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Welcome to the 2024 CCSC Northeastern Conference

Welcome to Albany, New York, and the College of Saint Rose, for the
Twenty-eighth Annual Consortium for Computing Sciences in Colleges North-
east Region Conference.

Our program features two distinguished invited speakers, Stephen MacNeil
of Temple University and Shaghayegh Sahebi of SUNY Albany. In addition,
we have a broad range of topics covered by paper presentations, lightning
talks, workshops, tutorials, and faculty and student research posters. On Fri-
day morning, we are hosting the traditional programming contest. On Friday
afternoon, we include some student-focused sessions. In addition to the ca-
reer fair, there will be a session where programming contest participants and
organizers can discuss the problems.

This conference would not happen without the efforts of the outstanding
conference committee and dedicated board. The success of this conference is
the result of the hard work of those groups, plus the reviewers, session chairs,
and countless other volunteers. The conference continues to be selective; we
accepted 13 of 27 papers for an acceptance rate just over 48%. This ensures
the high-quality program that everyone expects.

We also want to thank the National Partners whose support made the
conference possible: acm2y and Rephactor. Additional support is provided to
the conference for being in cooperation with the ACM Special Interest Group
on Computer Science Education (SIGCSE).

We are pleased to be hosting this year’s conference for the second time at
The College of Saint Rose, on its beautiful urban campus in Albany’s vibrant
Pine Hills neighborhood. As many likely are aware, this is the last academic
year in the 100+ year history of Saint Rose. We are grateful to everyone at the
College who have played important roles in the planning and execution of the
conference, even as they are dealing with the challenges of Saint Rose’s final
year.

Ian MacDonald
The College of Saint Rose

Jim Teresco
Siena College

Conference Co-Chairs
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Towards Student Engagement: Drones in
Introductory CS Courses∗

Adam Albina and Michael Huelsman
Department of Computer Science

Saint Anselm College
100 Saint Anselm Drive
Manchester, NH 03102

{aalbina, mhuelsman}@anselm.edu

Abstract

Student engagement has been shown to increase academic achieve-
ment. We apply learning engagement strategies in introductory com-
puter science courses using unmanned aerial vehicles (UAVs), commonly
referred to as drones. Using programming to control and fly drones rein-
forces the basic concepts of programming in an interesting and enjoyable
way for first year programming students in a CS1 course. Additionally,
we apply similar but less technical engagement strategies in a general
education course with no prerequisites, and engage students with issues
in modern technology through the medium of drones. Many in higher
education see the introduction of complex topics as an important method
of engaging students and therefore of improving learning outcomes. This
leads many to offer courses in areas like robotics, AI, and game develop-
ment. A potential problem with this approach is the level of knowledge
required for these courses precludes their use as an engagement strategy
in introductory coursework where they might attract the attention of a
broader set of students. To this end we looked into adding drone technol-
ogy to introductory and non-major CS courses. While preliminary, these
results suggest a high level of student interest in the topic and promising
engagement from both CS major and non-CS-major students.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Student engagement has been shown to have a positive impact on academic
achievement [8], which holds true specifically in introductory computer pro-
gramming courses employing learning engagement strategies [9, 3, 4, 10]. Find-
ing engaging programming problems in introductory Computer Science (CS)
courses for first-year students across multiple disciplines has proved a chal-
lenge. Course topics and project selections are often made with an eye towards
technologies that are at the forefront of the news or general student interest [1,
5]. Examples include game programming, robotics, 3D printing, etc. Project-
rich problems in these areas require knowledge from the areas of Algorithmic
Foundations (AF), Foundations of Programming Languages (FPL), and Soft-
ware Development Fundamentals (SDF), as outlined in the gamma version of
the Computer Science Curricula 2023 [2]. This knowledge is likely lacking in
first-year students. Additionally, at many Liberal Arts institutions, Computer
Science departments not only support their programs but provide knowledge
transfer across many majors in support of the institutional mission [6]. Such
dual-service environments amplify the problems caused by requiring high levels
of pre-requisite coursework. Relegating motivational laboratory and classroom
learning engagement strategies to upper-level classes misses the mark for us
on two fronts. First, we seek to motivate and excite first-year computer sci-
ence students to increase their academic success as well as keep them in the
major. Second, we aspire to provide courses that serve both the major and
the undeclared major as they take introductory courses in search of their in-
terest. At many Liberal Arts institutions, a large number of students enter the
institution as undeclared with respect to major, making this type of successful
exploration critical in the decision process. Finally, CS programs at Liberal
Arts institutions are generally supported by three to four faculty members [6]
which severely limits the number of courses that can be offered in a term.

This work provides insights into the integration of a learning engagement
strategy using programmable quad-copters, or drones, in an introductory com-
puter science course over a period of two years. Autonomous flight, object
detection and response using computer vision, and flight emergency exception
handling are covered after students have learned fundamental software devel-
opment in the course. The success of the engagement strategy in the program-
ming course and the desire to address the Society, Ethics, and Professionalism
(SEP) knowledge area [2], with respect to Unmanned Aerial Vehicles (UAV),
prompted the creation of an interdisciplinary course on Drones and Society,
which was open to all majors.
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2 Background

Our first experience with the development of a drone-related curriculum came
in the form of a week-long residential summer camp. The camp program in-
cluded both small-form, programmable drones and larger pilot-controlled kit
drones. While we were charged with overall camp administration, our primary
pedagogical role was teaching basic programming and extending those concepts
to the smaller programmable drones. To the extent possible, the week was di-
vided equally between the programmable drones and the larger kit drones. This
allowed participants to understand the engineering principles behind building
drones, the aerospace forces at play, as well as what drones are capable of with
programming, once they reach a sufficient level of sophistication. The catalyst
for the drone camp was a partnership with the Aerospace Robotics Compe-
tition run by the non-profit STEM-ED, the Saint Anselm College Center for
Ethics, and the Department of Computer Science at Saint Anselm College.

While the camp proved successful in the primary goal of promoting STEM,
we also found a significant secondary effect. Given the difficulties in manag-
ing a group of 12-15 high school-age young adults, we required several camp
counselors, primarily made up of CS majors from the department. In order to
ensure that the counselors were effective in reducing the overall teaching load
and able to assist camp participants, each counselor was trained in the API
of the programmable drones. Given that the students were already CS ma-
jors who had taken an introductory course in programming (Python), we were
able to onboard them quickly and they were effective assistants during pro-
gramming instruction and challenges. The enthusiasm with which our student
counselors engaged with the programmable drones demonstrated a marked in-
terest in drone programming and general drone technology. This background
provided us with the foundations of what we used in our endeavors to introduce
drones in introductory computer science coursework.

3 Drone Curriculum

This section is split between two courses: Computing I (CS1) and Drones in
Society. These courses represent the breadth of pertinent courses where we
have implemented drone curricula. While some elements are shared between
the two courses, their audiences are somewhat distinct. CS1 is primarily taken
by students with a direct interest in programming and CS, while Drones in
Society was meant for a broader audience of students who may have no interest
in programming. Despite both courses being geared for different audiences,
many of the curricular techniques used are shared between them.
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3.1 CS1 Course

In determining our approach to introducing drone programming in our first
programming course sequence, we focused on three simple objectives. The first
was to allow the students a level of experimentation and hands-on work with
drone APIs and programmable drone hardware. This pedagogical technique
seeks to foster a sense of discovery without direct instruction or solutions.
The second was to allow for sufficiently advanced activities in computer vision
and object detection without requiring students to understand these machine
learning techniques completely. The third was to use the drone work as re-
inforcement to previously covered introductory programming concepts. We
settled on the following learning outcomes for this portion of the course in
addition to the learning outcomes already in place for CS1:

1. Develop programs that use APIs to access drone data (telemetry and
video).

2. Develop programs that reinforce fundamental programming constructs
to control drone movement safely.

3. Develop programs that use artifacts retrieved from drones to perform
specific tasks (classification, tracking).

This CS1 course is currently conducted as a flipped classroom environment
following [7, 11] with approximately 60 micro-lectures online, so students are
accustomed to preparing for class, taking a quiz on the video prior to class,
and participating in exercises during class time.

We investigated several drones for educational use and found only two that
would allow for direct programming using Python. We chose the DJI Ryze
Tello platform due to its compact size (allowing for use indoors), accessible
API, forward-facing 720p camera, and low cost.This product has no GPS ca-
pability and is not intended for outdoor use. DJI provides a Python API in
the djitellopy package downloadable from GitHub or installable with package
management software. The platform also allows for UDP socket connections to
the drone through which commands can be transmitted directly. The DJITel-
loPy package also installs the openCV Python and numpy packages. A client
computer connects to the drone using a WiFi access point, which the drone
broadcasts. For this course, we used the djitellopy package as it simplifies
the act of connecting and communicating with the drone. This simplifica-
tion is needed because most students, in a CS1 course, have no background
in networking and don’t understand sockets. In particular, this portion of the
curriculum covers approximately 2 weeks toward the end of the CS1 course.
Students have already completed coursework, assessments, and hands-on labs
that cover standard CS1 programming topics such as variables, data types,
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flow control, functions, object-oriented constructs, and graphics programming
in the Python language. At the point when drones are introduced, students are
fairly well versed in problem-solving, program design, and logic. The typical
class size for our CS1 course is 18-20 students.

Figure 1: Aruco Marker and Tello drone in flight.

We cover the topic in three modules. The first module introduces students
to connecting to the drone and programming the basic movements of the drone
(forward, backward, left, right, altitude, and rotation.) For this work, students
form teams with each team member being required to demonstrate their code
during class/lab. To aid with group work, the classroom we use contains group
collaboration technology in the form of a pod configuration with TVs to which
students can connect their laptops and project their display. Additionally, this
classroom has sufficient free, uncluttered space for flight activities. Typical
problems students have to solve during class time and lab are shown in Table
1. These tasks are evaluated by instructor observation.

Task Learning Outcome

Drone takeoff,
display battery power,
land drone

Control drone movementDrone take off,
increase altitude by 110 cm,
fly an 80cm square

Drone take off,
increase altitude by 110 cm,
fly an 80cm equilateral triangle

Table 1: Module 1 typical tasks
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The second module reinforces the first and adds interactive flight using
keystrokes and includes taking pictures with the onboard camera and saving
them to the program execution directory, as well as emergency flight termi-
nation. Students are encouraged to explore the API during this module and
create programs that use keyboard input to execute commands in the API. Stu-
dents typically add flying curves, flipping the drone, and sequenced movement
(forward 40cm and left 40cm, etc.) to controls they have already programmed.
Typical problems students have to solve during class and lab time are shown
in Table 2.

Task Learning Outcome

Key press to take off,
key press for all movements,
key press for picture

Control drone movement,
access drone data

Key press to flip forward,
key press to fly 40cm circle Control drone movement

Build movement GUI,
button click to fly 40cm circle

Control drone movement,
access drone data

Table 2: Module 2 typical tasks

Figure 2: Student programmed flight of a Tello drone with ArUco marker.

The third module builds on the first two and adds a computer vision compo-
nent with openCV frame markup, ArUco marker detection, and ArUco marker
movement tracking. Obviously, CS1 students will likely not have the necessary
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background to deal with numpy image arrays and openCV complexities. We
provide an instructor-developed ArUco detector Python class for this reason.
The Python class provides methods to process a single video frame, draw a red
box around detected markers, and draw the ArUco numbers in the box. The
detector will detect all markers in the frame, but will only store the upper left
and bottom right points (opposing corners) of the framing box of the maker
along with the marker number of the last marker detected. When the next
frame is processed, the attributes of the last marker are cleared or replaced
with the new last marker attributes. This provides enough information for
students to calculate the center of the last marker in pixels and adjust the
rotation of the drone to track marker movement in the 1080 x 720 image field.
This results in students building programs that turn on the video stream of
the drone, search for a marker, and process frames from the live video. They
instantiate a detector object and invoke the appropriate methods to detect
the marker and retrieve its artifacts (classification). After successful detection,
the student must take in-flight action to move the drone appropriately in re-
sponse to a moving ArUco marker (tracking). These exercises are completely
autonomous with no manual intervention besides emergency shutdown allowed.
Typical problems students have to solve during class time and lab are shown
in Table 3.

Task Learning Outcome

Take off,
display battery power Control drone movement

Implement a search pattern Control drone movement

Read video frame,
process frame for marker,
display live video

Control drone movement,
access drone data,
perform classification

Calculate center of marker,
adjust drone to track marker

Control drone movement,
access drone data,
perform tracking

Table 3: Module 3 typical tasks

Students are required to accomplish many of the tasks in the classroom
during normal instruction. However, we also include a graded lab in which
students have to develop and demonstrate their code live for the lab instructor.
This lab is the last of 12 labs over the course of the semester and, like all of our
labs, includes a lab manual that contains the problems to be solved during the
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lab or prior to the next lab. We ensured that the drone problems were solvable
during lab time, as we do not allow the students to take the drones with them.

3.2 Interdisciplinary Course

As is common in Liberal Arts colleges, our institution contains an expansive
set of general education requirements (referred to as the core.) Given that
all students must complete the core in order to graduate there is a significant
internal market for courses which fill core requirements while also being open
to the general population of students. Given the importance of understanding
modern technology and our previous drone-based curricular development we
moved to construct a course which would fulfill a core requirement, have no
prerequisites, and engage students with issues in modern technology through
the medium of drones. This course, which we named Drones in Society, takes
some of the software and instruction from our CS1 curriculum and adapts
it for use in a setting where students are not expected to know, or learn,
programming or software development. In addition, this course was designed
to fulfill one of a student’s Writing Intensive core requirement courses, thus
alongside instruction relevant to drones, the students needed to produce a large
amount of written artifacts, including a final research paper.

The resulting curriculum for Drones in Society saw the course split between
three different types of lecture: writing, lightly technical drone instruction, and
a seminar-style discussion. The writing lectures focused solely on the process
of writing long-form non-fiction, similar to any English composition course.
Discussion lectures were focused on material read outside of class on drones,
and drone-related topics, with a particular focus being placed on drone usage
and ethics. Finally, the technical drone instruction provided an overview of
drone technology and how it worked. Due to the course’s purpose as a core
course (and not a course for only those interested in becoming CS majors)
the technical instruction provided was primarily overview, with few topics be-
ing investigated more intensely than surface level. The technical instruction
was designed to help students understand the context and problems in drone
technology so that they could better understand readings and intelligently talk
about modern drone technology, without overreaction or misunderstanding.

Hands-on activity-based learning was also integrated into the course. These
“Flight Days” saw students use the Tello drones (in both remote control and
programmatic contexts) to complete a singular task such as navigation, facial
recognition, and environmental sensing. Since we could not rely on students
having any foreknowledge of programming the amount of scaffolding was in-
creased over that used in CS1. While the djitellopy module contained a great
deal of the functionality we needed for this scaffold, the amount of additional
features and concerns with regards to performance meant that it was prudent
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for use to create our own Python module for use with the class. This mod-
ule allows not only for programmatic control of the drone, but also for ArUco
marker detection, RC control, a heads-up display (HUD) during flight, and
face recognition. Additionally, since we control the code we can add or remove
features as needed and address bugs/glitches in a timely fashion. This also
mean that students need only install a single package (and it’s dependencies)
and they are ready to interface with the drones.

4 Results and Analysis

In an effort to determine if adding drone programming to the CS1 curriculum
was beneficial, we looked at four years of past data. The first two years did
not include the drone curriculum and the second two years included the drone
curriculum. We analyzed enrollment data to determine how many declared
students taking CS1 progressed to CS2 in the next term or in subsequent terms.
Our hypothesis was that adding the engaged learning of drone programming to
CS1 contributes to students enrolling in CS2. However, our progression from
CS1 to CS2 in the first two years of analysis was 100% for CS-related majors.
Naturally, we abandoned the method as not yielding useful information. We
analyzed major changes for a first or second major subsequent to taking the CS1
course for both groups. We hypothesized that students changed their major
after taking CS1 at a greater rate during the drone programming years than
the previous two years. Analysis revealed that students changed or added a
second CS major more frequently in the years drone programming was included
in CS1, see Table 4. This suggested that it is possible that drone programming
was a factor, certainly among others, for adding the CS major. This warrants
further research for confounding factors in the outcome.

Year Major Changes
2020-2021 3
2022-2023 8

Table 4: Major Changes to CS Majors

Finally, we also added four questions to the course evaluation for the most
recent year, which focused on the drone programming in CS1. These questions
allowed us to solicit feedback from students. We provided the following four
statements for agreement on a six point Likert scale:

1. Learning how to control/fly drones with Python was a good use of what
I learned in this course.
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2. The drone work we did in class was useful in reinforcing programming
concepts.

3. I enjoyed controlling/flying drones in this course.

4. The drone programming portion of this course should continue to be
included.

Overwhelmingly, the responses were very positive for all four evaluation
statements and there were no responses in the Disagree or Strongly Disagree
categories. These categories are omitted from Figure 3. Response rate for the
course evaluation was 72%.

Figure 3: Divergent Visualization of Likert Scale Evaluations

We believe that including engaged learning using drones in our CS1 course
has resulted in increased interest from students. While the analysis does not
support making claims of improved progression from CS1 to CS2, it does sug-
gest that including engaged learning with drones could be a factor in students
declaring the major after taking the course. More research is required before
any broad conclusions can be made.

The results generated by our Drones in Society course are less concrete,
but still positive. During the first offering of Drones in Society we saw an
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enrollment where the majority of students were non-majors and non-minors.
The students represented many non-CS fields including politics, environmental
science, business, and criminal justice. The enrollment for our second offering
is currently similar in terms of academic diversity. We attribute this diverse
enrollment to student interest in drones and the course’s inclusion in the core.
While completion of the core was likely a component of student reasoning for
taking the course many other disciplines offer courses which would complete
the same core requirement, thus we feel safe in saying that student interest did
take a central role in student decision making. This likely demonstrates that
students have a desire to learn about technical topics, particularly those that
impact their world, in a minimally technical manner.

Internally, the course benefited from having academically diverse students
due to the seminar nature of some lectures. Anecdotally, the CS students in
the course tended to focus primarily on technical topics while students from
other majors focused on drone application in their fields. For example, one
environmental sciences major wrote their final paper over the use of drones for
remote sensing, particularly for detection of signs of forest health. This meant
that each discussion contained both low level and high level considerations for
the use of drone technology in the modern world.

The results of the Drones in Society course are two fold. First, we saw
students who would otherwise not take a CS course engaging with CS mate-
rial and second, the course allowed us to continuing developing curricula and
strategies for introducing complex technical topics in introductory coursework.
As it stands the course exists primarily to engage the wider student popula-
tion in pertinent technical topics, while allowing CS students to complete a
core requirement in their field.

One drawback of Drones in Society is that as a writing intensive course, it
mainly appeals to students in their 3rd or 4th years, which limits our ability
to use it as an effective recruiting tool for CS majors and minors. That being
said, our first offering saw a student elect to take our CS1 course the following
semester and that student also began pursuing a minor in a CS-related field.
This suggests that such service courses are a potential avenue to get students
interested in a potential major change, or addition of a minor.

5 Conclusions

Our work suggest that not only is it possible to introduce complex CS topics
into introductory coursework, but that it may be beneficial to both students
and the major overall. It is important to note that while we maintain a hopeful
attitude towards the benefits of adding drones to our introductory curricula,
this is not an exhaustive study of the topic and represents a limited case study.
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We do, however, believe that the data we have collected and our experience with
implementing these curricular changes shows the potential of adding modern,
complex, and engaging topics to introductory coursework, increasing student
engagement, and attracting students to the CS major.

From a more qualitative observation of student engagement in CS1, it was
clear that the drone work in class generated significant enthusiasm. Although
the in-class/lab programming tasks required the use of logical operations, flow
control, and other basic programming constructs, students seemed unaware
that they were reinforcing these concepts as they were hurriedly writing pro-
grams to make the drone accomplish the given tasks. We do use game develop-
ment as a final project in the CS1 course but students appeared less engaged
with the game development when compared to drones.

While future research is required to solidify the correlation between student
engagement, and major enrollment/retention we believe this work opens other
possible avenues of research. Longer studies over multiple years may provide
further insight into whether increased engagement and interest in CS, started
early, will improve student performance, retention in the major, and adoption
of the major.

While there is a lot that remains to be seen, we have shown that there is
currently student interest in drone technology, and early student introduction
to complex topics in CS may help to drive engagement and increase interest in
the field of computer science.
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Abstract

The intersection of programming and proof writing skills in computer
science education is a relatively unexplored area. This paper presents the
beginning of a longitudinal study that explores this intersection by ana-
lyzing student programmers’ solutions to logic puzzles at the beginning
and end of an intermediate computer science (CS) course. These puzzles,
requiring skills akin to proof writing but without the need for advanced
mathematical knowledge, serve as a tool to evaluate the development
of proof writing skills. We examine the correlation between students’
puzzle-solving capabilities and their academic performance in the course,
controlling for other variables such as prior mathematics courses and
GPA. This study aims to bridge the gap in understanding how program-
ming education contributes to the development of proof writing abilities.

1 Introduction

1.1 Background Context

The ACM/IEEE joint task force on Computing Curricula 2013 [1] states “an
ability to create and understand a proof—either a formal symbolic proof or a
less formal but still mathematically rigorous argument—is important in virtu-
ally every area of computer science”. A 2009 survey done by the Association

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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of Symbol Logic [9], showed that only 15% of computer science departments
have a separate course for symbolic logic. So, the presumption is that they are
getting these skills piecemeal as aspects get incorporated into a variety of their
courses. But are we doing an effective job of transferring those proof writ-
ing skills to our computer science students? Friske [3] noted that "there is a
close analogy between the thought process used in computer programming and
those required for writing proofs". Specifically he categorized the overlapping
skills to include problem specification, logical design, and symbolic communi-
cation. Despite this outline, in 2016, Scherer [8] bemoaned the lack over the
past few decades of much empirical research measuring transfer effects to or
from these computer science skills and called out to the community to produce
measurable results. In the evolving landscape of computer science education,
understanding the transfer of skills between programming and proof writing is
crucial. This knowledge can inform curriculum design, ensuring that students
are equipped with comprehensive analytical and logical skills necessary for the
field.

1.2 Purpose of Study

Reflecting the points above, Epp [2] notes that “because computer science stu-
dents also need to learn to operate in a mathematically sophisticated envi-
ronment, one of the goals . . . is to enhance students’ logical reasoning and
proof-writing abilities”. Building on these insights, we aim to explore how for-
mal proof methods taught in computer science classes contribute to developing
students’ ability to construct solid informal arguments, a skill vital in both
academic and practical computing contexts. Toward this end, Izu [4] discusses
Perkin’s notion of learning transfer in the context of computer science, with
the focus of “near transfer” from one programming task to another. In this pa-
per, we extend that idea to “far transfer” and consider the following questions:
While ostensibly a computer science class is teaching formal proof methods, is
it succeeding in its true greater purpose of teaching students how to make solid
informal arguments? And secondly, is this truly an effect of computer courses
per se, or could proof writing ability simply be a matter of general academic
performance or another related proof course (such as a math class)? The pur-
pose of our study is to grant some insight into answering those questions.

To begin, we must first understand what it is that the prover is beholden to do.
Mejía [5] argues the core skills involved in writing a proof are: [i] Exploration
of a problem, [ii] Estimating truth of conjectures, [iii] Justification of truth of
statements and [iv] Effectively communicating the knowledge in such a way to
convince the reader of the validity of the argument. Some texts (notably [7] or
Polya’s seminal work [6]) make a point of training students to write proofs by
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breaking down these skills into various proof templates. Our study emulated
proof-writing by carefully choosing a logic puzzle that would emulate each of
those skills. (It may be worth noting an initial flawed incarnation of the study
naively used Wordle/Mastermind style questions that did not hit all these crit-
ical marks). The Mejía criteria (and the supporting texts of math educators)
show that logic puzzles designed for this study are a very reasonable proxy for
proof writing (see 2.2 for a more detailed breakdown).

2 Methodology

2.1 Participants

This paper describes the first phase of the study which took place during the
summer quarter 2021 with 43 students at Drexel’s Mathematical Foundations
of Computer Science course. (The study continued through the Fall where
the sections numbers included an additional 125 students; the same results
were indicated and will be published in upcoming publications). Virtually all
students have had our university’s prerequisite course “Intro to Programming”
(the four exceptions were due to testing out or transferring credit from another
institution). Similarly, all but two students have taken Calculus 1, which is
a requirement for the CS major. The vast majority, 74%, of the class was
juniors (the remaining distribution was 2% freshmen, 14% sophomore, and
10% senior). The vast majority, 91%, were computer science majors of some
flavor (possibly software engineering, or data science) but we also had 2 Biology
majors, 1 Math major, and 1 in Electrical engineering. The course itself uses a
recursive programming vehicle (the functional programming language Racket)
to teach formal proof methods. The content spans topics such as equational
reasoning, Boolean algebra, natural deduction, and induction used to prove
correctness of programs. The Mathematical Foundations of Computer Science
course was selected for its unique curriculum that blends programming with
formal proof methods, making it an ideal setting for studying the intended skill
transfer.

2.2 Isomorphic Questions

Zingaro and Porter [11] demonstrated the efficacy of the techniques of isomor-
phic questioning in a computer science context. We employ a similar method
here. Students were given one week, during the first week of the course, to
answer the following question:

“Somewhere a bomb has been placed in a house on either Main, Oak,
or Sunset Avenue. The street number of the house with the bomb is
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either 100, 200, 300, 400, or 500. A bomb sniffing dog has already
ruled out the following houses: 200 and 500 Main Ave, 100 300
and 500 Oak Ave, and 400 Sunset Ave. The FBI knows the avenue
name of the bomb, and the SWAT team knows the street number
(moreover, each agency is fully capable of logic and aware of all the
information in this paragraph)

The FBI radios SWAT saying: “We don’t know the location of the
bomb, and we are certain that you don’t either”

SWAT messages back: “We didn’t know until your message, but now
we do”

To which the FBI replies: “ah, so we do too now – see you there!”

Both agencies arrived at the scene and were able to jointly defuse the
bomb in time. Where was the bomb located? Explain your reasoning
as best as you can.”

Near the end of the course, over two months later, students were given a week
to answer an isomorphic question (below). At no time in the intervening period
were the problems ever discussed (other than to dismiss student requests for
a solution), nor was material ever covered in the course that directly related
to methods enabling the solving of these brainteasers. The feature matrix for
this second problem is the same, but with two rows swapped, and two columns
swamped.

“George and Martha are married and perfect logicians and computer
programmers but have both forgotten their marriage anniversary.
However, they do both remember the following facts: [i] it happens
on a month that begins with a “J”. [ii] The numerical date was
a two-digit number divisible by 5. [iii] It does NOT coincide with
any family member’s birthday [the birthdays are on January 15th,
January 30th, June 20th, July 10th, July 25th, and July 30th].
George does correctly remember the month (but not the date), and
Martha remembers the numerical date (but not the month).

George says to Martha: “I don’t know our anniversary, but I know
you don’t either.” Martha replies: “I didn’t know until you said that,
but now I do!” George then shouts: “Ah, because of that, I do too
now!” Then the two go off to prepare their anniversary celebration,
which happens to be the next day. What is the month and day of
their anniversary? Explain your reasoning as best you can.”

The author cannot express the solution better than this student’s submission
(which also came accompanied with a nice grid drawing, not included here):
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“It can’t be a 30, since then Martha would have known (June 30 is the only
30 option). Similarly, it can’t be in June, since then George couldn’t have
confidently said Martha didn’t know (otherwise it might have been a 30). So
Martha now knows June is out, but is still able to determine the anniversary,
thus her number isn’t 20 (otherwise she wouldn’t have been able to determine
Jan vs July). George knows this, so both 20 and June are ruled out, this leaves
Jan 10, Jan 25, and July 15. Since George says he now knows, it couldn’t be
a Jan month (or he couldn’t tell between 10 and 25), so the anniversary must
be July 15.” The solution to the first problem is done analogously and is left
as an exercise to the reader (hint: the answer is 200 Oak Ave)
These specific isomorphic questions were chosen for their ability to engage stu-
dents in logical reasoning and problem-solving, closely mirroring the cognitive
processes involved in proof writing.

2.3 Categorization

Precise grade distributions for students’ Calculus 1 and Intro to Programming
were not available to us, but the authors did have access to all student tran-
scripts so we did not have to rely on self-reporting. As a metric for performance
in these courses, we divided students up as either earning an “A” or not. We
kept the categorization to the minimum of just two groups, since fine tuning
too much (e.g. A,B,C,D,F) would lower the quantities in each group and make
the results too sensitive to random variation (not to mention the fact that often
the distinction of an “average” student earning a B vs a C can be subjective
based on the instructor, whereas there tends to be more absolute agreement
on the extremes). Note that if a student tested out of a class (e.g. Advanced
Placement in Calculus AB/BC or Computer Science A) or transferred in from
another institution, or took the class Pass/Fail during COVID, then the tran-
script did not reflect a letter grade and this was registered in the “not an A”
category. The exception to this is if we had no grade of record for Calculus
1, but saw that subsequently the student had earned an A in Calculus 2, then
we did categorize them as “A” in Calculus (and similarly for the Intro to Pro-
gramming course).
When it came to Math Foundations course that we were actually instruct-
ing, we did of course have full information of the entire gradebook, and so
here we could be more judicious in categorizing the two groups. The students
were divided into Lower Performers and High Performers, based on whether
they scored below or above the median (83.2) for the class. For the coding
of the question responses themselves, we also divided those into two groups:
Undeveloped (generally weak responses), versus Developed (satisfactory an-
swers, which indicated sound logical analysis, even if not a complete solution).
The binary categorization into ’Developed’ and ’Undeveloped’ responses was
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adopted to provide a clear and straightforward assessment of the students’
logical reasoning abilities, which are central to both programming and proof
writing. Although we kept to these two overall groups for purposes of statisti-
cal analysis, we also fine tuned each of those into three tiers in order to have a
better measure of improvement between the two questions.
Specifically, the three tiers in the Undeveloped category (in increasing order)
were: [i] no real attempt, [ii] providing some reasoning, but the rational was
outside the bounds of the logic problem (see examples in next section), and [iii]
identifying the value 500 [or in the isomorphic anniversary problem, the 30th]
as being of special significance, but then just immediately (and erroneously)
concluded that it must be the solution because of its uniqueness. The entry
tier of the Developed category is when the student realizes that because of the
uniqueness feature of the 500 that it actually cannot be a part of the solution,
but then does not take the reasoning any further. To reach the next highest tier
of the Developed category, the student then had to pivot to the other feature
and rule it out as well. Very few students were able to proceed past that point
in the logic, but all those that did were able to fully complete the solution
which was the definition of the highest tier of the Developed category,

3 Results

3.1 Sample Student Responses

A small number of students in the lowest tier categorization effectively left the
problem unattempted and simply wrote “This problem cannot be solved”, or
“the sentences between the two of them don’t add any additional information”.
There was a significant number that did express some reasoning, but that were
outside the scope of the problem or made some illogical leaps. Some creative
illustrations of these from the second lowest tier are: “terrorists would place
a bomb at 300, in the center of the town, to maximize damage”; “they were
speaking in code to each other. When they said ‘too’ that meant 200, and
saying ‘see’ = sea = sunset”; “using probability formulas, there is a 1 in 15
chance that. . . ”; “there is a pattern to how the dog moved. It would not have
gone from 100 to 300 unless it didn’t smell a bomb at 200”; “the FBI could
have followed the SWAT team to find the street. Or bugged their headquarters
to figure out the location” Similar “creative” responses for the Anniversary
problem included: “the anniversary must be in January at the start of the
year to give them enough time to forget”, or “a lot of weddings occur in June”.
Samples from the highest tier still in the Undeveloped category are: “500 is
the only street number of all the avenues in which two have been ruled out,
thus the bomb must be there” An example of the entry tier in the Developed
category would be: “The easiest location to rule out was 500, as if the bomb
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was there then SWAT would have known immediately. . . ”. If they had stopped
there, that would kept them on the lowest rung of Developed, but in fact, the
previous student entry then continued “. . . This also rules out sunset ave, since
otherwise 500 would have been an option”. Since that ended their submission,
that response was in the second highest category. An example categorized at
the highest Developed level was already illustrated in section 2.2

3.2 Analysis of Findings

We succeeded in our goal of making the brainteaser challenging, as nearly
three-quarters of the class gave Undeveloped responses in the first week of the
course.

Figure 1: most students could not solve the initial puzzle

We wished to check if there was any correlation between their ability to do this
sort of informal proof and their proficiency in programming. So, we looked at
the submissions after grouping them based on their performance [A vs not A,
which was about a 30/70 split] in their Intro to Programming class. A signifi-
cant change in the Undeveloped/Developed distribution would be indicative of
a link between programming and proof writing. And in fact, the results are:

Figure 2: Puzzler Solvers partitioned by Programming grade
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A χ2 test of independence between performance in their Programming course
and their performance on this proof writing task rejects the null (that they
are independent) with a p-value ≈ .0003. So this is a statistically significance
difference between those two distributions. Initially, we were tempted to at-
tribute this to merely “good scholarship”. That is to say, on this surface this
could just be an appearance of a distinction, but really both are simply a mea-
sure of the academic strength of a student. In order to dispel that possibility,
we also measured the other course that all our students had taken, Calculus 1,
and used that as our control. If there really had not been something specific
attributable to the programming course versus a math course, then we should
see a similar distinction when we repeat the breakdown on these same students
based on whether they made an A in Calculus 1 or not [about a 40/60 split].
Here is what we found:

Figure 3: Puzzler Solvers partitioned by Calculus grade

There is no statistical difference between these two distributions at the α = .05
level. So in broad terms, calculus does not seem to have an impact on one’s
ability to write proofs, but programming does!

Of course, there still remains the question of whether we can justify that
this is actually a causal relationship. To address this, we turn to our iso-
morphic problem which was asked at the end of the course. It is true that
the overall percentage of Developed answers increased, but that alone is not
sufficient to claim causality. We went deeper into the more finely tuned coding
of responses, and actually measured if there was an increase in their tier, and
then we compared that to their performance in the Foundations course. If the
Foundation course was not affecting their proof-writing, we would expect not
to see a drastic difference between the before/after performances, or at least
the rate of improvement would be the same regardless of their comprehension
of the course material. Instead, see our actual findings. Note that since we
are measuring improvement in a single-tailed test, students that had already
scored in the highest tier the first time could not possibly have improved and
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thus were exempt from this analysis. Additionally a few students withdrew
from the course, hence the drop from n=43 to n=35, (We did in fact have one
anomalous student that inexplicably was able to solve the first puzzle but not
the isomorphic one later). The results here show a marked distinction between
the two pie charts (p-value ≈ .003)

Figure 4: Puzzle improvement partitioned by grade in Foundations course

4 Conclusions

It has been known since 1969 that, at the purely theoretical level, there is a
strong connection between proofs and programs: the Curry-Howard isomor-
phism [10] provides a mathematical demonstration that there is a one-to-one
correspondence between models of computation and proof systems as formal
objects. However, that is a far cry from establishing that proving and pro-
gramming as human endeavors are linked from an educational perspective.
This study makes some inroads to that case and clearly demonstrates linkage
between those two skill sets. Moreover, this correlation is strongest when seen
from the vantage point of a computer science class introducing logic, whereas
the correlation to proof writing is virtually non-existent when compared to
the standard Calculus class. The study indicates that students’ computational
thinking skills, which are critical to success in computer science, are aided by
their basic programming experiences even more so than their standard math-
ematics sequence. This suggests that we should incorporate proof-building
skills (such as case analysis, reasoning by contradiction, rejecting conjectures
via counterexample construction) all throughout their computer science cur-
riculum so that students can continually be learning it within a programming
context, rather than relegating it to another department or isolating it all into
one lone course. Perhaps even the common University prerequisite of Calculus
for all computer programmers needs to be reconsidered.
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4.1 Limitations

Even though we have over one hundred individuals involved in the study in
the Fall, it is still only performed at our one university; it is conceivable that
our institution might not be representative of undergraduate computer science
majors overall. Also, these findings concentrate on three specific courses un-
dertaken by students throughout the year; however, they were also enrolled in
additional classes, possibly including other Math or CS courses, which might
have played a role in enhancing their overall intellectual growth and develop-
ment. Moreover, as we repeat the experiment, the likelihood of a security leak
in which the solution gets out becomes greater. Furthermore, in the era of
generative AI, the authenticity of students’ submissions may be questioned,
especially considering that they had a week outside of class to finish most of
their assignments. Another issue is that while our results lean towards a causal
link between the formal proof skills taught in our Foundations course and in-
formal proof writing skills, what would be more relevant to most of us in the
CS education community would be a causal link between learning proof and
actual programming skills. And lastly, the connection between the capability
to articulate a puzzle solution clearly and the transfer of these skills to for-
mal proof writing and abstract concept reasoning remains unclear. Employing
puzzle solving as a foundational step for proof writing is promising, yet it’s un-
certain whether this ensures a seamless transition of skills to more formalized
proof writing scenarios.

