injection
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3.3 Secure Coding

This use case involves presenting ChatGPT with code vulnerable to various
web application attacks and tasking it to identify the vulnerabilities, as well as
recommend remediation following secure coding best practices.

In one instance, ChatGPT recognized the code’s vulnerability to SQL injec-
tion, proposed a remediation strategy, and generated an updated version of the
code to secure user inputs for safe usage in SQL queries. In another scenario,
ChatGPT initially did not identify the vulnerability to credential stuffing, but
with guiding prompts, it produced updated versions of the code incorporating
several remedies. These included implementing minimum length requirements
for usernames and passwords, enforcing password complexity rules, and intro-
ducing account lockout mechanisms (See Figure 8 and Figure 9).

Figure 8: Vulnerable vs. Secure Code Figure 9: Vulnerable vs. Secure Code

4 Conclusion

While the integration of ChatGPT in cybersecurity education offers signifi-
cant benefits to educators and students alike, the ethical dilemmas highlighted
by ChatGPT’s responses to potentially harmful prompts underscore the crit-
ical considerations in integrating AI into cybersecurity education. While the
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model demonstrated ethical refusal towards endorsing unethical activities, it
inadvertently provided information that could potentially be misused. This
dilemma emphasizes the challenge of balancing educational value with the risk
of unintended consequences in AI-driven educational tools.

Looking ahead, there is a pressing need to develop and standardize ethi-
cal guidelines tailored specifically to AI applications in educational settings.
These guidelines should evolve alongside technological advancements and soci-
etal expectations, ensuring that AI models in cybersecurity education uphold
ethical standards. Additionally, research should explore innovative approaches
to enhance AI’s contextual understanding and decision-making capabilities.
Proactive educator training programs are also essential to equip teaching staff
with the skills and knowledge needed to navigate ethical challenges associated
with AI technologies effectively.

By fostering interdisciplinary collaboration and continuously refining ethi-
cal practices, the cybersecurity education community can harness AI’s potential
while safeguarding against its ethical pitfalls.
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Abstract

The Web Software Security Lab is a "real" Cloud-based environment
that was designed and developed for software engineering students to test
the security of public-facing web software applications. This environment
is a fully-configured public-facing environment, designed to scale for en-
terprise levels. The doctrine governing the design and development of
this environment is "there is no privacy without security". As such, all
services are configured for dual-encryption to ensure privacy and secu-
rity. Furthermore, all services follow libre principles, in that the services
are: 1. free to use; 2. free to study; 3. free to modify; and 4. free to
share. Lastly, regarding "real", the services chosen for this environment
were selected for supporting the IT infrastructure of a "real" business.
In this case, a small University. Some examples of services supported
in this environment include: email clients; private storage; calendar and
scheduling tools; appointment scheduling tools; video conferencing; in-
ventory management; web-blogs and web-sites; ransomware-protection;
malware protection and other cloud-security tools. All of these services
are dual-encrypted which made this project particularly unique in that,
most dominant business services (i.e., email, file-hosting, calendar, video-
conferencing, content-management and learning management systems)
are not. As such, communications over non-encrypted channels can eas-
ily be intercepted and compromised.
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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1 Introduction

1.1 The Problem

Full-stack application development has become an essential domain within the
field of software engineering, and the IT industry [4]. While there have been a
variety of interpretations and categorizations of what constitutes the skills and
abilities of a full-stack engineer, there is large agreement about what consti-
tutes full-stack application development [7]. Notably, the environment in which
full-stack applications are developed is based on specific architectures, technolo-
gies, and methodologies. These architectures run a spectrum from monolithic,
service-oriented, micro-services, and beyond [3]. The technologies in these
environments are integrated into the architecture. In this way, full-stack ap-
plications are typified by a back-end (i.e., database-server, database-scripting
language, server OS), database, and front-end (HTML, CSS, JS). These are
considered technology stacks, and range from LAMP (Linux, Apache2, MySQL,
PHP), LEMP (Linux, Nginx, MySQL, PHP), MEAN (Mongo, Angular, Ex-
press, Node), MERN (Mongo, Express, React, Node), and beyond. The prob-
lem is that developers and engineers need real, not virtual, integrated and
robust development environments where they can design, test, and deploy web-
services across a variety of technology stacks and architectures. While there
are commercially available products and services which support full-stack de-
velopment, few, if any, encompass architectures in the form of monolithic and
microservices. Moreover, while there are a great many virtualized environ-
ments which may be created to support this type of development, there exist
critical challenges when attempting to test the security and performance of
web-services in these forms [2].

Further, the services that are available are cost prohibitive. For example,
it is estimated that a simple VPS running in Microsoft Azure, AWS, Linode,
or Google Cloud, costs $150-200 per month of use [10].

