
The Journal of Computing
Sciences in Colleges

Papers of the 30th Annual CCSC
Central Plains Conference

April 5th-6th, 2024
Graceland University

Lamoni, IA

Bin Peng, Associate Editor Joseph Kendall-Morwick, Regional Editor
Park University Washburn University

Volume 39, Number 6 April 2024



The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2



Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2024 CCSC Central Plains Conference 10

Regional Committees — 2024 CCSC Central Plains Region 11

Reviewers — 2024 CCSC Central Plains Conference 14

Navigating the Technological Tide: How Leveraging Past Per-
spectives Can Help You Create Sound Software for Everyone
— Opening Keynote 16

Monica McGill, CSEdResearch.org

Perspectives on Technology’s impact on Financial Services and
the Future Workforce
—Banquet Address 18

Kevin Juhnke, Enterprise Architect

The Effect of ChatGPT: Student Perspective and Performance
Achievement 20

Wen-Jung Hsin, Park University

Key Performance Indicator Selection for Online Teaching Perfor-
mance Prediction 30

Gary Yu Zhao and Cindy Zhiling Tu, Northwest Missouri State Univer-
sity

Examining Student Use of AI in CS1 and CS2 41
Eric D. Manley, Timothy Urness, Andrei Migunov, and Md. Alimoor
Reza, Drake University

Introducing Controlled Variability in Programming Assignments 52
Charles Hoot, Nathan W. Eloe, and Diana Linville, Northwest Missouri
State University

3



Coding Integrity Unveiled: Exploring the Pros and Cons of De-
tecting Plagiarism in Programming Assignments Using Copy-
leaks 61

Chandra Mouli Madhav Kotteti, Ratan Lal, Prasad Chetti, Northwest
Missouri State University

Engaging Middle Schoolers in Game Programming: A Scratch-
Based Workshop Experience 70

Abbas Attarwala, California State University, Chico

Auto-Graded Review Questions: A Modern Take on a Classic
Technique 79

Jason E. James and Mahmoud Yousef, University of Central Missouri

Teaching functional programming in F# to Grade 9 and Grade
10 students 86

Abbas Attarwala, California State University, Chico

Inclusive Practices and Universal Design in the Computer Science
Classroom 93

Meredith Moore and Timothy Urness, Drake University

Using Generative AI to Design Programming Assignments in In-
troduction to Computer Science — Nifty Assignment 103

Rad Alrifai, Northeastern State University

The Interplay of 2D Arrays and Nested Loops — Nifty Assign-
ment 107

Cong-Cong Xing, Nicholls State University; Jun Huang, South Dakota
State University

Teach Me Video Project — Nifty Assignment 111
Wen-Jung Hsin, Park University

Cyberpalooza: Experiences Presenting Cyber/CS Subjects to High
School Students — Panel Discussion 114

Charles Hoot, Nathan Eloe, Matthew Schieber, Zhengrui Qin, Northwest
Missouri State University

Getting Started with Large Language Models for the CS Curricu-
lum — Workshop 116

Eric D. Manley, Drake University

4



Ethical Considerations in Embracing Generative AI in Higher
Education — Workshop 118

Maria Weber, Annamaria Szakonyi, Tatiana Cardona, Dhananjay Singh,
Saint Louis University

5



6



The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:

Scott Sigman, President (2024),
ssigman@drury.edu, Mathematics and
Computer Science Department, Drury
University, Springfield, MO 65802.

Bryan Dixon, Vice
President/President-Elect (2024),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.

Baochuan Lu, Publications Chair
(2024), blu@sbuniv.edu, Division of
Computing & Mathematics, Southwest
Baptist University, Bolivar, MO 65613.

Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.

Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.

Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).

Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative(2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024),
tina.johnson@mwsu.edu, Department of
Computer Science, Midwestern State
University, Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024),
kevin.treu@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

7



Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Department of
Computing and Mathematical Sciences,
Park University, Parkville, MO 64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of

Computer Science, Hood College,
Frederick, MD 21701.
Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

8



CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

ACM CCECC

9



Welcome to the 2024 CCSC Central Plains Conference

It is my pleasure to welcome you to the 30th annual Consortium for Com-
puting Sciences in Colleges Central Plains Region Conference hosted by Grace-
land University in the community of Lamoni, Iowa. The conference this year
appeals to a variety of different levels with a broad range of papers, nifty assign-
ments, and workshops. Topics range from the effect of Generative AI to engag-
ing younger students in coding. The diverse program is sure to have something
for everyone. There will be two outstanding speakers to share with us. Dr.
Monica McGill has a passion for computing education research. She founded
her own company, Institute for Advancing Computer Education(IACE), which
focuses directly on equity-focused K-12 CS education. The banquet speaker is
Mr. Kevin Juhnke who has been at Principal Financial Group since his grad-
uation from Graceland in 1990. His experience ranges from COBOL developer
to Enterprise Architecture. Both speakers will deliver valuable insights for at-
tendees. Additionally, the program includes activities for students: paper and
poster presentations, Hack-A-Thon reports, and a programming contest.

The paper acceptance rate for this year was 56%. Every paper was reviewed
by at least three reviewers. This ensures that the papers accepted in this
program continue to be first-rate. I am certain that the conference program
will benefit both computer science educators and students.

I am thankful to have worked with a group of dedicated individuals. The
devoted committee members, reviewers, session moderators, and many other
volunteers, make this conference go and provide an excellent experience for
the conference attendees. I would also like to express my appreciation to the
administration, staff, colleagues, ITS staff and Ackerley scholars at Graceland
University. They volunteered many hours to prepare and support the confer-
ence. Lastly, thank you to the numerous individuals, vendors, and organiza-
tions whose support helped make the conference possible.

I am pleased to be hosting this year’s conference in Lamoni, which is a
gateway city to the state of Iowa. Please take time to enjoy the many Amish
shops, antique stores, and heritage of the small rural community with a big
heart. Graceland University welcomes all to the Lamoni campus. I hope you
find the conference inspirational and educational. We look forward to seeing
you in April.

Kevin Brunner, Ph.D.
Graceland University

CCSC-2024 Central Plains Conference Chair

10



2024 CCSC Central Plains Conference Steering
Committee

Conference Chair
Kevin Brunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graceland University
Conference Publicity
Bill Siever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washington University in St. Louis
Joan Gladbach . . . . . . . . . . . . . . . . . . . . . . . . . . University of Missouri Kansas City
Kevin Brunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graceland University
Shane Adams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graceland University
Keynote Speaker
Kevin Brunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graceland University
Pre-Conference Workshop
Wen-Jung Hsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Park University
Judy Mullins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Retired
Joan Gladbach . . . . . . . . . . . . . . . . . . . . . . . . . . University of Missouri Kansas City
Papers
Charles Riedesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Nebraska-Lincoln
Judy Mullins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Retired
Ron McCleary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retired
Panels, Tutorials, Workshops
Ron McCleary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retired
Judy Mullins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Retired
Mohammad Rawashdeh . . . . . . . . . . . . . . . . . . . . . . University of Central Missouri
Mahmoud Yousef . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Central Missouri
Nifty Assignments
Mohammad Rawashdeh . . . . . . . . . . . . . . . . . . . . . . University of Central Missouri
Brian Hare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Missouri Kansas City
Bill Siever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washington University in St. Louis
Ron McCleary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retired
Judy Mullins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Retired
Lightning Talks
Joseph Kendall-Morwick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washburn University
Bill Siever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washington University in St. Louis
Wen-Jung Hsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Park University
K-12 Nifty Assignments and Lightning Talks
Bill Siever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washington University in St. Louis
Perla Weaver . . . . . . . . . . . . . . . . . . . . . . . . . . . Johnson County Community College
Belinda Copus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Central Missouri
Mohammad Rawashdeh . . . . . . . . . . . . . . . . . . . . . . University of Central Missouri
Student Paper Session
Scott Sigman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drury University

11



Wen-Jung Hsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Park University
Mahmoud Yousef . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Central Missouri
Joseph Kendall-Morwick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washburn University
Student Poster Competition
Joseph Kendall-Morwick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washburn University
Ron McCleary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retired
Student Hack-a-thon
Scott Sigman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drury University
Chris Branton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drury University
Mahmoud Yousef . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Central Missouri
Bill Siever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washington University in St. Louis
Student Programming Contest
Charles Riedesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Nebraska-Lincoln
Joan Gladbach . . . . . . . . . . . . . . . . . . . . . . . . . . University of Missouri Kansas City
Brian Hare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Missouri Kansas City
Two-Year College Outreach
Suzanne Smith . . . . . . . . . . . . . . . . . . . . . . . . . Johnson County Community College
Trisch Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . Johnson County Community College
Mahmoud Yousef . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Central Missouri
Local Arrangements
Kevin Brunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graceland University

12



Regional Board — 2024 CCSC Central Plains Region

Regional Rep & Board Chair
Judy Mullins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Retired
Registrar & Membership Chair
Ron McCleary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retired
Current Conference Chair
Kevin Brunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graceland University
Next Conference Chair
Eric Manley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drake University
Past Conference Chairs
Mahmoud Yousef . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Central Missouri
Perla Weaver . . . . . . . . . . . . . . . . . . . . . . . . . . . Johnson County Community College
Secretary
Diana Linville . . . . . . . . . . . . . . . . . . . . . . . . . . Northwest Missouri State University
Regional Treasurer
Ajay Bandi . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Northwest Missouri State University
Regional Editor
Joseph Kendall-Morwick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washburn University
Webmaster
Deepika Jagmohan . . . . . . . . . . . . . . . . . . . . . . . . . . St. Charles Community College

13



Reviewers — 2024 CCSC Central Plains Conference

Imad Al Saeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Saint Xavier University, Chicago, IL
Rad Alrifai . . . . . . . . . . . . . . . . . . . . . . . . . Northeastern State University, Tahlequah, OK
Beth Arrowsmith . . . . . . . . . . . . . University of Missouri - St. Louis, Saint Peters, MO
Ajay Bandi . . . . . . . . . . . . . . . . . . . Northwest Missouri State University, Maryville, MO
Chris Branton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drury University, Springfield, MO
Kevin Brunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graceland University, Lamoni, IA
John Buerck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saint Louis University, St. Louis, MO
David Bunde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Knox College, Galesburg, IL
Karla Carter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bellevue University, Bellevue, NE
Aziz Fellah . . . . . . . . . . . . . . . . . . . Northwest Missouri State University, Maryville, MO
Ernest Ferguson . . . . . . . . . . . . . . Northwest Missouri State University, Maryville, MO
David Furcy . . . . . . . . . . . . . . . . . . . . . . . University of Wisconsin Oshkosh, Oshkosh, WI
Brian Hare . . . . . . . . . . . . . . . . . . University of Missouri-Kansas City, Kansas City, MO
Suvineetha Herath . . . . . . . . . . . . . . . . . . . . . . . . . . Carl Sandburg College, Galesburg, IL
Charles Hoot . . . . . . . . . . . . . . . . . Northwest Missouri State University, Maryville, MO
Wen Hsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Park University, Parkville, MO
Joseph Kendall-Morwick . . . . . . . . . . . . . . . . . . . . . . . . Washburn University, Topeka, KS
Brian Kokensparger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creighton University, Omaha, NE
Srinivasarao Krishnaprasad . . . . . . . . . Jacksonville State University, Jacksonville, AL
Diana Linville . . . . . . . . . . . . . . . . Northwest Missouri State University, Maryville, MO
Baochuan Lu . . . . . . . . . . . . . . . . . . . . . . . . . . .Southwest Baptist University, Bolivar, MO
Eric Manley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drake University, Des Moines, IA
Thomas Mertz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Kansas State Polytechnic, Salina, KS
Jose Metrolho . . .Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
Kian Pokorny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McKendree University, Lebanon, IL
Hassan Pournaghshband . . . . . . . . . . . . . . . Kennesaw State University, Kennesaw, GA
Charles Riedesel . . . . . . . . . . . . . . . . . . . .University of Nebraska - Lincoln, Beatrice, NE
Michael Rogers . . . . . . . . . . . . . . . . . . . . University of Wisconsin Oshkosh, Oshkosh, WI
Jamil Saquer . . . . . . . . . . . . . . . . . . . . . . . . . . . Missouri State University, Springfield, MO
William Siever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Washington University, St. Louis, MO
Cindy Tu . . . . . . . . . . . . . . . . . . . . . Northwest Missouri State University, Maryville, MO
Timothy Urness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drake University, Des Moines, IA
Henry Walker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grinnell College (retired), Napa, CA
Maria Weber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Saint Louis University, St. Louis, MO
Mudasser F Wyne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . National University, San Diego, CA
Cong-Cong Xing . . . . . . . . . . . . . . . . . . . . . . . . Nicholls State University, Thibodaux, LA
Baoqiang Yan . . . . . . . . . . . . . . . Missouri Western State University, Saint Joseph, MO
Mahmoud Yousef . . . . . . . . . . . . . . . .University of Central Missouri, Warrensburg, MO

14



15



Navigating the Technological Tide: How
Leveraging Past Perspectives Can Help

You Create Sound Software for Everyone∗

Opening Keynote

Monica McGill, Ed.D. (she/her)
CEO and Founder, CSEdResearch.org

Abstract

In the ever-expanding landscape of our digital
existence, artificial intelligence (AI) is seamlessly
integrating into the fabric of our lives, much like
a dye diffusing through water. While technologi-
cal progress is not a novel concept, insights from
the past offer invaluable lessons about how in-
novation shapes our world. Drawing from these
historical lenses, my keynote talk aims to pro-
vide a framework within the realm of computer
science that encompasses AI and technological advancements. Join me on a
journey to delve into its nuanced impact on present and future developers, em-
phasizing the importance of adopting critical perspectives and providing you
with some basic tools on how to do so. Leveraging these insights can imbue
your projects with depth, reflection, and profound meaning in the ever-evolving
landscape of computing and AI.

Bio

Dr. Monica McGill is passionate about computing education research, which
motivated her to found the Institute for Advancing Computing Education
(IACE) as a non-profit. She has led the organization in conducting equity-
focused K-12 CS education research funded by grants and contracts from var-
ious national and international organizations, including the National Science

∗Copyright is held by the author/owner.
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Foundation, Google, Amazon Future Engineer, CSTA, Code.org, and more.
Monica earned her B.S. in Computer Science and Mathematics from University
of Illinois-Urbana Champaign, M.S. in Computer Science from George Wash-
ington University, and Ed.D. in Curriculum and Instruction from Illinois State
University as a non-traditional student. Prior to forming IACE, she worked for
several years in industry as a computer scientist and then as a twice-tenured
professor of computer science and game design/development for over 15 years.

She has authored/co-authored 85+ articles related to computing education
and is currently working as a primary investigator on several National Science
Foundation (NSF) grants exploring CS education in the US. She also served as
inaugural chair for the ACM-W North America committee, on the Computer
Science Teachers Association (CSTA) Board and Sjögren’s Foundation board
and as an associate editor of the ACM Transactions on Computing Education.

Monica enjoys embarking on travel adventures with her husband Dan, some-
times bringing along their dogs, Coco and Benny, and sometimes road-tripping
cross country to visit one of their daughters.
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Perspectives on Technology’s impact on
Financial Services and the Future

Workforce∗

Banquet Address

Kevin Juhnke
Enterprise Architect

Abstract

A variety of experiences over a 30+ year career
in the computing field at Principal Financial pro-
vides for a life-long journey with many fascinat-
ing insights. Mr. Juhnke will focus his thoughts
on:

• Business and market challenges in Finan-
cial Services and their impact on an orga-
nization’s Technology Strategies

• The impact key maturing and emerging
technologies have on the Financial Services
industry including...

– Cloud Advancements

– Generative AI

– Blockchain

– “Citizen” Development

He will conclude his thoughts with perspectives on areas where educators
can help position students to be more marketable and impactful in financial
services tech jobs after graduation.

∗Copyright is held by the author/owner.
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Bio

Kevin Juhnke is a Director of Enterprise Architecture at Principal Financial
Group in Des Moines, IA and a ‘90 graduate of Graceland College (Univer-
sity) with a BS in Computer Science and Math. Kevin has been at Principal
for the entirety of his career, beginning as a COBOL developer, transition-
ing to leadership roles in Technology R&D, and eventually settling into the
realm of Enterprise Architecture. For the last 20+ years, Kevin has led the
Enterprise Architecture practice of various divisions within Principal including
Corporate Finance, Enterprise CRM, Principal Asset Management, Principal
International and is currently the lead Enterprise Architect for Principal Re-
tirement and Income Solutions (i.e. Principal’s Retirement Division). In the
role of Enterprise Architect, Kevin spends his days identifying and shaping
technology strategy, enabling transition of business and technology strategy to
execution, and driving modernization of technology portfolios to enable future
business strategies; some days with more success than others.
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The Effect of ChatGPT: Student
Perspective and Performance

Achievement∗

Wen-Jung Hsin
Computer Science and Information Systems

Park University
Parkville, MO 64152

wen.hsin@park.edu

Abstract

ChatGPT, introduced in November 2022, has rapidly used in vari-
ous educational systems, prompting the U.S. Department of Education
to explore the role of Artificial Intelligence (AI) in teaching and learn-
ing. This paper focuses on the impact of AI, particularly ChatGPT,
in Computer Science education from the student’s perspective and stu-
dent’s performance achievement. Specifically, a study in a Computer
Networking course encouraged students to use ChatGPT for learning-
related questions, followed by a post-exam survey to evaluate its impact
on their learning. Both student feedback and performance achievement
indicate that ChatGPT has made a positive impact in their learning in
the Computer Networking course.