4.2 Future Work

We plan to continue this study throughout the year with greater numbers;
and to address some of the threats to validity mentioned above, we hope to
involve other institutions as well. Moreover, there could be future experiments
designed to show a direct causal link between learning how to write proofs and
writing better programs. Specifically, we would like to drill down to examine
individual logic operations and templates to see how they are impacted and
get impacted by their programming counterparts. most non-trivial proofs in
CS require induction, which is not mentioned in the paper. As the author(s)
note, the theoretical correspondence between proving and programming ex-
tends to proofs by induction as well – those are just the logical equivalent of
structurally-recursive algorithms. It would be very interesting to somehow see
a connection between understanding recursion in a programming language and
the ability to write proofs by induction. For instance, how do students view the
implication operator in light of their experience with the If-Then procedural
paradigm? How does their proficiency (or lack thereof) with recursively defined
functions influence their facility in writing proofs by Induction? Could a better
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understanding of one lead to a less steep learning curve for the other? Most
non-trivial proofs in Computer Science necessitate the use of induction, a topic
not addressed in this paper. The theoretical parallelism between proving and
programming also encompasses proofs by induction, which are essentially the
logical counterparts of structurally-recursive algorithms. We plan further stud-
ies to explore linkage between the comprehension of recursion in programming
and the proficiency in crafting proofs by induction. Answering these questions
could help inform our approach to teaching programming. We also hope to
soon extend this study by implementing a software tool to aid students in
constructing proofs and analyze what impacts this has on their programming
abilities.
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Abstract

This paper describes the manner in which the adoption of aspects of
an Agile approach has been effective in managing student team projects
of significant complexity in the context of a software engineering two-
course sequence. Besides exposing students to a contemporary industrial
practice, use of Agile techniques has enabled closer monitoring of student
team progress, individual student contributions and facilitated better
communication among team members. This paper discusses both the
advantages of, and the challenges present in, adopting the Agile approach
to its fullest extent in an undergraduate classroom. We present our
observations of the effectiveness of adopting the Sprint/Scrum approach.
Also, we discuss the challenges of practicing the concept of self-organizing
teams, and adequately estimating required effort. We identify issues
related to being Agile and delivering the desired product, such as the
importance of discovering a potential effective Scrum master (who will
function as the team leader) in pre-requisite courses. We then discuss
supporting the development of soft skills related to effective teamwork
and individual technical skill acquisition. We analyze reflections from
students and team leaders gathered over the years and provide potential
approaches to educating students better about Agile practices.
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1 Introduction

In the software engineering component of a typical Computer Science cur-
riculum, a team project involving the development of a software product of
significant complexity is usually required. Such projects are often considered
to be “capstone” experiences, and, as we discuss in the “Related Work” section,
numerous authors have discussed the way such projects should be managed
by the instructor(s) involved. Over the last decade or so, since Agile method-
ologies became popular in industry, many authors discuss their experiences
in bringing the teaching of Agile techniques into the classroom. Their goals
mainly fall into two major categories – one, to see if such techniques enhance
the chances of the student teams being successful in developing the software
product, and two, to teach students a contemporary standard industrial prac-
tice, thus enabling them to compete better in their career search efforts. This
paper discusses the use of Agile practices by student teams. At the authors’
home institution, students learn software engineering concepts and gain the
needed hands-on project experiences in a two-course sequence. The essential
goal of this course sequence is to provide students the opportunity to work on
a “real world” project – i.e., a project requiring the development of a product
that would satisfy a customer who would deploy it for day-to-day use at their
business site. The project’s scope is dictated by what features the customer
needs in the product to make it “minimally viable”. Therefore, meeting the
viability requirement is necessary for students to feel that they have had a true
“real world” experience that can substantially enhance their resumes. Failing
to meet the minimal viability requirement will result in the effort not being
characterized as a complete success, and negatively impact the final grade for
the student/student teams.

Next, we note that the scope of these projects is such that it is essential
for students to work in teams. The ability to be a good team player and
demonstrate leadership/initiative in the context of teamwork is an important
learning outcome of the course sequence and also of our ABET-accredited pro-
gram. The organization and management of student teams, and the evaluation
of individual contributions to the team, is a significant issue, and is the main
thrust of this paper. Thirdly, it must be stated that we face certain constraints.
Resource availability is limited, as we cannot have multiple full-time teachers
dedicated to any of the classes, nor do we, currently, have qualified teaching
assistants who can assist. Also, the curriculum is “tight” in the sense that it is
challenging to add required credits to the curriculum (e.g., adding a 1-credit
supervised lab component to any of the courses in the sequence would be dif-
ficult). Finally, we require that the code developed be reviewed for quality
control – i.e., it must follow coding techniques that increase its extensibility
and maintainability, to be able to handle perfective maintenance requests that
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come in from the customers.
In the context of the above environment, this paper focuses on which aspects

of Agile practices, if any, can provide a means for the instructor to manage the
project teams. The primary objective is to achieve the goals (learning out-
comes) of the two-course sequence, satisfy any external customer and provide
a sense of accomplishment to students. The first author of this paper has been
the instructor of record for this course sequence for over a decade and had taken
a waterfall-like approach to project management until 2015, with a focus on
rigorous modeling of the behavior and structure of the system to be developed,
as described in [5] . A level of dissatisfaction, perceived in student reflections,
with a “hands-off” approach to team management during the implementation
phase led to the investigation and gradual incorporation of Agile practices for
team management during this and later phases. This paper presents the results
of this experience in numerous student-run projects over the last eight years.

2 Related Work

Over the last ten years or so, we have studied the experiences of various au-
thors in setting up and managing student teams to work on projects that are
part of software engineering-focused course(s). In this regard, two issues of
importance are the facilitation, monitoring and evaluation of communication
among the team members and the project customer (and/or instructor), as well
as the ensuring of the accountability of individual team members in the team
evaluation process. A detailed analysis about the building of effective multi-
disciplinary teams is provided in [6], including an extensive review of related
work on the subject. Important learnings from this experience are the need
to get all stakeholders to agree on common, reasonable goals for the project,
ensure that each team member has a vital role to play, make contributions
from (groups of) team members visible, and educate students on the impor-
tance of valuing contributions from members with varied skills. This paper
also mentions the value of good team organization and the need for quality
leadership skills when seeking to develop a useful software product. In [11] ,
the authors present a comprehensive discussion of assessment in “large-project
courses”, with an in-depth presentation of various assessment techniques, and
a focus on ensuring accountability via student peer evaluations, teacher obser-
vations, student reflective reports, targeted interviews of students, etc. The
authors emphasize the need for formative assessment (i.e., early feedback that
seeks to improve later performance) and summative assessment at the end of
the project that should incorporate both group and individual components.

Upon receiving advice from our own stakeholders (including alumni) about
better team management, we began exploring fellow instructors’ experiences
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with Agile practices ( [1, 9, 12, 4, 2, 3, 8, 10, 7]). Not all instructors discuss the
use of Agile for software development purposes. [8], for example, focuses mainly
on using Agile as a vehicle for teaching project management techniques, and [7]
takes a “low code” approach to accommodate a short six-week course offering.
All authors take a Sprint/Scrum approach. The length of the course’s term(s)
affects the number of sprints that can be scheduled. The limited number of
class meetings per week require the daily Scrum meetings in industry to be
carried out as 1-2 in-person meetings during class (in which the instructor(s)
may act as project mentor(s)), and remote meetings, which may be mandated
to be conducted on a certain tool so the instructor may monitor them ([1]).
All authors use the standard Agile artifacts of the Product Backlog (where
the features yet to be implemented till project completion are identified) and
the Sprint Backlog (where the implementation, testing and integration tasks
to be tackled during the upcoming sprint are outlined). The role of Product
Owner manages the Product Backlog and may be played by the instructor(s)
([2, 8]) or students ([1, 3]). The role of Scrum Master who manages the Sprint
Backlogs may be played by the instructor(s) ([4, 2]), students ([1, 8, 12, 7]) or
shared between the two ([10]). The need to provide leadership opportunities
to more students leads to some instructors rotating the abovementioned roles
([1, 8, 10]).

While discussing the tasks (user stories and “story points” in Agile termi-
nology) that need to be included in a particular Sprint Backlog, instructors
attempt to empower the (inexperienced) student teams to estimate efforts by
themselves, by providing guidelines such as “one story point unit of complexity
equals one hour of lab time” ([12]). Allocating these tasks to individuals within
the team leads some instructors to discuss their emphasis on incorporating the
Agile practice of “self-organizing teams” into their approaches ([1, 12, 2]), with
varying degrees of success. The actual conduct of the activities associated with
each Sprint leads some instructors to explicitly mention that students volun-
teer for these tasks which are then tracked on a task board ([12, 10]). It is
worth noting that many instructors mention that the more experienced mem-
bers (i.e., instructors/ TAs) act as consultants to provide help on the Agile
practices themselves as well as assist with questions on the tools and technolo-
gies used ([1, 3]). Each Sprint ends with a demo (explicitly mentioned in [1, 9,
10, 7]), a Sprint review conducted mainly by the student team themselves, and
a more detailed Sprint retrospective is often conducted, with instructor/ TA
help, to provide feedback on what could be done better in future Sprints. Fol-
lowing these, the Backlog for the next Sprint is created appropriately. In this
context, the important role played by appropriate tools for enhancing team
productivity is mentioned by many – e.g., tracking tools (The use of Trello
is mentioned in [3] and [10]), version control tools like Git/GitHub, and other
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project environment-specific tools like Mendix in the “low code” approach ( [7])
are discussed.

It is important to note that instructors discuss the pre-requisite structure
leading up to the main project class(es), as well as the instructional (lecture)
content of the early weeks of these classes to ensure that students have adequate
training for conducting the project. Finally, while discussing the results of
taking this approach, instructors mainly discuss student satisfaction with the
experience of undergoing the experience of a contemporary industrial practice,
especially in the context of project management and teamwork ( [9, 12, 8, 7]).
Some discuss the extent of success in the development of necessary features in
the final software product ( [4, 3]).

3 Characteristics of our Pedagogical Approach

Our two-course software engineering sequence takes a model-centric approach
to software development as described in [5] . Students create UML (Unified
Modeling Language) behavior models (e.g., sequence diagrams) and structural
models (e.g., class diagrams/ CRC (Class-Responsibility-Collaboration) cards)
in the first course geared to developing a system conforming to the classic
three-tier (MVC: Model-View-Controller) architecture. As discussed in [5], this
approach enables students to see the “big picture” of the system under develop-
ment, and thus lays the basis for students to write extensible and maintainable
code. The actual realization of the modeled system is done in the second course.
In this course, relevant technologies/ tools are taught during the first six weeks
of the semester, and students work in pairs on small exercises to familiarize
themselves with these. The project is then worked on for the last 7-8 weeks
of the semester. Prior to 2015, we used a waterfall-like approach. Students
organized themselves into teams ranging in size from four to six. They were
required to present their progress in completing the implementation, testing
and integration work at three points during this 7–8-week period. The instruc-
tor acted as Product Owner, and indicated the features that each team would
have to implement and present (i.e., demonstrate the working of) at each of
these three points. Each team had the option to adjust what they must present
depending on what they had completed to an acceptable level of satisfaction
at the previous presentation point, and, therefore, needed to improve for this
demonstration. After each presentation, each team was provided with feed-
back about the quality of their work and given suggestions for improvement.
It is important to note that the instructor reviewed code, provided suggestions
on refactoring it to improve quality and compliance with standards and was
available for help with the technology/tools, but did not manage the team in
any way. The students were responsible for deciding upon tasks, allocating
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these tasks among themselves and monitoring progress. A large percentage
of the final grade was based on the quality of the final product, and, after
delivery, students completed peer reviews of their team-mates. Using an av-
erage score from these reviews, the instructor assigned the rest of the grade.
Reflections from students indicated considerable dissatisfaction with this pro-
cess, even from successful teams. We noted that that many students indicated
that it was “heroic effort” on the part of some team members that led to suc-
cess, and the grading scheme did not penalize non-performers to the extent
deserved, due to two main factors – one, being a good “team citizen” did not
carry enough weight in the final grade, and two, “student solidarity” evident
in the peer reviews often resulted in these non-performers not being graded
appropriately, especially after successful delivery.

To rectify the situation, practices from the Agile approach were incorpo-
rated after 2015. In this paper, we discuss our experiences in adopting this
approach in the following semesters (student enrollment numbers in parenthe-
ses): Spring 2016 (34 students), Spring 2017 (36), Spring 2018 (25), Spring
2019 (23), Spring 2021 (18), Spring 2022 (13), and Spring 2023 (24) – we are
excluding the “COVID-chaos” affected Spring 2020 semester. In addition, the
first author was the mentor of two “student club” teams in Spring 2017 and
Spring 2019 that sought to develop products for two real-world customers. In
these two projects, the five-member student teams took an Agile approach (i.e.,
used Sprint/ Scrum, self-organized themselves and estimated required effort by
consensus). It must be noted that they carried out the necessary design and
technology/tool learning tasks by themselves, without mentor intervention.
Neither of these projects could meet the minimum viability requirement for
deployment by the customer. Interviews with the teams indicated that the
reasons for failure included the time taken to learn the unfamiliar but needed
technologies/ tools, leading to “bad” estimates of effort, and the need to revise
the designs “on the fly” to meet changing customer requirements. Therefore,
despite the Agile philosophy focusing on working code and “discouraging” a
model-centric approach, we, in our course sequence, still focus on modeling
and supervised learning of needed technologies, leaving the same 7–8-week pe-
riod we had available when we took a more waterfall approach, for actual
development work.

Since Spring 2016, students have been required to get their team members
approved by the instructor, who sometimes re-balanced the team personnel to
have a mix of abilities in each team. This was usually determined by grades
and observations in earlier “extensive programming” courses. During the de-
velopment period, the instructor acted as Product Owner and announced the
set of features that had to be presented at each of the three “epics” whose dates
were announced at the start of the project. Student teams were asked to elect
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a Scrum Master, a role that could be rotated among the members after each
epic, at the team’s discretion. Each epic was expected to be composed of a
number of Sprints. The Sprints themselves were 7-9 calendar days long. Since
the class met for 1.25-hour sessions twice each week, there were at least two
Scrum meetings that were to be conducted in-person at the start of each class
session. Teams were strongly encouraged to have more frequent Scrum sessions
outside of class hours, possibly remotely using a communication tool of their
choice. The instructor offered to provide input on creating each Sprint Backlog,
but the students collectively decided on its content and task allocation among
the members. At the end of each Sprint, teams were asked to conduct a review
to determine whether they were making good progress and were encouraged to
have a representative consult with the instructor about any lack of expected
progress, analyze causes (especially those arising due to non-performing team
members) and receive recommendations for the subsequent Sprint. For each
epic, 70% of the grade for each student was based on the extent to which
the team met the epic’s feature implementation requirements, as well as code
quality (determined by instructor review of appropriate code samples). 30%
was based on peer-evaluation, where the extent of each student’s contribution,
and more importantly, effective communication was to be used as a basis for
judgement. There were no mandates to use any tools for development, testing
and communication, except for Git/GitHub (version control). Students were
required to provide reflective feedback on the process, as discussed in the next
section. During the 2016-2019 period, the use of this approach enabled at least
one team each semester to deliver a minimally viable product. Out of 22 teams
observed for this period, there were only two that failed to deliver even 25% of
the full set of features needed to get a passing grade.

Based largely on student feedback, the above approach was modified dur-
ing the 2021-2023 period to lay a greater emphasis on team leadership. The
instructor identified a set of students who would act as Scrum Masters, who
would serve as team leaders. This selection was based on their academic track
record, including the instructor’s observations of their ability in prior classes.
This was not a role to be rotated, except under extraordinary circumstances.
The leader was required to interface with the instructor about the content of
each Sprint Backlog. Also, the leader was required to conduct a Sprint retro-
spective with the instructor. Task allocation was left to each leader. During
each retrospective, the instructor required information about non-performers,
and discussed attempts made to enhance communication with these individu-
als. Also, the instructor sought input on technical challenges perceived as being
faced by the non-performers and discussed possible means of providing extra
help. The grading scheme was modified to reduce the component based on
meeting deliverables and code quality to 55%. For the remainder of the grade,
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the instructor kept notes from the leader’s input during Sprint retrospectives,
which led to recommendations for improvement made to the student (either
by the leader and/or the instructor) to the student. The extent to which the
student complied with these recommendations and improved performance dur-
ing subsequent Sprints determined the actual grade. Of the 12 teams observed
during this period, no team failed to get a passing grade.

4 Student Reflections and Instructor Observations: First
Phase

During the 2016-2019 period, students were asked to reflect on the effective-
ness of the Agile-oriented approach to team management by considering the
following four issues:

(i) Did the more “fine-grained” phases (i.e., the 7–9-day Sprints) help the
team to stay on track better, and help accomplish what was expected at
each required presentation?

(ii) Did the fact that the teams themselves allocated tasks to members each
Sprint, and frequently monitored progress (Scrums) – with the instructor
available as a consultant if needed – help to enhance team “velocity” ( [1])
(aka productivity)?

(iii) Did the preparatory exercises (modeling the system, learning the features
of the needed implementation frameworks) prepare you to be productive
in the implementation work, given the schedule?

(iv) Was the grading scheme fair, and do you have any overall suggestions for
improvement?

Students were given a small incentive – a 1% credit in the final grade – to
submit their reflections. 97 out of 118 students chose to provide input. Almost
all students (95/97) appreciated the preparation in the form of a semester-
long modeling project and the teaching of the features of the technologies to
be used, even though it limited the time for actual development to 7-8 weeks.
The way we ensure that the model-centric approach is useful for development is
described in detail in [5] , so this result was not surprising. Also, all responding
students (97/97) appreciated the “fine-grained” Sprint/Scrum approach. How-
ever, it was evident that the effectiveness was heavily influenced by the nature
of the student leadership. A student Scrum Master who kept in near-constant
communication with the team, even on days that class did not meet, using
remote communication tools (e-mail/Discord/etc.) was able to make the team
more productive. At the very least, such a leader could correctly identify the
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non-performers (“social loafers” as described in [8]) early and provide them
with opportunities to deliver on their assigned tasks. Such opportunities could
include the provision of extra help from other team members and/or the in-
structor. On the other hand, a more “easy going” Scrum Master was seen as
one who did not communicate very much. Some students saw such a Scrum
Master as one who lacked motivation themselves, were possibly content with
a lower grade, and this was detrimental for team velocity. Consequently, the
more motivated student(s) would usually put in “heroic efforts” on their own
to deliver on the tasks in the Sprint Backlogs. This resulted in the desire
to replace the individual in the Scrum Master/ team leader role. It was this
experience that resulted in the instructor, over this period, receiving requests
to intervene and change leadership (“I am actually the Scrum Master even
though I was not elected to this role and did not really want to do it” was a
frequent refrain heard by the instructor). Also, due to this experience, some
students (15/97) explicitly mentioned that they were opposed to the rotation
of the Scrum Master role (“If we have a good Scrum Master, keep them for the
whole project”). Also, 33/97 students stated that they wanted the instructor
to take on the role of Scrum Master in addition to Product Owner, because
of their perception that as they did not have enough prior experience working
with those in their team, they were not best suited to taking on a leadership
role – i.e., figuring out and assigning tasks to their team-mates. These stu-
dents also said they felt that they did not have enough “authority” to make
non-performers improve, as the grading scheme involved a “full-fledged” peer
evaluation, with the leader’s input given the same weight as every other mem-
ber of the team, including other “non-performers”. In our resource-constrained
environment, this was not feasible, unless class enrollment was significantly
restricted. Therefore, in the period 2021-2023, a new approach was taken (see
section above), with the instructor choosing a set of team leaders.

5 Student Reflections and Instructor Observations: Sec-
ond Phase

With a greater emphasis on team leadership during the 2021-2023 period, this
section addresses the way reflections were sought from team leaders and how
these were analyzed. Leaders were asked to reflect on a set of questions in the
following categories:

(i) Accountability of team members

(ii) Ensuring minimal viability of the software product under development

(iii) Use of modeling for trainee software engineers and
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(iv) a “General” category in which they were asked to focus on the means of
communication used by the teams, and how to enhance the effectiveness
of such communication, plus the adequacy of resources provided (in terms
of time and available experienced personnel).

Detailed reflections were obtained from seven team leaders, and the authors
were able to schedule in-person follow-up interviews with four of them. In the
first category – i.e., enhancing accountability – the interviewees resoundingly
supported the idea that grades are ultimately the only real leverage in keeping
team members accountable for their work. In this regard, there was mention
that unmotivated students will exist, despite the efforts of those working with
them. Few solutions to this problem were offered, but one suggestion stood
out. Instead of the current model where student team leaders suggest grades
of their group members, there must be a way in which individual assignments
from the Sprint backlogs are assigned and graded by the instructor, stemming
from meetings with the team leaders. While the details were not discussed in
depth during these interviews, the goal of this solution is to have the “look and
feel of a group project, but the accountability of an individual assignment.”

Various approaches were used by team leaders to manage deadlines and
splitting up the workload. Teams setting hard deadlines utilized strict en-
forcement of standards for working, mergeable code often based off a “code
skeleton” created by the team leader. This method proved effective, but team
members still did not always contribute enough to meet these expectations. To
remedy this, these teams deployed various strategies of using the grade as a
means of enforcing accountability – an approach that was broadly successful.
Essentially, these boiled down to assigning a final grade on the date of any set
deadlines with little flexibility. Not too surprisingly, this negatively impacted
team members participation in some cases. Some teams were observed to have
an attitude of “get what you can done”. This method of using soft deadlines
resulted in a lack of organization and only a select few from the team delivered
on these deadlines. Seemingly the most effective approach was using a series
of soft deadlines, set before the hard deadlines (usually, the epics), to act as
buffers for unexpected scenarios. These also improved communication within
teams that employed this strategy. Constant feedback led to more organized
team leaders and more opportunity to reallocate resources in a timely fashion.

No matter the approach, across the board there needs to be clear expec-
tations of group members and frequent communication by both team leaders
and team members to maintain steady progress. Without these two group
characteristics, the priority of the project in group members’ minds, and, con-
sequently, available work time will slip away requiring last ditch efforts to
ensure hard deadlines set in the syllabus are met.

In the second category – i.e., ensuring minimal viability of the software
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product under development – most notably, six of seven interviewees described
substantial extra efforts made by them to ensure they met the requirements
at each deadline. This frequently involved debugging (many taking this course
are not proficient enough), picking up extra slack where group members were
not accountable, and/or often refactoring code. It has become evident through
these discussions that many team members lacked the commitment and effort
required to complete any extra features beyond the original project scope to
a satisfactory degree, if at all. Using grades as a tool, awarding extra credit
to individuals/teams that go above and beyond the requirements was a rec-
ommendation from all team leaders. One suggested that this policy, combined
with many short deadlines, as described in the flexible approach above, could
help build dedication to the final product within the team. Other methods as
described in the first category (proper approach to assignments based on team
composition, timely and clear communication, proper allocation of resources,
etc.) can be boiled down to the need for proper team leaders. One must be dili-
gent and committed to the task at hand to ensure their team meets their goals.
It was common for team leaders to approach the instructor in a timely manner
with questions to overcome “blockages”. On the other hand, team members
were rarely observed seeking help from the instructor outside of class, despite
a wide range of availability that was advertised during every class. Finally, it
was mentioned that the sample assignments given during pair programming
assignments (see Section 3, paragraph 1) were especially helpful in the eyes of
all seven team leaders. It provided them and their teammates with the skills
and samples (from the tools/technologies needed for implementation) to, at
the very least, create a minimally viable product during the allotted time.

In the third category – i.e., use of modeling and preparatory exercises for
trainee software engineers – all shared the thought that the pair programming
assignments and the modeling and architecture (from the first course) prepared
them better for this term project. Leaders were asked: If you were given the
full semester to complete this project (without the prior exercises), would your
group have been able to reach their goals? One of them responded, “most
assuredly not”. This sentiment was felt across the board.

In the fourth category – i.e., general – most felt there was enough class
time to complete the project, but an extra hour for lab would be desirable.
As it stands, team leaders described the need for an additional two to six
hours of additional work per week, largely depending on the team. Teams
met anywhere from one or two times outside of class, coordinating through
use of Discord or text. On top of additional lab time, all seven participants
said a teaching assistant (TA) would surely help, but opinions on the matter
still differed. One felt the TA would be helping mainly with coding basics the
curriculum failed to ingrain, in all the student members, despite this being an
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upper-level course. Another presumed it may not be a great advantage, given
the instructor was available most of the time to begin with. The remaining
five shared a similar idea, commenting along the following lines: “It would be
helpful, but that can’t replace the need for proper preparatory work”.

6 Analysis of Reflections

An analysis of the abovementioned reflections indicates that enforcing account-
ability of individual team members is a significant issue. The Sprint/Scrum
approach, which is a finer-grained approach than that taken in the pre-Agile
(waterfall) days, facilitates the monitoring of team (and team member) progress
more closely. From the above reflections, it appears that the instructor-in-
charge should be more involved in this monitoring, and in the grading process.
But this is challenging in a resource-constrained (single instructor only) envi-
ronment. One approach to consider would be to empower the team leaders
to (a) use detailed instructor-provided criteria to recommend a grade for each
team member, (b) provide corrective feedback to the “non-motivated” team
member(s) to seek additional help, from within the team and outside, and (c)
require the monitoring of the team member about the extent to which they
sought such help. To facilitate this process, the instructor must require the
team leader to keep detailed records of the communication between the mem-
ber and the leader. The instructor must also set up a course-specific grade
appeal process that can be exercised at each epic.

Through the instructor’s own observations of teamwork, we believe that
accountability requirements may be easier for a team member to meet if they
are assigned a task which they are “comfortable” with. Agile sets the goal of
having self-organizing teams, in which students decide among themselves the
tasks they will take on during the Sprint (see [12, 2, 8] for their experiences).
Our experiences indicate that in an environment where most of the effort in
each Sprint/epic phase must be the writing of quality code, each student in the
team must take on some coding task(s). Some students may prefer writing the
front-end code, others may prefer to focus more on the middle-tier (business
logic) and the back end (database) interface. We have noted that it is best
if the team leader observes this in the earlier Sprints, and then recommends
assignment of these tasks to the appropriate members in later Sprints – of
course, the ability of the leader to accurately gauge this is an issue. Inexperi-
enced students typically don’t “know themselves” well enough to know “what
they are good at”. Later in the project, realizing what they are good at is a
source of satisfaction for them. This, however, is sometimes coupled with the
desire of the student to “branch out” and practice what may not be their forte
now, and this conflicts with the need to utilize the available personnel best to
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meet deadlines.
In order to ensure that a viable product is delivered at the end the 7–8-week

project period, we note that the above reflections indicate that creating and
documenting a design model of the system to be developed in the first course
is considered useful. Also, practicing the use of required tools and APIs in the
initial weeks of the second course (in pairs) is considered a necessary famil-
iarization exercise. Although requiring that the student teams learn these on
their own as part of project work would, in a sense, give “more” time to work on
implementing project features, the majority of team leaders felt that this ap-
proach would decrease productivity. As it is, the student teams needed to learn
Git/GitHub on their own, and several needed some time to practice use of this
tool. In fact, several students informally requested that these tools be taught
before the project launch, and practice exercises provided by the instructor.
The lack of time in the semester to accommodate this request has prevented
it from being complied with. Also, it is worth repeating that, as mentioned
in Section 3 above, the instructor supervised two “student club” projects in
2017-19 where the students had to learn technologies the instructor was not
familiar with, and then use them to develop a product on a client-sponsored
project. Both these projects were not deployed, thus effectively failing. This
is another data point to indicate that students must be trained to have the
necessary background/experience (“comfort level”) with the needed technolo-
gies/tools before launching the actual project. We note that some authors
([9, 12, 7]) who require the students to learn the needed technologies/tools as
part of the Agile approach (i.e., during project work) report “mixed” results.
For example, one author states that students chose to use simpler (i.e., more
familiar) technologies. Others design projects that use technologies taught in
pre-requisites ( [1, 4, 3]) have resulted in greater success with student deliv-
erables. We note that [3] describes their project as part of a four-semester
software engineering curriculum. [4] reports, as part of their “lessons learned”
experience, that their students sometimes missed a more detailed “up-front”
design, because using this they would feel safer about having taken the right
direction towards the final outcome.

In order to ensure proper communication among team members, a typical
student who takes this two-course sequence must develop a culture to work
outside of class. It is essential that students also develop an attitude of re-
sponding to other students in a timely fashion. They must attend each class
session and show up for remote Scrum meetings (being sure to inform the team
if they have legitimate reasons for not being there). Team leaders must note
the extent of their engagement in each meeting.

In the context of adequacy of resources, availability of “extra help” to make
up for gaps in a student’s knowledge would be useful. It is clear that at
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least some students felt somewhat unprepared for the challenges thrown up by
project work – examples include training in Git/GitHub and more experience in
debugging a (reasonably) large body of code. Additional instructional resources
(tutors/TAs) would be helpful. More importantly – as some team leaders
emphasized – students must be engaged enough to seek out and utilize any
available resources.

7 Conclusions and Future Work

The Agile approach provides a framework for better monitoring of teamwork
to the instructor, which the original waterfall approach did not. Use of Sprint-
/Scrum enables shorter phases, with major demos occurring at the end of epics.
In collaboration with the team leaders, the instructor can monitor individual
team member performance more closely, and obtain a basis for encouragement
of engaged students, while also having a basis for providing suggestions for
improvement to under-performing students. The frequent engagement of the
instructor with code review also provides them an opportunity to gauge the
effectiveness of their teaching of necessary pre-requisites. At the same time, it
cannot be denied that the use of this approach results in the need for greater
commitment from the instructor, thus impacting their workload.

The experience of using the Agile approach in a curriculum where the teach-
ing of Software Engineering is confined to a 2-course sequence indicates that
enabling the students to fully learn and see the benefits of an Agile approach
can be challenging. We have seen that the Sprint/Scrum approach can be
adopted by student teams fairly easily. It is more challenging to enable stu-
dent teams to effectively perform two important aspects of Agile – i.e., devising
accurate estimates of the effort required to complete tasks in the backlogs, and
constituting student members into self-organizing teams – in the time available.
Enabling successful projects, therefore, requires finding good team leaders, and
training them appropriately in developing leadership skills.

As part of our future work, we will seek to examine approaches using which
we can identify quality team leaders early in the curriculum. Once identified,
we need to train them in leadership skills. As a first step, the first author,
who regularly teaches classes in the introductory programming sequence seeks
to identify engaged (and high performing) students as potential leaders. The
second author is in the process of developing a “leadership handbook” based on
their experience as a team leader in these projects, and also basing it on their
own leadership training received as part of extra-curricular activities. Means
of “empowering” team leaders need to be practiced and observed for efficacy.
For example, ensuring team leaders know the resources available to execute
the project successfully and guide team members to access and utilize these
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resources effectively is necessary. The goal is to create an environment where
students taking these courses understand, from the early part of the sequence,
that individual effort is necessary. At the same time, students must be of a
team-oriented mindset where they realize the need to “learn much on their
own”, so they can be a net contributor to the team’s progress.

Effective as our latest approach has been towards delivering the minimal
viable product on time, we perceive a drawback in the sense that success is pred-
icated on having an effective team leader through the course of the project. In
order to be able to rotate the leader role, it appears that the cohort of students
who have been through this experience need further opportunities within the
curriculum to work on another team project of similar, or even increased, com-
plexity. It would be beneficial if the curriculum could be expanded to include –
say – a year-long capstone project. Within the context of such an opportunity,
students could experience other Agile aspects such as self-organizing teams
(in which the leadership role rotates per Sprint/epic), estimating effort needed
and learning necessary technologies on their own while making progress. While
our curriculum currently does not provide the opportunity for such a capstone
project, we have supervised independent study projects in which a reasonably
sized team (typically, 4-5 students who have been through this course sequence
before their senior year) have adopted the Agile approach and delivered soft-
ware products. In the course of these projects, the instructor of record has
only acted as a consultant, and not taken any supervisory role. It would be
our endeavor to see how this full capstone opportunity can be expanded to
more students at our institution, and thus, hopefully, provide them more solid
experience with a contemporary industrial practice.
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Abstract

A traditional course in Operating Systems includes the topic of CPU
scheduling with a discussion of several different scheduling policies. His-
torically, we have used a paper-based worksheet to help students under-
stand how different scheduling policies work; in contrast, this article de-
scribes a simulation that allows students to practice and receive dynamic
feedback on their understanding of five common scheduling policies. The
simulation, called GraySim, allows students to specify which one of the
policies they would like to practice and the process configurations they
wish to run. After inputting their answers into the user interface, the
student can view the correct solution, as well as view feedback on their
solution if it was incorrect. We also present the results of a qualitative
study evaluating this simulation and its potential for helping students
gain a better understanding of different scheduling policies. Our study
involved showing students from the current cohort of Operating Systems
students a demonstration of the simulator, allowing them to change the
policy and process configurations, and then asking them to fill out a brief
survey to document their perceptions of GraySim’s utility, including its
strengths and areas in which it needs improvement. We close the paper
with a summary of these results and a discussion of future research.
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Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Operating Systems is a challenging class, both to teach and to learn because
complex, abstract topics are discussed on a regular basis. Students have little
prior knowledge of these topics and frequently struggle to learn the details of
specific policies. In addition, it can be difficult for instructors to demonstrate
several of these topics due to the gap between abstract concepts and concrete
implementations accessible to students.

To combat these challenges, some instructors have advocated using simula-
tions to guide student learning through these topics, both through demonstra-
tions in the classroom and exercises or labs that can be assigned as homework.
One such professor, Steven Robbins, published a series of papers describing
several different simulations and promoting them to the general Operating
Systems education community. In his most recent paper, published in 2008,
he specifically mentioned using these simulations and their contribution to stu-
dent learning and performance. However, present-day instructors will find it
difficult to leverage these simulations in their own classrooms because only one
of the simulations is readily available on the Internet today.

In this paper, we describe a CPU scheduling simulation, called GraySim,
that allows students to practice their understanding of how the CPU will sched-
ule different processes. Once a student completes an exercise, they can check
their answer and GraySim gives them feedback about any errors it has iden-
tified. We anticipate using this simulation during the Fall 2024 offering of
Operating Systems at our institution. We plan to compare the performance of
students during the upcoming course offering to that of students enrolled in the
Fall 2023, which was before students had access to GraySim. In preparation
for deploying this tool, we wanted to gather input from the current Operating
System students to get their perceptions and suggestions about GraySim. This
paper reports on the results of this qualitative study.