Therefore, an affordable real environment was needed for full-stack devel-
opment. This environment needed to support development - in, and across
- monolithic and micro-service architectures, while affording test-based and
production-based security and performance monitoring. The full-stack lab en-
vironment described here was designed to address this problem.

1.2 Design Doctrines

1. There is no privacy without security;

2. "Libre" The services and supporting code-base should be: a. free to use;
b. free to study; c. free to modify; and d. free to share;
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3. Architecture must support "real" business need - that data must be se-
curely made available through public and private channels.

4. Web-software security must be tested in "real" contexts and studied in
these settings;

5. The code base for services must be known and available, and be able to
be modified to improve security posture.

1.3 Rationale for Lab Environment

Part of the strategy for designing this environment was that it should sup-
port Graduate and undergraduate software engineering and computing efforts.
Specifically, this environment was designed to promote student engagement by
providing learners opportunities with real-world development of public-facing
software applications. As such, a lab curriculum and environment was neces-
sary and central to the design of this environment. The first step to accomplish
this was to design a prototype full-stack environment, and then identify and
develop lab experiences for learners to engage full-stack development in this
environment.

1.3.1 Learning to Fly and Building the Plane

While there are training opportunities beyond the academy where students can
learn full-stack development and engineering, very few, if any, utilize a real en-
vironment that integrates IaaS, SaaS, and PaaS. For instance, most training in
this domain provides learners with opportunities to build and deploy full-stack
apis on local development environments [1]. This is referred to here as Learning
to Fly the Plane. While this is a significant aspect of full-stack development, it
is incomplete without also providing learners opportunities to Build the Plane.
The Full-stack lab environment described here will provide learners the oppor-
tunity to configure and integrate an entire full-stack architecture, from metal
servers to VPS (Virtual Private Servers). They will have the opportunity to de-
sign and configure domains and subdomains and deploy and test public-facing
apis. This type of development parallels real full-stack development [7]. And
this was one of the most important aspects of this project. This is because the
security and performance of full-stack applications is influenced by a variety
of factors across the entire stack [2]. When learners have the opportunity to
build their own environment, and deploy applications in it, a level of mastery
of the stack can be achieved. In full-stack development, this is paramount. It
is exemplified when learners can also test the security and performance of the
web-services they build and deploy across the entire stack. The full-stack lab
environment proposed here, therefore, was quite unique in that students learn
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how to develop full-stack applications on/in the very environment they also
design.

1.4 Research Aims

1. To design and deploy a "real" cloud-based full-stack environment for
which the server configurations and code- base is known;

2. To test the security of public-facing business/enterprise services and de-
termine security state for them;

3. To create an environment that has a fully-fledged "real" business archi-
tecture that can be scaled for enterprise;

4. To create a test environment for software engineers to be able to imple-
ment and test full-stack configurations and web-software security.

2 Methodology

2.1 Project Stages

Stage 1 - Private-storage Prototype

The design and development of the full-stack environment began several years
back with an early prototype that was running on two metal servers with
dedicated IPs and domains. This was a private-cloud environment based on
storage-as-a-service (SaaS) architecture. Once this prototype was built, per-
formance and security testing were completed and "recipes" for security hard-
ening, and private-cloud service integration were created to guide future builds
and configurations. The results of this preliminary work were presented [9].

Stage 2 - Configuration and Integration of LAMP, LEMP and MEAN
for multi-server environments

Following the completion of the prototype for SaaS and private-storage, the
next step was to configure and integrate "stacks" for development. Specifically,
LAMP, LEMP and MEAN were configured and integrated into a multi-server
environment with multiple IPs, domains and subdomains. A second proto-
type was built which was a multi-server environment with fail-over capacity
and High-availability. Within this environment, public-facing full-stack apis
were built, tested and deployed. This was a significant step in development,
as this prototype provided an environment where an api could be designed,
deployed and tested across a variety of stacks (i.e, LAMP, LEMP, MEAN).
From which point, the security and performance of these apis could be tested
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across "real" networks and architectures. This was an important step because
we were able to study performance and security differences between a single
api, across multiple stacks. The prototype built during this stage was also
tested for use in two graduate and undergraduate IT classes. Specifically, each
of the two stacks - LAMP and MEAN - were used for lab-based instruction.
The resulting research findings from this stage of development were published
[5, 6].

Stage 3 - Development of Private-Storage Cloud for Application De-
velopment

Further development of the prototype continued, specifically development of
several web-software applications. (i.e., Academy Course builder; Achievement
Hound; and Reaction Master).