1 Introduction

In the realm of education, the utilization of virtual, conversational assisting
tools such as Chatbots [2, 11], as well as Amazon Alexa and Google Home,
has experienced significant growth over the past decade. This increase can be

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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attributed mainly to its capacity to provide effective learning experience in a
one-on-one teacher-student context, effectively addressing challenges found in
scenarios such as large class sizes and online education platforms [26]. Since
ChatGPT unleashed in November 2022, it has been used in various education
systems such as healthcare, K-12, colleges, special, online learning, language
learning, and career counseling in an astounding rate [2, 12]. As such, fairly
recently, the Office of Educational Technology in the U.S. Department of Ed-
ucation issued a report entitled “Artificial Intelligence (AI) and the Future of
Teaching and Learning” [6] delving into the benefits and hurdles associated
with incorporating AI into education. The timing of this publication under-
scores the increasing significance of AI in education. In this paper, we look
at the effect of AI tools on Computer Science education from the student’s
perspective. In particular, we narrow our focus to the student’s viewpoint on
whether ChatGPT helps student learning. Examining whether ChatGPT helps
student learning from the student’s perspective is essential for understanding
student engagement, motivation, and the effectiveness of their learning experi-
ence. Additionally, it aids in identifying challenges and areas for improvement.
To achieve this, we conduct a study in a computer networking course. While
the students were preparing for a proctored, face-to-face exam, we suggested
to the students to ask a list of questions related to computer networking using
ChatGPT. After the exam, we had the students take a survey to see if Chat-
GPT improves their learning in the subject matter. This paper reports the
student survey result and performance achievement. This paper is organized
as follows. Section 2 gives a literature review. Section 3 describes our research
method and student survey result. Section 4 discusses the student survey re-
sult. Section 5 analyzes the student performance achievement. Section 6 gives
a summary and conclusion.

2 Literature Review

Since the debut of ChatGPT in November 2022, there are a lot of research
studies [3, 5, 7, 9, 10, 14, 16, 22, 25, 27] investigating its use in education. For
example, papers [2, 23] study the benefits of ChatGPT provided to teaching
and learning. Paper [21] tries to understand ChatGPT’s implication on assess-
ment. Papers[8, 14, 19] study ChatGPT in its potential in medical or media
educations. Paper [28] looks at the user experience of ChatGPT to find the
implication in education. Papers [9, 20] advocate implementing ChatGPT’s in
education in a responsible way. Additionally, there are several review or survey
papers such as [1, 4, 5, 13, 17, 18] describing the use of ChatGPT in education
from student’s perspective without actual student data support. For example,
paper [17], a review paper, calls for responsible and ethical use of ChatGPT
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for lifelong learning. Papers [5, 13, 18] provide commentary or review on the
benefits and challenges of ChatGPT for students and teachers. Paper [24] re-
views 100 articles on how ChatGPT disrupts higher education (both enhances
and affects the student learning.) Paper [1] conducts 30 tests on ChatGPT
and suggests ways for instructors to change assignments or tests to prevent the
possibility of future human unlearning. Paper [13], a review paper, presents
ChatGPT as opportunities for learning from elementary school students to uni-
versity students, plus learners with disabilities. Notably, none of these papers
present empirical student’s viewpoint data to support their assertions. In this
paper, our emphasis is on the students’ perception on ChatGPT, and the data
presented is drawn directly from the students’ own experiences and feedback
in a computer networking class.

3 Our Study

3.1 Research design

In Spring 2023 semester, we conducted the research study in a computer net-
working class with 12 students. The students in class are college juniors and
seniors. While the students were preparing for an in-person, proctored exam,
we recommended that the students utilized ChatGPT and asked the suggested
questions as shown in Table 1.

Throughout the semester, students have developed a fundamental grasp of
computer networking concepts, and the questions presented in Table 1 show
some of the key concepts covered in the course.

3.2 Student Feedback

After the exam, a survey is conducted as shown in Table 2. The students
rate each prompt with a 5-point Likert scale (i.e., 5-Strongly agree, 4-Agree,
3-Neutral, 2-Disagree, and 1-Strongly disagree.) Table 2 shows the average
and standard deviation of each prompt asked in the survey. These findings
indicate that the majority of students either agreed or strongly agreed with
the prompts, reflecting a high level of consensus among the respondents.

Written feedback from students also shows that ChatGPT has been ex-
tremely beneficial to them. Here are positive comments reflecting their expe-
rience with ChatGPT.

• “ChatGPT is a useful resource because it is able to further explain topics
I might struggle in.”

• “It helps to explain information and I can ask for more info if I don’t
understand.”
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Q1 What is the current trend of computer networking? Please provide
some real-life examples.

Q2 What is the best way to protect computer networking from security
threat? Please provide some real-life situations and solutions.

Q3 Why do we need protocols and models in computer networking?
Q4 What is the key difference between OSI and TCP/IP?

Q5 What are the characteristics of CSMA/CA? Currently, which
technologies in real-life are using CSMA/CA?

Q6 Are there cases where people try to break the fiber optic cables on the
ocean floor? If so, please briefly describe some of these cases.

Q7 What is the address resolution in computer networking used for?

Q8 In IPv4, how do we know if an address is a network address or a
broadcast address?

Q9 In IPv4, how do I know if an address is public or private?
Please give an example of each kind.

Q10 Why does a switch need MAC address table?

Q11 What is the purpose of NAT in computer networking? If we
did not have NAT, what would have happened?

Q12 What is a default gateway?

Q13 I cannot remember the names of TCP/IP layers. Can you suggest ways
to remember the names of the TCP/IP layers?

Table 1: Recommended Questions for ChatGPT

• “I pose the questions that I got wrong on quizzes I took this semester.
Using ChatGPT I was able to get a more through out [SIC] way of the
actual answer for those questions. I think that using ChatGPT can be a
great resource to look at studying as well as correcting wrong answers.”

• “I like that it gives further information to what my question answers more
like a broad explanation. I like it because I am a slow learner.”

• “It is good if you just need a few refresher tips, such as formulas. . . ”

• “It makes finding information easier than to trying to look it up.”

• “. . . if I don’t understand it, I can tell that it [ChatGPT] dumbs it down
so that I can understand the information in a more simple [SIC] way.”

• “. . . Overall, I think that this [ChatGPT’s examples] is one the best
advantages of using ChatGPT.”
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ID Survey Prompt Average STD

S1 ChatGPT provides useful resources for learning and
understand computer networking concepts. 4.25 0.83

S2

Compared the learning with and without ChatGPT,
learning with ChatGPT helps me understand the
concepts of computer networking better than without
ChatGPT.

3.92 0.86

S3 ChatGPT offers practical applications of how computer
networking concepts are applied in real-world scenarios. 4.17 0.80

S4
Through ChatGPT’s real-world examples and
applications, I have gained a deeper appreciation of
the computer networking.

3.83 0.80

S5 Through ChatGPT, I have gained a deeper
understanding of computer networking concepts. 3.75 1.09

S6 ChatGPT has broadened my knowledge in computer
networking. 3.83 1.07

Table 2: Survey and Result

• “I will say that using ChatGPT, I understand concepts in computer net-
working a lot better. It helps me visualize but also teach me concepts
in ways that I understand. Using this [ChatGPT] has given me a better
appreciation for this course.”

• “I am amazed on how ChatGPT works by itself, and it also increased my
motivation to learn, and it is like to have a ‘mentor’ 24/7.”

• “.. For some [students], it is also like a tutor. Most people aren’t as
comfortable with speaking up in class, so to have that [ChatGPT] as an
option is very helpful to me.”

• “The only thing I could say that it did show me better was different
examples, so that is a bright spot in my opinion.”

• “I feel like I learned a lot with what I have used ChatGPT. Its answers
are always clear and precise.”

Here are some negative comments from using ChatGPT:

• “.. I like to work on things hands-on. . . while it does give me the answers
to the problems, it does not give the steps to get there.”

• “ . . . I can see this tool being abused by students.”
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3.3 How do the students use ChatGPT?

In the survey, we also ask the students how they have been using ChatGTP
so far by selecting all those roles applied to them [15]. Figure 1 illustrates the
results, with the Y bar representing the number of students selecting each role.

Other roles such as translating languages or troubleshooting aids receive
very few votes. As can be seen from Figure 1, the majority of the students
have used ChatGPT as a tutor and have used it to create content. Some
students provided more specifics on how they have used ChatGPT, including

• “Using ChatGPT to help prepare me for interviews.”

• “It mostly only applies to text summaries.”

• “I have asked it to write short stories.”

• “It helps with decoding code and errors which is great and also gives me
an explanation on where I went wrong.”

• “Trying to use it to generate code, it sort of works, but often I found it
to be fragmented pieces of code glued together when it came to anything
complex.”

• “To check my grammar and writing skills.”

• “I mainly use it for studying or getting further clarification on topics for
classes.”

4 Discussion: Interpretation of Student Survey Results

Question: Did ChatGPT enhance student learning in computer science courses
from the student’s perspective? The feedback provided by the students suggests
that ChatGPT has played a highly valuable role in their learning experiences.
The fact that the majority of students either agreed or strongly agreed with
the survey prompts indicates a positive reception of ChatGPT’s assistance in
understanding computer networking concepts. The low standard deviations
in the responses highlight the consistency in student opinions, further under-
scoring the overall positive impact of ChatGPT. These findings suggest that
AI-powered tools, such as ChatGPT, could be valuable in education, offer-
ing students accessible support for understanding challenging subjects such as
computer networking. Figure 1 and the extensive feedback from students show
the varied applications in which ChatGPT has been utilized as a versatile sup-
porting tool. In particular, a majority of students have employed ChatGPT
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as a personal tutor, leveraging it for tasks such as content generation, inter-
view preparation, text summarization, creative writing, debugging assistance,
advice solicitation, product recommendations, and even code generation. De-
spite some students observing constraints in handling intricate coding tasks,
the general impression indicates that ChatGPT can serve as a valuable and
versatile tool for students across different environments, providing them with
support, guidance, and enrichment in their learning journeys.

5 Student Performance Achievement: Comparative Re-
sult

We are interested in knowing whether ChatGPT has any effect in student
performance. As such, we compared the student exam performance result
between 2023 Spring semester (after ChatGPT became publicly available) and
2021 Fall semester (before ChatGPT was publicly available.) The exams in
both semesters are comprehensive, proctored, final exams, and have the same
level of difficulties. The class size in 2023 Spring semester is 12 students, and
the class size in 2021 Fall semester is 10 students. Both classes were taught by
the same instructor.

Table 3 reveals that the exam average for the 2023 Spring semester surpasses
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Average Standard
Deviation

Student Performance in 2023 Spring with ChatGPT 20.93 6.62
Student Performance in 2021 Fall without ChatGPT 18.43 11.94

Table 3: Student Performance Comparison With and Without ChatGPT

that of the 2021 Fall semester, and the standard deviation is lower in the
2023 Spring semester. This indicates that students performed better in the
2023 Spring semester. Our initial investigation suggests that using ChatGPT
as a learning aid enhances students’ comprehension of computer networking
concepts. However, it’s important to note that this study is based on 2 small
classes, and further research with a larger dataset is necessary.

6 Summary and Conclusion

The outcome of the student survey serves as informal evidence of the value that
ChatGPT contributes to the classroom in computer networking. Students ex-
press contentment with the assistance it offers, noting its capacity to provide
personalized guidance, answer questions, and offer explanations, thereby en-
hancing their understanding and overall learning experience. Moreover, the
survey result highlights the various roles ChatGPT can fulfill. Finally, the in-
tegration of ChatGPT has led to enhanced student performance in the study,
comparing courses before and after its public accessibility, though it’s impor-
tant to acknowledge the study’s limited dataset.
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Abstract

This paper attempts to explore a simple and effective set of key in-
dicators for online instructor’s performance prediction based on a large
amount of data generated from the learning management system (LMS).
Data was collected from a Midwest university LMS platform - Canvas.
Univariate and bivariate analyses were conducted, and then the filter-
based technique and a wrapper-based method were combined to select
the key influence variables. We compared the performance of the logistic
regression (LR) machine learning model on different selected key indica-
tor sets. Ten selected variables were suggested as the best key indicators
for online instructors’ performance evaluation.

1 Introduction

As the prevalence of online programs and enrollment of remote students has
surged significantly in higher education, it is important for educational institu-
tions to evaluate online instructors’ performance to provide high-quality online
education. Traditional instructor performance evaluation is based on student
evaluation surveys. However, the response rate for online classes is far lower
than for campus classes. These surveys are usually completed at the end of the
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semester. Compared to the traditional teaching performance evaluation, the
data of online teaching is limited to the learning management system (LMS)
platform only. Online students do not have a chance to meet with instructors
in person. Therefore, for the timely interventions given to online instructors,
it is crucial to predict their performance evaluation using LMS data as early as
possible. Nowadays, one of the major challenges of higher educational institu-
tions is the large volume of data from ERP and LMS platforms and how it can
be used to improve the quality of academic programs, services, and managerial
decisions [1]. Researchers have done a lot of research on building the predic-
tion model based on different modeling methods to predict students’ academic
performance in the online education context. However, there is a significant
lack of studies on constructing the instructor’s performance prediction models
[14, 10, 2]. There are several limitations in the existing literature. First, there
is a dearth of research using LMS behavioral and activity data for constructing
instructors’ performance prediction models. Instead, the survey data is pre-
dominately used to train and test the models. Second, in existing work, there is
a lack of research on employing variable selection methods for determining the
key indicators that affect the prediction of instructors’ performance. Third, in
the previous studies, the prediction of the instructor’s performance is primarily
a binary classification problem, e.g., the performance is defined as “acceptable”
or “no-acceptable”; there is a lack of related work focusing on multi-class clas-
sification problems. To fill the abovementioned gaps, this study aims to solve
the problem: What indicators can be selected from LMS to predict online
teachers’ performance effectively? This study explores a few variable selection
methods with the same data scenario for seeking the improvement of perfor-
mance and interpretability of the prediction solution. Moreover, we use the
Logistic Regression (LR) model to compare and evaluate these sets of selected
key indicators.

2 Related Work

We reviewed and synthesized the existing research from three aspects: data,
variable selection, and evaluation.

2.1 Data

The data used for online instructor performance prediction can be from an
individual or a combination of these three data sets: demographic and socioe-
conomic information such as age and gender, subjective perception data such
as the survey of students’ perceived teacher’s teaching quality, behavioral and
activity data such as language characteristics, teaching and learning process,
and summative data. In extant literature on learning performance prediction,
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explicit and implicit behavioral data or behavioral data combined with demo-
graphic data has been widely used to analyze and build models. For example,
Pan et al. (2016) applied the quantile regression analysis to investigate how
the time and frequency of login curriculum, browsing teaching material, and
curriculum discussion affect the final-term teachers’ performance assessment
[12]. With the popularization of the LMS platform, scholars can use abun-
dant records about instructors’ and learners’ activities to facilitate the model
construction [15, 16, 11, 7]. Researchers construct the prediction model using
the LMS data that includes users’ information, course selection information,
course content viewing data, participation in discussions, and academic assess-
ment data [16, 4, 5, 9].

2.2 Variable Selection

Compared to the demographic information and perception data, the learning
process and summative behavioral data extracted from LMS can be used as
better variable selection factors [11]. Machine learning methods are widely em-
ployed to improve the accuracy of the prediction model. Reported literature
shows that various machine learning approaches can provide satisfactory results
and similar performance. Nonetheless, it is a big challenge to analyze the pre-
diction performance of machine learning algorithms due to different evaluation
indicators and problem specifications that directly affect the effectiveness and
efficiency of the algorithms [6]. Only a few previous studies consider the impact
of independent variables on the performance of machine learning methods and
the interpretability of the prediction models. For example, Huichao Mi et al.
(2022) use multiple logistic regression, sequential forward selection (SFS), and
sequential backward selection (SBS) to select the optimal feature combination
that affects the performance prediction [11]; Ahmed et al. (2016) conduct at-
tribute selection using the OneR algorithm in Weka [5]; Agaoglu (2016) applies
stepwise discriminant analysis method to determine the significant variables [3].
Some other methods have been used in the existing work, such as grouping and
ranking analysis [13], ablation feature analysis [8], weight analysis by random
forest algorithm [16], and traditional linear regression analysis [7].

2.3 Evaluation

In existing studies, accuracy, precision, recall, and F1-score have been primarily
used to evaluate and compare the performance of the prediction models [2,
4, 5, 9, 3]. Accuracy measures the rate of total correct predictions to all
predictions. Precision measures the correctness rate of the class predictions
done as positive by the classifier, whereas recall measures the rate of positives
correctly predicted as positive by the classifier. In this study, we use these
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metrics to analyze and compare the effectiveness of various key indicator sets
based on the Logistic Regression model.

3 Methodology

This section presents the methodology of our work, which includes data collec-
tion, data preprocessing, variable selection, and explanation for analysis and
prediction.

3.1 Data Collection

Data were collected from a Midwest public university, which contains 37 online
programs and 1864 online classes taught from 2019 to 2022. The data was ex-
tracted from Canvas - an LMS platform and EvaluationKit – integrated survey
management software to Canvas for instructors’ teaching performance evalua-
tion by students. Students evaluate instructors’ performance from four aspects
using 12 Likert (values are 1-4) questions: instructional design, instructional
delivery, instructional assessment, and course management. We retrieved all
students’ evaluation raw data and aggregated the mean value for each course
taught by a particular instructor. This performance evaluation result is used
as the dependent variable in our study. The key performance indicators are
independent variables that consist of behavioral and activity features, includ-
ing teaching and learning process data and summative data in LMS. These
variables include:

• Faculty ID – The identity number of the online instructor.

• Course_sis_section_id – Identity string of online class.

• Instructor total activity time – Accumulated action time in a specific
class.

• Instructor page views – Viewed pages on the course site.

• Publish course site on time – The instructor publishes the course site on
the term start date or later.

• Assignment grading days – Days of all assignment grading in a course.

• Student dropout rate – Number of dropped students out of total students
enrolled in a course.

• Evaluation of total responses – Total of students who should evaluate the
course instructor.
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• Total responded – Total of students who have completed instructor eval-
uation.

• Total student enrolled – Number of students who enrolled in specific class.

• Student total activity time – Accumulated student action time in the
course site.

• Student page view – Student-viewed pages on the course site.

• Student participation rate – Student participation of online discussion-
s/quizzes.

• Assignment submission rate – Assignment submissions out of total as-
signments.

• On-time assignment submission rate – On-time submissions out of total
assignments.

• Late assignment submission rate – Late submissions out of total assign-
ments.

• Missing assignment submission rate – Missing submissions out of total
assignments.

• Student course score – Student current overall scores (grades).