The rest of the paper is organized as follows. Section 2 discusses related
work, differentiating our own simulation from those discussed in the literature.
Section 3 provides the Operating System background needed to understand the
simulation. Section 4 is a description of GraySim and how it operates. Section
5 is an evaluation of the qualitative results collected on GraySim. Section
6 discusses these results and our plans for future work. Finally, section 7
concludes the paper.

2 Related Works

Current OS students report using a simulation, called CPU Scheduling Visu-
alizer, available in GitHub [1]. This simulation allows students to configure
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jobs with arrival times, burst (aka service) times, and priorities. Students then
select which scheduling policy to observe. They can watch the ready queue
change in real time and can also see a chart that shows the order of jobs
running on the CPU. Unfortunately, students are not able to test their under-
standing with the simulator and do not receive feedback about their mistakes,
one of the main goals of our work.

Examining the literature, we find a series of articles by Steven Robbins,
a retired professor of Computer Science at the University of Texas at San
Antonio, between the years of 1998 and 2008 that progressively discuss a series
of simulations to aid in the teaching of undergraduate operating systems. The
different subjects of simulators he writes about are: process scheduling[16],
synchronization[15], process interaction in Unix[17], disk head scheduling[11],
address translation[14], concurrent I/O in Unix[13]. The final paper in this
series[12] discusses his approach to teaching operating systems which included
using all of these simulators. In this paper, he reports that students enjoyed
using his various simulations and that one of the simulations improved student
performance on related exam questions, but he does not provide the results of
a formal study.

Of these simulations, the most relevant to our work is the 1998 paper that
focuses on scheduling policies[16]. Robbins’ scheduling simulation allows stu-
dents to compare the performance of different scheduling policies more readily
than our simulation does. In contrast, our simulation helps students better
understand the policies and how they work in practice.

Peter DeRosa and his colleagues describe the design and implementation
of the Vesper disk drive simulator[3] which provides a high degree of perfor-
mance realism, allowing students to explore the performance consequences of
their designs. DeRosa and his colleagues’ goal is to provide sufficiently realis-
tic performance so that students can understand the consequences of various
design decisions related to disk I/O schedulers. Our work focuses instead on
the mechanics of learning the policies, not on the performance realism.

John Dickinson describes using a simple hardware simulator to teach under-
graduate students about operating systems[5]. Using this hardware simulator,
he has his students build a simple operating system. Our work differs from that
of Dickinson in that our simulator is focused on helping students understand
a single topic, process scheduling, rather than providing the basis for building
a simple operating system in its entirety.

Luiz Maia and his colleagues discuss using the SOsim graphical simulator[9]
to teach operating systems. The basic idea is to provide a simple, visual tool
that allows students to see an animated view of what is happening on the
computer. Their paper also presents the results of a user study which asked
for feedback from a cohort of students. The SOsim work provides a general
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purpose graphical tool that can be used for a broad range of topics. In contrast,
our focus is on a simple tool that helps students learn one specific topic in depth
and provides students with concrete feedback.

Leo Paschoal and his colleagues present a simulator, called SSP-Edu[10],
that allows students to select the type of computational system, define the
scheduling policy, manage processes, run SSP-Edu with the given inputs, and
then export the simulation data as a PDF after running it. SSP-Edu is open-
source and accessible via GitHub. Although their students show improved
performance after using the simulator, the sample size is too small to provide
conclusive evidence. A major difference between GraySim and SSP-Edu is
that GraySim allows students to select their solution and check it against the
software-produced answer, whereas the SSP-Edu simulator simply provides the
answer. SSP-Edu, however, also shows students the waiting time, turnaround
time, as well as the averages for those times and throughput, which our sim-
ulator does not do. This feature helps students evaluate the performance of
different scheduling policies.

Neeto Jain and P.V. Suresh develop a simulation to visually explain various
scheduling policies[8]. Similar to SSP-Edu, students do not get to practice their
understanding of the policies, they are given the answer and must analyze it
themselves. In addition, their simulation starts every process at time t=0.
This limits students’ ability to understand how process arrivals interact with
scheduling policies. These researchers did not conduct any evaluation of how
much assistance the simulation provided to students, though their students
reported finding the simulation interesting to use.

These simulations and approaches to teaching aim to close the gap between
abstract concepts and actual practice. The goal of our work, much like that
of the work described above, is to provide hands-on experience with operating
system concepts to aid in student understanding.

3 Background

Uniprocessor scheduling is a common topic taught in Operating Systems. Five
common uniprocessor scheduling policies[2] taught as part of this topic are:

• First In, First Out (aka First Come, First Served) is a non-
preemptive policy that selects the next job to run based on which job
has been awaiting service the longest.

• Shortest Job First is a non-preemptive policy that selects the next job
based on which job has the shortest expected service time.

• Shortest Time-to-Completion First is a policy that selects the next
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job based on which job has the shortest remaining time to completion; it
is preemptive at the granularity of job arrival.

• Round Robin (aka Time-slicing) is a preemptive policy that cycles
through jobs, giving each a quantum of compute time; the quantum can
vary.

• Multi-level Feedback Queue is a preemptive policy that has multiple
queues, each assigned a different priority, in which the next job is taken
from the highest-priority queue; within a queue, the system uses round-
robin scheduling and a different time quanta depending on the priority of
the queue. The time quanta increases as the priority decreases, varying
the time allocated to a process when it runs. For this simulation, we use
a simplified 3-queue configuration with the quantum for each queue set
to 2i[18].

These are the five policies covered in our Operating Systems course and,
thus, supported by our simulation. Additional policies are covered in other
textbooks and could easily be added to GraySim.

4 Simulation

GraySim is written in Scala using a test-driven approach. We use the model-
view-controller architectural pattern, as well as the observer and strategy pat-
terns[4, 6]. Our testing platform is ScalaTest[19], a popular testing tool avail-
able in the Scala ecosystem. Our GUI is built using Swing[7].

GraySim is controlled and configured via the command line, in which stu-
dents specify the policy (--policy <policy> where <policy> can be fifo, mlfq,
spn, stcf, or rr), any parameters for the policy (e.g., --quantum <q> specifies
the time quantum), as well as the start (aka arrival) time and service time of
the processes that need to be scheduled (--p <start> <service>). GraySim
supports all of the policies described in Section 3. Processes are named in
the order they are specified beginning with ‘A’. A maximum of 10 processes
can be scheduled, with no limit on length of service times. At least one pro-
cess must start at time 0. The GraySim repository in GitHub contains a de-
scription of how to run the simulation in the README for users to reference
(https://github.com/usma-eecs/GraySim).

Figure 1 shows the simulator upon start, showing a multi-level feedback
queue policy. The process-related metadata is shown in the leftmost window
of the screen, and we see five processes, named ‘A’ through ‘E’, that have start
times ranging from time 0 through time 6 and service times ranging from 2
through 5 time units.
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In the right-most area of the screen, three control buttons are available.
The “Show Policy” button displays a written description of how the policy
works at the top. The “Show Solution” button causes the solution to be visible
and provides feedback to the student about any discrepancies between their
solution and the correct solution. The feedback provided is specific to the
student’s mistake(s). The “Configure” button causes the process and policy
configuration to be visible.

In the center area of the screen, students can select which process is running
during each time unit according to their understanding of the policy. Figure 2
shows the state of GraySim after the student has clicked on the “Show Policy”
button in the right-hand control panel, has scheduled the processes according to
their understanding of the multi-level feedback queue scheduling policy (where
each queue, i, uses a quanta equal to 2i) and has clicked on the “Show Solution”
button. Their selections of the boxes are represented by a darkened cell in the
scheduling table while the correct solution is represented by an ‘X’ in the cell.
Figure 2 also shows the feedback window provided by GraySim to help the
student correct their understanding. Figure 3 shows what the student will see
once their solution is correct.

The feedback the student sees is one of two options: specific feedback for
the current policy or generic feedback that applies to every policy. For ex-
ample, First In First Out has a specific feedback message to inform students
if they preempted a process because First In First Out is not a preemptive
policy. The generic feedback that applies to every policy is double-booking
processes, under-allocating or over-allocating time to a process, or starting a
process before its determined start time. These feedback messages that appear
to students when their solutions are not fully correct allow students to re-
flect on specific mistakes without needing to consult possibly inaccurate online
resources or receive instructor feedback on their specific solution.

Figure 1: Overview of GraySim
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Figure 2: Incorrect Student Solution with Feedback

Figure 3: Correct Multi-Level Feedback Queue Solution

5 Evaluation

We performed a qualitative assessment of the scheduling simulation in Novem-
ber 2023 with the goal to gain an understanding of what current Operating
Systems students thought of GraySim. The current students had learned these
scheduling policies earlier in the semester, using the aforementioned paper-
based worksheet. They were shown the nascent simulation and asked their
perceptions of the tool for use in a future Operating Systems course.

5.1 Method

We asked students enrolled in Operating Systems to evaluate GraySim after
getting a chance to observe GraySim via a demonstration. During the demon-
stration, they could request configuration changes (e.g., use a different policy,
use 6 processes rather than 5, or change the start times or service times of
the processes) and observe the results. If they wanted, the students were also
given the opportunity to use GraySim themselves. After the demonstration
was complete, they took a brief survey that asked the following questions:

1. If you had had access to this resource at the beginning of [the semester],
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when you first learned about scheduling policies, how do you think it
would have affected your understanding of the subject? (Five-point Lik-
ert scale from “Greatly improved” to “Greatly reduced”)

2. Which scheduling policies did you try? (Select any of first in first out,
shortest job first, shortest time-to-completion first, round robin, and
multi-level feedback queue)

3. Through using the simulation, how much, if at all, do you believe your
current understanding of the scheduling policies you tried has changed?
(Five-point Likert scale from “Greatly improved” to “Greatly reduced”)

4. What improvements could be made to the simulation? (Text entry)

5. What features do you like about the simulation that we should not lose
sight of as we make modifications? (Text entry)

6. Did you encounter any bugs? (Select one of “yes”, “no”, and “maybe”; for
whose who responded with “yes” or “maybe”, text entry to describe the
problem and how to reproduce it.)

All current students were invited to participate and anyone who did earned
a total of 5 bonus points for their efforts. The total points for the course is 1000,
so 5 bonus points represents a minimal incentive. Note that, by institutional
policy, students who prefer not to participate can earn the same number of
bonus points for an alternate activity; in this case, the alternate activity was
a worksheet to practice their mastery of process scheduling policies.

Before the demonstration, the instructor checked the simulator’s responses
for the configuration used in the demonstration to ensure that students were
not shown incorrect results. In addition, the instructor also double-checked
any configuration modifications requested by the students for the same reason.

5.2 Results

Of the 46 students enrolled in Operating Systems this semester, a total of
26 participated in the study. The students spent approximately 15-20 minutes
viewing GraySim, experimenting with it, and answering the survey. The survey
required an average of 7 minutes to complete with a minimum and maximum
of 1.5 and 23.6 minutes respectively. Before analyzing the data, we removed
any responses that were incomplete.

In response to the question about whether students believed that such a
tool would have helped them learn the different OS scheduling policies if they
had had access to it at the start of the semester, their responses were over-
whelmingly positive with a few neutral responses and no negative responses, as
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shown in Figure 4. We also asked students which of the OS scheduling policies
they explored. They could select more than one policy option because many of
them explored more than one during the study. Figure 5 shows their responses
with multi-level feedback queue and shortest job first being the most commonly
used policies during the study. We then asked students whether they believed
that their current understanding of OS scheduling policies had increased due
to their exposure to the simulation tool. As shown in Figure 6, their responses
were less positive, with the vast majority responding that their understanding
was somewhat improved or about the same.

The next two questions asked students what improvements they would like
to see and what features they would like us to maintain. These were both
open-ended text questions. In order to analyze them, one researcher created
codes for the responses (e.g., allow process info to be randomized, change the
way the solution is shown, etc.), and then both researchers used that coding
to classify the responses. The researchers then compared their classifications
and adjusted to achieve consensus.

Three comments provided in response to the question about which features
the participants liked were actually comments that suggested improvements.
The researchers agreed that these comments should be moved and analyzed
with the other suggestions for improvement.

The students offered many suggestions for improvement, as shown in Table
1. The most common suggestion was to generate practice problems using
randomized process start times and service times. The second-most requested
features were to change how the student’s solution and the correct solution are
overlaid and to allow the solution to be shown incrementally so that students
can test their understanding step-by-step.

Students also identified a number of features they found useful, as shown
in Table 2. Our goal in requesting this feedback is to help us avoid losing
sight of these features as we make improvements. The most popular feature
is the ability to view the solution and to see feedback about which mistakes
were made. Additionally, students liked the intuitive mechanism by which they
identify their solution as well as their ability to see the policy.

6 Discussion & Future Work

Overall, we are encouraged by the results of this study. The overwhelming
majority of students believe that the simulation will help students learn about
scheduling policies for the first time. Although the current OS students did
not feel their learning was greatly improved by the use of the simulation, we
are not surprised or concerned by this result. These students were already
familiar with the various scheduling policies and had already been tested on
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Figure 4: Expected Learning with Access to Simulation At Start of Course

Figure 5: Scheduling Policies Explored

Figure 6: Incremental Learning with Access to Simulation at End of Course
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Table 1: Suggested Improvements
Feature Count

Allow process information to be randomized 11
Change the way the solution is overlaid 8
Show solution incrementally 8
Allow process information to be specified in the app 6
Allow policy to be changed in the app 4
Add a separate “Show Feedback” button 3
Show the remaining service time 2
Show the state of the queues (where appropriate) 2
Increase font sizes 2
Display Policy Name 1
Add grid around process information 1
Support timed competition 1
Give access via Course Website 1

Table 2: Popular Features
Feature Count

Ability to view solution 12
Ability to see feedback 7
Mechanism to specify process schedule 6
Ability to show policy 6
Ease of understanding interface 5
Ability to configure process information 4
Ability to configure policy 3
Recommend continuing paper-based ICE in class 1
Color scheme 1
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them. Furthermore, they had little time with which to experiment with the
simulation. Given the positive response to the simulation, we plan to continue
our work during Spring 2024 to enhance GraySim with many of the requested
changes. Our primary focus will be to add a feature to create a series of
randomized processes for practice, to adjust the user interface, and to improve
the feedback reported to students who answer incorrectly.

The top priority will be to support randomizing the process information.
Although this feature seems like it would be trivial to add, it is not as easy as it
sounds because care must be taken to ensure that the simulation is not overly
long. We will need to include support for short-, medium-, and long-service
times and ensure that the total amount of service time fits reasonably well on
a laptop screen. The current process input option will also remain as a feature,
so we need to integrate the two options in a user-friendly manner.

Another high priority will be to adjust the user interface to be more friendly,
because the second-highest requested improvement is to change the way the
solution is overlaid on the simulation screen. Currently, the solution is an ‘X’
or an ellipsis (when the screen is too small) written on top of the correct boxes.
This interface is difficult to understand and see clearly, making it a necessary
improvement for GraySim.

The final high priority item will be to improve the feedback provided to
students when they answer incorrectly. Currently, GraySim supports some
generic feedback that applies to all policies, such as a process has been allocated
too much or too little time or a process was started before it arrived. Currently,
only one of the policies provides policy-specific feedback. The First In, First
Out policy detects if the student preempted a process and alerts them that
the policy is non-preemptive. This feature was added as a proof-of-concept
to help us evaluate its value. Given the popularity of this feature, additional
policy-specific feedback needs to be identified and then a check needs to be
implemented to add to the feedback feature when appropriate. In addition, we
will add a separate button to allow students to see the feedback without seeing
the solution. This will help students fix their answer before they see the exact
solution.

We are also considering adding support for incorporating performance met-
rics, such as throughput and response time within GraySim (similar to [16]).
These performance metrics would allow students to compare and contrast the
performance of different policies given different workloads. The tool does not
improve students’ comparative knowledge right now because there is no way
to view nor calculate performance metrics of the different policies. Adding
support for such comparative analysis would be a valuable feature.

Our ultimate goal is to deploy this simulation to our Operating Systems
course in the Fall 2024 semester. Given the positive feedback gathered in

66



this study, we expect students will have a positive learning experience with
GraySim. We also hypothesize that the learning outcomes will improve because
GraySim will allow for more practice and individualized feedback.

7 Conclusion

This paper presents a simulation that allows students enrolled in an undergrad-
uate operating systems course to experiment with different CPU scheduling
policies. The policies supported include First In First Out, Shortest Job First,
Shortest Time-to-Completion First, Round Robin, and Multi-Level Feedback
Queue. Students can specify a problem, either one that they generated or
one their instructor provided, and test their understanding of the policy before
requesting feedback from the simulation about the correctness of their solution.

We conducted a user study to evaluate the utility and usability of this
scheduling simulator, inviting students currently enrolled in our local operating
systems course to participate in the study. Participants provided overwhelm-
ingly positive feedback on the utility of the scheduling simulator for use in our
course. They also provided insights into key features of the tool and suggested
numerous areas for enhancement.

Future work includes adding the ability to create randomized problems for
practice, adjusting the user interface, and separating the feedback feature from
the feature that shows the solution. The authors plan to continue working on
GraySim in the coming semester, implementing the feedback obtained during
the study, and improving the features offered. In Fall 2024, the authors plan to
use GraySim in the Operating Systems Course and measure the quantitative
change in learning outcomes. We hypothesize use of GraySim will improve
student scores on the exam questions related to CPU scheduling.
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A Pleasant Surprise: A Classic Assignment and
an Offbeat Assessment for PDC, HPC, and

related KU Coverage∗

Nicholas S. Rosasco, Andrew Paxson, Ethan Hawk
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Valparaiso University

Abstract

This paper presents an assignment that when paired with a discus-
sion or other follow-up can be used to increase and diversify computer
science knowledge unit coverage. The knowledge units are taken from
the CS2013 and related documents from ACM/IEEE. This guidance to
the teaching community notes the criticality of educating students on
parallel, distributed, and high performance computing. Information on
available, modular resources for addressing these areas in the classroom is
presented. Additionally, integrating undergraduate writing expectations
into a topics course is discussed.

1 Introduction

This paper is an exercise in documentation, presenting post-hoc assessment at a
granular level of an assignment that has been used twice for teaching a spread of
parallel and distributed and high performance computing (PDC, HPC) topics.
Additionally, it provides a demonstration of how coverage of topics can be easily
increased through a single assignment - even one not designed for assessment
use. It uses one of the key pieces of current curricular guidance for Computer
Science, CS2013[1], which openly states that it isn’t possible to cover all of
the topics and areas it lists. This reality makes creating and sharing any tools

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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that provide greater coverage of some import for the wider community, and
ultimately motivates this paper.

2 Background and Context

The original use of this assignment was at Valparaiso University, which has a
Computer Science major that has been configured for maximum flexibility -
essentially just four required classes plus math requirements and a capstone.
With this flexibility comes a risk of omission due to the limited time avail-
able. Specifically, there is a very real risk of omission due to limited time with
required courses. Given those risks and the CS2013 and related guidance, it
became evident that there was a gap in parallel and distributed computing con-
tent coverage. Accordingly, a series of topics classes has been run to provide
that knowledge and experience. Two of those classes have used the assignment
being presented. Further, Valparaiso University has a strong liberal arts tradi-
tion that includes an emphasis on undergraduate writing which also informed
the configuration of the classes, particularly with regard to this assignment. As
the CS curriculum at Valparaiso University has limited research-driven writ-
ing, this assignment became a way to provide more practice with academic
and technical writing. This also fit well with recent updates to the Under-
graduate Writing Program at Valparaiso - and complements recent efforts to
introduce the history of computing into the classroom. While the perhaps
obligatory grumble about writing was heard, the use of history inspired stu-
dents to engage with the assignment. In the second iteration of the assignment,
a presentation component was added that also required a recorded rehearsal
to reinforce the communications aspects of the assignment.

The assignment was designed to fit into an HPC topics course, which would
normally be largely driven by introducing technologies. The running of topics
classes is also a regular component of Valparaiso’s efforts to build a highly
flexible major. The class was largely built around modules, sourced from the
impressive resources listed in Prior Work, that provided a hands-on, lab-focused
backbone. The inclusion of a classic research-paper style task was in part meant
to broaden the reach of information provided by pushing students to use books
and academic papers, complementing the institutional efforts on information
literacy. The students, to reinforce this, would have slightly over a month to
tackle the writing. [It should be noted that the class was last run just before
any generative AI tools became a significant pedagogical concern.] This time-
frame was also meant to encourage use of the institutional library and specialist
staff available there; the ACM Digital Library is particularly emphasized as a
resource.

The assignments provided a writing prompt to students along with a list of
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historic super-computing systems (full list at http://www.valpo.edu/computing-
information-sciences/files/2024/02/Historical-List-of-Supercomputers.pdf; see
also the first figure for a subset), which is intended to leverage the history of
the high performance systems community as raw material.

Figure 1: Historic Computing Systems - Subset/Example

The prompt included the following questions; information in brackets was
provided as additional guidance:

1. How does the system fit into the bigger picture? [Options here include talking
about what problems was it built to solve, what was available technology wise,
what limits / constraints informed the plan and building, etc.]

2. Describe the system [vector? massively parallel? liquid cooled? etc] in terms
of architecture, chips, the usual trinity (power space cooling, what power it
was meant to deliver and what it did deliver, etc. Some demonstration of
comprehension of this would be useful; a definition may be good along with a
comparison to a current system or two.

3. What sort of advance was it? [Why are we talking about it?]

4. How did it fit (or not) the job it was built for - or how was the job adjusted
for it. [Tell the bigger story.]

The hope was that, after completing the assignment, students would have a
greater appreciation that the HPC systems of the past have proven to be the
prologue for everyday computing.
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3 Prior Work

The course design for the assignment presented here was informed by a variety
of projects and efforts. While CS2013 was itself the original motivation for
the class, a variety of inputs from the pedagogic-focused community and the
campus context became factors.

3.1 Initial Motivation and Materials

CS2013 places significant emphasis on the area of parallel and distributed com-
puting (PDC). The overhead [4] of mastering the infrastructure and systems
also create significant barriers in teaching in this area. More generally, the
challenges of teaching and using HPC/PDC technologies remain an ongoing
discussion and concern, see [15], [31] and [33]. Happily, significant and high
quality efforts have been made to provide resources for covering this area.
First and foremost, the high quality modules built by the CSinParallel team
and project provide a convenient and engaging foundation. These can be mixed
and matched, and are a rich and excellent suite of options for coding challenges
and labs; the team and contributors have also various introductory and training
events for using their materials. The contributors, community, and workshops
hosted by this group were critical assets [35],[26],[6],[7],[27],[8],[2],[9],[11],[10],
[20],[25],[12],[13]. The work done by others was also helpful [14],[21],[17], par-
ticularly as it similarly used a modular approach. The iPDC work and related
efforts were also notable [30],[19]. Specific mention should also be made of the
work of David Toth, particularly with the ODROID platforms [3]. His early
help and enthusiasm at a couple of key moments was particularly impactful
as was the information published by Charlie Peck and others on the LittleFe
clusters [29],[28] and the linked Bootable Linux Cluster CD project [24]. Other
recent, related work done in a modular style includes the ToUCH Project at
which nicely extends the work done for traditional HPC/PDC with excellent
additional modules on heterogeneous computing [32]. It should be noted that
the lab-centered approaches - woven through the hands-on exercises mentioned
above - are critical. While these resources proved profoundly useful in con-
structing the classes and helping frame the lectures, some mechanisms were
needed. This need provided the bridge to the next input - an ongoing effort on
disciplinary writing.

3.2 Undergraduate writing

Valparaiso University invests heavily in its Undergraduate Writing Program.
One of the touchstones for that effort was the book Engaging Ideas: The Pro-
fessor’s Guide to Integrating Writing, Critical Thinking, and Active Learning
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in the Classroom [5]. It presents writing as a means to creating understanding.
Since the lab assignments necessarily were group work, so as to share hard-
ware, a writing assignment provided a way to individualize work for students,
which was also helpful. Since a key theme of the course involved the transition
of HPC/PDC concepts from the most complex systems to the the consumer
level, some further emphasis on that pattern was also desired. A per-person
selection of a legacy system provided a way to also create distinctly individual
effort, as most other effort in the course happened as group assignments.

3.3 Systems thinking

The centrality of the hardware/software combination as key to PDC/HPC im-
pact (typically speedup) was a theme of the course. To underpin this, and
to illustrate the rapidity of evolution, occasional pauses to look at historical
approaches to dealing the more engineering-derived constraints were built into
the course. While many students preferred a focus on algorithms and code (the
phrase "icky hardware" was sometimes heard), the explicit use of the history
of computing was a departure from the usual and inspired by presentations
like the SIGCSE sessions like ’Computer History on the Move’[16]. Another
recurring idea for the course, was the dominant trio of factors for HPC solu-
tions: power, space, and cooling as constraints. The need to balance the cost
and operating constraints that directly or indirectly frame the issues raised by
that somewhat unholy (?) trinity was a recurring theme of the class. Includ-
ing that recurring problem as a concept, even without a codified KU, within
the assessment setup for the assignment was motivated by the linkage to the
in-class discussions; in effect, it serves as a baseline measure.

3.4 The CS2013 Knowledge Units

CS2013’s curricular survey makes explicit the need for this area to be addressed
[1] and provides a highly granular list - the KUs. The initial look at the student
work in the normal process of grading indicated that a surprising number of
KUs were (or could be) covered or were at least introduced by the assignment
- and somewhat unexpectedly! That opened the door to follow up questions
especially given work like [9]. These included:

• How many things got covered in this one exercise?

• How useful was this one additional assignment, when stacked up against CS2013’s
identifications? With that thought, a close look at CS2013 was in order - with
the student responses in hand. This, in turn led to the traditional assessment
concern - how well and how much was addressed.

Accordingly, the CS2013 KU list was reviewed alongside both the assignment
prompt and the submissions. While the size and granularity of CS2013 makes
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navigating the intellectual terrain somewhat akin to refolding a large high-
way map, a set of KUs were selected to show both some spread and the first
impression of the student efforts.

3.5 Related Tools

ACM’s Computing Curriculum 2020 also notes the importance of this topic area
[18]. The drafts and discussion of CS2023 indicate the ongoing emphasis on
parallel. The linkage to the exploding area of AI, in particular, also emphasized
the ongoing importance of this topic [23], [34], [22].

4 Assessment Process

For this discussion, the following knowledge units from the AR, CN, OS, and
PD areas of CS2013 were considered, these are incorporated into the figure
below. In addition, a faculty defined point, not separately identified in 2013,

Figure 2: Knowledge Units Selected for Consideration

was also included based on the history of HPC systems, which also touched
on a recurring theme in the course and could be used as a baseline: Note the
importance of cooling.

To assess these, an approach in some ways similar to traditional grading
was adopted. The second and third authors, each with extensive experience as
undergraduate teaching assistants, scored the writing assignment submissions
against the numbered items above. This scoring done in two ways, as appro-
priate to the KU, detailed in the figures below: The results of that scoring
can be illustrated with simple graphs shown in the following figures; note the
charts are grouped by scoring style. These results show varying levels of im-
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Figure 3: Possible scores - Likert

Figure 4: Possible scores - "Bins"

Figure 5: Charts of 1..5 Scores - Number of KU above each funnel block-set

Figure 6: Charts of Y/N/NA/Maybe Scores - Number of KU above each funnel
block-set
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pact - but also demonstrate that a broad engagement with the KUs (and the
supplemental item) was achieved. This is somewhat compelling when consid-
ered against the likely coverage - perhaps only a bullet on a slide - that would
occur this assignment. This intriguing spread of coverage was reinforced - and
spread across all students - by a general class discussion in the first edition of
the course; it was later supplemented with a presentation component as previ-
ously mentioned - as a deliberate leverage of the discussion in the first version.
While admittedly somewhat subjective and spread out across multiple areas,
this set of student results and scores is broadly similar to assessment practices
used across both US-regional accrediting bodies and ABET-participating in-
stitutions. It also, more broadly, shows the serendipitous effect of this style of
assignment.

5 Conclusions and Future Work

If repeating this assignment, a peer revision step would be added for the writing
assignment. The in-class presentation component (and/or recorded delivery)
will also continue to be component. In the case of Valparaiso University, a
mix of majors was represented; discussion and questions for both semesters
this course was run benefited from the different mindset and approaches. Peer
review, if used next time, will would be done to encourage crossing disciplinary
lines, with Computer Science and Computer Engineering students paired when
swapping their drafts to increase the diversity of thought. In subsequent efforts,
some sort of incentive mechanism would also be implemented to generate a bit
more engagement and thought around choosing a platform. This might be
as simple as a preliminary paragraph or two demonstrating interest or some
background investigation. In all, this assignment provided a somewhat pleasant
surprise. The in-class engagement increased and the range of KUs touched on
- while perhaps not especially consistent on depth - is somewhat striking. This
consumed, effectively, a class period and a half counting the introduction of the
assignment, some follow up questions and the day of discussion. The amount
of topical coverage, for such a small class time investment, made this very
traditional style of assignment a pleasant surprise.
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Abstract

Worked examples are an educational tool widely used in introductory
computer science classes, primarily for programming and code-tracing
concepts. Prior research supports the use of worked examples as a scaf-
folding mechanism to help students build a solid foundation before tack-
ling problems on their own. Whether breaking down the intricacies of
code or explaining abstract theoretical concepts, worked examples of-
fer a structured approach that nurtures a deeper understanding dur-
ing self-study. This study explores how peer-created worked examples,
shown through detailed step-by-step videos, aid student learning in an
intermediate-level computer science course, namely computer systems.

Our results suggest that worked-example videos are a useful study
aid for intermediate computer science courses, such as computer sys-
tems. Students who watched the worked-example videos found them to
be very helpful, and ranked them as the top study aid for succeeding
on quizzes. Additionally, students with access to worked-example videos
performed moderately better on quizzes compared to students without
worked-example videos. Our results and experiences also suggest that
worked-example videos are beneficial to the students who created them
as well as their peers who use them.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Worked examples (also known as worked-out examples or worked solutions)
are a pedagogical technique widely employed in teaching computer science.
Formally, worked examples contain some formulation of a problem, some in-
formation on how to derive the solution, and the final answer [1]. Worked
examples bridge the gap between the task and the answer, providing a solid
and accurate foundation for students to later practice solving problems on their
own [16, 10]. Worked examples have been widely cited as effective tools in the
initial stages of learning procedural concepts in a wide variety of subjects[10],
including algebra[14], chemistry[7], and english[5]. Students relied on these
worked solutions to practice problems while reassuring themselves that they
understood the necessary skills and underlying concepts [3].

Worked examples come in many forms, including text-based static exam-
ples, such as solution explanations in textbooks that are presented statically
and all at once; or modeling examples, in which a teacher or peer generates a
solution in real-time, allowing learners to see the solution built step by step;
or dynamic examples, in which a custom tool, software, or animation presents
a step-by-step solution of a problem of a code trace either using a custom tool
or through an animation [9].

In the field of computer science, researchers have primarily delved into
the impact of worked examples on introductory programming. As such, the
efficacy of worked examples that illustrate code-tracing examples and program-
building are widely studied [9, 12]. Skudder [12] describes worked examples
in computer science as a “signature pedagogy"; however, most research on
worked examples focus on instructor-created worked examples [8, 13, 6, 15,
4]. Prior work suggests that while students appreciate worked example videos
containing code demonstrations, there was no statistically significant effect on
student learning.

Research also suggests that this phenomenon is not restricted to worked
examples that cover programming-only concepts. A recent study by Zavgorod-
niaia et. al [15] studied the effect of worked-example videos that diagrammat-
ically explained Dijkstra’s algorithm on a population of undergraduates who
were primarily non-majors. The researchers found that access to the videos
did not have a statistically significant effect on student learning, supporting an
earlier result by Morrison [8].

Another recent study [4] performed a qualitative analysis on student per-
ceptions of instructor-created video recordings of lectures, in which instructors
presented static examples and live coding examples to students in an intro-
ductory computer systems course, and surveyed students on their thoughts on
the two techniques. We note students had no control over the pacing of the
videos, and could not pause them once started. The researchers reported that
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students found value in both modalities, liking the “at their own pace" studying
and “focus on finished product" enabled by static worked examples, but the
insights on instructor reasoning and “development process" of the live coding.
In all the aforementioned cases, the videos were created by instructors, largely
to control for high quality.

This paper looks at the impact of worked-example videos in a computer
systems course at West Point, a four-year baccalaureate college. Our work is
novel for several reasons. First, we evaluate peer-created worked example videos
on student performance and perceptions, rather than instructor-created videos.
Second, in addition to standard worked examples of program building and
tracing, a non-trivial number of the produced worked-example videos involve
non-programming content, such as reverse engineering (where learners observe
how an assembly program translates to C code), cache address mapping, and
visualizing process execution. Thus, our work adds to the body of knowledge
on the effectiveness of worked example videos for non-programming content.

The rest of the paper is organized as follows. Section 2 provides an overview
of our methodology, including details on the course implementation the worked-
example video creation process, and experimental setup. Section 3 discusses
the results of our quantitative and qualitative analyses. Lastly, we offer some
reflections on lessons learned and major conclusions in Section 4.

2 Methodology

Data was collected over two fall offerings of CS380, a computer systems course
taken at West Point, typically during junior year. The course generally rep-
resents students’ first exposure to computer systems topics and is required for
all computing majors at West Point. CS380 is split up into four units: C,
Assembly, Memory & Code Optimization, and Parallel Computing. Concepts
discussed in class are primarily evaluated through ten quizzes that are spread
out over the semester, with one to three quizzes given every unit. The re-
mainder of the course grade is determined by a series of multi-week projects,
designed to build students’ programming and assembly reading skills.

The investigators of this study include two undergraduate students and
a faculty advisor. The undergraduate investigators took CS380 during Fall
2022 during their junior year, alongside their classmates. While enrolled in the
course, they independently worked with the faculty advisor to create worked-
example videos. The following semester, the students completed IRB training
and worked with their advisor to design the study, which was reviewed and
authorized by West Point’s IRB process; the full study was executed in Fall
2023. The two students received independent study credit for the semesters
they worked on the project.
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Table 1 shows the spread of quizzes, in-class-exercises (ICEs) and cor-
responding worked-example videos produced throughout all of the units in
CS380. Nearly half (42.5%) of the videos were created for the C unit, par-
tially because this is the unit that students have traditionally had the greatest
amount of difficulty in the course, and because it contains the largest number
of corresponding in-class exercises.

Table 1: Number of Worked-example Videos in each Unit

Unit Number and Name Num.
Lessons

Num.
Quizzes

Num.
Videos

Num.
ICEs

Unit 1: C 9 2 17 20
Unit 2: Assembly 10 3 9 14
Unit 3: Memory & Code Opt. 9 2.5 8 17
Unit 4: Concurrency 10 2.5 6 8
Total 38 10 40 59

2.1 Creating the Worked-Example Videos

For several years prior to (and including) Fall 2022, the CS380 course has incor-
porated worked examples, primarily in the form of modeled example solutions
to in-class exercises (ICEs). Typically, after some amount of lecture, students
are given time in class to complete a series of exercises related to the lesson’s
content, normally organized as a series of lesson worksheets. The instructor
then works out the solution to one or more of the examples live in class. The
following lesson, a static copy of the worked-out solutions of the majority of in-
class exercises is distributed to students. Distributing solutions in this manner
ensured students had access to solutions to in-class exercises that an instructor
may not have had time to demonstrate in class. During a typical course execu-
tion, students are also told that the quizzes in the course borrow heavily from
the concepts covered in the in-class exercises, and that they should primarily
focus on the in-class exercise worksheets (and their corresponding provided so-
lutions) as a study aid. The in-class exercises (and their solution files) do not
change from year to year.