Stage 4 - Web-software security frameworks

The fourth stage of development for the full-stack lab environment was creat-
ing the web-software security framework which was designed and built. The
following steps took place for this development:

1. Design and deploy a real cloud-based full-stack environment for which
the server configurations and code- base is known;

2. Test the security of public-facing business/enterprise services and deter-
mine security state for them;

3. Create an environment that has a fully-fledged real business architecture
that can be scaled for enterprise;

4. Create a test environment for software engineers to be able to implement
and test full-stack configurations and web-software security.

Research was conducted for this process and the results were presented [8].

Stage 5 - Full-stack Lab Environment

Stage five of development involved the design, development, integration and
implementation of a full-stack lab environment for students to conduct full-
stack development. The results of this design and development is presented in
the results section of this paper.
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Figure 1: Full-stack Architecture

3 Results and Discussion

3.1 Architecture

3.1.1 Composition - Servers and Services

There were five servers which were used in this environment: (Aquarius, Naranja,
Rojas, Verde and Amarillo). These servers were running Ubuntu Server 22.
Each server has its own static IP and domain name. Each server went through
intensive security hardening, including geo-location banning and other appro-
priate IP-blocking methods. Depending on the services running, there are
specific ports which are open by design. In the case of web-services, all servers
are configured with SSL certificates for HTTPS-connectivity. All other ports
are closed, including ssh. With one exception, Amarillo and Aquarius have
VPN port 1094 open for remote access through VPN.

3.1.2 Aquarius Server

Aquarius is running a high-availability proxy called Nginx. It is also run-
ning web-services and has wordpress framework installed and configured. This
framework can be used to run web sites and blogs. This framework was
also configured to run an inventory management system called WP Inventory.
Aquarius has been configured to scale custom ports for faculty and students,
up to 100. Note. The Nginx port architecture employed here can easily scale
to 1000 accounts on demand.

3.1.3 Naranja Server

Naranja is running an AMP stack and is configured for file-sharing services
(i.e., NextCloud); video-conferencing services; calendering and scheduling ser-
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Figure 2: Nginx Architecture

vices; and team-collaboration services. In its current configuration, Naranja
can support approximately 100 accounts. Of particular note is the Nextcloud
service configured on this machine. This is a suite of client-server software for
creating and using file hosting services. Nextcloud is free and open-source, and
includes security features and architectures that support the research aims of
this project. Nextcloud Security Considerations:

1. Ransomware protection

2. Two-factor authentication

3. Server-side encryption

4. password policies

5. Brute-force IP whitelist

6. Geo-IP Blocking

7. OAuth 2.0 Clientswhich means that anyone is allowed to install and op-
erate it on their own private server devices

A security audit was conducted on the Nextcloud service running on Naranja
and the results are shown in Figure 3.

3.1.4 Rojas

Rojas is running an AMP stack and also a "ruby" stack with node.js as web-
server. The services configured on Rojas are: Learning management and con-
tent management systems (Moodle and Canvas) configured as AMP stack and
ruby/node.js, respectively. RocketChat is also running a "slack-equivalent"
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Figure 3: Security Audit

with the exception that RockletChat is dual encrypted. The RocketChat
platform includes: team collaboration, omnichannel engagement, DevOps and
ChatOps.

3.1.5 Verde

Verde is running and AMP stack and is configured for email services (Fig
4). Specifically, there are two webservers configured, Apache2, Postfix and
Dovecot. The email client is Squirrelmail, although this can easily be configured
to integrate with other services which use SMTP. In its current configuration,
Rojas can easily scale to 100 accounts, and up to 1000 with integration with
NGinx.

3.1.6 Amarillo

Amarillo is running an AMP stack and is currently "blank" in terms of services.
This is by design, as we wanted to have a configured server that we can deploy
new services to without impacting existing servers. We also wanted to have a
server ready to go for fail-over if we decide to mirror verde or najanja.

3.2 Remaining Services

One remaining service that has yet to be installed and configured is KVM
(Kernel-based Virtual Machine). This is a virtualisation technology that allows
you to run multiple operating systems, including multiple instances of the same
operating system, concurrently on the same physical computer. It is not the
same as a "dual boot" setup where you choose which operating system you
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Figure 4: Email Services

Figure 5: KVM - Virtual Host Server

want to run. With KVM the operating systems can all be running at the same
time and you can access them all and use them all just like they were physically
separate computers.

4 Conclusions and Future Work

There is more testing and configuration to do on Verde for email services and
on Rojas for content management and RocketChat. Once this is complete, a
complete security audit can take place for the web-services associated with this
cloud environment. A comprehensive audit of server configurations, port scan-
ning, and vulnerability analysis specific to network and server configurations
will also be necessary.
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