3.2 Data Preprocessing

The target variable represents the performance of the instructor. The raw data
are numeric values between 1 and 4. We encoded these values to four classes
based on the historical experience and university policies, i.e., “3” (Excellent,
score 3.85-4.0), “2” (Good, score 3.5-3.85), “1” (Acceptable, score 3.25-3.5), “0”
(Improve, score 1.0-3.25). All student individual-level features were aggregated
to the course level. In addition, we encoded faculty ID and course-section-
sis-id using the hash encode method to hide identification data. Finally, we
merged instructor activity, student, and instructor evaluation data based on
the encoded ID. We did the quality check and preprocessing for all 16 variables
using Python Pandas, NumPy, Matplotlib, and Seaborn. First, we conducted
univariate analysis to identify and remove the records with outliers, missing
values, and error data. Univariate analysis also provides summary statistics,
such as mean, median, mode, variance, and standard deviation, which describe
the central tendency and variability of the variable. Then, we used bivariate
analysis to identify relationships between two variables. Identifying which vari-
ables are strongly related to the target variable (in the case of regression or
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classification) can guide model development. In machine learning and statis-
tics, bivariate analysis helps identify potential predictor variables for building
predictive models. The dataset is split into two subsets: training data (80

3.3 Key Indicator Selection

A valid variable selection process can reduce overfitting, improve accuracy, and
decrease training time. We performed the variable selection with a combined
method before modeling using the Python Scikit-learn library. Firstly, we used
different methods independently to select variables, e.g., univariate and bi-
variate analysis, filter-based method on Pearson correlation (Figure 1), and
wrapper-based method on sequential forward selection (SFS). Then, we com-
pared and analyzed various sets of selected variables on the Logistic Regression
model.

3.4 Evaluation

We used four popular measurements, accuracy, precision, recall, and F1-score,
to assess the model performance.

4 Results

All exploration jobs, such as variable selection, model fitting, testing, evalua-
tion, etc., are completed in the Jupyter notebook with Python 3 environment.
Most popularly used machine learning related Python libraries were imported
for our work, e.g., Pandas, NumPy, matplotlib, seaborn, sklearn, and mlxtend.

4.1 Indicator Selection

As shown in Figure 2, we originally extracted 18 independent variables from
the LMS platform based on the educational literature and institutional experi-
ence. Then, we used three variable selection methods independently. Fourteen
variables were selected based on univariate and bivariate analysis. Twelve vari-
ables were selected based on the Pearson correlation filter-based method. Eight
variables were selected based on the SFS wrapper-based method. Finally, ten
independent variables were determined by human experts based on the above
three methods. They are (1) Instructor total activity time, (2) Mean of grad-
ing days, (3) Total student enrolled, (4) Dropout rate, (5) Evaluation total
responded, (6) Student average activity time, (7) Student average page views,
(8) Average on-time submission rate, (9) Average late submission rate, and (10)
Student average score.
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Figure 1: The correlation heat map between variables
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Figure 2: The process of indicator selection

4.2 Comparison of Key Indicator Sets

We compared four sets of key performance indicators on the LR machine learn-
ing model. We also compared four sets of variables’ performance with the
cross-validation method on the LR model. As shown in Table 1, when we fit
the dataset to the Logistic Regression (LR) model, the set of 10 indicators
optimized by human experts synthesized from the other three variable selec-
tion methods achieved the highest performance (60.05% Accuracy), followed by
12 indicators (58.71%), 14 indicators (55.50%), and eight indicators (53.89%).
Moreover, we can see that computing time decreases along with reducing the
indicators.

Set of Indicators Accuracy Precision Recall F1-Score Computing
Time (sec.)

14 indicators 55.50% 55.50% 55.50% 55.50% 0.1159
12 indicators 58.71% 58.71% 58.71% 58.71% 0.0903
Ten indicators 60.05% 60.05% 60.05% 60.05% 0.0810
Eight indicators 53.89% 53.89% 53.89% 53.89% 0.0085

Table 2 shows the performance of four sets of indicators using 5-fold and 10-
fold cross-validation train processes on the LR model. First, the performance
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of the LR model increases slightly by 2% from 5-fold to 10-fold cross-validation
for each set of indicators. Second, the performance of LR in both 5-fold and 10-
fold cross-validation for each set of indicators does not change. The computing
time increases slightly from 5-fold to 10-fold for all sets of indicators. The
computing time keeps decreasing in both 5-fold and 10-fold, along with the
reduction of the indicators.

cross-
validation 5-fold 10-fold

Set of
Indicators

Mean
Cross-
Validation
Score -
Accuracy

Standard
Deviation
of Cross-
Validation
Scores

Computing
Time (sec.)

Mean
Cross-
Validation
Score -
Accuracy

Standard
Deviation
of Cross-
Validation
Scores

Computing
Time (sec.)

14
indicators 53% 3% 0.1247 55% 6% 0.1826

12
indicators 53% 3% 0.0863 55% 6% 0.1190

Ten
indicators 53% 3% 0.0706 55% 6% 0.0948

Eight
indicators 53% 3% 0.0638 55% 6% 0.0606

5 Discussion

To answer the research question, what indicators can be selected from LMS to
predict online teachers’ performance effectively, we conclude that ten variables
selected by human experts synthesized from the other three variable selection
methods show the best performance on the LR model. Conducting variable
selection iteratively can balance the trade-off between the number of features
selected and model performance. In summary, our best variable set on the LR
model is ten indicators. This set achieves 60.05% accuracy, which is lower than
what we expected. The small dataset may cause this – we have collected only
1,864 with 16 features. According to the literature, we may need more than
5,000 data items. For example, Abunasser et al. (2022) achieved over 90%
accuracy using a dataset including 5820 with 33 features [2]. Moreover, the
low performance may be due to the imbalanced dataset, inappropriate models,
low informative variable selections, etc. Additionally, these issues lead to the
ineffectiveness of the cross-validation training process. These issues will be
turned into our future work for this study.

6 Conclusion

Compared to the existing studies on predicting online instructors’ performance,
our study is outstanding in three aspects. First, this study focuses on the per-
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formance prediction for online instructors based on their behavior and activi-
ties on the LMS platform instead of using subjective student survey data. All
data, including critical indicators and the target variable are extracted from
online platforms. Second, we present how variable selection methods impact
performance prediction. These feature selection methods include a univariate
and bivariate analysis-based method, a filter-based method, a wrapper-based
method, and a human experts-based comprehensive method. Third, we train,
test, and compare four sets of indicators, then suggest the best solution for
satisfying the research objectives – a set of 10 indicators. Theoretically, this
work enriches the research of applying variable selection methods in a learning
analytics context, especially in instructors’ performance prediction with LMS
data. Practically, the artifact of prediction modeling with variable selection
methods and a proposed optimal set of indicators can be used for online in-
structors’ performance prediction effectively and efficiently. It helps the early
intervention during the learning and teaching process and improves overall
educational performance.
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Abstract

The launch of ChatGPT in November 2022 marked a seismic dis-
ruption to many disciplines and industries, including higher education.
For the first time, students everywhere have widely available access to
a Large Language Model (LLM) capable of generating content - includ-
ing solutions to programming assignments in CS1 and CS2 - that can
pass as the work of a high-achieving student while making traditional
plagiarism-detection obsolete. This has spurred various responses in
higher education, including a shift to more in-class and unplugged as-
sessments. At the same time, LLMs are transforming the way that many
people work, including professional software developers, and students
similarly might be able to use them to enhance their learning. In this
paper, we report on our experiences with a permissive policy towards the
use of ChatGPT and other artificial intelligence (AI) tools for assisting
students with their programming assignments in CS1 and CS2 courses
in the Spring 2023 semester. Students were allowed to use these tools
however they wished as long as they submitted a form which included a
transcript of their chat and a reflection on what they learned, if anything,
through the interaction. We found that students largely approached the
AI in positive ways and that they seemed to genuinely learn from the

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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experience. We also document some things that did not go well and that
remain challenges to using AI in programming courses, along with our
recommendations on how these might be dealt with in the future.

1 Introduction

Shortly after the introduction of OpenAI’s ChatGPT in November 2022 [8],
students and instructors everywhere quickly realized AI’s potential to solve
exam problems, generate high-quality essays, and write code on par with high-
achieving students. The New York Times was among many popular media
sources to profile the AI plagiarism threat and how higher education was re-
acting to thwart it [3], noting many examples of schools that are phasing out
asynchronous assignments in favor of in-class written and oral assessments. The
article also highlights tools that are being developed to detect AI-generated
work along with the schools that are eager to use them.

Computer Science educators had perhaps been more aware of the coming
danger than the general population. In their paper The Robots Are Coming:
Exploring the Implications of OpenAI Codex on Introductory Programming,
Finnie-Ansley et al. [1] tested OpenAI Codex (a GPT-3 model fine-tuned for
code generation) on 23 typical introductory programming tasks found in CS
education literature. The vast majority of tasks were successfully solved by
the AI, and the others were all correct with the exception of a trivial format-
ting error. The authors conclude that the technology “could be considered an
emergent existential threat to the teaching and learning of introductory pro-
gramming” [1]. At the same time, professional software developers have been
using it as a resource for learning and increasing productivity [11], either as a
standalone tool or integrated into developer tools like GitHub Copilot [2] which
had been shown to increase developer productivity [9].

This raises an important question for CS educators: Do LLMs represent an
existential threat that we should fight against or should we embrace it as just
another evolution in the way students and professionals work? Before reacting,
we first wanted to know more about how students approach the use of these
tools and whether they learn anything as a result. To this end, we implemented
a permissive policy towards the use of AI in our CS 1 and CS 2 courses in the
Spring 2023 semester. Students were allowed to use them however they wished,
including possibly to generate complete solutions to programming assignments,
as long as they completed a learning reflection to help us understand their
experience. The rest of this paper describes what we learned. We will first cover
some additional related work and then discuss our implementation details,
results, conclusions and recommendations going forward.

42



2 Background and Related Work

Because LLMs have only recently been made widely available to the public,
we are not aware of any studies into how programming students themselves
approach these tools for assistance on their own. However, researchers have
investigated other questions intersecting the use of LLMs and education. As
discussed above, Finnie-Ansley et al. demonstrated Codex’s remarkable ability
to solve problems typically encountered in introductory programming courses
[1]. MacNeil et al. consider how GPT-3 and Codex can be integrated into CS
pedagogy - for generating code explanations, generating programming assign-
ments, and generating code for larger software projects [6]. Kazemitabaar et
al. performed a controlled experiment that showed students in introductory
programming courses had increased performance when using Codex while note
degrading performance on later learning assessments [4].

Looking beyond CS, Rudolph et al. [10] explore the challenges and op-
portunities for ChatGPT in education and note that the concern that Chat-
GPT threatens traditional written assignments lends for the opportunity for
more innovative, effective assessment with the potential to transform educa-
tion. Rudolph et al. [10], McMurtrie [7], and Sharples [12] also recommend
that the new technology be embraced and incorporated into future pedagogy
by exploring how to shape and harness the new tools as opposed to stopping
students from using them. Suggestions include using flipped learning to em-
phasize the critical pieces of work that are completed during class and avoiding
formulaic assignments.

3 Implementation Details

Students enrolled in one CS1 and one CS2 section at our institution (a private
midwestern university), during the Spring 2023 semester were presented with
a permissive course policy on using ChatGPT and other AI to assist their
learning (as long as they filled out an AI learning reflection form) as well as
surveys to discover their views about LLMs. With IRB approval for this study,
students were asked for consent to publish data obtained from the surveys,
student work, and learning reflections. We removed data for students who
did not consent and removed identifying information from those who did. We
also removed examples of work where the students did not provide enough
information to analyze (for example, some students filled out the requested
reflection form but did not provide transcripts of their interaction with the
AI). We discuss the policy and surveys below, followed by information on the
coding scheme we used to summarize student work.

43



3.1 AI Learning Reflection

The learning reflection form asked students to include the entire transcript of
their interaction with the AI tool, even parts they didn’t use. It also included
questions asking students to explain whether/how they used the AI content
as part of their submission and how they checked its accuracy. Finally, they
were invited to reflect on their learning with the prompt “Give some evidence
that shows what you learned from using the AI tool for this assignment. For
example, this could be a written description showing you can explain the content
in question, some new code that applies what you learned to a different problem,
a new version of the code that was changed in sufficient ways to better solve
the problem, etc.”

3.2 Surveys

Near the beginning of the semester, students were given a survey in order
to judge their prior familiarity and views about ChatGPT and similar AI.
The purpose of this was to test whether educator fears about plagiarism were
validated by student views and whether students were likely to approach these
tools for positive use cases (like a kind of AI-Teaching-Assistant - for debugging,
help with understanding) or negative use cases (like plagiarism).

1. How do AI Assisted chatbots, like ChatGPT or IBM Watson, make you
feel? (Nervous or scared; Excited; Interested; Indifferent)

2. What do you think a college’s policy on using AI in classes should be?
(Totally allow; Allow in most cases; Ban in most cases; Totally ban)

3. How often do you think students in courses like this will turn in AI-
generated content as if it were their own work? (Never; Rarely; Sometimes;
Often; Always)

4: How often do you think students in courses like this one will use Chat-
GPT to help debug code? (Never; Rarely; Sometimes; Often; Always)

5: How often do you think students in courses like this will use ChatGPT
to help them understand ideas that they struggle with? (Never; Rarely; Some-
times; Often; Always)

Note that we asked these questions in terms of how often they thought
students in courses like this would do these things as a proxy for their own
behavior in order to elicit more honest answers - a student might not admit to
dishonest intent on the survey, but it might give insight into student perspec-
tives on actions their social circles might find acceptable.

At the end of the semester, students filled out a similar survey which in-
cluded an additional question on whether they complied with the course policy:

6. If you used ChatGPT or a similar AI tool to help you with an assignment
in this class, how often did you fill out the AI-Assisted Learning Reflection
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(a) Student Question (b) AI Response

(c) Student Assignment Submission (d) Evidence of Learning

Figure 1: Summary of student interaction with AI for assignments

document? (Not applicable - I didn’t use ChatGPT or a similar AI tool for
any assignments; Always - I filled out the form every time I used an AI for an
assignment; Sometimes - there were times I filled out the form and other times
I didn’t; Never - I used AI but never filled out the form)

For each of the learning reflections in the study, we reviewed the AI chat
transcripts, student learning reflections, and assignment submissions. We cat-
egorized them according to four criteria: (1) the kind of question that the
student posed to the AI, (2) the kind of response given by the AI, (3) how
the student used the information in their submission, and (4) the evidence of
learning provided in the student reflection. Fig. 1 summarizes the codes within
each criterion along with the number of submissions that exhibited each code.

4 Summary of Student Work and Reflections

The study contained 40 submissions, with some students submitting the learn-
ing reflection for multiple assignments and others submitting none. As shown
in Figure 1a, there were a small number of cases in which the students were
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seeking a direct solution to the assigned problem. In most cases, students ei-
ther pasted their own code for debugging or asked for help with only a part
of a larger problem. As shown in Figure 1b, the AI usually provided code
which either completely solved the problem or was otherwise useful in helping
the students develop a correct solution. Interestingly, in less than a quarter of
cases, the students directly copied the code as their solution (see Figure 1c).
This is despite the fact that students often found that the AI gave them more
help than they were asking for. For example, one student said that they asked
the AI

“just to get me started/see if there were any basic ideas I was miss-
ing. Basically, it did its job “too well” and gave me code that would
just finish the assignment.”

Another student mentioned

“I wanted to attempt to gradually develop the code with the assis-
tance of chat GPT but the first prompt I gave it, it reuturmed the
full code.” (sic)

Students also seemed to genuinely learn important concepts through their in-
teraction with the AI. As shown in Figure 1d, students provided satisfactory
evidence of learning in most cases - often centering on the content central to
the assignment, but nearly equally often on other important concepts. For
example, in an assignment intended to increase proficiency in the use of lists
and dictionaries, a student asked ChatGPT about an error caused by trying
to access a variable outside of the function it was defined in. The AI gave an
explanation which included the following:

“The error message you’re encounter is because you’re trying to call
the `most_popular_in_genre` function with the `movies` vari-
able, but `movies` is not defined in your code.”

In fact, the variable was defined inside of `most_popular_in_genre` and the
ChatGPT suggestions for fixing it were incorrect, but the student was able to
fix their code and came away with a better understanding of local vs. global
variables and the relationship between arguments and parameters - something
that was supposed to have been previously learned. While not the primary
intent of the assignment, this was a positive learning experience for the student.
In a handful of cases, the AI provided code that got in the way of student
learning. For example, in a case where students were supposed to use a custom
stack class to solve a problem, the AI solved the problem using a standard list
as a stack. The code solved the problem, and the student turned in the code,
but it missed one of the main points of the assignment. In another case, the AI
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Figure 2: Summary of Student Responses to Survey

solution used a Pandas DataFrame (when the intention was to scan through
and filter a list of dictionaries) and included the the operation filtered_-
df = df[df["Province"] == selected_state], which involves complicated
operations that act on the entire Series - something too advanced for students
of this level. And yet, the student remarked

“I learned about pandas. Pandas has a built-in function called
Dataframe that allows you to scan a set of data and makes it much
easier to access in the future.”

In this case, we judged that the AI help got in the way of student learning.
However, it should be stressed that these were a very small minority of cases.

5 Summary of Student Views

Comparing students’ responses to survey questions, summarized in Fig. 2,
at the beginning and the end of the semester indicates how their views have
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Figure 3: How students reported following the course policy

changed with their experiences with LLMs. One notable difference is their
thoughts on the college’s policy. At the beginning of the semester, 27% of
students selected “Ban in most cases”, while at the end of the semester, students
seemed to embrace the technology in an academic setting more as only 14%
favored banning in most cases.

Another noteworthy difference in the pre and post-semester surveys is the
response to the question, “How do AI Assisted chatbots, like ChatGPT or IBM
Watson, make you feel?” At the beginning of the semester, only 21% noted
“Excited”, while at the end of the semester the percentage of “excited” students
grew to 48%. Interestingly, there was also an increase in students indicat-
ing “Nervous or scared” - perhaps exposure to ChatGPT has made students
aware of the potential disruptive nature that these tools introduce to the work-
force. Students also seemed to realize positive use cases over the course of the
semester, with increases in expected use for understanding and debugging (Q4
data not shown, but saw the “Often” response jump from 30% to 53%).