Armed with this information, the two undergraduate authors created forty
worked-example videos of select in-class exercises. All the videos were less
than ten minutes in length, with 65% shorter than five minutes. Each worked-
example video had a static counterpart, namely the instructor-created work-
sheet solution PDFs provided by the instructor to all students in CS380. The
process to create the worked-example videos was as follows: each student au-
thor selected twenty in-class exercises to create videos of, based on their own
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Table 2: Population Statistics

Semester Population Size (N) “Weak" “Average" “Strong"
Control 44 7 21 13

Test 50 8 32 7

experience of what content was particularly difficult, and from their conversa-
tions with their classmates. After selecting the in-class exercises to port, each
student author re-did the corresponding in-class exercises, and reviewed the
associated static solutions, making sure to understand the problems fully, and
consulted the faculty advisor if they had any questions.

Using an iPad to record their voice and their screens, each student slowly
walked through each in-class exercise, recording the step-by-step solving pro-
cess. Once recorded, the students used iMovie, a free editing software, to edit
and polish each video and submit it for verification to the faculty advisor. The
final stages of editing and publishing the videos involved an iterative verification
and editing process, where the advisor gave the student investigators feedback,
and the students edited their videos until they were deemed appropriately ac-
curate and detailed. This process was done for all forty worked-example videos,
with each video covering a different in-class exercise.

2.2 Data Collection

Data was collected over two Fall semester offerings of CS380. The Fall 2022
semester served as the “control" semester, where none of the students surveyed
had access to worked example videos. The “test" population was the Fall 2023
semester, where all students had equal access to the worked example videos.
In both semesters, students had access to the static worked-example solution
PDFs that have always been provided in CS380. Additionally, students in
the control and test semesters had access to a series of short instructor-created
videos, which mainly contained a summary of the associated readings; however,
a small quantity of the videos (especially from the assembly and concurrency
unit) included some worked examples of content covered in the textbook.

Table 2 depicts some details about the populations under study; please
note that the two student authors who were enrolled in Fall 2022 are excluded
from the control population, as they interacted with the worked-example video
content, while their classmates did not.

As part of the semester preparation for CS380, the instructor normally
looks at the set of incoming students and “flags" certain students based on
their performance in the three pre-requisite courses. If a student earned C
grades or lower in all their pre-requisite courses, they are flagged as someone

87



who may struggle in the course. Similarly, if a student has earned A-grades
in all the pre-requisite courses, they are flagged as someone who will typically
do well. Noticing that the test population had a larger number of struggling
students and half the number of strong students as the control population, we
partitioned the control and test populations into performance categories for
part of our analysis: students in the “strong" partition earned an A- or higher
in the pre-requisite courses for CS380; students who struggled and earned a C
or lower in their courses were placed in the “weak" partition. Lastly, all other
students were placed in the “average" partition. The sum of the three partitions
does not add up to the population size; foreign exchange students and non-
majors (who did not take the pre-requisites at West Point) were excluded from
the partitions, along with one student who repeated the course.

Quantitative and qualitative data were collected for this study. The quan-
titative data used for this study were primarily quiz grades in the control and
test populations. The faculty author has taught CS380 for a number of years
and therefore was able to ensure that the difficulty and outcomes tested by
each quiz remained consistent between the control and test semesters. Videos
were posted on the West Point’s Microsoft Stream service; as such, we were
also able to use the video view counts tracked by Microsoft Stream to get a
rough idea of how often videos were being watched.

Students in CS380 in the test semester were also asked to take an optional,
anonymous survey about their experiences with the worked-example videos in
CS380, administered at the course midpoint and again at the end. To incen-
tivize responses while maintaining anonymity, CS380 offered two points of extra
credit for each survey if at least ninety percent of the students in the course
filled out the survey. All surveys were distributed electronically with a consent
coversheet that informed students of the risks and benefits of completing the
study and included verbiage about the extra-credit incentive. Students had to
explicitly consent before being able to view the survey questions.

The survey consisted of seven questions. The first question asked students
to rank according to a 5-point Likert scale how helpful they found particular
class resources (including the worked-example videos), ranging from “very un-
helpful" to “very helpful". The second question asked students to rank (from
“most important" to “least important") the study aids they used to succeed
on quizzes. The next two questions asked students to self-report the number
of worked-example videos they watched and what other not-listed resources
students used to study for the course quizzes. The last three questions were
open-ended response questions, that asked students what they liked about the
worked-example videos, what they felt could be improved about the videos,
and how impactful they felt it was to have access to videos created by a peer,
vs. an instructor in the course.
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3 Results

Quiz grades were tabulated over all 10 quizzes in CS380. All available quiz
data for the Fall 2022 and Fall 2023 populations were used in this study, with
the population statistics summarized in Table 2. Of the 50 students in the test
population, 33 students responded to the mid-point anonymous survey (66%
response rate), and 39 responded to the survey (78% response rate). Since the
surveys were anonymous, it was impossible to associate responses with students
in any of the partitions.

3.1 Quiz Performance

Figure 1 depicts box plots of the grades across all quizzes from the control and
test semesters in CS380. Instead of the median, the average quiz grades are
indicated by the middle line within each box plot. The box plots (along with
the associated interquartile ranges and outliers) were generated using Python’s
Matplotlib boxplot() function.

Figure 1a shows the overall performance of the control and test semesters.
As expected, the students in the control semester performed slightly better
on the majority of the quizzes on average than those in the test population,
owing to the larger number of characteristically weak students and the smaller
number of strong students in CS380 in Fall of 2023. However, students in the
test semester generally demonstrated slightly better performance on all the
quizzes, with higher third quartile performance on three quizzes, higher first
quartile performance on five quizzes, and either a higher “max" or “min" score
on five quizzes.

In the strong partition (Figure 1b), students with access to worked-example
videos generally performed better than those who did not, having higher aver-
ages or third quartiles for six quizzes, and shorter interquartile ranges for five
quizzes, suggesting consistently better performance. Interestingly, students in
this group did worse than the control group on the last two quizzes, which
covered concurrency topics.

In the average partition (Figure 1c), the students with the worked-example
videos had first quartiles in six of the ten quizzes. In seven of the ten, the
interquartile ranges are shorter in the test population, suggesting that students
who had access to worked-example videos generally performed better on the
quizzes. We note however that the means for both the control and experimental
groups were very similar in the average partition, with differences of less than
4 percent.

Lastly, in the weak partition (Figure 1d), the students in the test semester
performed worse than the students in the control semester in seven of the ten
quizzes, regardless of having access to worked solution videos. However, we do
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(a) Overall Average (b) Strong Partition

(c) Average Partition (d) Weak Partition

Figure 1: Box Plot Comparisons of Quiz Averages across Control and Test Semsters

note that the interquartile ranges were generally smaller in the test semester
than in the control semester, suggesting that students with access to worked-
example videos in the weak partition had a lower variation in performance.

To better understand our results, we took a closer look at the video view
counts and viewers associated with each video. All videos were watched by
some fraction of the students; the high numbers of views suggested that stu-
dents who watched the worked example videos watched them repeatedly, with
viewership peaking immediately prior to a quiz. However, the data suggests
that high view count of particular videos is primarily a reflection on student
uncertainly of the material. Correlating view counts with quizzes suggest that
the videos with the highest view counts were associated with quizzes that had
some of the lower averages.

Quantitatively, it appears that the worked-example videos had the greatest
positive impact on strong students and a modest positive impact on average
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and weak students. We note, however, that consistent with prior work, we did
not see statistically significant differences in the means of the test and control
populations.

3.2 Student Perspectives on Worked-Example Videos

To gain student perspectives on the helpfulness of worked-example videos, we
asked students in the mid-point and course-end surveys to individually assess
the helpfulness of the worked-example videos compared to other named class
resources (the static in-class worksheet solutions, instructor-created videos, and
the course textbook). We also asked students to rank the perceived usefulness
of the aforementioned resources for studying for quizzes. Additionally, we asked
them several open-ended questions to get a wide perspective of their answers.

(a) Mid-Point Survey (b) Course-End Survey

Figure 2: Student Perspective on Helpfulness of Worked-example Videos compared
to other class resources

Figure 2 depicts how generally helpful students found worked-example videos
and the other available classroom resources at the mid-point and the end of
the course. In both the mid-point and course-end survey, the worked-example
videos were consistently rated by a majority of students as “very helpful", with
55% at the mid-point and 72% at the course-end. We believe this is partially
due to a lack of awareness of the worked-example videos on the part of some
students; 16% of the students indicated that they did not use the worked-
example videos in the mid-point survey, while only 5% indicated that they did
not use the videos by the end of the semester. We note that the latter half
of the course had fewer worked-example videos than the first half; correspond-
ingly, a greater percentage of students reported the in-class worksheet solutions
as “very helpful" in the course-end survey compared to the midpoint.
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(a) Mid-Point Survey (b) Course-End Survey

Figure 3: Student Ranking of Usefulness of Worked-example Videos compared to
other class resources to succeed on quizzes

Figure 3 shows how students ranked the importance of each aforementioned
classroom resource in helping them study and succeed on quizzes. In both
surveys, the majority of students rated the worked-example videos as their top
study resource, with a smaller fraction rating the static worksheet solutions as
their top resource. Only 13% of students pointed to other resources as their
top study aid. In short, our results demonstrate an enthusiasm for the video
medium amongst the surveyed students.

3.3 Open Feedback

The final part of the survey given to the students of the course asked for
open feedback on the worked-example videos. Students who reported watching
the worked-example videos generally described them as being “thorough" and
“well-explained", and that they appreciated the “step by step explanation" and
“pace" of the explanations. “I like how the videos explain thoroughly how to
solve the problems and do not take any shortcuts", said one respondent. A few
students also appreciated being able to pause and replay components of the
worked-example videos: “I can pause as much as I want and go at my own
pace" said one student.

Students did not offer much constructive feedback for improvement, ex-
cept for requesting more worked-solutions videos. Some reported challenges
accessing the videos due to unfamiliarity with the learning management sys-
tem, which we plan to work on addressing in the future. A couple of students
asked for explanations to be even “slower" and “more nuanced", highlighting
the challenge of generating videos that appeal to all students: “They are very
good how they are", said one student, “but sometimes they skip over a small
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section or step which may seem trivial, but when learning it is very useful to
have each small step."

Lastly, we asked students how impactful (if at all) having worked-example
videos created by peers was rather than those created by instructors. The
student respondents were fairly split; 38% felt that peer-created videos had
a greater impact, and another 38% felt that it didn’t matter. Students who
felt that peer-created work-exampled videos were impactful alluded to how
problems and concepts in the videos were explained in a way that were more
intuitive to a student who is learning the material for the first time “I believe
the peers understand where other students minds are at and know we do not
understand it as well as the instructors do," said one student. Students who
preferred instructor-made worked-example videos alluded to the thoroughness
and organizational qualities of the videos: “instructor videos are much better
planned, thought-out and organized," said a student. Another student suc-
cinctly stated the feelings of those that felt that the peer aspect did not matter:
“No impact. The fact that there was a video made all the difference."

4 Lessons Learned & Conclusions

Our results suggest that worked-example videos are an effective study tool
that moderately increased the average quiz score of students who used them as
a study resource. Additionally, a majority of students rated worked-example
videos as a helpful study resource, and also rated the videos as the most impor-
tant study tool for quizzes overall. In addition to preferring the video modality,
several students appreciated the peer-made nature of the videos, and asked for
more to be produced. Prior work [11] suggest that the effects of peer-made
solutions may also have farther-reaching effects than just performance in the
immediate course; one study on the impacts of peer tutoring on tutor and
tutee’s performance found that the grade point average of tutees increased
holistically rather than just in the course they received peer tutoring in [11].
We speculate that worked-example videos can function as a form of peer tutor-
ing which would not only help students understand individual course subjects,
but would help key students in on how the tutor thinks about course material.
Individuals watching the videos can learn heuristics which translate to other
computer science courses and thus increase their overall performance.

Our data also suggests that worked-example videos are an effective study
tool for use in intermediate computer science courses such as computer sys-
tems courses. Having access to video worked-examples assisted student perfor-
mance even in non-programming content in CS380, supporting the notion that
worked-example videos are useful for a variety of non-programming topics in
computing. In the semesters since they became available, the worked-example
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videos created by the student authors have become the most popular study
resource in the course.

We conclude by offering some perspectives from the student and faculty
authors on their experiences of the worked-example video creation process.

4.1 Student Creators: Experiences and Perspectives

While making the videos has continued to help the current student population,
the act of creating the worked-example videos was incredibly formative for both
student authors. We knew that these videos would be shared with peers in our
department, and as such, we spent time to ensure that our thoughts were well
laid out and concise. It was a time-intensive process, requiring over 80 hours
of work to create, edit, and refine our videos.

Video deliverables require particular focus to create, and for the resource
to be effective to others, it should be absent of erroneous content. Because this
process was so lengthy and we had to understand the material at such a high
level, the task of answering static questions on in-class quizzes, without the
added pressure of narration and editing, was substantially easier. Quantita-
tively, we both ended the course with the highest letter grade, an A+, but more
importantly, the process ensured we were incredibly confident in the material
when we were quizzed.

Additionally, this study developed our understanding of basic video editing
software, a skill that is translatable to other components of traditional college
education such as group presentations and final projects. While not initially
apparent, learning basic video editing skills has been helpful in a variety of dif-
ferent academic environments [2]. Furthermore, learning to teach and present
material is a critical skill that not only improves an individual’s understanding
of the material but also develops critical presentation and interpersonal skills
that are translatable across multiple disciplines.

4.2 Instructor Experience and Perspective

Based on prior work, the faculty author had two predictions: first, that having
students create worked-example videos would be beneficial to their individual
learning, and second, by offloading the work of video creation onto students,
faculty time will be freed up to do other tasks.

In retrospect, having only two students (rather than the entire course)
participate in the worked-example video creation process was important. As
our surveys have shown, creating concise and well-explained worked-example
videos is challenging, and requires some amount of effort. The faculty author
spent quite a lot of time with the two students ensuring that video content
was free of incorrect explanations and assumptions. That iterative process,
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while extremely valuable for the two student authors, was exceptionally time-
consuming for the faculty author. In retrospect, it would have taken the faculty
author less time to generate the worked-example videos on their own. However,
the benefits to the students creating the videos (and to their peers who watched
them) is compelling, and would have been undoubtedly lost.

There is an open question on the value of “crowd-sourcing" worked-example
videos from the general student body during a particular course iteration. The
perceived benefit would be that more students would have the opportunity to
gain the insights offered through the video-creation process, like the students
authors. On the other hand, creating good quality worked-example videos is
time-consuming and difficult. The two student authors cared deeply about
helping their peers and doing a good job; this is not always true of the average
student. The more students involved in video production in a semester, the
more faculty oversight that is required to make sure information is accurate.
From the faculty author’s perspective, the greatest challenge in producing high-
quality peer-created videos is finding students who are willing and capable of
producing high-quality study resources. West Point does not have undergrad-
uate teaching assistants; the student authors however were popular tutors in
the department.

Lastly, course designs involving well-established in-class problem sets like
CS380 likely benefit the most from the worked-example video creation process,
as it is a one-time operation whose products can be used over future semesters.
For courses under active revision, creating high-quality worked-example videos
that may ultimately be discarded might be judged as a poor use of time. How-
ever, our results show that the video modality for worked examples involving
non-programming content is perceived as being very valuable to students, and
that peer-created worked-example videos are rated as extremely valuable by
both the peer creators and the student consumers alike.
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Abstract

This paper introduces an innovative approach in computer science ed-
ucation that centers on building empathy and inclusivity skills, particu-
larly towards designing accessible technology for individuals with disabil-
ities. In a landscape where 41 states in the United States (82% of the US)
have embraced accessibility policies, this study introduces in-person ac-
cessibility interventions for undergraduate computing students, focusing
on Human-Empathy Accessibility Learning (HEAL). What makes this
approach innovative is its emphasis on abilities-based experiential learn-
ing and direct engagement with inclusivity challenges. The interventions
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are structured to cultivate empathy as a foundational skill for effective
communication, collaborative problem-solving, and inclusive design in
technology. This study evaluates the effects of these novel interventions
on students’ empathy, career goals, and attitudes towards accessibility
through three experimental groups from diverse academic settings, in-
cluding a control group. Key to our methodology is the implementation
of an "empathy lab", where students actively engage in empathy-driven
experiences, including a unique collaboration with a woman who is blind
for one of the groups. We employ a mixed-methods research design,
leveraging the Perth Empathy Scale (PES) to quantify empathy devel-
opment and analyze student reflections to understand shifts in attitudes,
skills, and design philosophy. The findings reveal a marked improvement
in empathy, skill acquisition, and a renewed commitment among stu-
dents to incorporate accessibility into their future technology endeavors.
This study is a testament to the transformative potential of integrating
empathy and accessibility into computer science curriculum, paving the
way for a more inclusive and ethically mindful technological landscape.

1 Introduction

In an increasingly interconnected and diverse world, the call for greater inclu-
sivity and accessibility has become more pronounced than ever before. Within
this evolving societal landscape, it is important that undergraduate college
students not only acquire academic knowledge but also cultivate a deep un-
derstanding of the diverse perspectives and needs of their fellow citizens. In
Zhou’s [19] critical review on "Empathy in Education" emphasizes the im-
portance of empathy in the educational context, suggesting its pivotal role in
shaping students’ understanding of diverse perspectives and needs, particu-
larly in technology-related fields. This perspective forms the backdrop of our
research, which focuses on the abilities individuals with disabilities have and
the challenges they face in technology interactions—a crucial issue often not
covered in conventional computer science curricula [18]. A construct such as
empathy is ultimately defined by the way it is measured. In this study, using
the PERTH Empathy Scale empathy is defined as cognitive and affective empa-
thy. Cognitive empathy allows for better communication and problem-solving,
particularly in social and professional contexts, while affective empathy fosters
deeper emotional connections and can drive altruistic behavior [4, 11]. To ad-
dress this crucial aspect of holistic education, this study investigates the impact
of accessibility workshops on empathy, with a particular focus on ability-based
design [18], evaluating skills development and attitudinal change among under-
graduate college students in the context of their career development. We con-
sciously shift from traditional disability simulations, criticized for perpetuating
stereotypes [15], to interactive methods co-developed with an elite triathlete
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who is blind to offer a more authentic experience. With this pilot study we aim
to shed light on the transformational potential of ability-based empathy work-
shops, which have emerged as a promising tool in fostering greater inclusivity
and understanding among young adults. As the undergraduate years serve as
a pivotal period for personal and professional development, our study seeks
to explore how accessibility interventions can equip students with the skills
and perspectives necessary to navigate an increasingly diverse workforce and
contribute positively to society. This research endeavors to answer several key
research questions. Do the Human-Empathy Accessibility Learning (HEAL)
interventions lead to increased empathy and attitudinal changes among col-
lege students, encouraging them to adopt more inclusive mindsets? Do these
changes impact career development trajectories? By addressing these ques-
tions, our study aims to provide valuable insights into the potential benefits of
empathy-driven education, ultimately contributing to the cultivation of more
compassionate, inclusive, and empathetic technical professionals.

2 Literature Review

In the ever-changing field of computer science (CS) education, there is a grow-
ing consensus on the critical need to incorporate empathy and accessibility into
the curriculum. This need is underscored by the significant educational gap
in CS, where emphasis on understanding and designing for users with disabil-
ities is often lacking [2, 3, 18]. Empathy in CS education, encompassing both
cognitive and affective components, is essential for understanding the varied
needs of a diverse user base, including those with disabilities [5, 7]. However,
traditional methods of cultivating empathy, such as disability simulations, have
been scrutinized for potentially reinforcing stereotypes and failing to provide
an authentic understanding of the disability experience [15]. The discourse in
current literature suggests that alternative educational interventions are nec-
essary to effectively instill empathy in CS students. For instance, immersive
virtual reality experiences have been shown to empower students by providing
a more profound insight into the challenges faced by individuals with disabil-
ities [1]. Similarly, experiential learning approaches have been identified as
beneficial in providing students with firsthand experience in accessibility chal-
lenges and solutions [10]. These methods offer a deeper and more empathetic
understanding of accessibility issues, promoting more inclusive design prac-
tices [9, 17]. Additionally, the incorporation of Universal Design principles in
educational settings can create a more inclusive learning environment, bene-
fitting all students and highlighting the importance of accessible technology
design [6]. The concept of empathy-centric design in industry, where empathy
is integrated into professional practices, further emphasizes the importance of
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understanding user needs in technology development [8]. The literature indi-
cates that while the importance of teaching empathy and accessibility in CS
education is evident, there is a critical need to move beyond traditional dis-
ability simulation methods. More authentic and interactive approaches, such
as immersive technologies and experiential learning, can better equip students
to create technology that is both accessible and inclusive.

3 Methodology

This research evaluates the effects of two accessibility-focused interventions on
undergraduate students’ empathy, career aspirations, and attitudes towards ac-
cessibility. Participants comprised three groups: two from a small liberal arts
college and one from a top-tier technical university. The first group acted as a
control, receiving no intervention. The other two groups participated in an im-
mersive "empathy lab" experience that was co-developed with a woman who is
blind, with one group collaborating with the same woman in a client scenario.
In the immersive "empathy lab," students engaged with five stations featuring
assistive technologies like screen readers and alt tag exercises. The "reveal"
intervention involved students initially creating a basic website for an elite
athlete. Upon meeting her and learning about her abilities as someone who is
blind, they were then challenged to redesign the website. This pilot study em-
ployed a mixed-methods approach, incorporating both quantitative and quali-
tative analyses, to offer a comprehensive understanding of the interventions and
the impact on participants across different settings. The decision to use mixed
methods was strategic, aiming to thoroughly investigate the experimental find-
ings while navigating the challenges and complexities of conducting research in
educational settings. Obtaining ethics approvals for studies in these contexts
may often be a time-consuming and difficult process; thus, it was important to
address a broad range of research questions without sacrificing methodological
standards or compromising experimental controls. Specifically, we intended to
compare the effects of combined interventions against single interventions and
a control group. Additionally, we examined how varying college populations
influenced training outcomes. This allowed us to better understand how each
intervention affected participants within specific contexts. Empathy growth
was measured using the Perth Empathy Scale or PES [5]. This instrument was
administered to each student in the study at the beginning of the semester
and again at the end of the semester. This self-report scale consisted of 20
items designed for assessing cognitive and affective empathy, including their
valence-specific aspects. It comprised of items that gauge the accurate recog-
nition of others’ emotions (cognitive empathy) and the emotional resonance
with others (affective empathy), covering both negative and positive emotions,
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resulting in four theoretical subscales, each containing five items without the
need for reverse-scoring, in alignment with recommended practices [16, 14].
Both cognitive and affective empathy are crucial for effective interpersonal in-
teractions. A six questions reflection was distributed at both institutions after
gaining ethics approval at both research sites. The reflections asked about
Q1: Attitude and Perspective Change, Q2: Skills Acquired, Q3: Immediate
Changes Planned, Q4: Future Approach to Design, Q5: Professional Applica-
tions, and Q6: Workshop Feedback. The reflections were administered after
each intervention.

3.1 Participants

iThe study involved 69 undergraduate college students. 64 participants pro-
vided a complete set of responses used to conduct quantitative analysis. At a
tier 1 technical university (referred to as institution A), an empathy lab (inter-
vention 1) was conducted with 31 participants. At a small liberal arts college
(institution B), an empathy lab (intervention 1), along with the “client reveal”
(intervention 2) was conducted with 15 participants. Another group of 24 par-
ticipants at institution B served as the control group. Ethics approval was
granted for both institutions and participation in the study was an optional
part of each class. The distribution of the sample is summarized in Table 1.
The number of students in each class was determined by students self-selecting
a particular class.

Table 1: Sample Distribution

4 Findings

In this mixed methods study we sought to compare the effects of combined
interventions against single intervention and a control group. Additionally, we
examined how varying college populations influenced training outcomes. This
allowed us to better understand how each intervention affected participants
within specific contexts. In educational settings, where strict experimental con-
trol is challenging to maintain, qualitative measures proved to be invaluable for

102



capturing the nuances and complexities associated with the applied interven-
tions. We hypothesized that Human-Empathy Accessibility Learning (HEAL)
interventions lead to increased empathy and attitudinal changes among college
students and impact career development. Our quantitative results indicate
marginal significance. The dual-intervention condition showed the most ben-
efit, followed by the single-intervention condition. In contrast, no significant
changes were observed in the control group. The mean overall differences in
pre-to-post empathy scores were pointing towards potential effects, although
our Analysis of Variance (ANOVA) did not yield statistically significant differ-
ences between the experimental and control groups in Total Empathy Score.
However, we observed marginal significance in individual items, suggesting an
increase in self-awareness and skills in recognizing emotions in others.

• "When I see or hear someone calm, it makes me feel calm too." F(1,63)
= 3.72, P < .058

• "When I see or hear someone angry, it makes me feel angry too." F(1,63)
= 3.346, P < .072

• "Just by seeing or hearing someone, I know if they are feeling calm."
F(1,63) = 2.825, P < .098

ANOVA is widely used in educational research, especially in experiments
involving multiple groups and has been shown to be robust even with smaller
sample sizes. Our observation of marginal significance despite small sample
sizes, resulted in ANOVA detecting overall trends [13], although it requires
careful interpretation of results [12]. Our quantitative results were substan-
tiated by our qualitative findings, which enriched the trends observed in the
numerical data. While students benefited in both settings, the advantages
supported by our qualitative data appeared to be unique to each educational
context.

4.1 Findings at Institution A (Empathy Lab)

In the study, 71% of participants reported changed views about people with
impairments after an empathy lab workshop, with 32% noting a large change
and 23% a slight one. Twenty-six percent saw no change, and 3% were neu-
tral. Fifty-seven percent developed empathy, stating they could “see the world
through their eyes” and felt “much more sensitive to them and the daily prob-
lems they face.” One participant remarked, “I used to think that designing for
accessibility was just a box to check off... But after this workshop, I realized
it’s also really smart business.” Twenty-nine percent reflected on accessibility
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thinking. Eighty-three percent gained new skills, while 16% improved aware-
ness but did not acquire new skills. A participant said, “The workshop really
led me to experience what some people are going through... I think this will
help better design websites that cover all groups of people.” All respondents
agreed to update their team’s website design for better accessibility, with 16%
focusing on fonts and inclusive features. Ninety-seven percent planned to in-
corporate accessibility in future technology designs, with 39% prioritizing user
needs and inclusivity. Ninety-three percent had clear plans to apply these
learnings professionally, focusing on empathy (19%) and inclusion (64%). A
participant shared, “I can apply my better developed skills of empathy... and
remind my team to design with everyone in mind.” Nineteen percent planned
to advocate for accessibility in the workplace. Another participant noted the
importance of learning new languages for effective communication. The stu-
dents appreciated the chance to “see the challenges some people face” and learn
about screen readers. Summarizing the experience, one said, “I obtained new
skills, broadened my awareness of accessibility and inclusivity, and established
a plan of action for applying these concepts into my professional practice.”

4.2 Findings at Institution B

Secondly, the reflections gathered at the small liberal arts college were collated
here in two parts: findings on the first intervention (Empathy Lab workshop)
and findings on the second intervention (immersive workshop with the elite
athlete).

4.2.1 Empathy Lab

In response to the question about changing attitudes towards people with im-
pairments, 93% of 15 participants reported a change in perspective towards
people with impairments after an intervention, with 7% neutral. Most (64%)
cited increased empathy, saying "Walking in their shoes...has deepened my
empathy for them." They acknowledged the importance of accessible design,
as one noted, "Engaging in these exercises... made me realize how vital it is
to make systems easier and more accessible." Regarding skills acquired, 71%
mentioned technical abilities like improved image descriptions for accessibility,
and half developed soft skills, particularly empathy. All participants agreed
to make their websites more accessible, including revising alt tags and im-
proving color contrast. Future technology design will focus on accessibility
and usability, with 43% planning people-specific changes and 64% tech-specific
adjustments. Participants aim to advocate for accessibility in professional set-
tings and create technology enjoyable for all. Ninety-three percent had plans
to implement these insights professionally, emphasizing usability testing and
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accessibility in future jobs. Some pledged to advocate for accessibility in their
workplaces. Feedback on the workshop was positive, with 78% finding it ed-
ucational in raising disability awareness and accessibility needs. Some wished
for more in-depth activities and resources. The workshop was valued for its
practical application in future design projects.

4.2.2 Client Reveal

When asked if their views on people with impairments changed after learning
about the client’s condition, 71% of participants said yes, 7% saw no change,
and 21% were neutral. Those whose views changed noted increased respect
for the challenges faced by people with impairments in using technology, like
screen readers. One respondent said, "something you work with daily" could
be frustrating for visually impaired people. Another expressed empathy, say-
ing, "spending some time in their shoes for a couple of minutes was really
frustrating." All fourteen participants reported skill development during the
workshop, including using screen readers (71%) and keyboards (7%). Twenty-
two percent felt their empathy skills improved, with one saying, "Getting to
work with it and understanding the difficulty helps me see things from the
point of view of others who may need this technology." Participants planned
to apply these skills in the future, with one noting, "I’ll be more conscious
of these things and try exercises to put myself in the place of other people."
They all agreed to update their website for better accessibility, with plans to
use better headers, efficient screen readers, and descriptive alt tags. One par-
ticipant remarked, "I learned how important it is to incorporate accessibility
into our websites." Regarding future technology design, 71% aimed for greater
accessibility, while 28% said changes would depend on projects and company
expectations. Fifty-eight percent planned to accommodate diverse needs. One
said, "I will improve on what I know and create all my future technologies
to be accessible." Ninety-three percent knew how to apply workshop learnings
professionally, with 28% considering employer expectations and 21% focusing
on informing others about accessibility. One shared, "I plan on being a greater
advocate... just being aware of the many different needs that your users/cus-
tomers may have is very important for maintaining user satisfaction." Feedback
on the workshop was positive, with 93% finding it useful. Participants appre-
ciated demonstrations like using screen readers and navigating websites. They
expressed a desire to learn more about screen readers, including their use in
desktop applications.
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5 Discussion

This section discusses qualitative data analysis, frequency analysis, overall sum-
maries and comparisons.

5.1 Quantitative Data Analysis

Our quantitative findings support the trend hypothesized in this study. Our
analysis yielded a more significant improvement in empathy for the dual-
intervention group than the single-intervention group. The mean differences
showed the larger pre to post changes in empathy in the dual-intervention
group followed by our one-intervention group with no differences in the con-
trol group. However, Analysis of Variance yielded no statistical significance
between groups for the overall empathy measure while showing marginal sig-
nificance for several specific items. Including different college populations for
comparison allowed us to explore the generalizability of our findings and the
impact of contextual variables.

5.2 Frequency Analysis

The impact of the "empathy lab" intervention yielded several findings. Table
2 presents the results of a frequency analysis based on the reflection questions
related to the impact of the accessibility interventions. Overall, the table in-
dicates that the interventions had an overall positive impact on participants,
leading to change in their views, the development of skills, and a strong will-
ingness to make changes and incorporate accessibility and inclusivity into their
future work and professional lives.

Table 2: Frequency Analysis
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5.3 Qualitative Data Analysis

Qualitative data were analyzed for all interventions. A Kappa score of 0.69 indi-
cated substantial inter-rater agreement. We recommend merging the following
two nodes "accessibility product nodes" and "assisted technology dimension"
in future studies for higher reliability.

5.4 Summary of Qualitative Results from Institution B (Empathy
Lab)

After the intervention, 93% of participants reported a change in their perspec-
tive towards individuals with impairments. A significant number (64%) high-
lighted empathy as the primary driving force behind this change. Participants
universally agreed that understanding the challenges of impaired individuals
is crucial, both personally and professionally. Most participants (71%) gained
specific technical skills, including improved image descriptions, effective use of
alt tags, and color selection aimed at accessibility. Soft skills like teamwork
and empathy were also notably developed, as mentioned by 50% of the partic-
ipants. All participants expressed the intention to make practical changes to
their teamwork websites. These changes include revising alt tags, enhancing
color contrast, and making content more concise. All respondents planned to
change their future design approach. While 43% of the responses focused on
people-specific changes, 64% touched on tech-specific ideas. Advocacy, aware-
ness, and education were mentioned as important tools for planning future
accessible designs. Technical factors like navigation and alt tag effectiveness
were also highlighted. A substantial 93% of participants planned to incorpo-
rate lessons learned about accessibility and inclusion in their professional life.
This ranged from specific design considerations to broader approaches like ad-
vocacy for inclusion and diversity within their workplaces. Most participants
(78%) found the empathy lab useful. A portion (43%) wished for more time to
engage in workshop activities. The sessions were lauded for their educational
value and the deep insight they provided into accessibility needs. Table 3 in-
dicates that the Empathy accessibility intervention were successful in fostering
attitude change, skill development, and a strong commitment to implementing
accessibility in both professional and academic contexts.

In summary, the institution B intervention was largely successful in shifting
attitudes, imparting new skills, and inspiring future action for more inclusive
and accessible design. The empathy lab workshop received positive feedback
for its role in this transformation, although some participants felt that more
time could have been allotted to each activity.
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Table 3: Summary of qualitative data analysis at institution B

5.5 Summary of Qualitative Results from Institution A

71% of participants reported a change in their views on people with impair-
ments. About one-third of those participants felt a substantial shift, and 57%
claimed to have developed empathy. The workshop also spurred thoughts on
equity vs. equality, smart business, and the technical aspects of accessibility.
On the hard skills front, 6% learned about accessibility features, 13% about
assistive technology and alt tags, 32% about using screen readers, and an-
other 6% about color contrast and accessibility testing tools. Regarding soft
skills, 6% noted improvement in teamwork and 10% in communication. All
participants planned to implement changes, from enhancing general accessi-
bility (16%) and user interface tweaks like font adjustments (16%) and layout
(19%), to improved navigation and content. A strong focus was placed on alt
tags (35%) and inclusivity (13%). Almost all participants (97%) were posi-
tive about making accessibility a standard practice in future projects. They
highlighted various aspects, from involving people with impairments in testing
(22%) to focusing on specific tools like alt tags (22%) and color contrast (19%).
The biggest takeaways were around empathy (19%) and inclusion (64%). A
notable 19% planned to be advocates for accessibility in their professional set-
tings. Participants also saw the direct benefits of accessibility, not just for
ethical reasons but also for business expansion. A large majority (87%) found
the workshop effective, informative, and engaging. However, 35% wished for
more time at each station, and 29% desired more real-world examples.

5.6 Comparison of Qualitative Data at Institution A and B (Em-
pathy Lab)

Table 3 provides a comparison of qualitative data between two Institutions (A
& B) regarding the impact of accessibility interventions. While both institu-
tions reported positive outcomes from the accessibility workshops, there were
differences in the nature of the changes observed. Institution A had a more
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Table 4: Summary of qualitative data analysis at institution A

diverse attitude change and focused on technology specific aspects, while in-
stitution B primarily experienced changes centered around empathy and had
a strong specific technical improvement. Both institutions expressed a high
intention to implement changes and positive outlooks for future approaches
and professional application of the intervention content, albeit with varying
emphases.

Table 5: Comparison of qualitative data

In summary, both workshops were effective in changing attitudes and im-
parting skills related to accessibility and inclusion, but they differed in focus.
Institution B had a more emphatic and holistic impact on participants, while
Institution A offered a more technical, diverse set of learnings. Both had al-
most unanimous agreement on the need for practical changes in design and
future approaches.
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6 Discussion

In conclusion, despite the challenges of a small sample size, this study ef-
fectively demonstrated the impact of ability-based empathy and accessibility
interventions in different educational settings. The study’s strength lies in its
mixed-methods approach, integrating both quantitative and qualitative anal-
yses to provide a comprehensive understanding of the interventions’ effects.
Conducting the study across diverse academic institutions (a Tier 1 technical
university and a small liberal arts college) adds significant value. It allowed for
the comparison of interventions across different educational cultures and stu-
dent populations, enhancing the generalizability and relevance of the findings.
The implementation of unique ability-based interventions, such as the empathy
lab and the “client reveal,” offers fresh insights into empathy and accessibility
interventions in educational settings. The comparative analysis of these inter-
ventions contributes to the growing body of knowledge on effective empathy
and accessibility skill development techniques. The combination of quantitative
and qualitative methodologies strengthens the study. While the quantitative
data provides a solid statistical basis for evaluating the interventions, the qual-
itative data adds depth and context, capturing nuanced aspects of student
experiences that numbers alone cannot convey. Despite the absence of statis-
tically significant differences in total empathy scores, the marginal significance
observed in specific items is noteworthy. These findings suggest potential ef-
fects on students’ self-awareness and emotional recognition skills. Such trends,
although not conclusive, indicate the positive impact of the interventions and
warrant further investigation. The qualitative findings corroborate and enrich
the quantitative trends. They provide valuable insights into how students in
different settings uniquely benefited from the interventions. This aspect of
the study highlights the importance of qualitative measures in educational re-
search, especially in understanding complex, context-dependent phenomena.
The observed trends, coupled with the qualitative feedback, suggest that with
a larger sample size, more definitive conclusions might be drawn. This indi-
cates the potential for a significant impact of such interventions on empathy
and accessibility development in educational settings. In summary, this study
provides valuable insights into empathy and accessibility interventions in edu-
cational settings. It lays the groundwork for future research and underscores
the potential of such interventions in enhancing emotional skills, attitudinal
changes towards accessibility, and inclusivity in career development in diverse
environments.
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7 Limitations and Future Research

The limitations of this study are characteristic of those that often arise in stud-
ies utilizing a convenience sample. These limitations include a small sample
size, an unequal distribution of students across classes, and the inability to
randomly assign participants to different conditions. Additionally, the inclu-
sion of a second campus increases the generalizability of the findings, but it
also introduces a threat to internal validity. Specifically, the new institutional
environment may add uncontrolled variables that could impact the results,
particularly given the absence of random assignment of participants.

7.1 Future Research

To increase validity of our findings, future studies should consider increasing
the sample size. This would enhance the statistical power of the analyses and
reduce the impact of potential confounding variables. Additionally, integrating
a control group within each educational institution could offer better insights
into the effectiveness of the interventions in specific settings. Given the promis-
ing preliminary results, a longitudinal study examining the long-term efficacy
of these interventions is recommended. Such an approach would enable us to
track the impact of the training not only throughout the college experience but
also into the participants’ professional lives post-graduation.
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Abstract

The GenCyber Teacher Academy (GTA) stands as a pioneering pro-
fessional development initiative, empowering Connecticut’s high school
educators in diverse STEM fields to explore and integrate cybersecu-
rity concepts into their teaching. The inaugural 2022 edition facilitated
inquiry-based learning and collaborative discourse on GenCyber Cyber-
security Concepts. However, program evaluation uncovered areas for cur-
riculum enhancement. This paper delineates the evaluation process, cur-
riculum revisions, and their implementation outcomes. Findings demon-
strate that the revised 2023 GTA fostered improved teacher engagement
with modules, enhancing their ability to integrate cybersecurity prin-
ciples while prioritizing online safety. Notably, the revised GTA forti-
fied the sustainable GenCyber Teacher Academy Teaching and Learning
Community, bolstering a network of educators and practitioners destined
to collectively mold Connecticut’s cybersecurity landscape.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Connecticut’s educational landscape reveals a conspicuous gap in comprehen-
sive cybersecurity education, particularly within high school curricula [1]. De-
spite strides in mandating Computer Science and Cybersecurity courses, the
implementation faces hurdles [2]. The state’s educational initiatives lack robust
support structures, especially concerning professional development programs
for educators[3]. This insufficiency results in marginal incorporation of cyber-
security concepts within classroom teachings, leaving students ill-prepared for
the evolving digital landscape [4]. To address this critical deficit, there’s an
imperative for transformative initiatives empowering high school STEM edu-
cators. This paper outlines how the GenCyber Teacher Academy (GTA) [5]
program evaluation process, curriculum updates, and their execution resulted
in notable outcomes. The results show that the 2023 revised GTA effectively
boosted teacher involvement in modules, thereby strengthening their capacity
to integrate cybersecurity principles and prioritize online safety.

The remainder of this paper is organized as follows; The sections start
with a background of Cybersecurity Education in Connecticut 2, followed by a
description of the GTA’s structure and activities in Section 3. Next, Section 4
details the implementation of the GTA program in the summer of 2022. Section
5 delves into the curriculum design and learning outcome assessment techniques
employed in evaluating and revising the new GTA. Section 6, presents the
results stemming from the implementation of the suggested recommendations
in GTA 2023. Finally, Section 7 concludes the document, discussing the study’s
implications and outlining potential avenues for future work in the realm of
cybersecurity education.

2 Cybersecurity Education in Connecticut

Connecticut recognized the importance of cybersecurity education with the in-
troduction of the Position Statement on Computer Science Education by the
Board of Education. Although a 2015 mandate required high schools to offer
Computer Science (CS) and Cybersecurity courses, it lacked funding for essen-
tial professional development and curriculum support [2, 3]. This led to ongoing
challenges, marginalizing cybersecurity education statewide [6]. High schools in
Connecticut face difficulties in delivering cybersecurity education, particularly
in districts already struggling with teacher recruitment and diversity [1, 4].
Termed "Opportunity Districts," these areas serve urban populations histori-
cally underrepresented in education [7]. Urgent efforts are needed to enhance
these schools’ capacity to provide valuable cybersecurity education to diverse
student groups. Additionally, the state’s teacher workforce lacks diversity, with
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only 9.6% educators of color compared to over 45% students of color [1]. Ad-
dressing this diversity gap is crucial for creating inclusive environments where
all students, including minorities, can thrive.

3 GenCyber Teacher Academy Structure

The recent study, described in [5], provides a comprehensive description of the
GenCyber Teacher Academy (GTA) which aims to address the growing need
for skilled cybersecurity professionals. GTA is Connecticut’s pioneering pro-
gram training high school teachers in cybersecurity and online safety. The GTA
program goals are multifaceted: 1) Developing a professional development cur-
riculum, including culturally responsive teaching for cybersecurity education;
2) Crafting and validating cybersecurity lesson plans and related teaching ma-
terials; 3) Establishing a sustainable teaching community shaping the state’s
cybersecurity future. This intensive, learner-centered program focuses on the
GenCyber Cybersecurity Concepts Framework, engaging STEM educators in
activities including lectures, labs, and lesson planning. The GTA curriculum
is fully supportive of the GenCyber Cybersecurity Concepts as detailed in Ta-
ble 1. It covers Network Fundamentals, Python Programming, Cybersecurity
Ethics, Cryptography, and Social Engineering. This curriculum aligns with the
GenCyber cybersecurity principles [8]. GTA offers daily Cybersecurity Semi-
nars with industry experts and follows up with GenCyber Teacher Academy
Learning Community (GTALC), providing ongoing support, mentoring, and
professional development for participating teachers.

Table 1: GTA curriculum mapping of the GenCyber Cybersecurity Concepts

Networking Python Cyber Ethics Cryptography Social Engineering
Defense in Depth ✓ ✓ ✓
Integrity ✓ ✓ ✓
Think Like an Adversary ✓ ✓
Confidentiality ✓ ✓
Availability ✓ ✓ ✓
Keep it Simple ✓ ✓ ✓

4 GenCyber Teacher Academy Implementation

During the summer of 2022, the first GTA took place at The University of
New Haven in Connecticut. The program was developed and implemented
by a diverse leadership team: a Program Director, a Lead Instructor, a K-12
pedagogy expert, two Instructors, and two Teaching Assistants. Twenty-five
participants, twelve men, and thirteen women, participated in the program and
were selected from a pool of 78 Connecticut high school STEM teachers. The
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summer camp program ran daily from 8:00 AM to 5:00 PM for five days in
August 2022. Before the intensive week-long experience, teachers completed
approximately eight hours of pre-program work through Google Classroom.
Post-camp the teacher group met an additional four times, once per month
from September through December, for three hours at a time.

The GTA program focused on five different modules and dedicated one day
of camp to each module and pre-camp work was assigned for each topic. These
modules were: Cybersecurity Awareness; Python Programming and Script-
ing; Cryptography; Network Fundamentals; and Social Engineering. Under-
standing computer networks is crucial for cybersecurity professionals because
it enables them to understand how data is transmitted and identify potential
security threats, such as network attacks and intrusions. Python is a popu-
lar programming language that is widely used in the cybersecurity industry
for writing scripts and automating various cybersecurity tasks. Knowledge of
cryptography is necessary to understand how encryption algorithms work and
their application to secure data communications and data transmissions, and
verify that files have not been tampered with. Cybersecurity awareness train-
ing helps individuals and organizations identify and avoid potential security
threats, such as phishing attacks, social engineering, and malware. Social en-
gineering is a technique used by attackers to trick individuals into revealing
sensitive information.

Participants completed a pre-camp survey to determine their prior knowl-
edge and skills with topics in cybersecurity. After the 2022 GTA, teachers
completed post-program surveys about the knowledge and skills they gained,
as well as their perceptions of the modules and overall GTA camp experience.

5 Curriculum Design and Learning Outcomes Assessment

The assessment of the participating teachers’ learning is an essential means of
demonstrating each participant has met the goals of the GTA program and
identifying areas for improvement in the proposed curriculum. The GTA as-
sessment plan is a three-tier structure that includes: formative, interim, and
summative assessments.

5.1 GTA Formative Assessment

Formative assessment occurs in the short term with prompt feedback from
instructors. Examples of activities supporting formative assessment include
self-assessment quizzes, essay assignments, and discussion forums in the pre
and post-outreach phases. During the summer program, warm-up and wrap-
up sessions are used daily. These sessions improve learners’ retention of cov-
ered concepts and highlight the relationship with the new modules. Moreover,
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reflection sessions scheduled at the end of each day of the summer program
allow for engagement with learners through discussions facilitated by the lead
instructor and the K12 pedagogy expert.

5.2 GTA Interim Assessment

The interim assessment allows learners to demonstrate an understanding of
cybersecurity-related material and concepts. Each module includes a set of
hands-on laboratory exercises, homework assignments, and group-based project
implementation. The prompt feedback from instructors helps recognize gaps in
instruction and participants’ learning. In addition, the participating teachers
engage in lesson plan design, development, and validation during the summer
program. Participants are expected to create a series of several lesson plans
that allow them to incorporate their new learning and bring it back to their
students. Feedback from the lead instructor and the K12 pedagogy special-
ist helps improve their course lesson plans and increase the success of their
implementation.

5.3 GTA Summative Assessment

The summative assessment is performed by the GTA team, upon the com-
pletion of the summer program, to identify strengths and weaknesses of the
proposed curriculum and potential future improvements. Examples of summa-
tive assessment include the presentation of the produced lesson plans created by
the participants during the summer program and refined in the post-outreach
program supported by our GTALC events.

5.4 GTA 2022 Evaluation and Recommendation

The GTA integrated assessment plan aims to build participants’ confidence to
teach cybersecurity in high schools. Based on the survey data from 2022, one
key theme emerged that was crucial to improving the 2023 GTA academy. As
depicted in Figure 1, the Networking module was rated the lowest of the five
modules at the camp in several dimensions. Feedback from the students made
it clear that the material was very complex and difficult to understand. Both
anecdotally and in surveys the participants reported that they were the least
confident in teaching networking to their students even after they participated
in the instructional module at camp as displayed in Figure 2. Participant
responses indicated that the material was too in-depth for novice teachers and
was far too complicated to bring back to their classrooms. It was determined
that the networking module would need a complete overhaul for the summer
of 2023.
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Figure 1: GTA 2022 participants ranking of the curricular modules.

Additionally, participants enjoyed the activities that were hands-on and
interactive and they felt the most valuable parts of the camp were doing ac-
tivities that they could bring directly back into their high school classrooms
and implement. For example, the teachers enjoyed using Scytale to encode
and decode messages. They enjoyed creating funny and witty messages for
their peers to read aloud. All teachers were given two 3D-printed Scytales in
2 different sizes and the 3D print files so they could make their own sets at
school. Teachers knew they could bring this back to school and use it as an
introduction to cryptography, the same way they had done the activity in the
camp. A goal for the 2023 camp was to send teachers home with as many
ready-to-adapt lessons and activities that they could use in their high school
classrooms as possible. Based on these recommendations, the GTA leadership

Figure 2: Evolution of participants’ confidence in teaching the curricular mod-
ules.

team aimed to overhaul the Networking module and make minor changes or
additions to the other four modules to ensure that the participants were not
only learning the concepts but also had a way to transfer that knowledge back
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to their students in engaging and practical ways.

6 Results of the GTA Program Revision

The summer 2023 GTA program had 24 participants; 13 men and 11 women
and were selected from a pool of 46 applicants. The camp expanded its
reach beyond Connecticut and also had participants from New York and Mas-
sachusetts. A critical role added to the instructional team was the GTA Am-
bassador (GA). This person was a participant in the 2022 GTA camp and was
selected based on her experience and enthusiasm for not only the subject ma-
terial but also for her passion for teaching students and sharing her knowledge
with her colleagues. Adding the GA to the team meant that the voices of the
teachers were represented in the planning and execution of the camp experi-
ence. She was able to speak from the perspective of the classroom teacher,
which was invaluable while planning the modules and activities.

6.1 Networking Module

For the 2023 GTA Camp, the team’s highest priority was to improve the net-
working module. Understanding the underlying basics of networking is critical
to understanding how cyber attacks occur and what makes networks vulnerable
to malicious acts. With the help of a new instructor and the GA, the module
was completely rewritten to be more hands-on and understandable (See Figure
2). The GA and an instructor decided to use the “Internet of Strings” series
of activities to help the participants understand the basics of how a network
works.

6.1.1 Internet of String Activity

Adapted from the work done by Hernandez et al. [9], the ”Internet of Strings”
(IoS) is a creative and engaging model that simplifies computer networking con-
cepts using the analogy of strings and interconnected nodes. In this approach,
data links are represented as strings, and devices become nodes in the net-
work. By using relatable objects and scenarios, high school students can grasp
complex networking principles more easily. This concept can be introduced in
a classroom setting to foster curiosity and understanding of the fundamental
principles that underpin modern computer networks. IoS aligns with Integrity
and Availability GenCyber Cybersecurity Principles.

Lesson Objectives Once this module concludes, participants will find them-
selves equipped to navigate the intricacies of the Internet of Strings (IoS) more
comprehensively. They’ll embark on a journey that begins with unraveling the
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concept of IoS, drawing parallels to conventional computer networks to grasp
how data flows within this innovative framework. Participants will delve into
the essence of data transmission within IoS, akin to the way packets navigate
through real networks. The significance of protocols governing communication
rules will become clearer, illuminating the critical role they play within IoS.
As they explore the terrain, nodes will emerge as pivotal players, handling and
receiving strings, thereby shedding light on fundamental data processing con-
cepts. In-depth discussions will ensue on the trifecta of data reliability, security,
and network scalability within the IoS, illuminating their paramount impor-
tance. Finally, identifying challenges and brainstorming potential solutions to
minimize string latency will wrap up this immersive learning experience.

Classroom Activities Participants engage in a series of dynamic challenges
that mirror the intricate workings of computer networks. In the String Relay
Race, groups craft strings symbolizing messages and pass them swiftly be-
tween participants, mirroring the crucial speed and accuracy required in data
transmission. Similarly, the String Maze forms a web of interconnected nodes,
guiding participants through a labyrinth while illustrating the complexities of
routing decisions in effective data transmission.

The Protocol Creation activity invites participants to conceptualize their
own "String Protocol," showcasing the significance of standardized rules in
facilitating seamless communication across diverse devices. With the String
Decoder tool, participants decode encoded messages, drawing parallels to data
processing and reception within computer networks. This exercise highlights
the critical role of decoding in understanding hidden messages, akin to data
processing mechanisms.

Moreover, the String Security Challenge plunges participants into a cryp-
tography test, where they encrypt and decrypt strings using basic encryption
techniques. This exploration emphasizes the vital role of data security in safe-
guarding sensitive information during transmission. Lastly, the String Relay
Olympics present a relay race that evolves in complexity, mirroring the chal-
lenges and solutions associated with network scalability as teams expand and
interconnections grow. Through these engaging activities, participants delve
into the multifaceted layers of networking concepts, experiencing firsthand the
intricacies and significance of data transmission, routing decisions, protocol
establishment, data decoding, security measures, and network scalability.

By employing the ”Internet of Strings” model, the teacher participants
gained a comprehensive understanding of networking fundamentals in a fun
and accessible way. This hands-on approach allowed participants to relate ab-
stract concepts to real-world scenarios, fostering a deeper appreciation for the
critical role computer networks play in our digital lives. The IoS model, with its
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simple yet effective analogy, can spark interest and curiosity in computer net-
working and serve as a stepping stone for those interested in pursuing careers
in technology and computer science.

(a) (b) (c)

Figure 3: (a) Rock Paper Parity model, (b) Rock Paper Parity implementation,
and (c) lock-picking activities

6.1.2 Rock Paper Parity Activity

Rock Paper Parity is an engaging educational activity that transforms the
concepts of binary digits (bits) and parity prediction into an interactive game
(See Figure 3a). Participants pair up, assuming roles—one as the ’bit’ and the
other as the ’parity predictor.’ When the parity prediction is incorrect, the ’bit’
transitions to find a new partner within a group that still has a parity predictor
(See Figure 3b). However, upon making the right parity call, the group absorbs
additional ’bits,’ expanding its size and continuing the game. This dynamic
encourages participants to understand the implications of correct and incorrect
parity predictions while fostering collaboration and movement within the group
setting. At the end of the GTA camp, participants rated this module as their
favorite. Participants were offered all the supplies and accompanying lesson
plans and materials to be able to bring this lesson directly back to the students.
They were very enthusiastic about using this with their high school students.

6.2 Social Engineering Module

At the 2022 GTA camp, participants were very interested in the topic of social
engineering. Given the huge role social media plays in the life of most teenagers,
they believed it was not just important, but critical, that students understand
how people with malicious intent can use different techniques such as phishing
and baiting to obtain personal information that can be used in harmful and
destructive ways. Given the interest in this topic because of its applicability to
high school students, the team wanted to ensure that participants had enough
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(a) (b) (c)

Figure 4: Internet of String activities in classrooms

information and ideas to bring back to their classrooms. In 2023, in addition
to the lecture and PowerPoint presentations, the GTA instructional team cre-
ated small, laminated visual cards that explain the different types of cognitive
hacks that can be used to trick people into sharing their personally identifiable
information. Each card also has a real-life scenario that exemplifies the tactic
and can promote student discussion. All teachers were given a set of cards that
could be used with their classes.

(a) (b)

(c) (d)

Figure 5: Samples of Social Engineering Cards (Red for Attacker (a & c) and
Blue (b & d) for Defender scenarios
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6.3 Cybersecurity Concepts Module

Throughout the week the six cybersecurity concepts were called upon fre-
quently. By the end of the week, all students could easily name and define
all six principles and apply them to a variety of cybersecurity concepts and
scenarios. For the 2023 GTA camp, one of the TAs with experience in graphic
design, created six posters for each of the cybersecurity concepts illustrated in
Figure 6. In addition to the concept and its definition, an image was used to
further illustrate the concept. For example, for the concept “Defense in Depth,”
there is an image with a castle that shows that it is protected by strong walls,
a drawbridge, and a moat - multiple layers of security to get inside. These
posters proved helpful throughout the week for participants to refer to as they
were learning. All participants were provided with digital PDF versions of the
posters so they could create their own for their classroom walls.

(a) (b) (c)

(d) (e) (f)

Figure 6: Samples of media depicting the GenCyber Cybersecurity Concepts
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6.4 Cryptography Module

The 2022 module on cryptography was successful overall. Participants enjoyed
the day and the opportunity to try out different types of ciphers and enjoyed
the opportunity to play with a set of locks for a lock-picking activity (See
Figure 3c). This year the participants again enjoyed the module, writing each
other messages using scytales, and different historical ciphers, and ending with
lock picking. Each participant was given a set of locks and a lock-picking tool
to use in their classroom. Teachers also worked together to think about other
items they could buy cheaply to use as a scytale without having to 3D print
them. They suggested using large novelty pencils or other plastic shapes they
found on different websites.

6.5 Other Changes

The GTA program emphasizes ongoing professional growth. The instructors
advocate for continual interactions among participants and mentors beyond the
summer program. The GTALC holds monthly meetings during the fall, provid-
ing mentoring, coaching, and a platform for high school teachers to exchange
experiences, seek advice, access resources, and enhance skills in cybersecurity-
based teaching methods. This inclusive space focuses on inquiry-based ped-
agogy, especially for underrepresented minority (URM) and female students.
The GTALC, led by our team and supported by collaborators such as the CT
State Department of Education, EdAdvance, Computer Science Teachers’ As-
sociation, educators, and a selection of guest speakers as depicted in Figure 2,
conducts these monthly sessions from September to December, totaling four-
teen hours of post-program engagement. In 2022, the five-day camp took place
in a room with 5 pods of 5 desks, each with a desktop computer. Participants
enjoyed the opportunity to be in groups throughout the week, however, the
room was very crowded and left very little space to maneuver. The setup was
static and inflexible and some participants wished the groups were mixed up
throughout the week.

Table 2: Overview of GTA Guest Speakers

Position Institution
Director Cybersecurity SullivanCotter
Project Director - CS-PLAN Sacred Heart University
Vice President Computer Science Teacher Association
Chief Diversity Officer University of New Haven
Director of Policy Research New England Board of Higher Education
Education Consultant Connecticut State Department of Education

For 2023 the camp was held in the most high-tech classroom space on the
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UNewHaven campus. The room had amphitheater-type seating with three
long rows of connected tables, each one rising a bit higher than the one in front
of it. The room was equipped with desktop computers and a large screen in
front of the room. There was ample room for moving around, but again the
static nature of the space meant that it was more difficult to work in groups.
Given that participants need access to computers throughout the week and not
all of them have their own devices, GTA must provide access to computers.
Additionally, strong WiFi is needed for everyone to be able to reliably use the
internet. Finally, a space that comfortably holds 25 adult participants plus an
additional 5-7 instructors and faculty is not easy to come by - especially when
other camps for high school students, college students, and other adults are
taking place simultaneously. Overall the new space was a positive change, but
the program has yet to find that perfect spot for holding the camp.

Figure 7: GTA 2023 curricular modules published on CLARK [10]

7 Conclusion and Future Work

The Python Programming module has been a persistent challenge for partici-
pants in 2022 and 2023. The difficulty spans the spectrum: some found it too
basic, while others, particularly STEM teachers less acquainted with coding,
faced difficulties. Notably, adept participants supported their peers, patiently
guiding them through increasingly complex coding tasks. The GTA team, cog-
nizant of this hurdle, is resolute in enhancing the module for the 2024 program.

Under consideration for improvement includes scrapping the Python mod-
ule in favor of a different topic in cybersecurity. The rationale aligns with the
limited application of Python skills among non-CS teachers and the redun-
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dancy for experienced coders. Proposing an alternative, a prospective module
on Artificial Intelligence in cybersecurity emerges as a timely, relevant solu-
tion. Moreover, integrating Python basics, and leveraging ChatGPT’s coding
capabilities, could illuminate its role in AI-centric cybersecurity[11, 12, 13].

Another major improvement of the GTA program targets the adopted data
strategy. Through systematic data collection, management, and analysis, we
aim to delve deeply into the impact and efficacy of our training program. This
approach not only gauges success and areas needing enhancement but also
upholds the highest standards of data ethics and compliance. By utilizing in-
sights garnered from this strategy, the GTA adapts to evolving educational
needs and technological advancements. Its components include collecting par-
ticipant data, assessing skill development, monitoring classroom implementa-
tion, ensuring secure data management, conducting regular analyses, refining
programs based on insights, employing technology for deeper insights, and pri-
oritizing compliance and ethical data practices. This comprehensive strategy
fortifies our commitment to strengthening cybersecurity education.

The 2023 GTA underwent substantial improvements. Recognizing teachers’
affinity for cybersecurity knowledge applicable in their classrooms, the leader-
ship team pivoted towards more hands-on activities and resource provisions.
This strategic shift fostered a positive learning environment, empowering par-
ticipants to confidently wield their newfound expertise in their educational
settings. Participants of GTA 2023 designed and published more than twenty
cybersecurity curriculum modules, focusing on Cybersecurity and Cryptogra-
phy topics. These modules were approved and made available on CLARK [10],
a repository offering free, high-quality cybersecurity lessons (See Figure 7).

The GTALC unites educators across cohorts to collaborate and enhance
technology education, especially in cybersecurity and digital literacy (See Table
2). By facilitating resource sharing and providing current industry insights, it
empowers educators to engage students in cybersecurity, aiming to cultivate
their interest and prepare them as proficient digital citizens. The GTALC goes
beyond traditional knowledge exchange, nurturing curiosity, innovation, and a
holistic understanding of digital safety and security.
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Abstract

In this paper we determine whether an LLM–ChatGPT in this case–
can successfully complete the assignments in our CS1 course as if it were
a “real” student. Our study contains a two-stage approach, involving
reprompts to the LLM in the cases of either not successfully completing
the assignment, or using concepts that are more advanced than are taught
in our course. We find that LLMs can in fact can either perfectly solve,
or almost perfectly solve, every assignment in our CS1 course.

1 Introduction

The emergence and rapid development of ChatGPT has inspired much research
regarding its abilities and potential capabilities in education, especially where it
applies to programming education. Topics explored include ChatGPT’s ability
to accomplish programming tasks in different contexts as well as its ability to
aid in student learning. In this paper we determine how well ChatGPT can
solve assignments within our CS1 course.

2 Related Work

Yilmaz and Yilmaz [5] collected data through questionnaire questions from 41
undergraduate students who were told to use ChatGPT in coursework for an

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to 
copy without fee all or part of this material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the CCSC copyright notice and the title of 
the publication and its date appear, and notice is given that copying is by permission of the 
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires 
a fee and/or specific permission.
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object-oriented programming course at a state university in Turkey. Course-
work came in the form of individual weekly laboratory assignments and stu-
dents were encouraged to use ChatGPT to complete these assignments. At
the end of the course, students evaluated its benefits and limitations. Students
responded to the survey that ChatGPT’s greatest benefits were its ability to
“respond to questions quickly and effectively,” save time doing coursework,
and to help with “complex problems.” The limitations included some concerns
about programmers becoming “lazy” as well as having “occupational anxiety”
students felt because of ChatGPT’s effectiveness, but also disadvantages such
as ChatGPT’s not giving correct answers every time, not having sufficient in-
formation, and not giving the desired answers at times. The responses saying
that ChatGPT helps with solving complex problems somewhat conflict with
those saying that ChatGPT often gives incorrect answers. From these differ-
ing sentiments, ChatGPT may have difficulty answering questions correctly in
specific contexts, or when dealing with specific types of problems, rather than
having more trouble with more complex problems. Our research is sufficiently
different than this study because it evaluates ChatGPT’s direct abilities with
the course, rather than involving students.

Piccolo et al. [4] evaluated ChatGPT’s ability to solve programming exer-
cises in a life science context with the greater interest of investigating Chat-
GPT’s potential to assist life scientists by writing code or by assisting them to
write code. They evaluated ChatGPT using 184 Python programming exer-
cises with different bioinformatics contexts and separated the results based on
ChatGPT’s ability to solve the problem within a given number of attempts.
ChatGPT solved 139 (75.5%) of the exercises in one attempt, and they gave
additional guidance to ChatGPT to help it understand exercise requirements,
yielding 179 (97.3%) correctly solved exercises within 7 attempts. The unsolved
exercises all came from later parts of the course, requiring multiple techniques
to be used simultaneously. They also reported results indicating that ChatGPT
was more likely to have difficulty with problems with biological contexts specif-
ically. From these results, ChatGPT appears to have more difficulty both when
using multiple techniques at once with longer solutions and in more specialized
contexts, though the study only deals with biological contexts specifically. Our
research is similar to this project but is distinct because of its overall scope
of an entire course as well as involving a more general introductory coding
context.

Tung Phung et al. [3] compared the performance of ChatGPT and GPT-
4 with human tutors in introductory programming education and debugging
scenarios with the intent of enhancing programming education. The program-
ming scenarios included tasks such as providing hints and feedback as well as
fixing buggy problems. They also tested the models on introductory Python
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problems with relatively short solutions. The wide range of evaluations in this
study showed a significantly higher performance of GPT-4 over ChatGPT, both
of which were still outperformed by human tutors. The largest difference be-
tween GPT-4 and human tutors involved problems with grading feedback and
creating problems for students to practice skills, with tutors performing much
higher. From these results, for large language models to serve in a tutoring
role, some improvements must be made in areas of feedback and assignment
creation, to match high demands for educational content. This study is suffi-
ciently different from our research because we evaluate ChatGPT’s performance
in a course within the role of a student, rather than that of a tutor.

Geng et al. [1] investigated how well ChatGPT performs in an introductory
functional language programming course. The considered coursework included
both exam questions and standard programming assignments, with topics in-
cluding higher-order functions, recursion, and pattern matching. ChatGPT
was tested in two phases: “unassisted” and “assisted.” In the unassisted phase,
ChatGPT was given only the problem prompts as they were given to students,
whereas in the assisted phase, prompt engineering techniques were used to
attempt to get the correct answer. Without assistance, ChatGPT scored per-
fectly on 16 of 31 assignment problems, resulting in a rank of 220 out of 314
human students. This rank improved with prompt engineering, placing it at
155 out of 314 with a B- in the course. Our research distinguishes itself from
this study by instead focusing on an intro imperative programming language
course, and does not contain those three topics.

Kiesler and Schiffner [2] investigated ChatGPT’s performance in introduc-
tory programming exercises with the intent of examining the model’s potential
in the programming education field. To evaluate the model, 72 Python tasks
were taken from the site CodingBat1. ChatGPT and GPT-4 were both eval-
uated on their ability to accomplish the programming tasks as well as their
ability to explain them textually. Feedback was provided on which test cases
were failed for each problem when code failed. Although the authors note that
ChatGPT was less receptive to feedback than GPT-4, both models performed
significantly well, above 94% for each. One explanation is that the authors used
feedback and additional prompts, indicating that large language models could
be very helpful for education when used with prompt engineering techniques
and understanding of model limitations. Our research is different in that we
evaluated ChatGPT for our course both with and without feedback. Further,
we used the Python programming language, which provides less of a difficulty
curve in introducing “advanced” features, and thus ChatGPT’s outputs may
be more likely to include such features.

1https://codingbat.com/java
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Problem Set Tested Topics
1 Functions
2 Basic Selection and Repetition
3 Advanced Selection, Repetition, and Strings
4 File I/O
5 Exceptions, Lists, and Tuples
6 Sequence Functions and Methods
7 Classes, Nested Lists, and Mutability
8 Dictionaries
9 Collections

Table 1: Topics for each problem set in our course.

3 Institutional and Course Context

The CY300 course at the United States Military Academy, a small liberal-arts
college in the Northeastern United States, is required for all students majoring
in the Computer Science and Cyber Science majors as well as for non-majors
taking a 3-course elective sequence. There are approximately 1100 new students
enrolled each year at the United States Military Academy, and approximately
100 of them choose to be a CS or CY major. Each class section has at most 19
students. All students take a fundamentals of computing course, a prerequi-
site to CY300. The CY300 course covers introductory Python programming,
with nine problem sets featured as main homework assignments, building on
concepts learned in class. Each problem set is focused on a different area of
Python programming, as shown in Table 1.

The entire course is 1000 points, with 300 of them assigned to the problem
sets. Problem sets 1-3 are 20 points each and Problem Sets 4-9 are 40 points
each. Fifteen small in-class quizzes are 4 points each. Two midterm tests are
125 points each. A course project accounts for 140 points. The remaining
250 points come from a final exam. Midterm tests and the final exam consist
of both a coding portion as well as more conceptual knowledge. The course
project requires students to work in pairs and find a data set online. Their
responsibility is to code a user interface to manipulate the data set in different
ways.

The nine problem sets require functions to be coded, which are checked
against test cases by a custom-built autograder. The grading for these prob-
lem sets is almost entirely based upon these test case results. Some problem
sets require partial manual grading, such as Problem Set 5, which involves
exceptions. Students have the ability to view their test case results, includ-
ing expected and received outputs, before submitting the assignment for all
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problem sets except for the last two. For these, only the overall score is shown.
Problem sets may be submitted as many times as needed before the assignment
deadline.

Problem set questions identify required inputs to functions and expected
outputs returned by the function. The questions also identify any assumptions
that can be made about inputs and outputs. The following is an example from
question 5 of Problem Set 5.

Define a function named get_names that has one parameter, a string
that contains multiple email addresses separated by semi-colons. The
function should return a list of tuples containing the user’s (lastname,
firstname). Assume all email addresses are valid in the format

first.last@university.edu or first.last3@university.edu.

If the email address contains a number you can assume that it is one
digit between the last name and the @ symbol.

>>> get_names('james.bond@university.edu')
[('Bond', 'James')]
>>> get_names('james.bond3@university.edu')
[('Bond', 'James')]
>>> sorted(get_names('james.bond@university.edu;taylor.

swift@university.edu;michael.jordan3@university.edu'))
[('Bond', 'James'), ('Jordan', 'Michael'), ('Swift', 'Taylor

')]

4 Method

We seek to determine how well ChatGPT can score on these nine problem
sets. For each problem set, we created a new ChatGPT session, and used two
approaches sequentially to generate a correct answer. Problem sets are re-made
from year to year, so the problem sets used in this study are unlikely to be
part of ChatGPT’s training data. GPT-3.5 was used for this study.

4.1 Approach 1: Verbatim Problem Sets/Results

The flowchart for Approach 1 in our study is shown in Figure 1. The first
prompts given to ChatGPT involved providing only the verbatim problem set
instructions document given to students. Since GPT-3.5 only allows plain-text
inputs for prompts, instructions that were contained within images or tables
were not provided in the prompt to ChatGPT, even those that consisted mainly
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Figure 1: Flowchart for Approach 1 in our Study.
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of text. Information that was not relevant to the problems themselves, such
as submission guidelines, was omitted. In the prompts, ChatGPT was advised
to include all of the problem set’s functions in one block of code, with any
annotations as comments as necessary for the problem set. This emulates the
submission standard for students in CY300. If ChatGPT did not provide a
code output in this format, we re-asked ChatGPT until it did so.

After ChatGPT generated a properly formatted output, the code was sub-
mitted to the autograder. If any test cases failed, the generated results for
those specific test cases were provided back to ChatGPT, with one sentence
to indicate which problem the test case results were and instructions to return
a corrected product. The test cases that were returned consisted of the failed
function name, its input values, the expected output, and the received output.

This process was repeated for subsequent outputs until ChatGPT either
generated a solution that produced a perfect score or until progress halted,
either through reaching five attempts or through a lack of a response to the
corrective prompts. In times where the corrective prompts gave no change in
the code, an additional line was added to the next prompt, pointing out the
lack of change. After five repeated failures or a lack of response to corrections,
a second approach was taken, as described in Section 4.2. If the feedback
resulted in a perfect score, no further action was taken with that problem set.