Lastly, we think it is also remarkable that two thirds of the students thought
students would use AI-generated content as if it were their own work at least
sometimes, and this perception didn’t change much over the course of the
semester. When it came to their actual behavior, about a quarter of the stu-
dents admitted to at least once using AI but not submitting the required form
(see Fig. 3). This seems to be in line with the perceptions of some educators
who are afraid that the tool will primarily be used in dishonest ways.
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6 Conclusions and Future Work

Overall, we found that most of the ways that our students used LLMs in our
courses were positive and compatible with learning in CS1 and CS2. Most of
them prompted the AI to seek help with debugging or with an isolated problem
within a larger project that they needed help with. We also discovered some
negative outcomes - that in a small number of cases, students used it in a lazy
manner, that it is difficult to avoid the AI giving too much help, and that the
AI occasionally gets in the way of learning by presenting solutions above the
student’s level. Furthermore, some students did not comply with the required
course policy to acknowledge and reflect on the assistance they received from
the AI - a challenge for teaching students to learn to use AI properly. And,
students perceive that their peers are likely to use the technology dishonestly.
However, it may be that this is simply a new manifestation of an old problem:
convincing students it is in their interest to seek assistance rather than solutions
and to be transparent about sources.

One category of approaches to dealing with these negatives is to prevent
students from using AI through things like in-class and unplugged assessments.
However, for those interested in continuing to explore how AI might enhance
student learning, we suggest investigating the following ideas for mitigating the
negatives:

Establish an easy way for students to cite AI assistance in their code. For
example, have students link to the transcript from a code comment (which some
web-based services now support). By making it easy, we take away barriers to
honesty.

Provide incentives for reflective learning. For example, give some assign-
ment credit for written reflection on how the activities have led to student
learning (whether it involved AI or not) rather than exclusively on the student
code, testing, etc.

Coach students on good ways to use AI. And then, have them verify it
with their citations and reflections - these could be made hard requirements if
necessary.

• Have students include their own code/attempts in the AI prompt rather
than the assignment text they were given.

• Have students ask follow-up questions on the parts that they do not
understand.

• Limit the scope of what they ask of the AI - instead of requesting a
solution to the whole problem, they must ask for help with small parts
and then integrate solutions into their overall code. This might mean
limiting the number of lines of code that can be asked about, but we do
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not recommend prompting the AI to limit the number of lines of code - in
our experience this makes it more likely for it to generate more advanced,
though concise, code.

• Explore prompts that tend to lead to more fruitful conversations. The
CS education community should explore and share design guidelines for
prompt engineering, similar to those being investigated in other disci-
plines [5].
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Abstract

Evaluating students in Computer Science related fields has always
been challenging. Often times programming and problem solving skills
are evaluated either with a fully creative (or client driven/capstone)
project or a program that generates “the right answers”. As class size
increases, evaluating the work product of students is more challenging.
We illustrate a middle ground approach that allows students in a larger
class setting to benefit from some creative choices while still ensuring a
minimum level of difficulty and efficient grading processes.

1 Introduction

In appropriate situations, creative assignments allow students to explore a
problem space and engage with material in a way that assignments with objec-
tively correct solutions do not; students have fewer restrictions and can create
something unique and interesting to them while still demonstrating learning
outcomes and acquired skills. Fully creative assignments work well in smaller
classes since the extra overhead they create is manageable. Assessing student
work on these assignments requires determining whether or not they have met
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a criteria instead of producing a single correct answer; this often requires hu-
man intervention and additional person hours to determine whether students
understand the required material. As classes get larger this becomes infeasi-
ble; in a class of 50 students a grader will have to grade 50 unique submissions
for every assignment. Common ways to curb this growth have disadvantages;
specifically group projects allow students to hide behind the work of others and
make it more difficult to assess an individual’s mastery of the material. This
is less than ideal, especially in introductory or foundational classes where an
individual’s mastery directly impacts their success in future courses.

As personal computational devices have become ubiquitous instructors have
moved more course components online as well [2, 1]. The result is a push to au-
tomate as many elements of the assessment process, such as exams [4]. When
building the exam, a personalized version can be created via random selection
from a question bank to using question templates to generate a problem in-
stance. [3] Administration of the exam can be done on-line, and grading can
be automated as well. In computer science, automation can also be introduced
in the evaluation of assignments through the use of test cases that submit-
ted code is run against. These tests report for correctness [7]. Unfortunately
automation breaks down with fully creative submissions.

This trend to online delivery accelerated with the advent of COVID where
over a one year span, most universities moved class materials, assignments, and
exams to on-line. While there has been a shift back towards in person courses
due to a general disappointment in the learning achievements of students in
the on-line format, the interest remains [5, 6].

This paper will look at how variation can be introduced in assignments in
a context where submissions are on-line and the students are not in a con-
trolled environment over the duration of the assignment. We present a middle
ground where there is variation in assignments that allow students some cre-
ative freedom while reducing the overhead of having all unique submissions in
large classes. Additionally, we report how these approaches have been used
scaled down to smaller class sizes to make sure students are achieving learning
outcomes within boundaries. These approaches are not intended to address
cheating on quizzes and exams, and indeed the fact that they introduce some
small amount of friction to academic integrity issues on assignments is a bonus.

2 Goals

There are many reasons one may want to introduce controlled variability into
assignments, and not all reasons may apply to all classes or assignments.

One primary goal of these assignments is to control the base level of diffi-
culty while still allowing a creative element. Fully creative projects can keep
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students engaged, but often times requires a proposal process to ensure that
students are creating a project with enough rigor given the information they
have about the class. Additionally, students often over– or under–estimate the
difficulty of the project they decide to undertake. Anecdotally, students need
to pivot away to a different project based on unforeseen problems relatively
frequently.

If the assignment involves exploring a problem space (see examples below),
adding variation in starting points allows the class as a whole to get a bigger
picture of reality than if everyone started at the same place. This gives students
a chance to share what they’ve discovered and see how it differs from what other
people have found, essentially crowdsourcing the exploration.

Introducing variability into assignments can also add a barrier to academic
dishonestly and plagiarism. In cases where students are directed to have differ-
ent content it can be quickly detected, and requiring students to change what
their projects contains from another person’s code may make cheating more
“expensive” than just doing the assignment on their own. While not the pri-
mary driver for choosing to introduce variability into assignments, it has been
a benefit.

One of the key factors allowing the use of controlled variations is to have
an efficient evaluation process. In the following examples, this is primarily
met by having a visual component. This can be in the form of screen shots or
through a user interface. This is a quality of life improvement for people grading
assignments in large classes, though it does nothing directly for students other
than keeping the feedback loop relatively short in large classes.

3 Types of Variability

Over the development of courses that these types of variable assignments are
appropriate for, three main types seem to be predominant: Required Compo-
nents, Fixed Structure Variable Content, and A La Carte. In this section we
define these types of assignments and how to evaluate them; examples of each
will be given in Section 4.

3.1 Required Components

In this kind of assignment, students are given a list of required skills to demon-
strate. This works particularly well when you want to assess syntax and usage
of a language or its components. These can often be evaluated with a quick
glance through the student’s submission of code or the resulting interface to
ensure all requirements are met.

The minimum difficulty is controlled by setting the required set of compo-
nents. Students can feel free to increase the complexity of the assignments by
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building out from the core requirements.

3.2 Fixed Structure Variable Content

Assignments in this category give students a set of requirements in the struc-
ture of the assignment and give them flexibility in the specific content. Lim-
itations or various requirements can be placed on the content to ensure that
there is variability between submissions. This works better than a Required
Components assignment when you want students to demonstrate the interac-
tion between certain elements of the assignment (e.g. the nesting of elements
in a reactive HTML webpage). As these assignments often involve a GUI of
some sort, evaluation can once again be done with a quick look at the code
and interface of a given submission.

The overall difficulty is more fixed than in a Required Components assign-
ment, as students aren’t given as much leeway to expand on the assignment.

3.3 A La Carte

In these assignments students are given a a menu of options each worth a
certain number of points as well as a point total X. They must complete (at
least) X points worth of options for the assignment. This can be offered with
some bonus credit opportunities so students aren’t required to solve the Subset
Sum Problem to determine how to earn exactly X points. These work well as
expansions to in class tutorials or previous assignments where students have
practiced the coding elements and the goal of the assignment is more practice
with a tool, not with specific elements of the tool. Depending on what the
tool is, it may not be immediately obvious what choices a student made when
“ordering” so part of the grading process might involve requiring students to
describe the choices they made with the submission.

The minimum difficulty of the assignment is controlled by setting point
values for menu items and the total point value. There is nothing keeping
students from going above and beyond this minimum difficulty level as long as
the choices they made are still apparent in the final submission.

4 Examples

In this section we give example assignments and courses for each of these
assignment types. This list is not exhaustive, but intended to give an idea of
the types of classes where these could be used.

With respect to class sizes, recently both Web Apps and Operating Systems
tend to be larger classes (at least 40 per section), while other classes listed tend
to be smaller depending on the semester.
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4.1 Required Components

These work well in intermediate or advanced programming classes where an
element of the assignment is meant to be review of a programming language
or tool.

4.1.1 Example: Personal Project (Web Development II)

Within the Web Development II course, the students work throughout the
semester learning HTML and CSS. They are then individually assigned a
project where they are asked to apply these concepts and implement a website.
They are allowed to choose the purpose(topic) of the website and must include
the following components:

• At least 3 pages

• A template file

• One e-mail hyperlink

• One external hyperlink - pseudo-class must be applied

• Consistent banner logo area

• Consistent navigation

• An external style sheet (.css file)

• One Image

• One two-column or three-column layout

• At least 1 media query design applied (tablet or desktop)

Prior to the project beginning students must submit their topic for approval
and create the wire–frame for the website. The students use GitHub to publish
their websites.The goal of this assignment is to assess that the students can
take the concepts learned in the first modules and implement them within a
website correctly.

4.1.2 Example: C Review (Operating Systems)

Students use C in this Operating Systems class and were first exposed to the
language in the previous course in the sequence. The first assignment (after
a quick review of how the language operates and is different from higher level
languages they’ve used) requires the students to write a compiling program
that contains the following programming constructs:
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• Variable

• for loop

• while or do while loop

• At least one function that returns a value (non-void return type, main
does not count)

• At least one function that takes at least one parameter (non-void return
type, main does not count)

• Printing to the screen with printf

• Single branch conditional (if statement)

• Dual branch conditional (if else)

The students are given a set of problems to choose from (https://projecteuler.
net/archives), but there is no check that their submissions produce the cor-
rect answer. The goal of this assignment is to check that they can write a
program that compiles and runs; the syntax itself here is what is being re-
viewed and evaluated, not the logic itself.

4.2 Fixed Structure Variable Content

These assignments are appropriate for classes where the languages or libraries
have a certain limitations or interactions between the elements that need to be
demonstrated by students.

4.2.1 Example: Mining GitHub (Web Mining)

As an in class activity, the GitHub API is used to determine the most pop-
ular and widely used language based on a subgraph generated by looking at
stargazers and owned public repositories starting from a seed repository. Stu-
dents are then asked to pick a unique seed repository and show through graph
visualizations what the four most popular (used by most users) and four most
widely used (used for most repositories) languages show up in their generated
subgraph of GitHub.

This assignment is run as a discussion so the class can build a more complete
look of what the current landscape of programming languages is, and how it
changes based on what part of GitHub you are investigating.
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4.2.2 Example: HTML/CSS Assignment (Web Apps)

In this assignment students are required to create and style a web page where
the content is a small chunk of a play. The goal is to introduce students to the
application of CSS styles to elements. Each character and stage instruction
gets their own style. This could also work with other media forms like opera.

The variation is introduced by creating ten groups of sources (either plays
or acts). Students select from the group that corresponds to the last digit of
their student ID. The student ID is used as their email address so it is publicly
available and should be more or less uniformly distributed.

The major part of grading this assignment is determining if appropriate
styles have been applied. This is speed up by viewing the HTML on a browser
or through a screen shot.

4.2.3 Example: HTML/JS Assignment (Web Apps)

In this assignment students are asked to create three pieces of content. Each
piece of content has an image and an onClick Javascript event.

The variation is introduced by having a general category from which stu-
dents will select specific items for their content. Each of the three items will
start with one of the first three letters in their last name. While this does
not guarantee a uniform distribution, it creates more pools of content to select
from.

Browsing the HTML provides a relatively quick way of checking the content
as well as the responses to the clicks. (Note: This was part of a larger assign-
ment that also used variation based on student ID affording more combinations
of content choice.)

4.3 A La Carte

These work well in courses that are working with tools that work along side
programming languages to produce a result.

4.3.1 Example: Tutorial “Improvement” (Game Dev)

After completing the official tutorial in class for the game engine (currently
Godot: https://godotengine.org/), students are given an assignment to
“improve” the tutorial (with heavy air quotes around improve). Any new
artwork or music they find must be permissively licensed, or at least legally
obtained. They are told to choose 10 required points (with 3 possible bonus
points) of the following improvements:

1. Change the animated player sprite and modify the collision box to be
appropriate: 1 pt
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2. Add or replace at least one enemy type, including animations: 1 pt

3. Change the background to either:

• an image: 2 pts
• an animation: 3 pts

4. Keep track of the highest score the player’s gotten since the game has
opened (no persistence) and display at some point: 3 pts

5. Allow the player to get hit more than once before dying, and indicate the
number of lives remaining with either

• displaying a counter on screen: 2 pts
• Using icons/visual representation: 4 pts

6. If option 5 is done, make an enemy disappear when it is hit: 1 pt

7. If option 5 is done, add a sound when the player hits an enemy: 1 pt

8. Enable WASD navigation (requires investigating the input map): 2 pts

It’s important to note that students must update the README in their
game to indicate their choices, as some might not be immediately noticeable to
the user. Failure on the student’s part to do so will result in a 15% deduction
in their grade.

5 Conclusions

In this paper, three basic strategies have been discussed to add controlled
variation into assignments and some examples of classes where these approaches
are currently implemented have been provided. The goal is to allow student
exploration of a problem space without introducing excessive grading overhead
for those assessing student work. It has the added benefit of discouraging
academic dishonesty by introducing friction in direct copying, though is not
intended to be a comprehensive solution to plagiarism. Example assignments
have been presented of each type along with discussion of how the variation was
introduced. While these assignments cannot really be automatically assessed
through unit tests or output testing, the visual element present in many of them
affords an efficiency in grading. Techniques for quickly evaluating these kinds of
assignments have been addressed in many cases through the examples. While
not appropriate for every class or every assignment, this controlled variability
can be beneficial to educators and students where the desired outcomes allow
for these kinds of projects and assignments.
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Abstract

Before the advent of generative Artificial Intelligence (AI) tools, for
example, ChatGPT, students traditionally approached assignment de-
velopment authentically by employing libraries and by referring to text-
books. However, with the widespread reliance on powerful AI tools for
assignment completion, the process has become more convenient. Un-
fortunately, this ease of use has led to a potential detriment in students’
genuine understanding of subjects, as well as a decline in their problem-
solving and innovative thinking skills. Moreover, AI tools like Chat-
GPT will evolve as technology advances such that the need to detect
AI-generated content is even more crucial in educational setting to re-
inforce the value of original work [5]. This paper aims to address this
issue by focusing on the detection of plagiarism in student assignments
through the utilization of the Copyleaks1 tool, specifically designed to
identify AI-generated code. The accuracy of the tool is systematically
evaluated by submitting various pairs of codes, each with similar func-
tionality, wherein one is generated by AI and the other by humans.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1https://copyleaks.com/ai-content-detector

61



1 Introduction

In the ever-evolving landscape of education and technology, the rise of AI has
significantly transformed how students engage with their coursework. Nowa-
days, students increasingly turn to third-party AI tools, such as ChatGPT, to
deal with the range of assignments and course objectives. This dependence
on AI is not only an indication of the growing integration of technology into
educational practices but also poses challenges in ensuring the reliability of
student’s work [10]. In this situation, the need for robust AI content detection
tools becomes essential to maintain academic integrity.

Various AI content detection tools have emerged to address the related chal-
lenges posed by using AI in student submissions. Codio2, for instance, makes
code plagiarism detection easier to use, making it possible for educators to spot
instances of code copying and cheating within the class using a sophisticated
algorithm. Another notable tool is MOSS, short for Measure Of Software Sim-
ilarity, developed by Standford University, which precisely measures similarity
between pairs of code files, employing a document fingerprinting algorithm
named winnowing [8]. It goes beyond traditional plagiarism checks by utilizing
AI to analyze code structures comprehensively.

JPlag excels in finding similarities among source code files, specifically de-
signed to discourage unauthorized copying of student exercise programs in
programming education [7]. Codequiry3 introduces an AI-driven approach,
utilizing machine learning to identify patterns and runs against both internal
and external sources to detect all forms of unoriginal code. Additionally, Pla-
giarism Checker4 is a cloud-based solution that scans code against over 100
million sources from major repositories and 2 billion instances on the web.
These tools collectively contribute to maintaining the integrity of code submis-
sions and promoting fair and honest academic practices.

This study explores the field of artificial intelligence content detection, with
a primary focus on Copyleaks. As technology advances, the need to adapt
our detection methods to account for AI-generated content becomes evident.
Copyleaks stands out as a tool designed to specifically address this challenge,
providing insights into potential AI-based plagiarism. The experiment outlined
in this paper aims to explore the effectiveness of Copyleaks in detecting AI-
generated content and its contribution to maintaining academic integrity. By
concentrating on this essential tool, we seek to provide valuable insights into
the evolving field of AI content detection, offering educators and institutions
an informed perspective on safeguarding the authenticity of student work in
an increasingly AI-driven educational environment.

2https://www.codio.com/
3https://codequiry.com/
4https://www.grammarly.com/plagiarism-checker
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2 Problem statement

• Comparison of AI-generated code and manual code follows a few ap-
proaches i.e., contrasting the code & comments that will be generated by
AI. To compare efficiency, measure code metrics like lines of code, mem-
ory usage, and execution time. Examine the results and performances
considering the established standards. Lexical and syntactic features of
code can be useful for distinguishing AI-generated and human-written
code [2].

• In some cases, comparing AI-generated code directly to a student’s-
written code would not match because AI-generated code may not be
readable or may adhere to different coding standards. On the contrary,
even if it matches technically, it should not immediately be considered
plagiarism because any tool is designed in such a way that it checks with
chunks or paraphrases [4]. In such cases, a plagiarism checker may pro-
duce false positives or false negatives i.e., mark the non-AI generated
code as human-written and vice-versa, which is not valid [12]. Nonethe-
less, it is trivial for any advanced generative AI tool to generate code
in several ways incorporating all the techniques, strategies, and methods
ever known to computer scientists.