4.2 Approach 2: Unrestricted Feedback

In the second approach, corrective prompts had more specific guidance given,
ranging from less to more direct assistance. We began in the same session as
the first approach, with corrective prompts beginning after ChatGPT’s highest
scoring output from it. The initial prompts were less specific, such as inter-
preting errors and incorrect outputs in a more diagnostic fashion, rather than
just giving the correct output. If this failed to cause improvement, prompts
advanced to more direct descriptions of what mistakes ChatGPT was making,
describing the actual code that it outputted, rather than the values it returned.
From this, if the code still failed to satisfy all test cases, corrective prompts
would move on to suggest specific code to be used. If tests still failed beyond
this, ChatGPT will have failed to satisfy all test cases required for that function
of the problem set.

5 Results

Table 3 shows ChatGPT’s scores when only Approach 1 was used as well as
when Approach 2 was allowed, if it was necessary. Also listed are the advanced
Python features used in each problem set’s solution. For the purposes of this
study, “advanced” refers to those concepts that students are not expected to
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Problem Set Advanced Python Features
1 None
2 None
3 list comprehensions, dictionaries
4 list comprehensions
5 regular expressions (initially)
6 Counter (initially)
7 list comprehensions
8 None
9 list comprehensions

Table 2: Advanced features used in the program outputs of ChatGPT for each
of the problem sets.

Problem Set Approach Approach 1 Score Final Score
1 1 100% 100%
2 2 95% 100%
3 2 95% 100%
4 2 80% 80%
5 2 65% 100%
6 1 100% 100%
7 1 100% 100%
8 2 72.5% 100%
9 1 100% 100%

Table 3: Approach used, the score achieved by ChatGPT for Approach 1, and
the final score for each of the problem sets.

know by that specific point in the course. In the case of very advanced features,
such as those not found in the textbook for the course, ChatGPT was directed
to regenerate its output without the use of those concepts.

For most problem sets, ChatGPT outputted code that resulted in a 100%
score, with the exception of Problem Set 4, which was scored 80%. List com-
prehensions were the most often used advanced feature. Since they are demon-
strated in the textbook, ChatGPT was not directed to regenerate outputs
because of its use of list comprehensions.

We provide two illustrative examples. The first is in Figure 2, where Chat-
GPT achieved a 100% score on the first attempt; in this case, for Problem Set
5. The figure contains four items: (1) a screenshot of the original problem
set directions, (2) the prompt to ChatGPT, (3) the relevant code portion for
that problem produced by ChatGPT, and (4) the instructor solution for this
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problem. As is evidently clear, the ChatGPT code is isomorphic to the in-
structor solution, apart from one variable name change. For this problem set,
all of the questions were written in plaintext, thus were able to be copied and
pasted. Note that ChatGPT did not generate a docstring; although it was not
explicitly prompted to do so, the prompt did contain a valid docstring.

The second example is in Figure 3, which contains Problem Set 5’s first
question. Here, we provide the (1) original directions, (2) the prompt to Chat-
GPT, (3) the relevant code ChatGPT produces, and (4) the instructor solution.
However, (3) contains usage of the regular expression Python module, which
is not taught in our course. Therefore we (5) re-prompted ChatGPT to solve
the same problem without the module, which it was able to do.

6 Discussion

6.1 Problem Set 1: Functions

In Problem Set 1, ChatGPT gained a score of 100% with just one initial prompt,
without any advanced features used.

6.2 Problem Set 2: Basic Selection and Repetition

ChatGPT scored 95% of the points for Problem Set 2 using Approach 1 only.
Problems that ChatGPT encountered difficulties involved finding multiples just
before a specific number. For one problem, the function was supposed to
return the multiple of an input that was just before the integer 50000. The
other problem required a multiple of 57 that was just before the input value.
For both functions, values that were returned were off by one multiple from
the correct answer. Most of these mistakes were corrected by providing test
case results repeatedly, but ChatGPT was unable to make progress using this
method with one specific test case in the second function, with complications
caused by negative inputs. Approach 2 began by pointing out the issues caused
by negative numbers, and asking ChatGPT to account for them. After this
failed, ChatGPT was asked to attempt a different technique, as its attempt
to use an if else statement to account for the negative numbers was failing.
Another difficulty occurred when the input itself was not a multiple of 57.
For this, specific guidance was required in order to fix the mistake, to include
suggesting a solution. After corrections in Approach 2, ChatGPT achieved a
score of 100%.
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Figure 2: Example of ChatGPT’s achieving 100% on the first attempt; this is
Problem Set 5’s second question. The boxes in order are the original problem
set directions, the prompt to ChatGPT, the relevant response by ChatGPT,
and the instructor solution.
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Figure 3: Example of ChatGPT’s solving Problem Set 5’s Question 1 with an
“advanced” feature: the regular expression module. We include the re-prompt
to ChatGPT to solve the same question without this feature.
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6.3 Problem Set 3: Advanced Selection, Repetition, Strings

ChatGPT achieved a score of 95% using Approach 1 only for Problem Set
3. The only function that ChatGPT had trouble creating was a variant of
Rock, Paper, Scissors under the lens of selecting a local restaurant to get food
from. ChatGPT was able to improve itself to only fail one test case, but with
repeated corrective prompts after that, it would revert to failing more cases.
The functions theme seemed to be confusing ChatGPT, causing it to create
a function that did not perfectly resemble Rock, Paper, Scissors. Approach
2 took to more specifically describing how the function should look as Rock,
Paper, Scissors with different names. Then, some additional prompts were
required to correct some combinations and to alter returned values to use the
correct wording in order to have correct results in test cases. After corrections
in Approach 2, ChatGPT achieved a score of 100%.

6.4 Problem Set 4: File I/O

ChatGPT achieved a score of 80% using both approaches with Problem Set 4.
The failed test cases were for two functions. In one, the function was to return
a flag found in an input file. In the other, the function was supposed to write
a feedback file for a homework assignment in which students were to write
the first and last letters of a given word, given an input file with the student
answers. In both functions, ChatGPT’s code returned errors as a result of an
incorrect interpretation of the input file format. Students completing these
problems have access to sample input files, allowing them to better code the
functions. ChatGPT not having access to these sample files likely caused the
errors. With repeated corrective prompts, errors were fixed, but ChatGPT
continued to struggle with correctly identifying the flags in the input files and
with reading from and writing to files for the second function. With the second
approach, ChatGPT failed to make changes to its code despite varied prompts,
thus failing to improve on its score.

6.5 Problem Set 5: Exceptions, Lists, Tuples

ChatGPT achieved a score of 65% on Problem Set 5 using Approach 1. Chat-
GPT failed test cases on two functions. The first function is given a list and
an integer. If the integer is a valid index in the list, it returns the value at
that index. If not, it returns the error given by Python. Initially, ChatGPT
encountered difficulty because it returned the error message as a string, rather
than as the error object itself, as required by the problem. This problem was
only improved upon with Approach 2, as ChatGPT only changed its answer
correctly when this problem was pointed out in words, rather than in test case
results.
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The other function ChatGPT failed to achieve a 100% on immediately
required getting names from email addresses in a specific format. ChatGPT
failed test cases where the email addresses included numbers with names. For
this function, ChatGPT initially used regular expressions, a concept far beyond
the scope of the course. As part of corrections in Approach 2, ChatGPT
was asked to create the function without the use of the re module. In doing
so, ChatGPT improved the function to 100% without additional feedback.
ChatGPT’s resulting score for Approach 2 was a 100% for Problem Set 5.

6.6 Problem Set 6: Sequence Functions and Methods

In Problem Set 6, ChatGPT eventually scored 100%. For one function, students
are required to determine whether or not a word can be made with a given
set of letters. ChatGPT created the function initially using Counter from
the collections module, creating a correct function. However, because this
concept is beyond the scope of the course, ChatGPT was asked to generate an
output without using Counter. After a re-prompt, ChatGPT then revised the
function with a less advanced technique, resulting in the same score.

6.7 Problem Set 7: Classes, Nested Lists, Mutability

In Problem Set 7, ChatGPT gained a score of 100% with just one initial prompt,
with the most advanced technique used being list comprehensions, which can
be found in the course textbook in assigned readings, thus being within the
scope of the course.

6.8 Problem Set 8: Dictionaries

ChatGPT scored 72% for Approach 1 in Problem Set 8. It had difficulty with
two functions. The first function required the use of a key to decode a message,
given a file with the message and a dictionary as the key. ChatGPT encountered
difficulty when messages used both uppercase and lowercase letters. Corrective
prompts initially failed to cause any change in the function output. With
descriptive corrections in Approach 2, ChatGPT was able to discern between
cases for letters, and maintain the case in the decoded message.

The other function that for which ChatGPT failed to produce a fully correct
output required a dictionary to be created from a given csv file containing
UFO sighting statistics by state. Because the file’s format was not viewable by
ChatGPT, initial solutions caused errors, which weren’t able to be corrected
through Approach 1 alone. This function was corrected with a single prompt
using Approach 2, simply by describing which column in the csv file contained
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the information required for the solution. As a result, ChatGPT improved to
100% after Approach 2.

6.9 Problem Set 9: Collections

ChatGPT achieved a score of 100% in Problem Set 9 through the use of multiple
prompts containing test cases. This problem set’s test cases are unique in that
they do not specify which problem is being tested by name, but this can be
determined through the tests themselves. Most of the failed test cases for this
problem set were results of file input/output difficulties. ChatGPT encountered
errors with several functions because it did not include code to skip a header
line in the instructor-provided csv files. After one corrective prompt, this issue
was fixed.

The remaining failed test cases were for one function: given two text files,
determine which file has more unique words. ChatGPT failed test cases due
to case sensitivity, which was again corrected after one more prompt with test
cases only.

7 Future Work

This paper examines ChatGPT 3.5’s ability to generate correct code for various
introductory programming assignments. GPT-4 could be examined similarly in
future work to identify areas where it improves upon 3.5. Of particular interest
in the context of this paper, the number of additional prompts required could
be expected to decrease. Also, since ChatGPT gives different outputs even
with the same prompt, we want to analyze all of these outputs, especially with
regard to the advanced Python features list in Table 2.

One line of future research we are currently investigating is making the
analysis more granular in the following sense. We want to model three types
of typical students: (1) a student who aces everything in a CS1 course; (2) a
student who is “average” in that they achieve a B-/C+ average in a CS1 course;
and (3) a student who fails a CS1 course. From the perspective of these three
student models, Table 2 is interpreted differently; an instructor would likely be
fine with model 1’s using those features, but less so for the other two models.

8 Conclusion

In this paper we conducted a study to determine how well ChatGPT can solve
the problem sets in a CS1 course that uses the Python programming language.
Although it did not completely solve all problem sets, it more than adequately
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passed the course after at most five re-prompts. We then discussed our findings
and what reasonable future work should entail with LLMs.
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Abstract

Computational thinking (CT) stands as a universal problem-solving
approach applicable across diverse disciplines, transcending the domain
of computer science. It embodies the mental process of structuring a
problem to enable a computational solution feasible for both humans and
machines. This methodology involves dissecting problems into smaller
parts that are easier to understand and solve. This study delineates
a meticulously designed series of CT activities within an introductory
computer science course and explores their profound impact on student
engagement and problem-solving proficiency. Our findings underscore
the pivotal role of hands-on CT practice in augmenting students’ ability
to decompose problems, recognize patterns, and abstract complexities,
and employ algorithms effectively. Notably, this infusion of CT not only
cultivates theoretical understanding but also bridges the gap between
conceptual knowledge and real-world application through the use of com-
putational tools like Python programming. As CT continues to emerge as
a cornerstone skill in diverse domains, this research presents compelling
evidence advocating for its integration into introductory courses, laying
a robust foundation for students to navigate the evolving technological
landscape with enhanced problem-solving capabilities.
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1 Introduction

Promoting computational thinking (CT) has emerged as a pivotal educational
objective spanning both STEM and non-STEM domains. CT stands as an
inclusive problem-solving approach, extending beyond computer science to be-
come as fundamental as core competencies like literacy and numeracy, as artic-
ulated by Professor Wing [10]. Understanding the scope and constraints of CT,
as underscored by Lu and Fletcher [4], holds significant relevance, even for in-
dividuals outside the STEM sphere, contributing substantially to professional
and everyday contexts.

Computational thinking encapsulates the cognitive process of framing prob-
lems to accommodate solutions executable by humans, machines, or their amal-
gamation [11]. This methodology involves breaking problems down into sepa-
rate parts (decomposition), looking for similarities or common differences (pat-
tern recognition), filtering out information that is not necessary to solve the
problems (abstraction), and developing step-by-step instructions for solving
problems (algorithms) [9].

Between Fall 2021 and Fall 2023, as part of our NSF-funded project “Bridg-
ing the Gap: Designing a Technology Learning Community Integrating Com-
putational Thinking to Improve STEM Engagement across Disciplines”, we cu-
rated a series of five computational activities aimed at honing students’ skills in
practicing and perfecting their computational thinking abilities. The students
who participated in the activities were from the introductory course CSC 101
- Principles in Information Technology. This article details the approach and
outcomes observed among a total of 142 CSC 101 students in addressing these
computational thinking activities.

2 Related Work

Previous studies have underscored the synergy between creative thinking and
computational thinking (CT), advocating for their combined integration into
educational frameworks. Miller et al. [5] demonstrated the efficacy of introduc-
ing creative thinking exercises within introductory computer science courses, a
concept echoed in our approach. The introduction of our CT activities not only
mirrors this integration but also provides a practical platform where students
engage in creative problem-solving scenarios that revolve around computational
challenges.

Moreover, the study by the same research team [7] that introduced Com-
putational Creativity Exercises (CCE) into an introductory computer science
course tailored for engineering students aligns closely with our methodologies.
Just as their outcomes highlighted an enhanced grasp of fundamental CT prin-
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ciples, our meticulously designed CT exercises aimed to not only introduce
core CT concepts but also engage students in practical problem-solving tasks,
observing similar positive impacts on students’ understanding and application
of CT methodologies.

Furthermore, the work by Shell et al. [6], emphasizing the correlation be-
tween self-regulation, creative competence, and CT skills, aligns with our ap-
proach of providing a scaffolded learning environment. Our activities aimed to
scaffold the development of CT skills by progressively guiding students through
the elements of decomposition, pattern recognition, abstraction, and algorithm
design, promoting a structured approach to problem-solving similar to that ad-
vocated by prior research.

Lu and Fletcher [4] proposed that the mental models and patterns fostered
by computational thinking create an environment conducive to teaching higher-
level computational processes and abstraction. Csizmadia et al. [3] presented
a guide for integrating computational thinking into curricula, emphasizing its
fundamental role in education. Swaid [8] promoted the universal relevance
of computational thinking as an underlying mindset in STEM projects and
education discussions. Castro et al. [2] analyzed the impact of a first-year
engineering course on the acquisition of computational thinking across various
student profiles.

In essence, these studies collectively underscore the significance of merging
creative thinking with CT, scaffolding learning experiences, and reinforcing
theoretical concepts through practical engagement — principles that resonate
strongly with the integrative CT activities outlined in this study.

3 CT Exercise Design

Our activities introduced students to the problem of finding the shortest path
between multiple cities on a road map. The activities we designed aim to
cultivate computational thinking, which is foundational for problem-solving in
computer science. By breaking down complex problems into manageable parts
and devising algorithms, students develop crucial problem-solving strategies
applicable across various domains within computer science.

When traveling from one place to another, there are several factors to con-
sider; unless the intent is to visit some points and landmarks in a specific order,
people are often interested in the most efficient way to get somewhere. In our
activities, students used CT to experiment with different ways of creating paths
between multiple points to effectively travel through cities in a region. This
problem is also known as the Traveling Salesman Problem (TSP) [1] where the
salesman must take the shortest path that passes through each city exactly
once and returns back to the start. Thus, the problem statement of our exer-
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cise is: Given a list of cities in South Africa, the goal is to reduce the cost for a
vendor whose duty is to distribute the COVID-19 vaccines in those cities. The
problem is therefore to find the shortest possible route that starts from Cape
Town and visits each city exactly once.

As stated earlier in the introduction, CT is a problem-solving process that
includes four elements: decomposition, pattern recognition, abstraction, and
algorithms. In the following, we focus on one CT element at a time.

Figure 1: Elements of Computational Thinking Process

3.1 Decomposition

Breaking problems down into smaller parts can make complex challenges more
manageable. This allows other elements of CT to be applied more effectively
to complex challenges. Applying the decomposition element to our problem
leads to the following sub-tasks:

1. Given the list of cities, determine their geographic coordinates (i.e., lati-
tude and longitude) to find their exact positions on the map.

2. Find the distances between each pair of cities in the list.
3. Find the shortest path that passes through each city exactly once.

The first two sub-tasks are quite straightforward and easy to accomplish
using the available online maps and their geographic tools; but the last sub-
task is the main section of our activity. In the following, we will only describe
how the remaining CT elements can be applied to this section.

3.2 Pattern Recognition

Recognizing if a pattern exists and determining its sequence can simplify the
solution. For the task at hand, we noticed that the problem can be solved
recursively as follows.

Let the letter O (Origin) be the label of the departure city (Cape Town).
If we only need to visit two cities (A and B), then the strategy we use to
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determine the shortest path will choose either the path O-A-B or the path
O-B-A. Thus, the number of possible paths to choose from is 2.

If the number of cities to visit is three (A, B, and C), then the first city
to be visited can be either O-A, O-B or O-C, then the remaining two cities
must be visited. Note that from the previous case, the strategy knows how to
determine the shortest path when visiting two cities, so the number of possible
paths in this case is 3 × 2 = 6.

In general, if the number of cities to visit is n, then the number of possible
paths to choose from is n × P(n-1), where P(n-1) is the number of possible
paths when visiting n-1 cities.

3.3 Abstraction

Stepping back from the specific details of a given problem and focusing on the
big picture allows us to create a more generic solution. Applying this CT ele-
ment in our case requires us to analyze the problem to leave out unnecessary
information such as the mode of transportation chosen, the purpose of the trip,
the time needed to visit all cities, whether the vendor is traveling with cowork-
ers, etc. Once done, we can start brainstorming a solution to the problem. The
important details to focus on are the list of cities, their exact locations, and
the distances between them.

3.4 Algorithms

An algorithm is a step-by-step strategy for solving a problem. It can be writ-
ten in plain language, with flowcharts, or pseudocode. In our activity, students
from CSC 101 and BUS 104 tried four different algorithms and compared their
outputs. All algorithms have been applied to the list of the given cities from
South Africa; the starting point was always Cape Town, and then the algo-
rithms produced routes that visit all other cities. The algorithms we considered
in this activity are listed below.

1. Longitude sorting: The task is to sort the cities by their longitudes,
then to visit them all in ascending order of this geographic coordinate.
By doing so, the path traveled will visit all cities from left to right (from
the farthest city in the west to the farthest city in the east). The total
route distance is the sum of the distances between each pair of cities on
the route.

2. Latitude sorting: The task now is to sort the cities by their latitudes,
and then visit them all in ascending order of that coordinate. In doing
so, the path traveled will visit all cities from the farthest city in the south
to the farthest city in the north.
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3. Nearest neighbor: The nearest neighbor algorithm starts at Cape
Town and connects to the nearest unvisited city. It repeats until every
city has been visited.

4. Greedy algorithm: The greedy algorithm is an iterative algorithm that
builds a solution piece by piece, always choosing the next piece that offers
the most obvious and immediate benefit. In our activity, the edges are
the roads between the pairs of cities. All possible edges are sorted by
distance in ascending order; then at each iteration, we add the shortest
edge which will not make a city with more than 2 edges, nor create a
cycle.

4 Results and Discussion

It’s important to highlight that due to the staggered offering of activities across
various semesters and days, not all students engaged in every activity. While
some students participated in all activities, others took part in only specific
ones. Overall, among the various activities offered, a total of 142 unique stu-
dents participated in at least one. Figure 2 illustrates the distribution per
semester of the students who participated in the CT activities, while Table 1
and Figure 3 display the counts and rates of students who successfully com-
pleted each of the four algorithms.

Figure 2: Distribution per Semester of the Participants

From the description of each of the algorithms above, we can observe that
the initial two activities present relatively straightforward tasks. The initial
low success rate for the Longitude Sorting (75.3%) might indicate a lack of
clarity in instructions or unfamiliarity with the activity format. This could be
attributed to it being the first task. The lesson plan regarding the Longitude
Sorting activity is appended at the end of this article. The high success rate for
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Table 1: Number of Participants and Success Rate by Activity
Algorithm Participants Successful Completion Success Rate
Longitude sorting 77 58 75.3%
Latitude sorting 69 61 88.4%
Nearest neighbor 85 66 77.6%
Greedy algorithm 41 23 56.1%

Figure 3: Success Rate by Activity

the Latitude Sorting (88.4%) indicates that once students understood the for-
mat and requirements (thanks to the prior task), they performed significantly
better. Familiarity likely contributed to this high success rate. The Nearest
Neighbor task had a relatively moderate success rate (77.6%) which seems rea-
sonable considering the complexity of the algorithm. The Greedy Algorithm
task had the lowest success rate (56.1%) as anticipated due to its difficulty. Be-
ing a challenging algorithm, it’s expected that a smaller percentage of students
would successfully complete this task, especially in an introductory course.

The varying success rates signify the students’ level of engagement and
understanding of CT concepts. Higher success rates, such as those observed
in tasks following simpler algorithms after initial exposure, indicate a growing
familiarity and grasp of CT principles. These observed rates offer pedagogical
insights, guiding educators in designing future CT activities. Understanding
which CT elements pose challenges or foster better comprehension can aid
in refining teaching methodologies and curriculum design to optimize student
learning experiences.

It’s worth noting that the participating students did not utilize program-
ming skills to determine the shortest routes for the four explored algorithms.
Instead, they manually executed each algorithm’s steps and solely employed the
Google Sheet SUM function to compute the total distance for each path. As
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depicted in Table 2, there has been a progressive enhancement in the distance
of the shortest path generated by these algorithms.

Table 2: Distance of Shortest Path by Algorithm
Algorithm Distance
Longitude sorting 4,941 km
Latitude sorting 4,004 km
Nearest neighbor 3,846 km
Greedy algorithm 3,586 km

Before engaging in the computational thinking activity, students were prompted
with questions such as, ’Imagine planning a road trip with multiple stops; how
would you determine the route?’ Interestingly, some students independently
devised steps similar to those employed in the nearest neighbor algorithm, un-
aware of its formal designation. Notably, many perceived this approach as
highly efficient for solving the traveling salesman problem. Subsequently, upon
exposure to the greedy algorithm, students exhibited fascination, particularly
upon realizing the considerable distance saved by this algorithm. Their re-
action reflected an enthusiastic appreciation for the algorithm’s optimization
capabilities.

5 Brute Force Algorithm

To evaluate whether the CT activity generated the optimal route, students
were tasked with employing the brute force method. This algorithm represents
the initial and most straightforward strategy when confronted with a problem.
In technical terms, it involves exhaustively considering all available possibilities
to resolve a problem. In our case, the brute force algorithm would generate
every conceivable path among the cities, subsequently computing the distance
for each path and selecting the shortest one. This approach seems to be sim-
ple and achievable. But practically this is not the case unless you get help
from a computing device. The number of all possible paths in our situation is
exceedingly large; we have already demonstrated that the number of possible
paths to choose from is P(n) = n × P(n-1). This sequence can be simplified
as follows:

P (n) = n(n− 1)(n− 2) . . . 1 = n!

With eight cities to visit in our activity, the total count of potential paths
amounts to 8! (i.e., 40,320). Manually calculating all these paths is impractical
for students. Hence, they employed a computer program to generate and eval-
uate all paths, subsequently selecting the one with the shortest distance. To
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address this challenge, students were provided with a concise Python program
utilizing a for-loop to systematically generate and display the various paths
for visiting three cities (labeled as B, C, and D) from the initial city A and
computing their respective distances. The Python program listing is provided
below, and Figure 5 showcases the program’s output.

Figure 4: Brute Force Python Program

Figure 5: Brute Force Python Program

Building upon the above Python program, the students’ initial task involved
modifying the code to accommodate the traversal of eight cities in South Africa,
considering the actual distances between each pair of cities.

151



Due to the large number of paths presented on the program’s output (40,320),
students encountered difficulty identifying the path with the shortest distance.
To overcome this challenge, students were instructed to enhance the Python
program by integrating a decision-making statement (if-statement) and the nec-
essary variables to capture the smallest distance and its corresponding path,
and subsequently displaying this information on the screen. Among the 91 par-
ticipating students, 76 successfully completed this task, resulting in a 83.5%
success rate. Remarkably, the shortest path distance recorded aligned precisely
with the distance computed using the greedy algorithm. This alignment inten-
sified the students’ fascination with the efficiency and accuracy of the greedy
algorithm, solidifying their appreciation for its problem-solving prowess.

It’s important to note that while the optimal shortest path distance aligned
with the output of the greedy algorithm in this specific instance, this outcome
may not necessarily hold true for all scenarios. The apparent optimality ob-
served could be coincidental, and further investigation is warranted to deter-
mine the general applicability of the greedy algorithm across various problem
instances.

6 Conclusion

In summary, the infusion of computational thinking (CT) into the Computer
Science Gateway Course was instrumental in enhancing problem-solving skills
among students. Through a series of meticulously designed activities, partici-
pants were not only introduced to the core principles of CT but also engaged
in practical problem-solving scenarios. The findings from this study highlight
the progressive enhancement in students’ comprehension and application of CT
methodologies across diverse algorithms, with varying complexities.

The analysis of students’ performance revealed insightful patterns, showcas-
ing the impact of familiarity and task complexity on success rates. Notably, the
success rates varied across algorithms, shedding light on the challenges students
encountered and conquered. Despite the complexities, students demonstrated
a commendable grasp of CT elements, showcasing their ability to decompose
problems, recognize patterns, abstract details, and employ algorithms effec-
tively.

Moreover, the integration of CT wasn’t solely confined to theoretical un-
derstanding; rather, it required practical implementation, necessitating creativ-
ity and critical thinking. The utilization of computational tools like Python
programming served as a bridge between theoretical concepts and real-world
problem-solving, enhancing students’ ability to navigate complex scenarios.

In conclusion, this study has significant implications for educational strate-
gies, emphasizing the importance of hands-on engagement and practical ap-
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plications in computational thinking education. As CT continues to emerge
as a foundational skill in various domains, its integration into introductory
courses lays a robust foundation for students, equipping them with essential
problem-solving abilities crucial in today’s evolving technological landscape.

As a part of future work, the authors aim to conduct a comparative study
between students enrolled in CS introductory courses where computational
thinking (CT) was infused and those where it was not. This comparative
analysis will focus on evaluating the performance of students when confronted
with novel problems demanding solution methodologies. It is hypothesized
that students exposed to CT methodologies will showcase enhanced problem-
solving capabilities in tackling new challenges. This comparative analysis holds
the potential to offer valuable insights into the tangible impact of integrating
CT into introductory CS courses. The aim is to discern the influence of CT
infusion on students’ adaptability and efficacy in addressing novel problems,
ultimately gauging the efficacy of CT as a foundational educational approach.
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Appendix – Longitude Sorting Lesson Plan

Finding the Shortest Path Challenge – Activity 1
There are several factors to consider when traveling from one place to another.
Unless the intent is to visit some points and landmarks in a specific order,
people are often interested in the most efficient way to get somewhere. In this
activity, students will use computational thinking to experiment with different
ways of creating paths between multiple points to effectively travel through
cities in a region.

Factors involved when choosing a route:
Question: If you are traveling from one place to another, how do you

decide what route to take? What are the factors that influence your decision?
Question: Imagine you were asked to create a road trip with multiple

stops, how would you decide what route to take?

Traveling Salesman Challenge:
Given a list of cities, their geographic coordinates, and the distances be-

tween each pair of them, the goal is to reduce the cost for a salesperson whose
duty is to distribute COVID-19 vaccines in those cities. The task is therefore
to find the shortest possible route that visits each city exactly once. The list
we consider in this activity includes the following cities in South Africa:

• A - Cape Town
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• B - Bhisho
• C - Pietermaritzburg
• D - Bloemfontein
• E - Kimberley
• F - Johannesburg
• G - Mahikeng
• H - Nelspruit
• I - Polokwane

The list of cities above along with their geographic coordinates are also
included in the Shortest Path Challenge workbook that you will use in this
computational thinking activity. The exact locations of the cities are shown
on the map below.

The distances in kilometers (km) between each pair of cities are shown in
the following matrix:

Note: The above matrix is symmetric since the distance to travel from X
to Y is the same as the distance to travel from Y to X .

Developing a strategy for traversing all points: In this activity, you will
compare four different algorithms and choose the best one. Algorithms will be
applied to all the above cities (from South Africa); the starting point is always
city A, then the algorithms will produce routes that visit all the other cities.
The algorithms we are considering are:
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• Longitude sorting
• Latitude sorting
• Nearest neighbor
• Greedy algorithm

Longitude sorting algorithm:
The task is to sort the cities by their longitudes, and then to visit them

all in ascending order of this geographic coordinate. By doing so, the path
traveled will visit all cities from left to right (from the farthest city in the west
to the farthest city in the east).

Create your local copy of the Shortest Path Challenge workbook. To do
this, click on the File tab and then select "Make a copy" from the drop-down
menu.

Give your local copy a name, then click OK.
The workbook has five worksheets.

The first worksheet (Cities) includes the list of cities along with their ge-
ographic coordinates and the distance matrix.

Click on the second worksheet (Longitudes) that we will be using in this
task. This page has the list of cities and their longitudes. Use the sort function
to sort cities by longitude in ascending order. To do this, click on the arrow in
column C, then select "Sort sheet A –> Z".

Once sorted, fill in the second column (City) of the Order table in the same
worksheet using the resulting order.

Use the distance matrix to fill in the third column (Distance from Pre-
vious City) of the Order table.
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Once all the distances are entered, the spreadsheet will automatically cal-
culate and display the total distance at the bottom of the Order table. The
total distance is the sum of the distances between each pair of cities on the
route.

Answer the following questions using this form.
Question 1: What is the order of each city in the route produced by the

longitude sorting algorithm?
Question 2: What is the total distance of the route?
Question 3: Does it look like an efficient route?
Question 4: What is the difficulty of applying this algorithm? Use 1 for

the easiest and 5 for the most difficult.

Traveling salesperson simulator:
Now you can use an online mapping tool to check the results of the longitude

sorting algorithm. The steps are listed below.

1. Open the Traveling salesperson simulation. Click OK in the message
window that appears.

2. Use the drop-down menu in the upper-right to set the region to South
Africa. Click OK again.

3. Use the "Sort by" drop-down menu in the upper-left to select to sort
the cities by Longitude.

4. Press the green "Start road trip" button to begin the trip.

Once the road trip is complete, review the route on the map and compare
the accumulated distance traveled with the total distance you found (your an-
swer to question 2). Note that the distance returned by the online mapping
tool uses the meter (m) as the unit of measure. The distance you calculated
in the worksheet uses kilometers (km).

Well done! You’ve successfully completed the first computational thinking
activity and are ready to move on to the second activity (Latitude Sorting).
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Abstract

Early computer science courses (CS1, CS2) are the cornerstone of
student understanding of computer science. These courses introduce the
foundational knowledge of computer science needed to understand more
complex topics and to be successful in follow-on courses. It is thus im-
portant to introduce CS concepts in an engaging and easy-to-understand
manner to increase student interest and retention. This paper presents a
new approach to teaching the Computer Science 1 (CS1) course through
our BRIDGES system. This approach aims to increase student engage-
ment and improve learning outcomes by using audio-based assignments
that they can manipulate and process audio signal information, as well as
visualize and play them. We explain how to design and implement audio-
based assignments and connect them to fundamental programming con-
structs such as variables, control flow, and simple data structures, such as
arrays. These assignments encourage and engage students by using au-
dio data they are interested in to write code, promoting problem-solving
and improvements in their critical thinking skills.
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the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
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1 Introduction

Early computer science courses are pivotal in teaching the foundations of com-
puter science in introducing topics that shape the future of students’ academic
journeys and careers. On top of foundational knowledge of computer science,
students learn computational literacy, problem-solving, and critical thinking
skills. As beginning courses in the field contain a lot of information, these
courses can be complex and frustrating for students, and for some students,
it could be the first time they are introduced to these topics. Even though
progress is being made in retention rates in computer science using a variety of
mechanisms and pedagogies, additional motivation and engagement is critical
in early CS courses to continue to increase retention, and equip students with
a strong foundation for future success. From establishing a strong base for ad-
vanced coursework to preparing students for the demands of the workforce, we
believe CS1 should emerge as a transformative experience that extends far be-
yond the confines of the classroom to ensure that they understand the potential
of computing to solve real-world problems.

Traditional programming courses often rely on text-based exercises, which
can make it difficult for students to stay interested and may not cater to their
diverse learning styles. In response to this challenge, our proposed curriculum
includes a series of programming tasks that use audio-based stimuli to create a
dynamic and multisensory learning experience. Using the BRIDGES system,
[10, 9, 5] we have created a database of assignments for introductory computer
science courses [4] and also demonstrate how they could be used in CS1/CS2.
The BRIDGES API is available in Java, C++, and Python, and provides
students with objects to load and manipulate real-world audio files in early CS
courses. It also creates visualizations and plays corresponding audio data to
demonstrate student-generated work while maintaining course rigor.

This paper contributes to the ongoing discourse on innovative teaching
methodologies in computer science education and provides practical insights
and tools for instructors seeking to enhance their students’ introductory pro-
gramming experience. By embracing audio-based assignments, educators can
create a more inclusive and interactive learning environment, ultimately prepar-
ing better novice programmers for the challenges of the digital era. These
assignments rely on the manipulation of wavefront audio information and the
generation of signals to create and edit audio data at a level that is appropriate
for novice programmers. The proposed assignments provide two advantages,
(1) they continue to provide highly engaging assignments with a visual and
audio output for CS1 students, and, (2) students’ output can be customized
based on different songs or around choices of their own interest. This gives
more flexibility to assignments and allows students to manipulate real-world
audio data that can be shared with other students outside the class.
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2 Related Works

2.1 What Makes Students Engaged

In previous years, work has been done to better engage and motivate students
in early CS1 courses. According to Hendlesman et al. [21] engagement can
include the involvement of skills, participation, emotion, and/or performance.
The methods of implying engagement in the classroom are either content-based
or pedagogical activities. Content-based engagement focuses on making course
content or activities (assignments, lectures, videos, etc) meaningful and rele-
vant to student interests. A good resource for this type of learning engagement
can be assignment repositories such as Nifty assignments [29], EngageCSEdu
[26], and game-themed assignments [14]. These types of learning can tackle
real-world coding challenges in collaborative teams, fostering teamwork and
practical problem-solving skills. This allows for the inclusion of code reviews
and critiques to encourage a culture of constructive feedback, allowing students
to refine their coding practices through peer interaction. Engagement based
on activities includes active learning, lab-based instruction, flipped classrooms,
gamification, peer learning/coding, and multimedia content [30, 19, 22]. Gam-
ifying by incorporating elements like coding competitions or level progression
adds a competitive yet motivating dimension while using methods such as peer
learning models to provide hands-on, immediate experiences that solidify the-
oretical concepts.

2.2 What CS1 Courses Typically Look Like

CS1 courses usually serve as the introductory course in computer science. This
course can teach the fundamentals of programming such as variables, data
types, control flow, functions, and algorithmic thinking. Algorithmic thinking
can help break down complex problems into smaller, more manageable compo-
nents. Some CS1 courses also introduce simple data structures in the form of
lists and strings. CS1 often uses programming languages such as Java, C++,
or Python. The curriculum heavily involves hands-on coding assignments that
range from simple exercises and projects, foster problem-solving skills, lan-
guage syntax and semantics. Exemplars of CS1 courses can be found in the
ACM 2013 Curriculum guidelines [23]. Due to the wide variations in learning
environments, tools, student population, and demographics, there is no one-
size-fits-all approach to teaching CS1. Additionally, there are strong opinions
regarding when and how object-oriented programming should be taught [6].
This is also true for discussion about IDEs [31] and languages [25] to use.
Many introductory courses now incorporate graphics, GUIs, and visualizations
[17, 10]. These are sometimes used as creative output in student projects, or
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to illustrate key aspects of underlying objects or algorithms [13, 24, 7, 18, 32].
Furthermore, some institutions are experimenting with introductory com-

puter science courses to now incorporate other advanced topics at a beginner
level increasing multidisciplinary value. This includes games [2], robotics [12],
image processing and generations [3], and statistics and data science [20, 11].

2.3 Existing Educational Efforts incorporating Audio Related Con-
tent in CS Courses

Past audio-based learning tools have explored the CS foundations supporting
the integration of auditory learning in computer science education through
manipulating audio to reinforce concepts in CS courses. Burg et al. [8] created a
book and online learning supplements to make CS concepts more engaging and
relevant by using sound/music applications. The authors map their curricular
material to core CS courses, giving examples of programming assignments using
sound/music applications that teach fundamental CS skills. Adams et al. [1]
created a tool called Thread Safe Audio Library (TSAL) to explore the use
of algorithm sonification - representing algorithm behavior using sound - as
a pedagogical tool for computer science education. An assessment found that
sonification improved students’ long-term recall of the relative speeds of sorting
algorithms, providing evidence that sonification aids learning. Students also
rated sessions with visualizations as more engaging than non-visual sessions.
TuneScope [27] enabled using sound-based activities into Snap!.

EarSketch [15] developed by Freeman et al. is a free, web-based learning
environment that teaches introductory computer science through music. It pro-
vides an in-depth introduction to computer science and programming through
composing, producing, and remixing music with Python and JavaScript code.
Freeman et al. also found that using EarSketch showed statistically significant
gains in student attitudes across 7 constructs related to computing engagement
and motivation in underrepresented groups in high school [16].

3 A Set of Engaging and Scalable Audio Assignments

This section presents a set of assignments, all suitable for CS1/CS2 classes and
leveraging the BRIDGES toolkit. Table 1 presents the assignments, related
topics that they map to, and their engagement characteristics.

The assignments cover most of the introductory computer science class
topics, including function calls, control flow, conditionals, lists, and OOP. The
engagement strategies are all content-based. The most common engagement
characteristic is that the assignment produces a visual and audio output that
can be interpreted and played. Most of the assignments use real audio wave
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Assignment Topics Engagement
Subsampling
Bitdepth Variables, Data Repr. Visual/Audio Output, Audio Choice
Thresholding Conditionals Visual/Audio Output, Real Data, Audio

Choice
Scaffolded Player Strings, IO, Loops Visual/Audio Output, Real Data Analy-

sis, Audio Choice
Effects
(Mixing, Fade,Volume
Change, Clamping)

1D arrays Visual/Audio Output, Real Data, Real
Problem, Multiple Sounds

Visualize Volume Lev-
els

2D arrays Visual/Audio Output, Real Data, Real
Problem, Audio Choice, New Visualiza-
tion

Full Frequency Player Functions Visual/Audio Output, Real Data Analy-
sis, Audio Choice, Tool Building, Fun

Instrument Types Basic Objects Visual/Audio Output, Simulation, Fun,
Create Unique Beats

Basic Compression Project Visual/Audio Output, Uses all topics,
Fun outputs, and Competitions for best
compression.

Table 1: A set of assignments using audio data to teach CS1.

data and perform a real analysis or solve a real-life problem. For all assign-
ments, instructors have the flexibility to scaffold what information and func-
tions to expose to the student.

The assignments are all downloadable online1 and are scaffolded. Solutions
are shared with instructors on request. All assignments can be done in any
of the three programming languages supported by BRIDGES, namely, C++,
Java, and Python.

3.1 How Do Computers Encode Sound?

All our activities rely on the simple processing of sounds in a computer. Audio
signals can be represented in several ways in a computer. However, we are
mostly interested in manipulating the raw audio signal, similar to what would
be stored in an uncompressed wave file.

An audio clip is represented as several channels: 1 for mono, 2 for stereo,
6 for 5.1 systems. Each channel represents the movement that a membrane
has to make to play the signal back. The position of the membrane is sampled
at regular intervals and that information is encoded as a sampling rate. For
instance, a musical CD encodes the music sampled at 44.1KHz, while telephony
is often encoded at 8KHz. So a channel can be seen as a given number of
samples that encode a particular clip that lasts number_of_sample

sampling_rate seconds.

1https://bridgesuncc.github.io/
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Finally, each sample represents a displacement of the membrane compared
to its resting position which takes its most positive value when the membrane
should be the farthest outward from the resting position, and the most negative
value when the membrane should be the most inward to the resting position.
The samples can be represented in different formats. Usually, they are repre-
sented by signed integers, though the number of bits differs per quality level.
For instance, music CDs were encoded at 16-bit, while telephony is often en-
coded in 8-bit, and the master used in music production are often encoded in
24-bit or 32-bit.

In summary, an audio signal is essentially one or multiple array(s) of integers
that explicitly encode a sound wave. This representation is the one used by
BRIDGES which lets you load a WAV file in that format and manipulate it
with simple API calls. This is the format that students will use. Even though
advanced audio processing will require complex mathematics (such as Fourier
Transform to shift to the frequency domain), all our activities use the simpler
representation which is suitable for novice programmers while enabling multiple
assignments to span the content of a CS1 course.

3.2 How BRIDGES Works

The BRIDGES toolkit provides a simple API to create and manipulate an Au-
dioClip object as a collection of samples, which are numbers, each one repre-
senting a single part of the sound wave in the clip. Currently, you can generate
an AudioClip by setting the samples individually or by importing a WAV file.

The AudioClip object will also have a sample count, a channel count, a bit
depth, and a sample rate. These attributes can be custom-set and retrieved
through function calls from the object. The channel count is the number of
“channels”, or continuous streams of samples. With multiple channels, you can
play different sound waves simultaneously, which is used for things like stereo
audio (a different wave for each ear).

The WAV file can be passed in as a parameter to the AudioClip object
using a string that points to a WAV file. The AudioClip object will read and
parse the WAV file in a form for processing for the user. The BRIDGES API
provides a visualization function that can have an AudioClip attached to and
sent to the server for visualization. Students can then visit the website through
their account and playback the audio clip with visuals provided, as can be seen
in Figure 1. Their visual clips can also be shared with other students.

The BRIDGES API has multiple forms of documentation and tutorials on
how to manipulate and use the objects BRIDGES provides2. Due to the sim-
plicity of the API and the level of scaffolding provided in the assignments,

2https://bridgesuncc.github.io/tutorials/AudioClip.html
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minimal effort is needed to understand and use the API even for new program-
mers.

4 Audio Based Assignments

4.1 Subsampling/Bitdepth

In this assignment, students will conduct audio processing by manipulating the
sample rate, and bit depth of the signal through attributes of the AudioClip
object to analyze the differences between the original and modified audio signal.
Additionally, they are asked to analyze how these changes affect the file size and
quality. The assignment also focuses on the impact of changing variable types,
such as using 16-bit vs 32-bit integers, or floating point values on precision,
and compression.

Since this assignment requires the manipulation of arrays that contain sam-
ples and 1D arrays have not been a topic yet, scaffolded code is used that is
complete and takes the variables and uses them as needed. In later assignments,
more and more of this code can be exposed to the student for implementation
and follow-on assignments. The flexibility of what code and when it is exposed
to the student is up to the instructor.

Throughout the assignment, students will focus on the understanding of
audio processing while encouraging critical thinking about performance-based
trade-offs of selecting certain sample rates, bit depths, and variable types.
Instructors could grade for the correctness of implementation and clarity in the
explanation of parameter effects. Students could also choose different sound
files based on their interests to help boost engagement.

4.2 Thresholding

For conditionals, students can learn about thresholding to create a basic noise
gate for noise reduction. To start, the students will be given the task of loading
an audio file and visualizing its waveform using BRIDGES. After that, they will
be taught to go through the audio samples and apply a threshold to identify
portions of the signal that exceed a certain amplitude level. If arrays haven’t
been taught yet, a function can already be provided to loop through the array.

After identifying portions of the audio that fall within a certain threshold,
students would use a conditional statement to modify or remove those samples.
To learn more about thresholding and how it affects output quality, students
should be encouraged to experiment with different threshold levels and observe
how changing the conditional statements affects the audio output. They would
also explore how their approach handles various types of audio signals, such
as speech, music, or environmental sounds. Students can see how this form of
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Figure 1: This is a sample audio signal visualized using BRIDGES. This visu-
alization has playback buttons along with an interactive window for analyzing
the signal.

noise reduction affects different types of audio. Different sound clips or songs
will have different levels of noise and thus be affected more.

From this assignment, students get an understanding of how conditionals
can be applied to real-world audio signals. This assignment also focuses on
the importance of proper parameter selection and the impact choices have on
audio quality.

4.3 Scaffolded Player

This assignment tasks the student to use a scaffolded song player program,
where a given set of notes and their corresponding durations are read from
a file and played sequentially. This assignment is an inspiration from Nifty’s
Melody assignment [28]. The assignment scaffold provides a pre-defined func-
tion responsible for playing a specific note for a specified duration of time.
Students are tasked with implementing the functionality to parse the input
file, and extract note-frequency pairs along with their durations.

The input file contains entries representing musical notes along with their
respective durations, structured as follows: each line contains a note (e.g., F#3)
followed by a duration (e.g., 200ms). The program reads this file, extracts note-
duration pairs, and plays each note using the provided function for the specified
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duration.
Unlike a full-frequency player, which is a later assignment in section 4.6,

that encompasses the entire process of generating audio signals based on math-
ematical formulas (such as sine waves) and managing playback, this assignment
focuses solely on reading note-duration pairs from a file and using a scaffolded
function to handle adding the note to the AudioClip object. By completing
this task, students reinforce their understanding of file IO operations and string
manipulation.

4.4 Sound Effects (Mixing, Fade, Volume Change, Clamping)

In this assignment, students implement basic audio effects such as mixing,
fade, volume change, and clamping. For mixing, students would be tasked
with combining two or more audio files. Arrays are used as AudioClip objects
containing a list of channels and each channel contains a list of samples. For
this assignment, the audio to be created will use one channel. To mix two
samples you take the average (or a weighted sum) of the two values.

The fade effect could be introduced to teach students how to change the
amplitude of audio samples over time. The goal is to fade one audio source
out while another audio source fades in. Think about how song compilations
will fade a song out near the end while fading in the next song so that the
transition is smooth. As a sound is closer to the end, its amplitude will be
dampened, and the next sound amplitude with be increased.

To teach volume change, students can apply a scalar value to the entire au-
dio array, allowing them to understand how changing the amplitude uniformly
affects the overall volume of the audio signal.

Lastly, the clamping effect could be implemented to teach students about
limiting the amplitude values within a specific range. This is similar to the
threshold assignment, but the values are limited to the threshold rather than
being removed.

All assignments involving these effects include using conditional statements
and array iteration to identify and modify samples.

4.5 Visualize Volume Levels

Students will be tasked with visualizing the volume (amplitude) of an audio
signal over time. The goal is to introduce the concept of representing time-
varying data using a 2D array, where one axis represents time, and the other
represents amplitude. Students could read in the audio file with a 1D rep-
resentation of samples. Students then could create a BRIDGES ColorGrid
object, which supports the creation of 2D images and has methods for coloring
individual image cells.
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For this image, the x-axis or columns correspond to time (time bins or
frames), and the y-axis or rows represent the amplitude values at each time
point. The idea is to separate the audio signal into frames to capture its change
over time. Divide the audio signal into consecutive time frames, and for each
frame, calculate the average amplitude level. Each frame/bin is represented
by the current image column with the average calculated amplitude plotted on
the y-axis.

Students can analyze the generated visualization to gain an understanding
of how the volume of the audio signal changes over time. They can begin to
recognize different parts of sounds and music that represent transitions from
loud and soft segments. They could also recognize repetition and see which
parts are similar to another.

4.6 Full Frequency Player

Students can create a basic frequency player through the implementation of
a sine wave generator that controls amplitude, frequency, and time of a note.
This is an extension of the scaffolded player in section 4.3. Students are tasked
with generating sample notes for specified durations that correspond to a sine
wave, utilizing a given mathematical formula. The notes are also read from an
external file describing notes and durations in the same way as the scaffolded
player.

Students are also tasked to adjust the start and end parameters of the sine
wave to correspond to specific time intervals measured in seconds, thus allowing
for the generation of sine wave samples over a defined duration. This enables
the creation of a sine wave audio clip spanning a specified time range playing
multiple notes, effectively serving as the foundation for a basic frequency player.
Students are encouraged tom implement smooth transitions between successive
samples enhancing the quality of the frequency player’s output.

Overall, students creating a basic frequency player develop proficiency in
several fundamental programming concepts. Firstly, it aims to increase under-
standing of modular programming by utilizing methods or functions to com-
partmentalize code, thereby enhancing code organization and reusability. The
task enhances proficiency in data type manipulation and conversion, particu-
larly through the casting between different data types.

4.7 Instrument Types

To teach the use of objects and encapsulation, students can create basic musi-
cal instruments that have their attributes. Students create an instrument class,
where they encapsulate attributes like pitch, amplitude, and waveform type.
Each class is structured to represent a distinct musical instrument, introduc-
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Figure 2: A sample illustration of compression one peak from a sin wave using
two zero crossing points and a local peak. This creates a linear signal between
the peaks and zero crossings.

ing students to the fundamental principles of object-oriented programming.
Students could create an Instrument base class with individual instrument
classes to teach polymorphism. Within these classes, students implement a play
method that generates the instrument’s sound based on specified attributes,
thereby delving into the concept of encapsulation and method definition within
objects. Students proceed to instantiate objects from these classes, creating
instances of various musical instruments and customizing their attributes. The
assignment advances to the concatenation of these objects into a single Au-
dioClip allowing for the playback of multiple instruments to create musical
compositions through mixing and adding to different channels. Students would
already know how to perform mixing from previous assignments.

4.8 Basic Compression

This audio-processing assignment is focused on wavefront compression through
zero crossings with activation thresholds,

Beginning with the loading and representation of audio data as a sequence
of samples, students conduct a detailed analysis of the waveform, pinpoint-
ing instances of zero crossings where the audio waveform intersects the zero
amplitude line, and marking significant signal transitions. The compression al-
gorithm, designed by the students, captures the audio data by storing only the
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temporal positions of zero crossings and the peak values between zero crossings
(see Figure 2).

This approach aims to reduce the number of stored samples in the com-
pressed representation while retaining perceptually relevant features. Students
experiment with various activation threshold values, exploring the trade-offs
between compression efficiency and the preservation of audio information. De-
compressing the signal involves reconstructing the signal using the positions
of the zero crossings, the peaks between the zero crossing, and using a linear
function (line segment to approximate the original samples) removed during
the compression phase. Decompression and playback assess signal preservation
after compression.

Instructors can look at compression effectiveness, considering factors like
compression ratio, file size reduction, and perceptual quality, when grading
this work. Students gain a comprehensive understanding of the impact and
trade-offs associated with lossy compression, and see if certain signals are worth
the quality loss. Students could compete to see who can make the best audio
compression algorithm to help enforce engagement with that assignment and
other students. Instructors can also relate audio compression to image/video
compression (such as JPEG, MPEG) in their coverage of this topic.

5 Conclusion

We have presented a sequence of audio-themed assignments appropriate for
CS1/CS2 level courses supported as part of our BRIDGES toolkit, that al-
lows for students to easily use and edit audio Wavefront files for content-based
learning that promotes engagement. These assignments are also easy to incor-
porate in the course for instructors with an already completed repository of
assignments along with the solutions and scaffolds needed. The assignments
map to the most commonly covered topics and learning objectives within CS1,
with flexibility to customize each assignment by student interests, and avail-
able for wider use in Java, Python, or C++. Each assignment builds on prior
knowledge from the one before it with an end-of-class project incorporating all
knowledge.

Some limitations of this work is that it has not been incorporated into a
full CS1 course yet. The tool has been used with individual assignments by
current and past BRIDGES users for multiple semesters, with positive feedback
from both instructors and students. Also, currently, our tool only supports
the generation of our own signals from scratch or by importing files in WAV
formats. Extensions to other audio formats can be envisioned. In the future,
we also plan on adding additional assignments with more variations.
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Abstract
With the proliferation of advanced Artificial Intelligent systems trained

on robust language models, it is becoming more difficult to discern acts
of plagiarism in the classroom. Though some of this falls under the aca-
demic misconduct policy of an institution, it can be confusing to students
as to what qualifies as proper use. Students use tools like Grammarly, to
improve their writing, and find more advanced AI tools, such as Chat-
GPT as an additional resource. For faculty to simply ban the use of
these tools, creates an unworkable model. Embracing them can also
be problematic as not all educational material benefits from a flipped
approach. In this paper we discuss changing the dynamic by applying
targeted assessments that incrementally address elements in an assign-
ment, to affirm the work that students submitted and discourage use of
improper tools that don’t assist in learning.

1 Introduction

The problem of plagiarism is not new to student learning. It’s not always a
result of students trying to cut corners to avoid doing work. Sometimes stu-
dents legitimately feel that collaborating with others creates a better learning

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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environment for them to understand difficult material. With the advances in
Artificial Intelligence (AI) systems, a means of collaboration can now take on
the form of a single student, working on their own, getting inappropriate help.
It differs from online sites offering either services to do work, or access to a
trove of past assignments, in that the use of AI doesn’t necessarily feel like a
direct moral conflict. A student isn’t really getting someone else to do their
work, and they aren’t paying for past assignments. They are simply query-
ing an advanced search engine for help and use its results in the assignment’s
submission. A student confronted with the potential academic misconduct vi-
olation, often claims that they see little difference between using a grammar
checking tool, such as Grammarly, and a well trained AI such as ChatGPT.
The difference is more in how students query what they need from it. This can
be especially true for international students, who attest that using these tools
helps them refine answers that might otherwise sound disjoint with their lack
of proficiency in the English language.

1.1 Academic Setting

The University of New Hampshire at Manchester (UNH-M) is an urban com-
muter campus and one of seven colleges of the University of New Hampshire
(UNH). It is apart from the main campus, located in Manchester, the largest
city in the state, and has an enrollment of about 1,100 students. The college’s
mission is to provide a liberal arts education and integrates both practical and
professional experience into the classroom. The college offers majors in social
science, humanities, applied sciences, and engineering. The student popula-
tion is made up of undergraduate students, primarily drawn within the state
from traditional routes of high school graduates, and non-traditional routes
of two-year institutions. More recent, with a focus on developing professional
graduate programs, the college has seen growth in international students, which
has added significant challenges to an already complex environment. A funda-
mental principle of the college is in the value of face-to-face instruction. Class
focus is both in traditional learning as well as integrative lab experience where
students learn to work together in finding solutions to problems. Collabora-
tion is a key element in the curriculum and is fostered in the classroom. As a
commuter campus, many classes meet once weekly, for 3 hours, so designing
an engaging learning experience is critical in ensuring student success. It is
important to allow students the ability to utilize resources that help foster this
environment, so navigating online learning tools, including AI-based systems
like ChatGPT, is an important balancing act.
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2 Student Misconduct

Confronted with seemingly endless online informational resources that stu-
dents have access to, how does one navigate this without devolving into con-
stant angst about whether students are doing their own work and learning the
material? A common approach is to develop a concise academic misconduct
policy, apply appropriate punishment to various levels of offense, and hope
that fear of consequences result in reducing the number of infractions. All too
common, students conflate the issue with confusion, denying that their intent
was to break the rules, and argue there was lack of clarity and guidance by
the instructor. Additionally, the work to submit each case not only impacts
faculty workload, but can also be emotionally draining when confronted with
these type of issues. At UNH-M, this increasingly became a problem as the
international student population grew in its graduate programs. As many in-
ternational students came from the same countries, the homogeneity of the
communities became problematic. Unwanted collaboration was rampant, as
many students in the same cohort roomed together. Worse, second year stu-
dents would also be available to share past work with their newer counterparts.
More recently, the utilization of online AI tools compounded the problem. In
a recent first-year cohort, more than half the students were flagged by a sin-
gle academic misconduct infraction, with some accruing multiple strikes. The
initial approach was to let students admit to the misconduct and write a reflec-
tion of what they did, so both faculty and student could have a more positive
conversation about how to move forward. UNH recently revised its academic
misconduct policy, giving flexibility in how an instructor dealt with infrac-
tions, allowing students to redo parts of assignments, rather than flag the
misconduct. If a student chose not to admit they plagiarized, an official case
was submitted, which required substantial paperwork to sufficiently report the
case. Those that denied they did anything wrong reasoned that they used tools
such as ChatGPT merely for improving language; that the main premise of the
work was theirs. To compound this, as graduate programs saw rapid growth,
some instructors dealing with these issues were relatively new and inexperi-
enced adjunct faculty. These instructors had less interest in finding a solution
to the cause; instead focusing more on removing students who were not doing
their own work. With residential faculty also taking on the role of graduate
advising, students confronted with failing a course required extra time to help
navigate the impact their misconduct had on their academic standing. All of
this caught faculty by surprise and negatively impacted the graduate programs
at UNH-M. There were no easy solutions, as international students failing a
course could not be expelled from it since their visa status required fulltime
enrollment. How does a student continue in a course, knowing the rest of
the semester will not impact their failing grade? This raised serious questions
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about how to proceed with some of the graduate programs.

3 Approach

A literature search using the terms ’artificial intelligence’ and ’plagiarism’
yields many academic papers addressing methods and techniques of detect-
ing instances of machine generated work. Foltýnek, Meuschke, and Gipp [2]
surveyed available literature in the area of plagiarism detection in 2019, but
their work does not contain references to AI-based online search engines like
ChatGPT, showing how quickly that technology has manifested itself. It’s an
area that one feels like they are quickly falling behind in. This paper looks at a
more preventative approach, expanding on the work of Hwang and Gibson [3]
who developed an assessment framework using 20-minute quizzes to test stu-
dents on their understanding of the material and to help reduce occurrences
of academic misconduct, regardless of whether machine or human generated.
They studied different ways to integrate these assessment quizzes into the over-
all student grade, and though their technique improved upon common models
of grading, it still had drawbacks. Not only were their assessments too general,
asking student to repeat parts of assignments, the grading scheme could also
unfairly weight the entire assignment more towards the assessment quizzes, A
more recent study by English [1] reinforced the need to ensure that assessments
do not penalize students who struggle with the same material on both the as-
signment and the assessment. To address these shortcomings, assessments were
designed to be targeted to a student’s work. By refining Hwang and Gibson’s
idea into this more individualized model, the grading rubric is more closely
integrated with the assignment so that it does not unduly penalize students
twice. These assessments are also short 20-minute quizzes, with questions spe-
cific to the assignment, without necessarily having students repeat the work.
More importantly, how these assessments impact student grades is different,
and does not change the existing grading rubric for the assignment.

3.1 Assessing Student Work

A question can be as simple as asking students in a coding class to describe the
input format of a file they read in. It may ask what functions were developed
to solve the problem. Or, it may require students to write part of an algo-
rithm where the solution of their assignment was reliant on a specific one. If a
student was unable to solve the assignment fully, assessment questions cover-
ing the parts that were not completed could be skipped. Not only can points
be deducted when a student fails to properly answer an assessment question,
points can also be earned back if a student answers a similar question on the
assessment that they failed to answer on the assignment. This reinforces a more

176



positive model of assessments than just a means to catch academic misconduct.
Assessments can be viewed as incremental in nature, only targeting small sub-
sets of a problem. Their goal is not to draw inferences from an assignment, as
that is left to general examination. So assessments can be seen as low stakes
quizzes, and they do not have any point values associated with them, utiliz-
ing the assignment rubric as guidance to what values will be assessed. There
isn’t a one-to-one correlation, necessarily, mapped from assessment question
to assignment. This is because some assessment questions may focus on an
assignment element that is worth very little, but failure to answer may lead
to an overall negative assessment over the entire assignment. For instance, if
5% of an assignment asks students to solve numeric floating point precision in
a C++ coding problem, the assessment may ask what specifically they did to
solve it. If a student who successfully implemented this floating point precision
is unable to answer that question, it creates doubt about the authenticity of
the entire assignment. To solve it, a student would have researched a specific
library, included it, and then used a specific set of directives to accomplish the
task. This would not have been covered in the classroom and the expectation
is that students would have researched this on their own and added it in to
achieve the correct output, or ignore it and accept the small point loss. A
student solving this would know exactly what library they found and included.
If their assessment answer either claimed that they didn’t solve it, or discussed
something completely unrelated, it would yield a preliminary zero for the en-
tire assignment and a meeting with the instructor. An important component
in the assessment model is for students to have the opportunity to discuss any
misalignments between their assignment and what answers they gave on their
assessment. A student would get to demonstrate, in a face-to-face meeting,
that they knew what they had done in the assignment. This is not meant
as a negative component, but rather gives the ability for a student, who feels
confident that they knew an element that they failed to properly address on
an assessment, to clarify so they could earn any lost points back. Especially in
cases where assessment answers cause a significant point-loss on their overall
grade, a student is encouraged to discuss the difference with the instructor.

3.2 Integration

An initial run of this approach had already been in place for several years,
before tools like ChatGPT became prevalently known. A graduate level Infor-
mation Security course had seen high cases of plagiarism, primarily because it
was offered at least twice, sometimes three times a semester, including during
the summer term, resulting in a large trove of past assignments being shared
by students [5]. It was difficult to change all assignments on a per-semester
basis, especially since a cryptographic sandbox was developed where students
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had to modify parts of it for their learning goals [4]. Though the course was
cross-listed with an undergraduate equivalent, only graduate students were as-
sessed on their work. In 2023, two more courses were included in the trial and
undergraduate students in the Information Security class were also asked to do
the assessments. The other two courses were a standard Data Structures course
and a hybrid Machine Architecture and Systems course. The latter spends the
first half of the semester below the CPU learning about machine code, and
the second half right above it learning about the basics of operating systems.
Both new courses have a robust coding component, with Data Structures using
C++, and Machine Architecture and Systems covering a variety of topics form
machine code programming, to operating system level scripting with languages
like bash and Perl.

Table 1: Sample assessment questions

The Information Security course had already demonstrated that this type of
assessment helped reduce instances of academic misconduct. The assessments
consisted of quizzes for each problem set that students submitted. Problem
sets were divided into discussion questions that could be researched through
online searches, and problem solving questions that required students to add
small amounts of code. This yielded two types of questions on assessments:
ones that were specific to each student’s answer, and ones that had students
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work on small coding elements (see examples in table 1). It was expected that
all students would answer assessments questions on areas from the discussion
part, but could skip the problem solving ones if they were unable to do so on
the assignment. Students knew they would not be double penalized for things
they didn’t know, which alleviated any stress associated with the assessment
mechanism. The task of building assessments was more challenging in pure
coding courses, as thought had to be given on how to design questions that
students could do within the 20-minute time allotment but still be in-depth
enough to cover the entirety of the assignment. As stated previously, a mix
of questions were devised, some ensuring students understood the premise and
were familiar with the framework of the assignment, and some getting to the
core component by asking to re-code something related, though be sufficiently
different so students weren’t just memorizing code they submitted. Table 1
lists different examples of assessment questions used in the two undergraduate
courses.

4 Observations

After five years of using the targeted assessment model in the graduate version
of Information Security, a good sample size, it was clear that the technique
helped reduce instance of plagiarism. Over that five year period, the method
has been refined and is now more targeted than when originally introduced.
Violations became rare and when they did occur, there was no need to submit
an academic misconduct case, as most cases were isolated, and limited. In one
instance, two students submitted the same coding solution to a cryptographic
hash function, with the usual attempt to hide their collaboration by changing
variable names. Both students could not repeat a simpler form of that code on
the assessment, and therefore did not receive any points on that part of their
submission. As this drew attention to the instructor, it was easy to follow
future submissions by those students, and no further collaboration occurred.
One student started skipping the coding parts, while the other continued to
struggle on theirs. Since the grading rubric was designed so that students
wouldn’t necessarily fail the course if they struggled on the coding part, it
underscored that unwanted collaboration, with another students, or an online
system, was neither needed nor beneficial. The use of assessments also helped
change the culture of the course, as students stopped finding ways to circum-
vent the academic misconduct policies. In past years, due to the homogenous
environment that many international graduate students found themselves in,
passing old assignments around was a major issue. More recently, as other
computing courses at UNH-M experienced an increase in ChatGPT-based in-
fractions, none arose in the course. Only a handful of misconduct cases have

179



been submitted for a course that runs two to three times each year (i.e. about
12 semesters in total). A similar experience has been observed in the two
undergraduate courses added in 2023. Though the number of academic mis-
conduct cases in previous semesters was minimal compared to the graduate
course, there were still occurrences that were caught and reported. Addition-
ally, the possibility of AI-assisted submissions was something of concern, since
they might be harder to track down. There have yet to be any infractions, save
for one student turning in a coding lab in the Machine Architecture & Systems
course that they could not repeat on the assessment. That student lost full
credit for that part of the assignment, with the option to regain those points
if they could show, in a live session, that they had the ability to create such a
complex solution. The student chose not to follow up and did not repeat any
further offenses. There were also a significant number of cases where students
answered questions on the assessments, that they missed on the assignments,
thus regaining some lost points. This helped turn the assessment mechanism
into a more positive experience for students, allowing for a second opportunity
to demonstrated what they knew.

5 Conclusions

This paper describes a model of targeted assessments to address plagiarism, es-
pecially from harder to detect online AI-based systems. This work is presented
as an experience paper, with observations from a broader trial run of three
computing courses. By forcing students to demonstrate what they learned, it
reduces the benefit of taking shortcuts. Preliminary observations demonstrate
that this technique works, as occurrences of academic misconduct cases over
the five-year run of the Information Security course have been reduced to rare
instances. With the two newly added undergraduate courses showing similar
student behavior, it suggests that this model of assessing student work can
be a tool that helps an instructor better handle the challenges of the modern
education ecosystem. Though designing assessments is dependent on various
criteria, for this work, it has been applied to courses with a heavy coding el-
ement as well as courses with a mix of problem solving and research elements
alongside a lighter focus on coding. An important factor is scheduling class
time for the assessments. With UNH-M being a commuter campus, and many
classes running for 3 hours once a week, adding a 20-minute assessment does
not negatively impact student class experience. With a more traditional model
of 50-minute sessions, three times a week, a slightly shorter assessment dura-
tion might be a better fit. The time needed for assessments depends on how
many questions are asked, and can be adjusted accordingly. Another impor-
tant element is how to share assessment scores with students. The author chose
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not to return the assessment quizzes themselves, as that reduces the ability of
students to post them online and build up a database, something that could
circumvent their impact. Instead, students are given written feedback on their
assignment whenever there is a mismatch between what they submitted and
what they answered on the assessment.
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Abstract
The GitKit facilitates teaching Git and GitHub workflow in the con-

text of an authentic Free and Open Source Software (FOSS) project.
It is appropriate for use in software development courses ranging from
high school through college. The GitKit is a snapshot of a FOSS project’s
artifacts (codebase(s), issues, etc.) packaged with student learning activ-
ities, an instructor guide, and a containerized development environment.
The GitKit can be used to provide students with a first exposure to
Git/GitHub in a few class sessions, or a more comprehensive experience
over 4-6 sessions. The aim of this workshop is to familiarize faculty with
classroom use of the GitKit and thus participating faculty should have
prior familiarity with Git/GitHub. The majority of the workshop time
will be dedicated to hands-on experience with the GitKit from both the
student and instructor perspectives.

∗Copyright is held by the author/owner.
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Presenter Biographies
Grant Braught, Stoney Jackson, and Karl R. Wurst have integrated Hu-

manitarian FOSS into portions of the computer science curriculum. They are
the primary developers of the GitKit activities and associated technologies,
and all three have used the GitKit in their classes (as have faculty at other
institutions). They are continuing to develop other learning activities using
the Kit philosophy and technology. They all maintain humanitarian, free and
open source projects, including FarmData2 and LibreFoodPantry.

Intended Audience
This workshop builds on the tutorial that was presented at CCSCNE 2023,

by providing a more in-depth, hands-on, instructor-oriented experience. This
workshop is intended for CS educators who wish to teach Git and GitHub
workflow in the context of an authentic FOSS project. The GitKit provides
an introduction to Git and FOSS contribution workflow that is appropriate for
software development courses ranging from high school through college software
engineering.

Materials Provided
Attendees will be provided a link to a site that contains the GitKit, in-

cluding all workshop materials, an instructor guide, classroom activities and
student assignments. Information about other kits, ways to become involved,
and contact information for the developers will also be provided.
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There has been growing interest across CS education for evidence-based
instructional strategies that improve learning and retention. Process Oriented
Guided Inquiry Learning (POGIL) is one such strategy with a proven history
across STEM disciplines. The CS POGIL community has grown rapidly over
the past decade thanks to NSF support of multiple grants of educational re-
search in Computer Science using this strategy; hundreds of CS teachers and
professors have attended POGIL workshops to learn more about using and
developing POGIL materials. A survey of CS POGIL practitioners found that
instructors believe their students learn more, are more engaged and active, and
develop better communication skills in POGIL classrooms [1]. The survey also
found that obstacles include limited time, a lack of relevant materials, pres-
sure to cover content, difficulty adapting teaching style, and resistance from
students. Workshops like this one can help practitioners to answer these ques-
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tions and to adopt POGIL more effectively and efficiently. This workshop is
based on materials developed and used extensively by The POGIL Project
(http://pogil.org).
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This workshop addresses the critical need for empathy development in com-
puter science education, emphasizing the importance of understanding user
needs, effective communication, collaboration, and inclusive design [9]. As
41 states across the United States have adopted accessibility policies, affecting
82% of the nation, the pursuit of inclusivity goes beyond mere compliance with
regulations. However, despite the significant presence of disabilities, computer
science students often remain minimally exposed to the challenges of developing
technology through the lens of individuals with disabilities [5]. This deficiency
highlights the critical importance of embedding empathy and user-centered
perspectives into their educational framework. To address this deficiency, the
workshop provides participants with hands-on experience through in-person
accessibility interventions, showcasing the impact of Human-Empathy Acces-
sibility Learning (HEAL) on undergraduate computing students. Supported
by foundational research, these in-person interventions are shown to enhance
empathy, understanding of technological barriers faced by individuals with dis-
abilities, and foster a wide range of skills including technical proficiency, soft
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skills, and empathy-related abilities crucial for career progression [2]. The
workshop is structured as an immersive exploration of three distinct accessi-
bility interventions, coupled with discussions on the application of validated
scales for evaluating the interventions’ impacts. A fundamental goal is for at-
tendees to be capable of conducting these interventions in their classrooms,
thus extending empathy among computing students in collegiate settings and
equipping future computing professionals with the empathy, understanding,
and inclusivity needed to navigate the challenges of the modern workplace [2,
5, 9].

1 Introduction

In the dynamic world of computer science education, empathy integration is be-
coming increasingly crucial [9]. Empathy plays a vital role in effective problem-
solving and user-centered design and is crucial for understanding user needs
and fostering inclusive design practices [4]. Our HEAL workshop, recogniz-
ing the need for understanding user needs and inclusive design, aims to fill
the educational gap in addressing disabilities in technology development. It
offers hands-on accessibility intervention experiences to cultivate empathy in
undergraduates [2].

1.1 Workshop Structure

Our workshop, aimed at fostering a more empathetic and inclusive computer
science education, begins with PLAN-O (presence, listening, attention, non-
judgementalism – leads to openness) mindful introduction[1] to highlight the
importance of empathy. Human-Empathy Accessibility Learning (HEAL) project’s
principles will provide a scientific overview of its rationale. The core is a 1.5-
hour hands-on session which highlights 3 accessibility interventions, connecting
participants to empathy and inclusive design. A 15-minute discussion follows
on evaluation metrics culminating in key takeaways and potential HEAL ap-
plications in various educational contexts.