3 Copyleaks

As a plagiarism detection tool, Copyleaks enjoys a compelling reputation. They
have also expanded to include AI detection due to the growing need for AI con-
tent detection tools. It consists of versatile applications, namely, AI Content
Detector, Plagiarism Detector, Codeleaks, Grammar Checker API, Gen AI
Governance, and AI Grader. Copyleaks functions by scanning and compar-
ing text across various online sources to identify potential instances of plagia-
rism. Mainly, it can help educators, especially teachers teaching programming
courses, in simplifying the process to check whether a student’s code is created
by an AI tool or not [1]. Moreover, it can be integrated with most of the LMS
systems like Canvas, Moodle, Blackboard, Brightspace, Schoology, and Sakai.
Many researchers across the globe published outstanding results declaring that
Copyleaks is the most accurate for detecting LLM-generated text [9, 3].

4 Experimental setup

Our experiment focuses on evaluating the AI Content Detector feature of Copy-
leaks that can detect AI-generated source code, for instance, GitHub Copilot
and ChatGPT (including GPT-4) with 99.1% detection accuracy and 0.2%
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false positive rate. We considered two dummy student profiles, namely, Stu-
dentA and StudentB. Both are given a programming task, where they need
to provide solutions for checking a sequence of characters form a palindrome
or not, finding nth Fibonacci number, and finding n factorial using Java pro-
gramming language. Between them, StudentA has provided human-written
code and ChatGPT 3.5 is used to generate the solutions of StudentB. The
Copyleaks’ AI Content Detector is used to examine both students’ solutions.

5 Results & Analysis

We used Copyleaks to perform AI Content Detection. We asked it to omit
citations and code comments, check both the online resources and its internal
database, and set the scan sensitivity to low for a more comprehensive scan.

Table 1: Copyleaks report for StudentA’s files.

Source file AI-Coverage
Fibonacci.java 0
Palindrome.java 0
Factorial.java 0

Table 2: Copyleaks report for StudentB’s files.

Source file AI-Coverage
GPTFibonacciSeries.java 0

GPTPalindromeChecker.java 0
GPTFactorialCalculator.java 100

Tables 1 and 2 show the scan results of StudentA and StudentB solutions,
again, StudentA’s solutions are human-created and StudentB’s are ChatGPT
generated. The good outcome is that AI-coverage for the StudentA’s solutions
i.e., for the 3 Java files, namely, Fibonacci.java, Palindrome.java, and Facto-
rial.java is 0%. However, the tool is not greatly performed when it comes to
detecting the AI-coverage for the StudentB’s solutions, which shows that only
GPTFactorialCalculator.java has 100% AI-Coverage and other files have 0%,
which is not true.

Since there is a limitation on scanning the same file multiple times on
Copyleaks. We renamed the Java files of both the students and performed
one more round of scan without any content change. The results are showed
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Table 3: Copyleaks report for StudentA’s renamed files.

Source file AI-Coverage
PalindromeRenamed.java 0
FactorialRenamed.java 0
FibonacciRenamed.java 0

Table 4: Copyleaks report for StudentB’s renamed files.

Source file AI-Coverage
GPTFibonacciSeriesRenamed.java 0

GPTFactorialCalculatorRenamed.java 0
GPTPalindromeCheckerRenamed.java 0

in Tables 3 and 4 for StudentA and StudentB, respectively. Again, the AI-
coverage for StudentA’s renamed files are 0%. However, this time, the AI-
coverage for the StudentB’s renamed files are all 0%. This proves that there is
no guarantee that the scan report results are not accurate if we run the scan
on the same document multiple times.

If this tool is used for AI content detection in students’ submissions, there
is a significant concern on the accuracy of the scan results. For example, in the
first round, the GPTFibonacciSeries.java and GPTPalindromeChecker.java
files of the StudentB are marked with 0% AI-coverage, which means that even
if a student uses a generative AI tool to complete the assignment, there could
be instances, where the student can get away without being caught for AI
content detection.

Listing 1: GPTFactorialCalculator
package studentB ;

import java . u t i l . Scanner ;

public class GPTFactor ia lCalculator {
public stat ic void main ( St r ing [ ] a rgs ) {

Scanner scanner = new Scanner ( System . in ) ;

System . out . p r i n t ( "Enter ␣a␣non−negat ive ␣ i n t e g e r ␣ to ␣
c a l c u l a t e ␣ i t s ␣ f a c t o r i a l : ␣" ) ;

int n = scanner . next Int ( ) ;

i f (n < 0) {
System . out . p r i n t l n ( " Please ␣ ente r ␣a␣non−negat ive ␣
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i n t e g e r . " ) ;
} else {

long f a c t o r i a l = c a l c u l a t eF a c t o r i a l (n) ;
System . out . p r i n t l n ( " Fa c t o r i a l ␣ o f ␣" + n + "␣ i s : ␣"

+ f a c t o r i a l ) ;
}

scanner . c l o s e ( ) ;
}

private stat ic long c a l c u l a t eF a c t o r i a l ( int n) {
i f (n == 0 | | n == 1) {

return 1 ;
} else {

return n ∗ c a l c u l a t eF a c t o r i a l (n − 1) ;
}

}
}

Listing 2: GPTFactorialCalculatorRenamed
package studentB ;

import java . u t i l . Scanner ;

public class GPTFactorialCalculatorRenamed {
public stat ic void main ( St r ing [ ] a rgs ) {

Scanner scanner = new Scanner ( System . in ) ;

System . out . p r i n t ( "Enter ␣a␣non−negat ive ␣ i n t e g e r ␣ to ␣
c a l c u l a t e ␣ i t s ␣ f a c t o r i a l : ␣" ) ;

int n = scanner . next Int ( ) ;

i f (n < 0) {
System . out . p r i n t l n ( " Please ␣ ente r ␣a␣non−negat ive ␣

i n t e g e r . " ) ;
} else {

long f a c t o r i a l = c a l c u l a t eF a c t o r i a l (n) ;
System . out . p r i n t l n ( " Fa c t o r i a l ␣ o f ␣" + n + "␣ i s : ␣"

+ f a c t o r i a l ) ;
}

scanner . c l o s e ( ) ;
}

private stat ic long c a l c u l a t eF a c t o r i a l ( int n) {
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i f (n == 0 | | n == 1) {
return 1 ;

} else {
return n ∗ c a l c u l a t eF a c t o r i a l (n − 1) ;

}
}

}

Moreover, in a scenario, if one student shares source code file with other
student, and the other student just renamed the source code file and submit-
ted the assignment, using Copyleaks it is difficult to determine that the other
student used AI-generated code because the software may not even detect
any AI-coverage in some situations, for instance, even though the content of
GPTFactorialCalculator.java and GPTFactorialCalculatorRenamed.java files
are same as shown in code listings 1 and 2, the GPTFactorialCalculatorRe-
named.java submission has got 0% AI-coverage.

6 Challenges

In our study on AI content detection, several challenges arise that complicate
the identification of plagiarism. Firstly, the ability of AI to generate code that
mimics human writing style makes manual identification exceptionally difficult
as AI tools can produce content with high level of originality [6]. The code
produced by advanced AI models closely resembles that of a human, eliminat-
ing traditional visual clues that might indicate automated generation. This
human-like quality of AI-generated content demands sophisticated detection
mechanisms that go beyond manual scrutiny.

Secondly, even when suspicions arise about the code being AI-generated,
proving it might be difficult. Unlike traditional plagiarism, where direct evi-
dence or similarities can be highlighted, AI-generated content lacks distinctive
markers that unequivocally prove its automated origin. It becomes a chal-
lenging task to definitively link a piece of code to AI-generated one using any
AI content dectector’s report without the student’s acknowledgment since AI
content detectors as susceptible for false positives and false negatives [11].

Adding more complexity, a tricky situation emerges when students admit
to usage of AI tools for coursework but claim innocence regarding plagiarism if
at all get caught. For instance, if multiple students input the same statement
into a chat-based AI model like ChatGPT and receive identical code outputs
that they use for the coursework submissions and they are not regenerating
the initial code/response, it becomes challenging to decide that they all have
cheated on the coursework item since there solutions may be identical but
generative AI tools may generate same response multiple times if the input
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statement is the same.

7 Conclusion

In our research endeavor to precisely identify plagiarism in student assignment
submissions, Copyleaks assumed a pivotal role. However, its efficacy in discern-
ing the authenticity of AI-generated code has been inconsistent. While there
were instances where Copyleaks accurately identified code for certain problems
as AI-generated, there were also occurrences where code developed by us for
the same problem was wrongly categorized as AI-generated by the tool. These
encountered challenges underscore the limitations of relying solely on such tools
for unambiguous determination of AI-generated code. In conclusion, despite in-
stances where assignments are flagged as AI-generated, definitive confirmation
remains conditional upon the student’s acknowledgment of such categorization.
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Abstract

This paper presents an experience report on a week-long, remote
game programming workshop for middle school students, conducted us-
ing Scratch over Zoom. The workshop, designed and led by me (then
a faculty member at Boston University in the department of computer
science) with the assistance of high school students from Boston Univer-
sity Academy, aimed to introduce middle schoolers to basic programming
concepts using game programming. The workshop employed a combina-
tion of direct instruction and breakout sessions, where students worked
on projects and received personalized guidance.

A unique aspect of the workshop was the participation of industry
speakers from prominent organizations like National Instruments, Class
Central, Dropbox, and ToothPike Games, providing students with in-
sights into real-world applications of coding. Feedback from participants
indicated a highly positive reception, with students enjoying the fun and
interactive learning environment, appreciating the hands-on approach,
and valuing the supportive nature of the instructor and tutors.

The paper highlights the effectiveness of interactive, project-based
learning in engaging young learners in computer science and offers in-
sights for educators looking to implement similar programs.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

The rising demand for STEM (Science, Technology, Engineering, and Mathe-
matics) professionals in the United States contrasts sharply with the stagnating
number of graduates in these fields [3, 12]. This discrepancy could stem from
a dwindling interest in STEM courses or possibly a lack of early educational
opportunities in these areas.

Addressing this gap, some researchers [8] have underscored the signifi-
cance of computer science (CS) outreach programs, such as summer workshops.
These initiatives, which fall under the category of non-formal education, have
been notably effective in boosting female participation in CS.

[8] also mentions that activities focused on developing programming skills
in short-term interventions have shown promising results in enhancing self-
efficacy and interest in pursuing computing careers among young women. More-
over, studies [5, 9] indicate that introducing computing concepts before high
school can significantly increase the likelihood of maintaining interest in the
subject into higher education.

Middle schoolers stand at a crucial juncture in their educational journey.
Often, they are just beginning to explore their interests and abilities, many
without prior exposure to programming concepts. Yet, their enthusiasm for in-
teractive and engaging activities, like video games, provides a unique gateway
to introduce them to the world of CS and mathematics. Seizing this opportu-
nity, I and high school students from Boston University Academy (BUA) led
a CS outreach program in Boston, aiming to ignite a spark of interest in these
young minds. The medium of choice was Scratch - a platform that simplifies
the complexities of coding into a more accessible and enjoyable format. My
goal was not just to impart knowledge, but to kindle excitement and curiosity.
I envisioned these students proudly sharing their creations with their families,
thereby extending the impact of the workshop beyond the classroom [2, 13].

Another integral component of these workshops was connecting these young
learners with real-world professionals. It’s one thing to learn about program-
ming in a classroom, but another to understand its application and potential
from those actively shaping the industry. Leveraging my network and the re-
sources of BUA, I invited colleagues from ToothPike Games, Class Central,
Dropbox, and National Instruments. These guest speakers shared their jour-
neys, struggles, and triumphs in the CS field. The objectives of the guest
speakers were to inspire, to motivate, and to provide tangible, relatable role
models for these students. I wanted the children to not only learn about CS
but to see its potential as a path they might someday choose.

This paper narrates the story of this unique teaching experience, its chal-
lenges, successes, and the lessons learned along the way. Section 2 of this
paper presents the literature review. In Section 3, I detail my experience on
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how I conducted these workshops and share my experience of implementing a
specific game with my students. This game was designed to demonstrate the
placement of objects on a grid and to simulate the effect of gravity on falling
objects. Section 4 presents some of the feedback that I have received from the
middle schoolers and my reflections. In Section 5, I discuss potential future
work and approaches for conducting a similar workshop in the future. Finally,
in Section 6, I present my conclusions.

2 Literature Review

[10] have detailed their journey in establishing a new community outreach
program focused on computing. Inspired by their efforts, my ambition at Cal-
ifornia State University, Chico is to initiate a similar endeavor. This project
will actively engage both my undergraduate and graduate students. Moreover,
I am considering enhancing future versions of the game programming work-
shops, previously conducted at BU, by incorporating Lego MindStorms. This
idea is encouraged by reports of successful programming education initiatives
with young students, including elementary school children [4], and efforts in
K-12 outreach promoting interest in Mechanical Engineering [7].

With formal CS curricula in schools currently undergoing significant changes,
it’s crucial to introduce K-12 students to CS concepts early, aiding them in mak-
ing informed career choices [1]. Outreach programs, functioning independently
or alongside formal education, present an effective solution. [1] compared five
such successful programs reveals a common theme: they do not consider pro-
gramming experience as a prerequisite for engaging with CS concepts. This
approach was mirrored in our outreach efforts in Boston’s middle schools, where
we similarly did not require any prior programming experience for participating
in the gaming workshops.

Research by [14] explored the impact of block-based programming tools,
such as Hopscotch, on elementary students’ attitudes towards programming.
Conducted with 4th and 5th graders in the U.S. over a seven-week period,
this study assessed changes in perceptions before and after a programming
curriculum, finding that block-based programming positively influenced stu-
dents’ views on programming, highlighting its suitability for early education.
Similarly, [18] emphasized the effectiveness of programming teaching and scaf-
folded programming approaches in enhancing computational thinking for K-12
students.

In my gaming workshop for middle schoolers, I selected Scratch for its
straightforward, user-friendly approach to programming. This decision was
based on the expectation that it would enable effective participation, even
for students without prior programming experience. My workshops followed
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a similar structure, starting with 75-90 minute guided Scratch sessions. Stu-
dents were then encouraged to extend their learning in breakout rooms. For
instance, after demonstrating how to program a witch flying on a broomstick,
the students creatively added new features, such as missile-firing capabilities
to combat dragons.

[6] examined the impact of programming camps on middle school students,
focusing on their effectiveness in enhancing programming knowledge, compu-
tational thinking skills, and attitudes towards computing. Their literature
review found substantial use of block programming, highlighting its benefits as
a less intimidating introduction to programming, which aligns with the positive
feedback I received from students. The study also noted the successful use of
project-based approaches in teaching, countering the perception of computer
science as isolating. Inspired by these findings, in future I plan to extend my
workshops to two weeks instead of one week, allowing students to collaborate
with each other and to work on group projects.

3 Gaming Workshops

The gaming workshop designed for middle school students spanned five days,
with each session lasting approximately 3 to 4 hours on Zoom. I had the
support of students from BUA who assisted me in facilitating the workshop. We
welcomed around 25 middle school students who registered for the workshop,
which was offered at no cost. Each day I demonstrated programming constructs
involving variables, branching, loops, cloning of sprites, video motion, using
text to speech and sound effects by building a new game. At the conclusion
of each day, I arranged for a guest speaker to join and share their personal
journey in CS with the students. They discussed what initially sparked their
interest in the field, their passions during their own middle school years, and
what inspired them to pursue a career in CS. I used the resources [15, 16, 17,
11] when designing and making games.

Every day at the beginning of the workshop, I dedicated approximately
90 minutes to creating a new game on Scratch. Each game was designed to
progressively introduce programming concepts like loops and conditional state-
ments to the students. During this time, I engaged in live coding on Scratch,
ensuring the session was interactive and responsive to student questions. Fol-
lowing this, students were divided into breakout rooms where they were en-
couraged to enhance the game by adding new features, working individually. I
shared my Scratch project with them as a base for their enhancements. In these
breakout rooms, my students from BUA provided assistance and guidance to
the middle schoolers with any questions or issues they encountered.

In our workshop, we developed a game titled ‘Hungry Monkey’ where the
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goal was to navigate a monkey to collect bananas while avoiding jungle ob-
stacles like trees. This game, demonstrated in Figure 1 on the left, provided
an engaging way to teach the basics of coordinates. The intuitive interface of
Scratch allowed students to easily understand that decreasing the Y -coordinate
made the monkey descend on the screen.

During our workshop, I engaged the students in a discussion on how to real-
istically simulate gravity’s effect on a falling monkey in the game. The students
understood that lowering the monkey’s Y -coordinate would mimic the effect of
gravity, requiring a negative value for a downward motion. When I adjusted
the monkey’s Y -coordinate with the FallSpeed variable, which was influenced
by the Gravity setting, the students initially thought this change would occur
only once. They quickly realized that to continuously simulate falling, this
action needed to be repeated. This was their introduction to the concept of
loops in programming, highlighting its importance in creating repeated actions.
These discussions and explorations culminated in the development of the block
code depicted in Figure 1, effectively producing the desired falling motion in
our Scratch game. The exploration continued with a student’s insightful ques-
tion about the implications of a positive gravity value. We experimented by
setting a positive gravity, which humorously sent the monkey soaring off the
screen, resulting in laughter and an enjoyable learning moment for everyone.

Figure 1: In the left is a Zoom session, where I am demonstrating the ‘Hungry
Monkey’ game, where students can interact with a slider to adjust the gravity
parameter and observe its effects. On the right, the displayed block code
illustrates how the monkey character falls when the gravity setting is adjusted
to a negative value.
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4 Student Feedback and Reflections

The workshop culminated with feedback from the participants, providing valu-
able insights into the effectiveness of the approach. The students, ranging from
6th to 7th grade, expressed a high level of satisfaction, citing the appropriate-
ness of the workshop’s difficulty level and the engaging format that combined
instruction with hands-on practice. Here are some snippets of feedback that we
received via Google form from middle schoolers: About 8 students completed
the Google form. Under the question ‘What did you like about the workshop’,
the responses are: (1) its a fun environment for questions and showing your
work that you have worked hard on. (2) I like how it’s very hands-on and if I
or anyone else has a question our question can be answered along with other
ones that might have formed while getting the answer and I like creating my
unicorn game. (3) Everything! I liked how nice the tutors and the professor
are. They helped us when we needed help and taught us a lot. It was really fun
making games today! (4) I liked that we got to make a different game each day.
(5) The most thing I liked about the program is making games and meeting new
people (6) How we were able to share our coding skills and games to everyone.

Under the question, ‘Was this program/workshop the right level for me’,
7 students responded that it was the right level and 1 responded that it was
too easy. Under the question, ‘Would you register for this workshop again?’, 7
students responded Yes, and 1 responded as ‘Not Sure’.

Under the question ‘Usually Professor Attarwala would teach during the
first half of each day, and then you’d work with tutors during the second half.
Did you like this format?’, All the 7 students responded Yes.

Under the question ‘Is there something you would change about the pro-
gram?’ 5 students responded as ‘No’ change. Others provided the following
feedback: (1) the one thing I would change about the program is get more breaks
(2) I wish there was more time to people to work on their own coding projects,
not always someone else.

Under the question ‘The camp was one week long, and you met for about
three hours every day. What do you think about how long the program was?’,
5 students responded that it was perfect and 3 students responded that they
wished it was longer.

A consistent theme was the enjoyment of the creative freedom afforded
by Scratch programming, with several students enthusiastically sharing their
custom enhancements to the projects, such as adding missile-firing capabilities
to a broomstick in a game. The integration of guest speakers from the industry,
including professionals from ToothPike Games, National Instruments, DropBox
and Class Central was met with appreciation, as students valued the real-world
connections and stories shared. This element of the program not only enriched
the learning experience but also provided students with diverse perspectives
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on the field of CS.
In reflection, the feedback suggests that using game programming as an

introductory tool for programming concepts can be an engaging and effective
strategy for students with little to no prior experience. The learning in breakout
rooms with BUA students was also highlighted as a strong point, with students
enjoying the ability to showcase their work and receive personalized assistance.

Moving forward, this positive reception encourages the continuation and ex-
pansion of such initiatives, with considerations for including technologies like
Lego Mindstorms to further enrich the programming curriculum. Additionally,
the feedback points to potential improvements, such as extending the program
duration, conducting the gaming workshops in person and providing more op-
portunities for individual project work, which will be taken into account for
future workshops.

5 Future Work

In the future, my strategy will encompass the collection of both qualitative
and quantitative data. I plan to employ a two-tailed paired t-test to accurately
assess the skill development in my middle school students. This will involve
conducting an assessment to determine their average (mean) scores at two
different points: before starting the workshop and after its conclusion. The
objective is to use the paired t-test to compare these average scores from the
same group of students, thereby evaluating whether the workshop has led to a
statistically significant improvement in their skills.

6 Conclusion

The feedback from our game programming workshop for middle school stu-
dents highlights the workshop’s success in sparking interest in CS. The use of
Scratch programming language provided an accessible platform for students to
engage creatively with coding concepts, culminating in a positive shift in atti-
tudes towards computing. The introduction of industry professionals as guest
speakers further enriched the experience, offering students diverse perspectives
and real-world relevance. While the program was well-received, insights for
enhancements, such as incorporating technologies like Lego Mindstorms and
adjusting program length, have been identified. These findings advocate for
the continued integration of innovative, hands-on educational methods in CS
education, affirming their potential to inspire the next generation of learners.
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Abstract

A classic technique of teaching is for the instructor to ask a question
to the class, often in an attempt to review some concept and to jog
the students’ memories. This paper presents a modernized approach
to this technique that makes use of technology. In this new version of
the technique, each student in the class individually answers the review
questions through a computer. The review questions are automatically
graded by the system and statistical results are immediately available
to the instructor. While the impact of this technique on final grades
in courses appears negligible, survey responses overwhelmingly indicate
that the students found this approach to be beneficial.

1 Introduction

Introductory computer programming courses are infamous for having a high
failure and withdraw rate [2]. A plethora of approaches and experiments have
been done regarding this issue. One experiment compared teaching multiple
programming languages as opposed to only teaching a single programming
language in CS1, which was shown to be effective[6]. Another approach incor-
porated active learning, which attempts to synthesize putting the student in a

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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real world scenario and thereby induces greater learning, into the course with
positive results [9]. Others have used peer-assisted learning, which strives to
bolster learning through the interactions of students helping each other [11].
Yet, others have tried a mixed approach that incorporates collaborative aspects
and an emphasis on allowing students to work on individual projects that are
meaningful to themselves [5].

Our approach bears some similarities and parallels to clickers. Over the
years, a number of works have been published regarding the effectiveness of
clickers on learning. Sternberger describes the use of clickers in a constructivist
teaching environment and found that, although students perceived the clickers
helped their learning, the test scores of the students could have been better
[10]. Lantz and Stawiski studied the effectiveness of clickers in a controlled
environment [7]. Caldwell looks into the use of clickers in large classrooms and
provides tips for the usage of clickers as well as for crafting clicker questions
[3]. Premkumar and Coupal also lay out tips for the effective use of clickers
[8]. Anderson, Healy, Kole, and Bourne explore efficiency aspects of using
clickers [1]. Dong, Hwang, Shadiev, and Chen explore the use of clickers to
allow students to pause a lecture [4].

This paper presents an instructional technique that engages students by
allowing them to see their own understanding and retention of material as well
as giving the instructor a snapshot of the class’ understanding and retention.

A classic technique of teaching is for the instructor to ask questions to the
class, often in an attempt to review some concept and to jog the students’
memories. However, often only a handful of students are actually willing to
answer the questions. This result presents a couple shortcomings. First, since
only a handful of students are answering the questions, the instructor does
not receive a very good sense of how well the class as a whole understands
the material. Second, the portion of the class that is not responding to the
questions is not being actively engaged and may not even be paying attention.

By having students answer a set of review questions on the computer, each
student is given the opportunity to be engaged in the questions and is forced
to confront their own recollection and understanding of the material. Since
the questions are graded and scores aggregated instantaneously, the instructor,
and even the entire class, can easily see the percentages for how well the class
responded to a question, allowing the instructor to make clarifications and offer
further explanations as necessary.

2 Methodology

The auto-graded review question technique has been used in both a CS1 course
teaching structured programming using the Java programming language as well
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as a junior level course teaching C programming in the UNIX environment. The
fall 2018 semester marks the third semester (fall 2016, fall 2017, and fall 2018)
the technique has been used in the CS1 course and fourth semester in the C
course (spring 2017, fall 2017, spring 2018, and fall 2018). The review questions
are created as a test in the Blackboard course management system for which
each student at the institution already has a user account. In the classroom,
each student has a computer available to them.

The review questions are prepared prior to class time by the instructor and
set to appear on Blackboard at the starting time of the class. Generally, the
review questions will cover the lecture or topic from the previous class period.
At the start of the class, the students are instructed to work through the review
questions while the instructor takes the attendance for the day. Depending on
the number of review questions, it usually takes around 5 to 15 minutes for
the majority of the students in the class to complete the questions. Once
most of the students have submitted their responses to the review questions,
the instructor brings up the aggregated statistical results and goes through the
questions with the class. Based on the percent of correct or incorrect responses,
the instructor can elaborate and clarify on concepts as necessary.

Furthermore, review questions can be configured in such a way so that
students can work through the questions multiple times as well as access the
questions at a later time, such as when reviewing for an exam. Since the review
questions are done as a test in Blackboard, the set of questions can be imported
into future sections of the course and reused.

Generally, the review questions are not done for points in the course. By
not doing the review questions for points, the need for the instructor to proctor
the students is eliminated. This frees the instructor to do tasks such as taking
attendance. Additionally, by not making the review questions worth points,
students can feel more relaxed. Alternatively, if the review questions were for
points, they would essentially become a quiz at the beginning of each class
period, which could make the course more stressful.

A survey about the auto-graded review question technique was given to
students from three sections of both a CS1 course and one section of a junior
level C programming course. Aside from questions about the review question
technique, the survey also included some demographic questions and some
personality questions. The four sections contained a total of 112 students, of
which 78 students consented and responded to the survey.

3 Results

Of the 78 survey respondents, 53 indicated they are male and 25 indicated they
are female. The majority of the respondents are in a computing discipline with
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47 indicating computer science, 12 indicating cybersecurity, and nine indicat-
ing software engineering. Note that it is possible for the same student to be
counted multiple times in the major counts (i.e., a student could be both a
computer science major and a cybersecurity major). The academic year of the
respondents is quite mixed with 27 freshmen, 16 sophomores, 22 juniors, 12
seniors, and one graduate student. Unsurprisingly, all of the freshmen respon-
dents are from the CS1 sections. However, the CS1 sections also comprised a
number of sophomore and junior respondents.

Question 3 lists a number of words (i.e., “quiet”, “talkative”, “reserved”,
etc.) and asks respondents to mark which words they think describe their
personality. A little over half of the respondents marked “quiet” and “reserved.”

Question 6 is a multiple choice question that asks students how comfortable
they are answering a question asked by the instructor. The responses were an
almost perfect bell curve with nine responding Very Comfortable, 16 respond-
ing Comfortable, 32 responding Neutral, 15 responding Uncomfortable, and six
responding Very Uncomfortable. The large number of Neutral responses could
be interpreted that these students, while not uncomfortable with answering
questions from the instructor, may not particularly be thrilled to do so.

Question 7 is also a multiple choice question that asks students how often
they actually answer questions asked by the instructor. Interestingly, about
half the students (42, specifically) responded either Rarely or Very Rarely,
19 responded Neutral, and 17 responded either Often or Very Often. These
responses demonstrate that a lot of students are not answering questions posed
by the instructor.

A comparison of final grades between sections of the courses that did use
the auto-graded review technique and sections that did not use the technique
did not show a significant difference. Factors such as variance in students as
well as variance in other instructional techniques and grading could partially
account for this outcome.

However, student responses in the survey were overwhelmingly favorable
towards the auto-graded review question technique. Question 9’s text is, “How
helpful do you feel the lecture review questions done through Blackboard are?”
The text of Question 10 is, “After a set of review questions on Blackboard has
been answered, the instructor immediately reviews and explains the answers
to the questions to the class. How helpful do you find these reviews and
explanations?” Both questions are multiple choice with the following possible
responses: Very Helpful, Helpful, Neutral, Unhelpful, and Very Unhelpful.

In the three CS1 sections, the vast majority of students responded to Ques-
tion 9 with either Helpful or Very Helpful. Specifically, only four responded
Neutral. Results were similar for Question 10, nearly all responded either
Helpful or Very Helpful, with only five responding Neutral. There were not
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responses of Unhelpful or Very Unhelpful to either question amongst the CS1
respondents. These results are illustrated in Figure 1.

Figure 1: CS1 students responses to Question 9 and Question 10 of the survey.

For the C programming course, results were similar to those of CS1, again
with the vast majority of students responding to Question 9 with either Helpful
or Very Helpful. Only one participant in this course responded to Question 9
with Unhelpful and likewise only one responded with Neutral. Results were
similar for Question 10 in this course as well, with nearly all responding either
Helpful or Very Helpful, with only one responding Neutral. These results are
illustrated in Figure 2.

Figure 2: C programming course students responses to Question 9 and Question
10 of the survey.

Question 13 gave the participants a chance to write remarks in their own
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words. Specifically, Question 13’s text reads, “Please leave any comments that
you might have.” While not all participants responded to Question 13, the
majority of the responses to Question 13 were positive. Here is a sampling of
some of the responses to this question:

• “I truly like doing the lecture review questions. I find them very helpful
for studying for the concept part of tests. It also helps refresh your mind
before the new lecture.”

• “I like the review questions and the immediate feedback because it helps
me know how I’m doing and not get behind because I immediately know
what I’m doing wrong and how to fix it. It also looks similar to the test,
so it helps prepare me to do well in that way.”

• “Review questions have helped me gauge how I am retaining information
and what I need to work on.”

• “The review questions help me gauge my own progress in the class, and
my understanding of the material.”

• “I like that it gives me the opportunity to see if I understood the last
lecture or if I need to go back and study it more.”

• “I like having review questions at the beginning of class because it really
helps me understand what confused me from the previous lecture if I was
too shy to ask a question.”

• “Review questions tend to help because it refreshes me on content I forgot
from the previous class, but it also makes me use that information.”

4 Conclusion

As the survey results demonstrate, the students like the auto-graded review
question technique. This technique both allows the students to gauge their
understanding of the material as well as engages the students. Additionally,
the instructor gains a clearer picture of the students’ understanding. While
the technique has been successfully used in a CS1 course and C programming
course, the technique should be generalizable to many other courses as well.
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Abstract

In Fall 2021, I led a series of functional programming seminars in F#
for Grade 9 and Grade 10 students at Boston University Academy. These
seminars were designed to introduce fundamental concepts of functional
programming in an accessible manner, focusing on immutability, pure
functions, recursion and higher-order functions. The feedback received
from the students highlighted both the successes and challenges of this
approach, providing valuable insights for future educational offering of
this kind.

1 Introduction

This experience paper details computer science seminars that I conducted in
Fall 2021 at Boston University Academy (BUA), where I facilitated one-hour
weekly seminars on functional programming for Grade 9 and Grade 10 students
using F# programming language. The decision to use F# was influenced by
my previous teaching experiences. At the University of Toronto, I taught a
third-year programming language course using Haskell. However, Haskell’s
complexity, particularly with I/O operations and concepts like Monads, can
be daunting for students [3]. At Boston University, while teaching OCaml for
an equivalent course, students faced challenges with installation and setup in
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VSCode. I addressed this by providing a Docker container with OCaml on my
GitHub [1], accessible via VSCode’s remote container feature.

For the BUA seminars, my objective was accessibility; I anticipated that
students might attend using iPads or other mobile devices, where installation
could be a barrier. The online F# compiler [4] offered a better experience with
features like code completion and auto-complete, essential for beginners, and
not found in OCaml’s online platforms [8]. I concur with [7] that a program-
ming environment has a huge influence on the perception of the programming
language by the users.

I emphasized the pure functional aspects of F#, steering the seminars to-
wards understanding the ‘what’—using immutable data and pure functions—and
away from the ‘how’—the control flow and mutable state found in imperative
programming. Most students were novices in programming, so the seminar’s
goal was to introduce them to CS using functional programming in a stress-free
environment, without homework or mandatory assignments.

Half of our time was spent on recursion and higher-order functions, and
the rest on functions, lists, and pattern matching. I would introduce practical
problems, such as implementing quick sort algorithm in F#, to illustrate these
concepts (see Section 3 for more details).

The rest of the paper is outlined as follows. In Section 2, I present a short
literature review. Section 3, describes my methodology for teaching quick sort
algorithm and higher-order functions. In Section 4, I present the feedback that
I received from my students and finally in Section 5, I present my conclusions.

2 Literature Review

When the opportunity arose to conduct a seminar series on CS for 9th and
10th-grade students, I was instantly drawn to the idea of centering it around
functional programming. Some of my students had prior experience in pro-
gramming, having learned Java or Python through personal projects or self-
study. However, none had exposure to functional programming. To the best
of my knowledge, at that time, BUA did not offer formal computer science
education to 9th or 10th-grade students. My initial aim in using the func-
tional programming paradigm was to provide a foundational introduction to
programming for my students. Functional programming stands out due to
its avoidance of assignment statements, which ensures that a variable’s value
remains unchanged once assigned. This paradigm is inherently free from side
effects, with the primary function of a call being to compute and return a result.
The consistency of expression values, safeguarded against side effects, allows
for evaluation at any point without influencing the final outcome, offering a
stable and predictable framework for learning programming [5].
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[2] discuss the benefits of introducing functional programming to high school
students, highlighting the use of higher-order functions, recursion, and func-
tion composition. While I agree with their points, the paper’s prescriptive na-
ture presents challenges. Effectively teaching functional programming requires
more than just methodologies; it demands a well-motivated choice of language
that resonates with students. Additionally, it’s important to cultivate intrinsic
motivation among students to engage with and complete assignments. My ex-
perience showed that without any incentive for independent study, a significant
portion of each seminar needed to be spent reviewing the material from the
previous week.

The authors [6] provided two different treatment to computing science stu-
dents using functional programming and imperative style programming. The
authors found that students using functional programming produce better pro-
grams with a better structure than students programming in imperative style.
Functional programming students were also found to use higher level of ab-
straction and number of functions in designing their programs. Also the fact
that we met for only one hour per week, I aimed for them to understand the
representation of computations rather than focusing extensively on processing
these computations. However as seen in Section 4, I find mixed results on the
uptake of functional programming among my grade 9 and grade 10 students.

3 Teaching of Quick Sort and Higher-Order Functions

In teaching the quick sort algorithm, my emphasis was on understanding the
essence of the computation rather than the specifics of its execution. I began
with a visual demonstration to explain how quick sort operates when the first
element of the list is chosen as the pivot. This helped students grasp the core
concept: after the initial partitioning, all elements to the left of the pivot are
smaller, and those to the right are larger.

However, students were initially unsure how to separate elements smaller
or larger than the pivot. A review of the filter function from the previous
week’s session helped bridge this gap. Once the pivot was positioned correctly,
students recognized that the original problem of sorting the list had now been
broken down into two smaller problems: sorting the elements to the left and
right of the pivot.

This realization sparked an insightful moment for one student, who excit-
edly suggested that we employ recursion to solve these sub-problems. What
remained was to combine the sorted sublist on the left with the pivot and then
with the sorted sublist on the right. Thus, we arrived at our complete quick
sort algorithm (as seen in code listing 1), which elegantly demonstrated the
use of recursion and partitioning using higher-order function filter.
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Listing 1: Quick sort in F# for sorting distinct elements
l e t r e c qu ickSort = func t i on
| [ ] −> [ ]
| p ivot : : t a i l −>

l e t sma l l e r = L i s t . f i l t e r ( fun x −> x < pivot ) t a i l
l e t l a r g e r = L i s t . f i l t e r ( fun x −> x > pivot ) t a i l

qu ickSort sma l l e r @ [ p ivot ] @ quickSort l a r g e r

I then presented my students with a function in F# named medianOfSortedList,
which calculates the median of a sorted list of integers. I posed a challenge to
them: given a list containing multiple lists of integers, how would they compute
the median of each individual list? The task was to formulate their approach
as an algorithm, first using plain English.

The majority of the students suggested a straightforward process: ex-
tract each list, sort it using the quick sort algorithm, and then apply the
medianOfSortedList function to the sorted list to find the median.

Our previous lessons on list traversal using the map function came in handy
here. Most students understood that the map function was essential, and pro-
posed that it should be used to feed each list into quickSort, and subsequently
pass the sorted output to medianOfSortedList. Despite this, they hit an im-
passe on integrating these steps into a cohesive solution.

At this juncture, I noticed some tension among my students, stemming
from the challenge of translating the ‘what’ into the ‘how’. To alleviate this,
I reminded them that map, which we could use to traverse each of the list
of integers and apply some action on it so that it can achieve the desired
outcome. Assuming the presence of a predefined variable listOfListOfInts,
our approach was as follows (see code listing 2):

Listing 2: Traversing a list of lists of integers and applying an action to each
sublist.

L i s t .map someActionOnListOfInt l i s t O f l i s t O f I n t s

In an effort to concentrate on the process of manipulating each list of inte-
gers, I introduced a function named someActionOnListOfInt. This abstrac-
tion directed our attention to the method by which we could process each list.
We delved into defining someActionOnListOfInt, which the students under-
stood should first invoke quickSort on the list and then pass its sorted output
to the median-finding function. This conceptual understanding led us to the
following implementation (see code listing 3):

Listing 3: Utilizing the function composition operator to sort a list of integers
with quicksort and then find its median.
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l e t someActionOnListOfInt =
medianOfSortedList << quickSort

<< is a function composition operator in F# that takes the output of quickSort
and feeds it as input into medianOfSortedList. A few of my students found
this example helpful, as it aligned with their pre-calculus studies on function
composition, offering a practical application of the concept.

4 Student Feedback and Reflections

At the seminar’s conclusion, the administrative staff at BUA collected student
feedback. This section presents a subset of qualitative responses and summa-
rizes the quantitative data in Table 1. The insights gained from the students
are invaluable for planning potential modifications to the seminars for future
Grade 9 and Grade 10 cohorts.

A key takeaway is the value of teaching functional programming. It encour-
ages students, especially those new to programming, to develop a structured
and systematic approach to problem-solving, enhancing their overall program-
ming skills. Focusing on recursion and immutability has proven effective in
helping students reason about their code without the added complexity of side
effects. However, it became apparent that I need to better articulate the rea-
sons for choosing F# as the medium for teaching functional programming.
Feedback revealed a preference for Python among many students, likely due to
its accessibility and the possibility that they had either learned it independently
or worked on personal projects using the language. This is an important consid-
eration for future courses, where integrating functional programming concepts
with Python might provide a more relatable and reinforcing learning experi-
ence.

Additionally, I observed that hosting a one-hour seminar weekly without
supplementary assignments does not sufficiently motivate independent study.
Extending the seminars to 90 minutes could afford more time for thorough re-
views, which are essential for connecting new concepts with previously covered
material. With only 60 minutes, substantial seminar time was dedicated to
reviews, leaving limited opportunity to introduce and delve into new topics.

Here is a sample of the qualitative feedback received from the students:

1. “I enjoyed learning about how math related to CS.”

2. “To be quite honest, just learning about F# as a whole was very intriguing
since I had no prior knowledge in coding.”

3. “I think I learned to think outside of the box and apply math to CS.”
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4. “Not really a skill but was exposed to more advanced coding for the first
time.”

5. “I learned a lot about functions and how they work in F#. As a whole,
I learned that there are multiple ways to go about solving a particular
problem.”

6. “I’ve learned a lot of mathematical skills and new ways of thinking.”

7. “Because I don’t plan on studying CS in the near future, but I am still
somewhat interested in it, I gave the course a 3.”

8. “I would change the language to Java or Python or something more uni-
versally known and applicable.”

9. “Do something other than F#.”

10. “The programming language is not very useful in my opinion although
learning CS is.”

11. “While the course did go over basic coding skills, it was done in F#, a
coding language that isn’t seen much and isn’t very useful. If this course
was done in Python or in JavaScript, this course would have been much
more useful and relevant.”

12. “While I think that the professor and the class was great, the language
that we were learning is not commonly used (the professor just said this
was his favorite language)!”

and here is Table 1 summarizing the quantitative feedback across 26 partici-
pants.

Statement Average Standard Deviation
The topics covered in the course were
relevant and useful. (1= strongly dis-
agree; 5=strongly agree)

2.8846 0.7656

I found the material in this course
interesting. (1= strongly disagree;
5=strongly agree)

3.0385 0.7736

The teaching style and classroom activ-
ities were engaging. (1= strongly dis-
agree; 5=strongly agree)

3.6154 0.9414

Table 1: Survey Results based on feedback from 26 participants.
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5 Conclusion

In conclusion, the F# seminars at BUA offered a first introduction to func-
tional programming for Grade 9 and 10 students. While the approach was
well-received by some, the mixed feedback highlights the need for a more fa-
miliar language like Python in future offerings of this seminar. This experience
underlines the importance of aligning programming tools with student familiar-
ity and the potential benefits of extending session times for deeper engagement
and understanding.
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Abstract

Universal Design is the principle for designing products to be usable
by all people. In this paper, we discuss how universal design can be
incorporated into the traditional computer science classroom by inten-
tionally considering how classroom exercises, assignments, discussions,
and designing of code can make for an inclusive learning environment.
We describe Universal Design for Learning and give examples of effec-
tive practices including course design, classroom environment, equitable
participation, lecture structure, assignments, and in-class exercises.

1 Introduction

Universal Design for Learning (UDL) is a framework for considering pedagogi-
cal strategies to reduce barriers and support all learners [5]. The goal of UDL is
to make learning inclusive – eliminating possible barriers so that students of all
abilities can be successful without any additional accommodations. Building
courses with universal design in mind leads to an education that is accessible
by design, rather than modification.

The discipline of computer science is in high demand and is poised to help
solve many different kinds of problems. It is important to incorporate UDL,
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as the future of computing will be shaped by those people who feel welcomed
into the discipline1. Instructors in computer science courses have the potential
to create environments that will foster a diverse and inclusive learning envi-
ronment that maximizes the potential of individual students. As educators,
it is our charge to increase the effectiveness of education and the diversity of
students that contribute to developing technology [7].

1.1 Contributions

The paper is structured as follows: We first discuss the background and sig-
nificance of UDL in education, highlighting the challenges that students often
face. Next, we discuss the core principles of UDL and demonstrate how UDL
can be adapted to the computer science context. Lastly, we list several effec-
tive practices that align with universal design in computer science, including
discussions around the design of the overall course, classroom, lectures, in-class
exercises, and assessments.

This paper will provide some simple, straightforward ideas that are easy to
implement and will assist professors in better-adapting course curriculum and
in-class practices to incorporate UDL in the classroom.

1.2 Background and Significance

In any college classroom, the needs of potential students are wildly diverse.
Disability is just one of many characteristics that a student might possess.
For example, students may be of a certain gender, race, age, reading ability,
hearing ability, or any other number of factors that make them vulnerable to
imposter syndrome or needing accommodations to participate or achieve in the
classroom. Universal Design (UD) requires consideration of all characteristics
of potential users, including abilities and disabilities, when developing a course
or service. UD can be applied to any product or environment [1].

When it comes to utilizing pedagogical practices in a higher-education class-
room, educators often face several challenges. The advent of new technologies
and the diversity of the technologies require educators to put a significant
amount of work into maintaining a consistent learning environment. Classes
that adopt a student BYOD (bring your own device) policy must choose tools
that are platform independent, and these options may be limited. Furthermore,
learning environments likely vary from classroom to classroom; in which seat-
ing arrangements, size of classroom, availability of technology, size of projector
screens and a number of other factors may not be consistent. It is therefore
common for teachers to establish their own practices individually. As a re-
sult, the frequency and consistency of technology usage depends solely on the

1https://udl4cs.education.ufl.edu/
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given teacher’s interest, which leads to sporadic and inconsistent integration,
particularly with respect to practices designed to accommodate UDL [6].

Despite challenges, a dedicated and strategic approach to UDL principles
ensures that students with a wide range of abilities and needs can succeed. The
framework of UDL consists of instructional approaches that provide students
with choices and alternatives in the materials, content, tools, context, and
supports they use [4].

2 Effective UDL Practices for Computer Science

Universal design makes it so that the course is designed specifically to be ac-
cessible to all students. We make several recommendations for considerations
to lead to a more accessible classroom environment. The applicability of these
suggestions may vary based on a particular learning management system or
technologies that a university has adopted, a classroom’s layout, and a profes-
sor’s lecture delivery style. However, the following suggestions can be helpful in
adopting a more inclusive approach to classroom instruction centered in UDL.
We describe the suggestions within each section in order of lowest effort and
highest reward; they are as follows:

2.1 Inclusive Course Design Practices

Before a student steps into a classroom, several considerations can be imple-
mented that will help make every class session more inclusive.

2.1.1 Record Lectures for Flexible Learning

Creating a recording of the lecture (e.g. the audio recording of the presenter
alongside the video of the projected content) can be easily done with freely
available software (e.g. Zoom). By providing students with these materials
after each class session, a student who is hard of hearing or missed a part of
the class for any reason would have the opportunity to learn the material as
presented. It also provides students who may not be native speakers with a
way to rewatch the lectures, possibly at a slower pace. Furthermore, this pro-
vides means for students who are traveling due to school-sponsored functions
(e.g. sporting activities) or ill to keep up with the course content. While not
a replacement for attending class, recording the lectures (and making them
available via request) is a means for making the material more accessible and
less dependent on delivering content that must be digested by all students in
the same way.

Recording lectures can be as simple as selecting the record option on a
virtual software session when the class begins. Rather than sharing the “live”

95



link with the class, the professor can be the only one in the virtual room.
This recording process has the added benefit of allowing students to join

remotely should they choose–something that supports another UDL principle,
flexibility in attendance. In our experience, withholding the link to the hybrid
session unless individual students ask for it is a reasonable practice to keep
students from joining remotely if they are able to participate in the class in
person.

2.1.2 Closed Captioning

Even if a person is not hard of hearing, there are many benefits from having
closed-captions streaming via a presentation. Current presentation software
can do an excellent job of approximating captioning without requiring a pro-
fessional stenographer. For example, Google Slides and PowerPoint Live both
have options for live captioning.

Providing closed-captioning helps more than deaf or hard of hearing stu-
dents, it also helps anyone who may have difficulty processing auditory infor-
mation, have a language barrier, or have difficulty attending to material that
is presented in only one modality.

2.1.3 Optical Character Recognition (OCR)

Optical Character Recognition (OCR) is the process that converts an image
of text into a machine-readable text format. This is particularly important for
learners who are visually impaired as they will be unable to utilize a screen
reader for content that is not OCR-compatible. If necessary, most campus
libraries can make suggestions on finding resources to make your non-OCR’d
texts into more accessible OCR’d versions.

2.1.4 Make Reading More Accessible

Students with disorders that affect their ability to read can greatly benefit
from the use of tools like Beeline Reader2, a tool that utilized color gradients
to guide the eyes of the reader. Another great resource to know about is the
free font OpenDyslexic3. OpenDyslexic is designed with dyslexic readers in
mind, making the bottom part of the text slightly wider than the top part of
the text. This difference makes reading easier for people with dyslexia.

These are both tools that don’t require much from the professor’s end rather
than just showing students that these resources exist, and maybe including
them in a folder of accessibility tools in a learning management system.

2https://www.beelinereader.com/
3https://opendyslexic.org/
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2.2 Inclusive Classroom Design Practices

While each classroom may be physically different, the following are recom-
mendations that can be done regardless of the setup that can help students
during each class session. These suggestions include ideas to help guide tran-
sitions from different learning modalities as well as techniques for classroom
participation.

2.2.1 Addressing Sensory Preferences

It is common for students to have sensory preferences that they may or may
not feel comfortable sharing [9]. Often, students who are neurodiverse have
strong preferences for the lighting and sounds in their environment [2]. Some
students struggle with abrupt transitions in lighting or sound. Experiencing
these abrupt transitions could cause some students to become dysregulated,
which often results in difficulties staying focused, generally inhibiting learning.

It is important to consider these sensory preferences, especially when mak-
ing changes to your classroom environment. We have found that simply giving
students a warning when you are about to change the lighting conditions, or if
you are about to play an audio clip that may be loud goes a long way to help
students feel safe, seen, and heard in their classroom environment.

2.2.2 Leveraging Music for Contextual Shifts and Time Manage-
ment

Another way that sound has played a role in making our classrooms more
accessible is by using music in class to help signal context shifts. One method
we have used is playing quiet, relaxed ‘coffee shop’ music in the background
when students are supposed to be working together, and then turning the music
off when it is time for them to pay attention to the professor. This method has
helped modulate the attention of the class and makes shifting contexts between
collaborating and listening much less abrasive.

Time blindness, also known as time perception deficit, is a common trait
among neurodiverse students [8]. Students who experience time blindness are
unable to sense when time has passed and estimate the time needed to get
something done. An added advantage of having a song playing in the back-
ground is that helps students with time blindness keep track of the amount of
time passing during in-class activities. Using a song’s length as a measure of
how much time students have to complete the exercise can be a useful tool.
For example, “I’ll give you two songs to see if you can figure out how to . . . ”
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2.3 Inclusive Lecture Design Practices

Each class period provides opportunities to inform and inspire students. The
following recommendations provide ideas to help ensure students are engaged
throughout the entire class.

2.3.1 Break Lectures into “Mini-Lectures”

Striving to break up a class session into a several approximately fifteen-minute
“mini-lectures” can be an effective way to keep students engaged. Utilizing an
engaging activity between each of these mini-lectures provides time for students
to practice what was just taught; additionally, the professor can collect feedback
on how the content presented in the mini-lecture was understood.

Examples of engaging activities could be a polling question or a brief coding
exercise. If the students can complete the exercise with ease, then it’s a good
sign that they’re ready for the next mini-lecture; however, if they are struggling
to complete the exercise, then it might mean the professor should revisit the
topic before continuing with presenting new material.

2.3.2 Reduce Ambiguity of In-Class Exercises

Ambiguity leads to avoidance. When the instructions for a given in-class ex-
ercise are not clear, students will avoid digging into the exercise often for fear
of completing it incorrectly. It is important to include clear, unambiguous in-
structions for each in-class exercise. These instructions should include precise
explanations of the context around the question, as well as what and how the
student is expected to produce.

Another subtle, yet effective tool in helping students transition between
lecture-mode and exercise-mode is the use of a different colored slide for any
in-class exercise. These slides can also have a header that defines what type of
in-class exercise students should expect: discussion, short exercise, challenge
exercise, or poll question.

2.3.3 Provide Extra Challenge Exercises

One of the difficulties encountered in teaching most computer science classes
is the broad spectrum of experience and abilities. The learning rate is quite
different between students, which leads to some students getting bored while
other students get frustrated by feeling rushed or inadequate. One solution
that we have explored is the practice of providing extra challenge questions at
the end of most presentations.

These challenge questions are tougher questions that we wouldn’t necessar-
ily expect all of the students in the class to get to. The goal of including the
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challenge questions must be explained clearly so as not to make students who
aren’t quite ready for the challenge questions feel like they also belong in the
classroom. These challenge questions help keep students who have a strong
understanding of the material engaged, while also being able to keep students
who may need a little extra support from feeling frustrated or rushed.

2.4 Inclusive Assessment Design Practices

It is important that we have accessible ways to assess the understanding and
mastery of the concepts that we teach in class. The following lay out some ideas
as to how to make computer science assessments accessible to all students.

2.4.1 Clarify Assignment Goals: Provide Objectives and Prerequi-
sites

Including the assignment’s objective and pre-requisites at the top of each as-
signment can help students clearly understand the goal of an assignment and
what they need to know before attempting the assignment.

This approach works particularly well with the practice of making all of
the assignments for a course visible on the first day of the course. Being
clear about the objective of the assignment can help students understand the
purpose, and connect the purpose back to the material they are learning in the
class. Including the prerequisite knowledge for a given assignment also helps
students understand if they are ready to begin the assignment or if they need
to go back and do some learning before attempting the assignment.

2.4.2 Implement Incremental Assignment Deadlines

A simple technique that can help students learn to manage their time more
effectively is to not require entire assignments due at a long-range deadline.
Instead, providing students a short deadline for which a first attempt must be
submitted can help students navigate time management issues.

With the increase in usage of auto-grading systems for coding assignments,
it is easier for students to get immediate feedback and incorporate this feedback
into their submissions. The main goal is to help students understand that using
the autograder to test their code is something that is better done early on in the
development process rather than at the last minute. It also may help students
alleviate anxiety through good time management and avoid procrastination.

2.4.3 Balancing Creativity and Accessibility in Assignments

Some students are driven by being given creative tasks. Asking them to come
up with something original, or apply a computer science concept to another
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topic that they are interested in, can lead to some student’s best work. Cre-
ativity often motivates students to push beyond the boundaries of what they’ve
learned in class. However, other students find these kinds of creative assign-
ments to be overwhelming.

Building assignments to allow students the option of thinking creatively
can lead to students who are motivated by creativity, while also not pressuring
students who may find generating new ideas to be overwhelming or more time-
consuming than they would like. For example, an open-ended assignment to
build a dice-rolling game (focused on using concepts learned in class) could be
an excellent assignment for students who are motivated by creativity. However,
this assignment could be made more accessible by providing the rules to a
default game for students to implement if they don’t want to come up with
an original idea. This default option will likely help some students to feel less
overwhelmed by such an assignment.

2.5 Inclusive Exam Design Practices

2.5.1 Remove Timed Elements from Exams

In assessing students, it is important to utilize an assessment that is consistent
with course goals. If the goal is to ensure students are competent programmers,
a time-pressured paper-and-pencil exam with vocabulary terminology assesses
a very different set of skills when opposed to a project-based assessment with
a longer-range timeline. When selecting how students will be evaluated, it is
important to keep in mind the diversity of test-taking abilities and how these
map to the intended outcomes of a course.

2.5.2 Reduce Testing Anxiety

Test anxiety has a negative effect on students, and is believed to affect female
students more than male students. In one survey, the researchers estimated
that 38.5% of students (30% of male students, and 46.3% of female students)
experienced testing anxiety [3, 10].

While there are many different variables when it comes to giving tests
in a computer science classroom, as educators there are ways to construct
assessments that can reduce testing anxiety. One such strategy for in-person
classes is to hand out the tests at the beginning of class, ask students to put
any writing utensils away, and then allow the students five minutes to look
through the test together and brainstorm. In five minutes, there isn’t much
time to share entire solutions, but rather the overall idea of what each question
is asking. This also might bring up some questions as to how the questions
should be interpreted, which is most helpful to discover sooner rather than
later.
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Another common strategy to help reduce test anxiety is to allow the stu-
dents to bring in one page of notes. This practice not only helps the students
have a clear goal while studying, but it also helps reduce the anxiety that stu-
dents need to memorize every detail of the material that was presented to them
to do well on the exam.

Another option is to make tests fully asynchronous – giving students online
take-home, open-note tests rather than timed, closed-note, in-person exams.
While this is the most universally designed and inclusive pedagogy for exams,
the propensity for academic integrity violations increases with these kinds of
exams as there is no proctor. Especially with the rise of generative artificial
intelligence tools to help students, asynchronous exams are difficult to ensure
that the students’ work is their own.

3 Conclusion

The discipline of computer science is in high demand and is poised to help
solve many different kinds of problems. It is important to incorporate UDL in
today’s classroom, as the future of computing will be shaped by those who feel
like they belong in the discipline.

As educators, we aim to instruct, challenge, and inspire students to learn
elements of computing that will enable them to contribute accomplishments
beyond the classroom. By following effective practices for Universal Design, we
can maximize our impact by ensuring that courses, lessons, in-class activities,
and assessments can reach and inspire as many students as possible.

In this paper, we supplied several promising practices and ideas to inspire
educators to adopt techniques that will make their activities adhere to UDL
practices and ultimately increase their impact on current and future students.
While we acknowledge that implementing all of these suggestions is likely not
attainable, any additions that adhere to UDL practices will lead to a more
inclusive learning experience.
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Abstract

Programming stands as an essential requisite in computer science ed-
ucation. Recognizing the challenges students face in learning program-
ming effectively, the proposed assignment aims to integrate generative
artificial intelligence (AI) tools to teach students introductory program-
ming constructs. Generative AI has gained an increasing popularity in
recent years. Several available Generative AI implementations can now
help students learn programming essentials and debugging skills.

1 Introduction

The objective of this assignment is to familiarize students with the introductory
programming constructs in C++, including if-else statements, loops, and func-
tions. Students will use generative AI to solve a simple problem and develop
programming skills. According to Alvarez et. al., “in introductory computer
science (CS1) courses in higher education, approximately one in every three
students fails. A common reason is that students are overwhelmed by an ac-
celerated and inflexible pace of learning that jeopardizes success” [1]. The
difficulty to learn programming is also cited by others. According to Thune
and Eckerdal, “Previous research shows that many students find it difficult to

∗Copyright is held by the author/owner.
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learn computer programming” [2]. Thus, the proposed assignment uses gener-
ative AI to encounter some of the common challenges that students experience
in introductory programming classes.

2 Assignment Description

In this assignment, students will write a program to calculate a student’s total
grade based on the grade evaluation weights in table 1. The program will
prompt the user to enter the scores for three courses: Computer Programming
1, Discrete Mathematics, and Calculus 1. It then validates, calculates, and
displays the total grade. The programming assignment must be completed in
C++ by using if else statements, loops, and functions. Students are required
to use generative AI to complete the assignment.

Deliverables Weight(%)
Homework Assignments
(16 totals, drop the lowest) 45%

Quizzes (3 total) 15%
Midterm 15%
Final 20%
Attendance and Active
Participation 5%

Table 1: Grading Evaluation

3 Student Responsibility

Students are responsible for completing the following tasks independently:

• Before working on the assignment, the student needs to comprehend the
functional requirements, input, and output specifications.

• Collect data of the required types for input to the program.

• Provide generative AI with specific instructions to code individual com-
ponents of the assignment.

• Examine the generated code to identify opportunities for improvement,
and make necessary changes.

• Integrate individual programming components, generated by open AI.
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• Use an integrated development environment (IDE) to identify and fix
bugs in the generated code.

• Use an IDE to run the code.

• Examine the output for completion and accuracy.

• Verify that the program meets all the specified requirements.

• Develop test cases using equivalence classes and boundary value analysis,
a common technique in software testing. Test the code with the test cases
to verify its accuracy and correct any errors.

• Provide clear and concise documentation of the code by adding comments
to explain the purpose of different variables and sections.

• Reflect on this programming experience by identifying programming skills
impacted by the use of AI, and the limitations of relying on AI for pro-
gramming.

Students can use generative AI to successfully complete the following tasks:

• Generate some of the initial code.

• Explore alternative ways to code the assignment.

• Generate examples for coding different programming constructs.

• Identify possible errors in the code and suggest improvements.

4 Conclusion

The proposed assignment introduces the use of Generative AI to learn fun-
damental programming skills and address common programming challenges.
While generative AI can automate many coding tasks, developing complete
software projects often requires unique skills and creativity that require hu-
man involvement. In introductory programming classes, students can use gen-
erative AI for several reasons: enhanced productivity and the ability to gain
immediate feedback. Also, it’s critical for computer science graduates to ac-
quire skills in using the most recent tools essential for success after graduating.
Programming will continue to be an important skill for students to have in the
foreseeable future, and generative AI can provide a valuable complement to
existing resources available to students to learn programming in introductory
computing courses.
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Motivation

Using nested loops to access the contents of 2D arrays row-by-row is the stan-
dard practice/technique in CS1 teaching. However, with a bit of variation in
the loops and/or a twist of the order of index-controlling variables, things can
become tricky and/or unexpected and thus pose a challenge to CS1 students.
As such, being able to correctly recognize the interplay between nested loops
and 2D arrays should be an essential benchmark for measuring the quality
of students’ grasp on 2D arrays. This nifty assignment piece aims to help
students’ learning in this respect by providing a group of exercises.

The Problem/Assignment

The following 8 (related) Java program fragments are given to CS1 students
as an assignment with the stipulation that a[][] is a 3x41 properly initialized

∗Copyright is held by the author/owner.
1The size can actually be nxm for any n and m with n < m.
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2D integer array, and that i and j are both program-wide2 int variables with
initial value 0. The questions are what would be printed from each of the code
fragments and an explanation if the code causes an error.

// (1)
for (i=0; i<3; i++)
{

for (j=0; j<4; j++)
System.out.print(a[i][j]+" ");

System.out.println();
}

// (2)
for (i=0; i<3; i++)
{

for (j=0; j<4; j++)
System.out.print(a[j][i]+" ");

System.out.println();
}

// (3)
for (j=0; j<4; j++)
{

for (i=0; i<3; i++)
System.out.print(a[i][j]+" ");

System.out.println();
}

// (4)
for (j=0; j<4; j++)
{

for (i=0; i<3; i++)
System.out.print(a[j][i]+" ");

System.out.println();
}

// (5)
for (j=0; i<4; j++)
{

for (i=0; i<3; i++)
System.out.print(a[i][j]+" ");

System.out.println();
}

// (6)
for (j=0; j<4; j++)
{

for (i=0; j<3; i++)
System.out.print(a[i][j]+" ");

System.out.println();
}

// (7)
for (i=0; j<3; i++)
{

for (j=0; j<4; j++)
System.out.print(a[i][j]+" ");

System.out.println();
}

// (8)
for (i=0; i<3; i++)
{

for (j=0; i<4; j++)
System.out.print(a[i][j]+" ");

System.out.println();
}

All code fragments are related to one another in the sense that one is a
variation of another. However, each code fragment produces a different result.
Code fragment (1) simply prints out the array row-by-row. Code fragment (2)
is obtained from (1) by switching the positions of i and j in a[i][j], and
causes an array index out of bound error at run time after printing out the
first column. This is due to the fact that j dictates the row index now but
eventually reaches 3 because of the inner loop. Code fragment (3) is obtained
from (1) by switching the inner loop and the outer loop, and prints the array
column-by-column. Code fragment (4) is obtained from (3) by switching the
positions of i and j in a[i][j], and will cause an index out of bound error
due to j (similar to (2)). However, since the loop involving j sits outside, code
fragment (4) actually prints out the left 3x3 subarray row-by-row prior to j
reaching 3 and causing the exception.

If we consider code fragments (1)-(4) “conventional” or “standard”, then
code fragments (5)-(8) can be “unconventional” or “non-standard” where extra

2i and j are purposefully declared as variables outside the loop so that the complications
shown in this assignment can occur for learning/training purposes.
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thoroughness is needed when examining them. Code fragment (5) is obtained
from (3) by intentionally changing j to i in the condition of the outer loop
(some students think this is a typo and is done “mistakenly”). While we can see
that in this case the value of i will never be equal to or larger than 4 so the outer
loop potentially will turn into an infinite iteration, we need to remember that
the value of j increases by 1 every time the outer loop runs and thus will reach
4 quickly. Hence the result of this code fragment is not an infinite iteration,
but an array index out of bound error following a printout of the entire array
column-by-column. Code fragment (6) is obtained from (3) by “mistakenly”
typing i as j in the condition of the inner loop. Similar to (5), although the
inner loop condition j<3 will be always true, the result of this code fragment
is not an infinite iteration, but a printout of the first column followed by an
index out of bound error caused by i. Code fragment (7) is obtained from (1)
by “mistakenly” typing i as j in the condition of the outer loop. Interestingly,
unlike others, (7) printouts the first row and then terminates successfully. Code
fragment (8) is obtained from (1) by “mistakenly” typing j as i in the condition
of the inner loop. Again, no infinite iteration will occur in this case although
i<4 is always true. The code causes an index out of bound error (due to j)
after printing out the first row.

Classroom observations

These exercises were designed for and given to an introductory Java program-
ming class as a homework assignment. Students’ primary responses were that
this assignment had clarified many things, and that they had learned signifi-
cantly through doing this assignment and participating in the ensuing discus-
sions. We claim that this assignment is nifty because it has revealed many
issues that would have been hidden otherwise. A few of these issues are listed
below.

• Some students thought that code fragment (5) runs into a never-ending
infinite loop, which is not true as explained above.

• Some students thought that the trouble in code fragment (4) is caused by
i in the following way: i in this case dictates the column index, the array
has 4 columns, but the maximum allowed value of i can only reach the
3rd column. So the array would be “under-run”. They failed to realize
that “under-running” an array is okay but “over-running” is not.

• Some students thought that code fragment (5) prints out the array column-
by-column successfully. They realized that i controls the row index and
the array has only 3 rows but somehow thought that i<3 and i<4 assure
that i will not be over 3 so that situation is “safe” (i.e., i will not get
out of bound). They failed to realize that i<4 is a tautology in this case
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which can potentially make the loop run forever (and subsequently get
into the first issue above).

• Some students thought that i and j in a[i][j] “represent” (or “are”)
the dimensions of the array and used that to judge the condition of the
for-loops. For instance, they thought that j in code fragment (6) “rep-
resents” the column dimension of the array (4 in this case), and since 4
is not less than 3, so j<3 is broken causing an index out of bound error.
This, unfortunately, is a total mess-up, and shows the complications this
assignment may lead to.

We hope that this assignment can be found useful by colleagues.
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Objective: In psychology, the protégé effect refers to the situation in which an
individual’s comprehension of information is enhanced by engaging in teaching
that information to others [1]. In this project, you will try to understand a
topic in Discrete Mathematics thoroughly and produce a power point presenta-
tion and a video recording (between 5 and 6 minutes in length) to teach other
people the concept.

Format: Individual or 2-person group project

Steps for producing a PPT and a video recording:

(1) By the end of week 8, choose a topic in Discrete Mathematics and submit
it to the LMS submission box. See a list of possible topics below.

(2) By the end of week 9, obtain the topic approval from the instructor.

(3) By the end of week 11, submit a PPT describing the topic.

(4) By the end of week 12, obtain the instructor feedback for improvement.

(5) During weeks 13 and 14, make the necessary improvement to your pre-
sentation by taking the instructor’s feedback into account. Produce a
video recording between 5 and 6 minutes in length to explain the con-
cept. (Zoom is a great tool to produce such a video recording.)

(6) By the end of week 14, submit the video recording and the improved
PPT to the LMS submission box.

∗Copyright is held by the author/owner.
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(7) During week 15, your PPT and video recording will be made available to
the entire class.

Grading: Appendix A provides the grading rubrics.

Possible topics:

(1) Logic Equivalence, Logic Reasoning

(2) Proof by Contradiction

(3) Simplification using Set Identities

(4) Properties of Binary Relations

(5) Algorithm Analysis

(6) Finite State Machine

(7) Recurrence Relation

(8) Induction Proof

(9) Pigeonhole Principle

(10) Bayes Theorem

(11) Graph Connectivity

(12) Graph Coloring

(13) Tree Traversal

(14) Minimum Spanning Tree

(15) Other topics in Discrete Mathematics
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Appendix A
Teach Me Video Project - Grading Rubric

Criteria Rating Points

PPT
Content

4 pts
Substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

3 pts
Do not fulfill 1 of
the following
attributes:
substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

2 pts
Do not fulfill 2
of the following
attributes:
substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

0 pt
Lack 3 or more
of the following
attributes:
substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

4 pts

PPT
Organization

1pt
Organized, and logically sequence

0 pt
Lacks one or more of the following
attributes: Organized, and logically
sequenced.

1 pt

PPT
Mechanics

1 pt
Clear writing, and no grammatical
error.

0 pt
Lacks one or more of the following
attributes: Clear writing, and no
grammatical error.

1 pt

Video
Content

4 pts
Substantial,
accurate,
interesting,
creative, and
showing thorough
understanding of
the topic.

3 pts
Do not fulfill 1 of
the following
attributes:
substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

2 pts
Do not fulfill 2
of the following
attributes:
substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

0 pt
Lack 3 or more
of the following
attributes:
substantial,
accurate,
interesting,
creative,
and showing
thorough
understanding
of the topic.

4 pts

Video
Organization

1pt
Organized, and logically sequenced

0 pt
Lacks one or more of the following
attributes: Organized, and logically
sequenced.

1 pt

Video
Mechanics

1 pt
Clear narration, no grammatical
error, and high video quality.

0 pt
Lacks one or more of the following
attributes: Clear narration, no
grammatical error, and high video
quality.

1 pt

Total 12 pts
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1 Summary

In November 2023, our university hosted high school students from the area for
a one day program focuses on cyber computing with four 40 minute sessions.
Demand was high enough that a second day was added. Combined, there were
340 students from 29 schools. Students were broken up into eight groups which
were assigned to a set of sessions. All students did sessions on (1) Hands-On
Coding, (2) Cracking Passwords, and (3) Phishing/Internet Safety. The fourth
session depended on the group and was one of (4) Cryptography Unplugged,
(5) Robotics, or (6) Virtual Reality/3D Printing. This panel addresses the
planning and goals for the program. It will compare and contrast the sessions
along with survey results from the students and session materials as available.
To conclude, lessons learned and thoughts for the future will be presented.

2 Biographies

Charles Hoot is an Assistant Professor of Computer Science with interests
in software development and theoretical computer science.
Nathan Eloe is an Associate Professor of Computer Science and teaches IoT
and other core computer science courses.

∗Copyright is held by the author/owner.
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Matthew Schieber is a Senior Instructor of Computer Science and specializes
in introductory courses.
Zhengrui Qin is an Associate Professor of Computer Science and coordinates
the cyber security program
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Getting Started with Large Language
Models for the CS Curriculum∗

Conference Workshop

Eric D. Manley
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With the introduction of ChatGPT in late 2022, popular interest in language-
based Artificial Intelligence has exploded. Employers are looking to hire com-
puter scientists who can leverage large language models (LLMs) [2], and stu-
dent demand for learning about them at many higher education institutions
has followed. This one-hour workshop will help computer science educators
respond to this demand by introducing the Python transformers library and
its associated LLM ecosystem [1]. We will discuss how LLMs can be integrated
into college computer science curricula from CS 1 through advanced courses
in Artificial Intelligence, Machine Learning, or Natural Language Processing.
Specific topics include

• Using the transformers library with pre-trained models for inference tasks
like sentiment analysis, text classification, summarization, translation,
and question answering in only a few lines of code

• Searching for and using hundreds of thousands of different pre-trained
language models hosted by Hugging Face along with datasets that they
can be tested on

• Utilizing conversational models to build chat bots

Furthermore, we will briefly discuss the process for fine-tuning LLMs on new
data sets and share the following resources:

∗Copyright is held by the author/owner.
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• Example code for fine-tuning LLMs on new data sets suitable for using
with upper-level CS courses

• A repository with code and presentation materials for an undergraduate
Natural Language Processing course that utilizes the tools discussed in
this workshop

• Additional resources for continued learning about LLMs.

All code for the workshop can be run using free, cloud-based tools, so attendees
need not prepare anything other than bringing an Internet-connected laptop.
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Since November 30, 2022, ChatGPT (Chat Generative Pre-trained Trans-
former) has been embraced by 180 million users [1]. Companies are reimagining
how work can be done by adopting new technologies, such as Artificial Intelli-
gence (AI), to existing or new systems. Similarly, Higher Education is looking
for ways to integrate Generative AI into current curriculums because nearly
half of college students have used AI models to search for information, learn
new topics, brainstorm, or request mentoring from this 24 x 7 online tutor [2].
However, one of many challenges in this adoption is understanding the ethical
considerations. Therefore, the core topic of the workshop is to understand the
opportunities and concerns surrounding the use of AI in education through
case scenarios using ChatGPT, resources, libraries, SDKs, and APIs. We will
delve into data privacy, bias in algorithms, and the responsibility of educators
and technology providers to ensure ethical AI integration. generative AI-based
approaches.

Privacy and data security concerns regarding using Generative AI models
should be considered when creating accounts, disclosing personal identifiable
information (PII), and proprietary data. Case studies of data breaches and
sensitive data leaks will open discussions and raise awareness.

Bias in algorithms created with Generative AI models is another challenge
area that needs to be studied since they are not bias-free. The created con-
tent should be carefully reviewed and critically analyzed. Participants will be

∗Copyright is held by the author/owner.
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exposed to different Generative AI models to compare outcomes and discover
the different approaches in each algorithm.

Generative AI, too, could be used to build students’ critical thinking and
reflection if students are taught prompt engineering strategies properly. We’ll
show how to use a variety of practical and engaging prompts to use Chat-
GPT. We will also analyze the output given using principles of evidence-based
decision-making to measure if the information provided by the model is a hal-
lucination or reliable. Finally, participants will learn how to design and create
a personalized GPT. We will create assignments and hands-on activities that
encourage students’ interaction with this tool and explore the veracity of the
information provided to enhance the student’s skills for future job-related func-
tions.
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