2 Workshop Session Agenda

• Introduction and HEAL Project Overview (15 minutes) The in-
troduction will cover the importance of empathy in computer science
education and a discussion of the current state of accessibility policies in
the United States.

• Hands-On Experience with Accessibility Interventions (1.5 hours)
Participants will be invited to explore three immersive accessibility inter-

187



ventions. The interventions include a client reveal, immersive hands-on
empathy lab and RIT’s Accessibility Learning Lab (ALL) [3, 6, 7, 8].

• Discussion: Psychometric Instruments (15 minutes) An overview
of the how the validated Perth Empathy Scale (PES), TEIque 2.0 Emo-
tional Intelligence, and the work motivation surveys are utilized to eval-
uate the impact of the interventions will be offered.

• Q&A, Group Discussion (15 minutes) Participants will be given
an opportunity to share experience and insights and invited to a collab-
orative conversation about integrating empathy into computer science
education.

• Closing remarks and future implementations (15 minutes) Key takeaways
from the workshop along with a discussion on potential implementations
of HEAL interventions in diverse educational settings.

Requirements: Participants are asked to bring a laptop for the hands-on
experience.
Target Audience: Educators, curriculum developers, and administrators in
computer science education interested in fostering empathy and inclusivity in
their programs.

By the workshop’s conclusion participants will have gained practical in-
sights into implementing HEAL interventions and evaluating their impact,
contributing to a more empathic and inclusive computer science education
landscape.
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When computer science students graduate and work in industry, they need
to communicate with others while working on projects. And one of the soft
skills that is important in industry is conveying their ideas to others. But when
students have a chance to talk about their ideas such as giving presentations
in a class or at a public symposium, their presentations usually lack a good
storyline (narrative) that delivers their points clearly to audiences. Therefore,
we created a lecture targeting computer science students that teaches how to
design an effective presentation, especially a technical presentation, with a clear
narrative. In this workshop, we will introduce how we designed the lecture,
and participants will be involved in a group activity that students did in the
lecture to see the effectiveness of our teaching method.

1 ABT Framework

When students give technical presentations, it is important to show clearly why
they did the projects because it makes audiences understand the importance of
it and get more interested in their projects. But it is challenging for students
to design such a storyline for their presentations because there is no specific
guideline to follow. Therefore, in our lecture, we set up a practical guide that
helps students build an effective narrative structure for their presentations
using the framework called the ABT framework [1][2].

The ABT framework uses three words AND, BUT, and THEREFORE, and
those words work as tools to build a clear narrative that can make presentation
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effective. Simply saying, AND introduces the background of the project, BUT
shows what kind of problem is in the project, and THEREFORE explains how
to solve the problem in the project. By showing the problem in the BUT part
of the framework, students become able to create a storyline that shows why
this project is important effectively.

2 Workshop Description

This workshop will introduce the ABT framework and how to apply it to
design a narrative structure for technical presentations. Then, participants will
be involved in a group activity in which each group will choose one random
computer science topic and design a presentation with the ABT framework.
The activity will follow the schedule below:

1. Making groups
2. Choosing topics for the presentation
3. Designing BUT part of ABT framework
4. Designing AND part of ABT framework
5. Designing THEREFORE part of ABT framework
6. Building a whole narrative for presentation
7. Creating presentation materials with complete narrative
8. Giving a presentation to audiences

Via this workshop, we expect that participants will learn the effectiveness of
the ABT framework in designing a technical presentation. Also, via the group
activity, they will see from a student’s view about how to build a narrative
with the framework so that they can help students more effectively in the
future. All worksheets and other necessary resources will be provided during
the workshop. Participants are required to bring their laptops.

3 Short Biography of Presenter

Dr. Paul Kim is an assistant professor of the computer science department
at Bridgewater State University. His research interest lies in computer science
education specifically about how to design thinking classrooms for computer
science students. He is also interested in advising students to create games for
advanced fields such as education and health care.
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Fundamental Cybersecurity Hands-on Exercises
using an in-house Cyber Range∗
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This workshop offers participants hands-on Cybersecurity exercises con-
ducted on MassBay Community College’s (MBCC) in-house Cyber Range,
made possible through NSF DUE: 2100114 grant funding, AttrACTing the
Next Generation Cybersecurity Workforce (ACT). The exercises developed for
this environment are utilized by community college students, who, in turn,
assist high school students at our workshops as near-peer tutors and other
MassBay students majoring in IT and Cybersecurity. Participants will gain
insights into the creation of this Cyber Range, the network topology, and en-
gage in Cybersecurity exercises in a fully-contained environment. Workshop
participants should bring their own laptop (Windows or MAC). The maximum
capacity for the workshop is 16 participants. The workshop will consist of:
A little about ACT The focus of the MBCC ACT project is to address
the shortage of cybersecurity talent in Massachusetts. The primary goal is
to recruit, retain, and graduate proficient students who enter the workforce
as skilled employees, with a special focus on underrepresented students, par-
ticularly women. Collaboration with regional high schools, industry leaders,
and security experts is emphasized. The ACT ecosystem enables students to
participate in Cybersecurity competitions, internships, hackathons, and other
activities aimed at mastering the necessary knowledge and skills for Cyberse-
curity jobs. Through the ACT project, we have strengthened our partnership
with regional industries by: developing labs with their products for our courses,
having employees mentor our students, providing scholarships and internships,
and collaborating with us on special events such as presentations, panels, and
festivals.

∗Copyright is held by the author/owner.
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The Cyber Range (CR) A Cyber Range is a controlled, interactive infras-
tructure providing students with virtual environments for realistic, hands-on
cybersecurity labs and exercises. Establishing a CR environment at MBCC,
with support from University of Massachusetts Lowell Cybersecurity faculty,
provides 20 students with the opportunity to practice activities such as infras-
tructure defense, vulnerability assessment, and access control in a safe, isolated
environment.
Hands-on exercises

a. A Tour the of MBCC’s CR
Provide a high-level overview of the CR, composed of two (2) physical
servers running an open-source Type 1 Hypervisor (XCP-ng). Describe
the logical & physical topology of the range, server configuration, services
provided, and other technical details. Provide information regarding the
testbed network developed in conjunction with the CR.

b. Connecting Remotely to MBCC’s CR
Participants will learn about:

– the purpose of a Cyber Range, grasp basic networking concepts cru-
cial for a cybersecurity career, and gain insight into the lab topology
and IT infrastructure of the MassBay Cyber Range.

– remotely connecting to the CR from their own laptops (Windows &
MAC) to use several VMs (Windows & Linux) on the CR servers.

– IP addresses, employing the ping command to check machine sta-
tus, and utilizing an IP Scanner to discover other machines on the
network.

– Virtual Machines (VMs), particularly Kali Linux, a Linux distri-
bution tailored for penetration testing. They’ll learn how to use
Kali VMs for lab exercises, access vulnerable VMs on the private
network, and connect to assigned Kali VMs using terminal server
protocols like SSH and VNC.

– basic Linux commands and operations, such as navigating directo-
ries, creating and deleting files and directories, and using sudo for
administrative tasks.

c. Network Reconnaissance on the Testbed Network
Participants will use open-source reconnaissance tools (like NMAP) to
scan the network and specific servers to identify running applications.
They will research vulnerabilities for specific versions of applications to
conduct experiments.
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d. Capturing Passwords Hashes
Participants will learn about commonly used penetration testing tools
and how to capture and crack password hashes on your network. Identify
best practices to defend your network against these types of attacks.

e. Analyze Logs as Blue Teamer
Participants will read applicable logs on the victim machine to recon-
struct the attack.

Complete survey

Giuseppe Sena
Professor of Computer Science and Cybersecurity,
Co-PI on ACT project, Computer Science Department Chair, and Instructor/-
Manager of the MBCC’s Cisco Networking Academy.

Ryan Fried
Adjunct Professor at MassBay, and Senior Security Consultant at Google
Senior Personnel on ACT project, and Senior Security Analyst, specializing in
security automation, network segmentation and purple teaming.

Shamsi Moussavi
Professor of Computer Science and Cybersecurity,
PI for ACT project, Director of the Center for Cybersecurity Education at
MassBay.
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Service learning can be viewed as a strategy in teaching and learning where
meaningful community service is integrated with instruction and reflection.
Service learning experiences can go a long way to enrich student learning,
expose them to the concept of civic responsibility, strengthen communities,
and show them the role that their profession can play in contributing to the
common good [3]. Participation in service learning projects has been shown
to strengthen students’ interest in computing and related careers, especially
among female and minority students [1].

Instructors and institutions looking to adopt service-learning projects face
a broad range of questions. How to embed a project into one’s existing cur-
riculum without adding a new course? How best to supervise students, provide
meaningful formative feedback, and assess and evaluate their work? How to
work with the project partner to assess the project scope and ensure its feasi-
bility? How to evaluate project success and make sure the project partner gets
what they need? How to provide project maintenance after delivery?

Many existing practices of working with externally sourced projects often
rely on established frameworks rooted in and supported by existing institu-
tional infrastructures, additional staff, and technical resources. However, many
institutions may not have such resources and/or experience. Those looking to

∗Copyright is held by the author/owner.
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adopt such practices can often find reports about positive experiences with
externally sourced projects, e.g. [2], but none of them provide the depth of
detail that would enable an institution to readily adopt that work.

We are currently working on a larger project aimed to equip instructors
with curricular materials, how-to guides, sample project portfolios, and am-
ple engagement and training opportunities to adopt a robust service-learning
framework with minimal resources. A successful service-learning experience de-
pends as much on following a curricular process, as it does on a careful choice
of a project partner, right project scope, fit of student capabilities, and many
other characteristics.

This tutorial will introduce our service-learning project feasibility assess-
ment model. Participants will be guided through a set of structured questions
designed to facilitate meaningful discussions with project partners. These dis-
cussions aim to collaboratively complete a scoring rubric, providing an objec-
tive evaluation of the suitability of service-learning projects. The tutorial’s
focus is on aiding instructors to make informed decisions regarding course fit
and identifying the most suitable projects for their institution and program cur-
riculum. We will present a hands-on case study where participants review one
or more potential projects with a hypothetical external partner and determine
the fitness of the project within their academic program.

The tutorial builds on the experience accumulated by CCSU’s Software
Engineering Studio which connects community project partners with teams of
4-5 seniors working on software development projects spanning one or several
semesters. Since 2014, the Studio facilitated over 65 distinct projects and
engaged over 500 students.
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Incorporating Computing for Social Good in
Education
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Heidi J. Ellis1 and Gregory W. Hislop2
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The ACM/IEEE/AAAI CS Curriculum Recommendation, CS2023, outlines
a computer science curriculum for undergraduates. As a supplement to CS2023,
a series of peer-reviewed articles has been collected to provide guidelines for
computer science educators by addressing various aspects of the design and
delivery of the curriculum. The Computing for Social Good in Education
(CSG-Ed) article outlines a variety of ways that computing instructors can
incorporate CSG into education. These approaches range from modifying a
single assignment to implementing CSG throughout a curriculum.

This tutorial will provide computing instructors of varied experience levels
with a variety of approaches to incorporating CSG in their classrooms. The
tutorial will provide an overview of the importance of CSG-Ed and its role
in CS2023, a discussion of approaches for including CSG in the classroom,
examples of CSG-Ed and a discussion of best practices.

The tutorial will have the following format:

• Introductions: 5 Minutes

• Overview of CSG-Ed: 5 minutes

• CSG-Ed approaches: 10 minutes

• Breakout groups: 45 minutes
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• Status of CSG on your campus

• Availability of local social-good projects on or near your campus

• Identification of possible locations for inclusion of CSG within your cur-
ricula

• Brainstorming about particular assignments or activities and CSG con-
text

• Report out by group: 5 minutes

• Wrap up and Summary: 5 minutes

A series of prompts will be used to guide the discussion.

Heidi Ellis is a Professor of Computer Science and Information Technology
at Western New England University. Her research area is student learning in
humanitarian free and open source software (HFOSS) applications. She is a
founding member of the HFOSS project and has been PI on five NSF grants
related to HFOSS. She has over 15 years of experience supporting student
learning via CSG. Heidi is one of the leads on the CS2023 Curricular Practices
article on Computing for Social Good in Education.

Gregory Hislop is a Professor in the College of Computing and Infor-
matics at Drexel University. He has been a Principal Investigator on five NSF
grants to develop HFOSS education. He has developed HFOSS materials to
include in existing courses and has also developed a complete HFOSS course.
Gregory has broad experience in curricula development and has played a cen-
tral role in the development of multiple computing degree programs. He is
one of the leads on the CS2023 Curricular Practices article on Computing for
Social Good in Education.
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A multitude of systems exist to automatically test and provide feedback on
student assignment submissions[4]. These tools are broadly defined by three
aspects: distribution, collection, and assessment, and all tools have builtin
assumptions about how these features should occur. In this tutorial, we will
introduce git-keeper1, an assignment management system that automates dis-
tribution and collection of assignments using Git and provides feedback to
students via email. In addition, it is based on the philosophy that automated
feedback should encourage students to fix and re-submit their work. A sec-
ond philosophical underpinning of git-keeper is that the assessment portion of
assignment management should be configurable for each assignment.

During the tutorial, instructors will learn to leverage the capabilities of
git-keeper in conjunction with BlueJ, a Java IDE designed for introductory
courses. Participants will first act as students to complete a sample assignment
using BlueJ. Once they understand the simplicity of git-keeper from the student
perspective, participants will learn about the instructor workflow for managing
assignments. We will demonstrate how git-keeper supports diverse types of
assessments including unit tests, code linting, and any other command-line
tool to generate feedback to the student. This makes git-keeper a tool that is
suitable for a wide range of courses.

As a Git-based system, git-keeper provides students the ability to make
multiple submissions, which fosters an iterative learning process and empowers
them to refine their understanding and skills. It also provides a gentle intro-
duction to basic Git workflows, easing the transition to using Git in software

1https://github.com/git-keeper/git-keeper
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engineering courses or the workplace. Students can clone starting repositories
and push submissions using standalone Git clients or built-in IDE Git support,
allowing instructors to choose the level at which students interact with the Git
portion of the system’s interface.

We have used git-keeper at our respective institutions for the past six years,
and we have presented a poster[1], tutorial session[2], and workshop[3] about
the tool. Instructors at three other schools have also used the tool success-
fully in courses ranging from CS1 to upper-level electives. While this tutorial
will focus on integration with BlueJ, git-keeper is language and IDE agnostic,
and we will discuss our experience using it in courses using Python, Jupyter
Notebooks, Java, Kotlin, C, MIPS, or just about any other language.

This tutorial will give participants a hands-on experience using an instance
of git-keeper on a cloud-hosted server, and provide links to online resources
(example assignments, step-by-step instructions, etc.). To experience the stu-
dent role, participants will need a laptop with BlueJ installed, which could be
installed at the time of the tutorial.

Biography

Ben Coleman and Nathan Sommer are the creators of git-keeper. As instructors
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utilized git-keeper in numerous courses across the breadth of the CS curriculum,
from introductory programming courses to upper level electives. They have also
helped instructors at three other institutions adopt the system.
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Using Continuous Integration (CI) For
Managing Programming Assignments∗

Conference Tutorial
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In this tutorial, instructors will be able to learn how to work with var-
ious tools on setting up a Continuous Integration Pipeline (CI pipeline), to
automatically verify their programming assignments are valid. This tutorial
assumes some programming experience.

Programming assignments with associated unit tests are a common type of
assessment for many computing courses. One common method of distributing
the programming assignment would be to use a version control system, such as
git, and a version control website, such as GitHub or GitLab. The instructors
post the project repository on the website, which the students then make a
copy of (aka clone) [1, 2, 4].

A feature that many of these version control websites have is easy access
to a CI pipeline. The CI pipeline allows programmers to run a variety of tasks
automatically [3], but one common task is to checkout a project’s source code
into a clean system, build, and run unit tests and integration tests. However,
it can also be used to run a variety of other tasks as well, such as running
static analysis tools. These features are very helpful for computing instructors
as well.

In this tutorial, I will discuss several basic tasks that the CI pipeline can do
to help instructors. We will start with a basic programming assignment that
is hosted on a source control website, and introduce various CI pipeline tasks
one by one.

The first task to introduce is an automatic build task. It can be very
confusing for students if the students first clone a programming assignment

∗Copyright is held by the author/owner.
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and encounter build failures. The tutorial will explain how to set up a basic
build task to automatically build the project in a clean environment, and send
a notification (email) for any failures.

Next, a more advanced build task will next be introduced. Setting up a
development environment can be a complicated task, with implicit settings
and package installation that comes naturally to experts, but are challenging
to novices. However, being able to install software is a necessary skill for all
programmers, so instructors should try to make instructions as clear as possible.
CI pipelines can help in this regard, since they always start from scratch in a
clean environment.

Next, a set of tools will be introduced to verify that autograders work.
Some programming assignments utilize unit tests and autograders. CI can be
used so that instructors can provide multiple versions of the same assignment.
The completed version should pass all tests, while the empty version (with just
the skeleton code) should pass minimal tests.

Lastly, other maintainance tasks will be introduced. One such task is ex-
ternal package dependency analysis. Some assignments use external packages,
and the package versions that the assignments were developed on can become
outdated. A dependency analysis task can be set up so that the instructor
gets notified when an external package becomes outdated. CI pipeline can
automatically notify and sometimes even update the project for you.

Biography
Sunjae Park started as an assistant professor at Wentworth Institute of Tech-
nology in Fall of 2020. Prior to joining Wentworth, he received his PhD in
Computer Science from Georgia Institute of Technology and had worked at
IBM as a operating system kernel developer.
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The SIGCSE Committee on Computing Education in Liberal Arts Colleges
(SIGCSE-LAC Committee) has found that liberal arts and small colleges ap-
proach design of their computing curricula in unique ways that are driven by
institutional mission or departmental identity. This impacts how faculty at
these colleges adopt curricular guidelines such as the current ACM/IEEE-CS

∗Copyright is held by the author/owner.
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CS20131. The committee is developing guidance, informed by its sessions at
recent CCSC and SIGCSE conferences, to help with the design and/or revision
of CS curricula in liberal arts contexts [1]. This will ultimately be included in
the committee’s article in the Curricular Practices Volume that will be released
as a companion to the new ACM/IEEE-CS/AAAI Computer Science Curricula
guidelines (CS2023)2. Curricular guidelines like CS2013 or CS2023 inform cur-
riculum design but are balanced with the vision for a program, departmental
strengths, locale, student populations and unique academic experiences. The
desire to craft distinctive curricula, combined with the size of prior curricu-
lar recommendations, requires an assessment of trade-offs between achieving
full coverage of curricular recommendations and a school’s other priorities.
SIGCSE-LAC’s guidance will encourage faculty to reflect on their programs
and the role of CS2023, beginning with their institutional and departmental
priorities, opportunities and constraints.

The specific goal of this session is to introduce participants to SIGCSE-
LAC’s guidance to consider curricular development in the context of the unique
features of their programs and . Following an overview and brief discussion
of CS2023, participants will begin working through the latest version of the
committee’s reflective assessment process. This process is framed by a series of
scaffolding questions that begin from institutional and departmental missions,
identities, contexts, priorities, initiatives, opportunities, and constraints. From
there, participants will be led to identify design principles for guiding their
curricular choices including the CS2023 recommendations. Examples gathered
from the committee’s previous CCSC and SIGCSE sessions will be available to
help to articulate identity and program design principles, which will then be
used for the identification of identity-focused program-level learning outcomes.
A spreadsheet tool that is being developed to aid in the shaping of curricular
choices will be demonstrated. Participants will leave the session with a better
understanding of how CS2023 can impact their programs and a jumpstart on
the entire reflective assessment process. Feedback on the process and this
session are welcome and will be used to refine the committee’s guidance prior
to its publication in the CS2023 Curricular Practices volume.
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1 Abstract

Our Accessible Learning Labs (ALL) project informs participants about how
to properly create accessible software and teaches participants about funda-
mental concepts of Artificial Intelligence and Machine Learning (AI/ML). To
enhance readability, we will be using the abbreviation AI/ML to reference
these concepts. These interactive learning modules demonstrate the need to
create accessible software and provide hands-on experiences that showcase the
multifaceted nature of AI’s impact. This tutorial will benefit a wide-range of
participants in the software engineering community, from students to experi-
enced practitioners who want to further understand the implications of AI/ML
in various domains and ensure that they are creating inclusive, accessible soft-
ware. Complete project material is publicly available on the project website:
https://all.rit.edu

∗Copyright is held by the author/owner.
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2 Introduction

To fill the existing void in accessibility education, we have created a com-
prehensive collection of laboratory activities that are essential to accessibility
education. Furthermore, in an aim to further AI/ML education, multiple edu-
cational labs have been created to understand the wider significance of AI/ML
across different fields.

The labs are easy to integrate into a variety of existing introductory com-
puting courses (e.g. Computer Science I & II) due to their easy to adopt,
self-contained nature.

The labs and their experiential format have demonstrated the effectiveness
in previous works [2, 3, 5, 1, 4].

2.1 Lab Structure

Each lab addresses at least one accessibility issue or AI/ML concept and con-
tains: I) Relevant background information on the examined topic, II) An ex-
ample app containing the accessibility problem or AI/ML topic , III) A process
to emulate the problem (as closely as possible), IV) Testimonials from people
on their real-life experiences with using non-accessible software or extra infor-
mation regarding the AI/ML concept, and V) A quiz where the participant is
tested on their acquired knowledge on the topic.

3 Tutorial Session Agenda

Activity 1: Ethics of AI-focused Lab: (30 minutes) This lab introduces
participants on the ethics behind the implementation of Artificial Intelligence
models. This lab guides users through multiple scenarios where the AI is biased.

Activity 2: Literacy-focused Lab: (30 minutes) This lab instructs par-
ticipants on proper procedures in making software accessible to users with
different literacy levels. Participants learn about the importance of creating
comprehensive and readable web pages through the Fog Index formula.

Activity 3: Lab Feedback: (15 minutes) Participants will provide feed-
back on the material, and offer guidance to presenters on the future direction
of the labs. This feedback will be incorporated into the design of future labs.
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Artificial Intelligence (AI) has the potential to transform the education sec-
tor by enhancing teaching and learning experiences. According to Sal Khan,
founder of Khan Academy, AI is about to start "the biggest positive trans-
formation that education has ever seen”1 by making high-quality personal-
ized tutoring available (tuition free) to everyone on the planet. Given AI’s,
and more specifically Generative AI’s (GAI), rapidly developing capabilities
(e.g., to provide tailored feedback, ask questions of students, give examples
and non-examples, and offer general learning support), incorporating GAI into
programming education has the potential to enhance student engagement and
learning outcomes. At the same time, they identified challenges in using GAI,
such as its inability to answer some questions and its tendency to provide in-
correct or incomplete responses. Students also report an increase in anxiety
surrounding GAI and its potential effects on future professional opportunities.
Outside of the classroom there is likewise an increasing prevalence of GAI in
computational professions, making it crucial to equip students with the neces-
sary knowledge and skills to effectively, responsibly, and ethically utilize GAI.

∗Copyright is held by the author/owner.
1https://blog.khanacademy.org/sal-khans-2023-ted-talk-ai-in-the-classroom-can-

transform-education/
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Rather than avoiding the use of GAI in the classroom, in this study we aim to
investigate the pros and cons of leveraging GAI’s capabilities to offer personal-
ized guidance and assistance to students as they learn programming. By doing
this research, we are learning to create more interactive and engaging learning
experiences that better equip students with the skills and knowledge needed
to succeed in the field of programming. This project, which is currently being
conducted, was designed to address this research question: To what extent
does the incorporation of GAI impact students’ engagement, motivation, and
achievement, particularly with the material in Intro to Programming courses
and their chosen STEM field of study? It is utilizing case studies that focus on
the integration of GAI into computer programming education. The team has
1) developed a series of GAI-supported teaching modules specifically designed
to improve problem-solving skills in programming tasks among undergraduate
students; and 2) is in the process of analyzing student feedback on GAI inte-
gration in computer programming education. This project offers an important
exploration into the intersection of GAI and programming education, with the
expectation that results will provide useful guidance for programming instruc-
tors who are adapting their instructional strategies for the emerging role of
GAI in programming. The team will briefly present the status of the research
and early insights from the project, and then engage with the audience on how
lessons learned from this work can pragmatically shape programming courses
in their institutions. Quick tips, takeaways, and prompting strategies will be
shared throughout this interactive lighting talk.

211
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This past summer, I worked with a PhD scholar (Krupa Patel, Bhagwan
Mahavir University, India) on a research project that investigates a novel
approach for specifying unambiguous Non-Functional Requirements (NFRs).
NFRs are usually written in common natural language. Due to differences in
the domain expertise of requirements engineers and other stakeholders in the
project, it is possible that the NFRs contain several words that allow alterna-
tive interpretations. To improve trust between clients and software organiza-
tions, the following problems need to be addressed at an early stage of software
development:

• Recognizing words that are ambiguous in NFRs.

• Determining conflicts related to the NFRs.

• Providing a precise, in-depth understanding of the NFRs by specifying
conflicting NFRs.

All the above-mentioned problems are crucial and should not be delayed
because software requirements (functional and non-functional) act as a legal
agreement between the software organization and clients. Our goal in this
research project is to examine approaches for recognizing ambiguous words,

∗Copyright is held by the author/owner.
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conflicts among NFRs and visualize them using extended Unified Modelling
Language (UML) models viz. extended use-case diagram. The extended use-
case diagram will help requirements engineers make decisions early in the soft-
ware development process by helping them visualize the effects of competing
NFRs on each other. The proposed approach addresses problems such as nor-
malization, resolution of ambiguity, and clustering of NFRs using efficient semi-
formal approaches (viz. NLP and ML) and formal approaches (viz. ontology).
The empirical evaluation of the proposed approach on the publicly accessible
dataset PROMISE achieves an average result of 79.76% recall, 90.05% preci-
sion, and 84.59% F-measure. The findings of the assessment suggest that the
deployment of the approach will have a positive effect on the practice of RE.
Nevertheless, we find issues with the validity of the proposed approach, such as
the fact that NFRs can be classified using one or more NFR attributes, apart
from use-case diagrams, which are other UML models that are best suited for
specifying NFRs early in the software development process and which docu-
ments improve NFR classification performance. We need constructive criticism
from academic and industry professionals to help us improve the design of the
proposed approach.

Biography: Unnati Shah has been working as an assistant professor in
the department of computer science at Utica University, NY, US. She received
her Ph.D. in Computer Science and Engineering from the S. V. National Insti-
tute of Technology, India in 2022. Her research interests span both Software
Engineering and Natural Language Processing. Much of her work has been on
software requirements engineering, especially resolving ambiguities from natu-
ral language software requirements, and providing formal specification.
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While teaching Introduction to Programming in the Computer Science pro-
grams for many semesters, it was noticed that the students were not necessarily
able to see the big picture of what they were learning and where it could be ap-
plied. It was also noticed from meetings with individual students during office
hours and beyond that students, after completing the course, continued to feel
hesitant to tackle big projects because they had not worked on them before.
That was the main motivation to modify the way coursework was designed.
The term project gives students a chance to implement real-world problems
and apply the course’s material to larger tasks. The project includes multiple
parts. Each part is assigned after completing a new topic(s) and its labs. Each
subsequent part builds on and expands the preceding work. The project re-
quires students to understand the concepts and problem specifications, design
and implement the solution, test, and debug it.

The importance of adopting this approach (one big project divided into
parts) as opposed to traditional individual, unrelated assignments is evident in
students’ interest in working on real-world projects that they can relate to and
have seen to some extent in their daily lives. Also, completing this project gives
students the experience of working on large-scale projects that require multiple
and continuous modifications, updates, and refactoring of the current version
of the project. Each student is individually assigned one of three themes for a
project. Each theme is composed of seven main parts. Each part covers a set
of subtopics covered in lectures and labs.

∗Copyright is held by the author/owner.
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The three themes used in this semester are: Health Record System, Day
Care Management System and Restaurant Management System.

To investigate the effectiveness of this approach to course work redesign,
the study consists of online, anonymous surveys. Students who choose to par-
ticipate take the surveys anonymously distributed after completing each part
towards building the final project.
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1 Introduction

Our program simulates a chain (a case of line network) of asynchronous pro-
cessing elements (PEs), each communicating only with its neighbors. The chain
can store a list of integers, one integer per PE. This provides an environment
for 40 exercises on design and implementation of distributed algorithms for
list operations, from deque operations to sorting, and on evaluating their com-
plexity. To aid students in the complexity analysis we introduce visualizations
called Dominos and Activity Diagrams. The algorithms require a different de-
sign and may have complexity different from their counterparts on arrays or
linked lists. They can be run on an any computer with Python 3 and offer
students the familiar syntax of that language.

2 Code, Dominos, Activity Diagrams, and Complexity

Students will write code similar to the following, for testing if an integer re-
ceived via connectorUpper is in the list. Communications commands with a
suffix _w are for a word, i.e. integer, and _b for a bit. send_o tells the lower
PE to execute member code.

∗Copyright is held by the author/owner.
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def member(self , channelA ):
if not self.bit[channelA ]: # if storage channelA is non -empty

self.temp_w [0] = self.connectorUpper.receive_w ()
if self.word[channelA] == self.temp_w [0]: # found here

self.connectorUpper.send_b(True)
else: # keep looking below

self.connectorLower.send_o("member", channelA)
self.connectorLower.send_w(self.temp_w [0])
self.temp_w [0] = self.connectorLower.receive_b ()
self.connectorUpper.send_b(self.temp_w [0])

else: # if current PE terminates the list
_ = self.connectorUpper.receive_w ()
self.connectorUpper.send_b(False) # not found anywhere

PEs involved in the computation execute a sequence of communications of types
represented by the dominos in Figure 1. The top and the middle dominos are the
same, except that the former is stretched hrizontally, becuse of the passage of time.

PE 1
stores 1 keep looking

member(A) ↓
w
-
- member(A)

-
-
w
↓

-
-

b
↑

↑
b
-
-

PE 2
stores 2 keep looking

member(A) ↓
w
-
- member(A)

-
-
w
↓

-
-

b
↑

↑
b
-
-

PE 3
stores 3 found

member(A) ↓
w
-
-

↑
b
-
-

Figure 1: Domios in an activity diagram - looking for 3 in a list [1,2,3,4]

For the member operation, on a list of length n, in the worst case (when the item is not
in the list), the activity diagram such as that in Figure 1, has width O(n) leading to
the conclusion that overall time complexity of member is O(n). We also introduce the
concept of top complexity, which can be thought of as the width of the top domino;
in the case above the top complexity is O(n) as well.

Another exercise, on selection sort, has an interesting activity diagram.
PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

Figure 2: Selection sort - activity diagram for a 5-element list

The first inverted triangle on the left, brings the smallest value to PE 1. The second
triangle brings the second smallest value to PE 2, ..., the n-th triangle brings the
n-th smallest value to PE n. After making such diagrams, the students will see that
the top complexity of the algorithm is O(n), where n is the length of the list, and
the overall time complexity – O(n2).
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Since 2018, New Jersey high schools have been required to offer computer
science courses, and the nature of these courses can vary significantly. This pro-
posal suggests implementing an accelerated Java summer program specifically
designed for incoming new students at colleges. The freshman class has ex-
panded to include many students with no coding background, and some have a
limited background but are either unwilling or unable to take the AP Computer
Science exam. Consequently, these students often enroll in a full semester CS1
course as their first programming course at college. However, an accelerated
Java summer program would better serve some students, building upon their
existing knowledge. This program allows freshman students to advance to the
second programming class in their first semester, instead of being mixed with
other students with no coding background. This proposed program represents
a departure from the conventional 4-credit Java section, compressing what is
typically a 15-week course (4 hours per week, comprising 3 hours of lecture and
1 hour of lab) into an intensive 2-week format. The success of this program
depends on the invited students’ prior programming experience, motivation,
and their ability to quickly grasp the curriculum, allowing them to thrive in
a fast-paced learning environment. The development of a cohort community
of students through this shared experience is expected to positively impact
student retention and success.

The program will be divided into a morning session dedicated to lectures,
covering the theoretical aspects of the course, and afternoon sessions focusing
on hands-on experiences, debugging skills, and the interrelation of various top-
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ics. Additionally, each day will allocate 1.5 hours for students to work with
instructive supervision on lab assignments during the afternoon.

Following the textbook ’Introduction to Java Programming and Data Struc-
tures’ by Y.D. Liang (12th Edition), the curriculum will cover Chapter 1 - Intro-
duction to Computers, Programs, and Java; Chapter 2 - Elementary Program-
ming, Selections; Chapter 3 – Selections; Chapter 4 – Mathematical Functions,
Characters, and String; Chapter 5 – Loops; Chapter 6 – Methods; Chapter 7
– Single-Dimensional Arrays. Given that the selected students are expected
to have some background in programming, the curriculum will focus more on
advanced topics, problem-solving, and debugging within Chapters 4, 5, 6, and
7.

Keywords – Accelerated, AP, CS1, Java, Programming Language, Summer
Program.
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Over the past decade, there has been an increase in enrollment in com-
puter science-related programs at colleges and universities. This surge can be
attributed to the expansion of the technology industry during this period and
the need for a technologically knowledgeable workforce, resulting in a diverse
influx of students with varying levels of expertise and knowledge in computer
science.

The increasing interest in computer science mirrors the industry’s growth,
signaling a heightened awareness of technology’s pivotal role in various sectors.
With this heightened enrollment, the student body now comprises individuals
boasting a wide spectrum of skills and backgrounds, fostering a dynamic and
diverse learning environment.

However, this surge in enrollment has presented challenges, particularly in
the realm of academic support. Many students, regardless of their varied levels
of experience, need assistance with homework assignments. The demand for
support underscores the significance of providing effective resources and sup-
port systems to ensure that students can navigate their coursework successfully
and capitalize on their educational experience in the rapidly evolving field of
computer science.

Securing resources for teaching assistants in every Computer Science and
Technology program class poses a substantial challenge for many schools. This
predicament requires significant funding and necessitates a sizable pool of en-
thusiastic and highly skilled students each semester. For commuter schools,
where most students commute daily rather than residing near the campus, re-
cruiting an adequate number of teaching assistants becomes even more formidable.

∗Copyright is held by the author/owner.
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Moreover, students in these universities often juggle part-time or full-time jobs
outside the campus, amplifying the complexity of providing effective support
for assignment troubleshooting and major course studies. Without supportive
peer-learning communities, commuter and working students are at a disad-
vantage in their computing studies and may not be able to participate in the
professional fields they aspire to.

In response to these challenges, the Code Samurai program, a peer-learning
peer mentoring program, has demonstrated successful implementation over a
decade, supporting a rapidly growing department. This program’s adaptability
and scalability make it a potential solution for colleges facing similar resource
constraints. This paper presents a comprehensive model outlining the recruit-
ment, management, and tutoring processes involved in the Code Samurai pro-
gram, illustrating the benefits to the students seeking learning reinforcement,
as well as the peer leaders themselves. The aim is to offer insights and guidance
for institutions seeking effective strategies to address the unique challenges of
supporting students in computer science and technology programs in regional
universities.

Keywords – Code Samurai Program, Coding Assignments, Computer Sci-
ence, Information Technology, Problem-Solving, Regional Universities, Teach-
ing Assistantship, Tutoring
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Project Based Learning involves students working on projects that re�ect 
realistic problems [2]. The standard ACM curriculum contains a number of 
references to projects and group work [1]. In project based courses, students 
are typically either assigned to small groups, or self-organize into groups. Each 
group undertakes one or more software projects that signi�cantly exceed a 
typical homework type problem.

Our Computer Science curriculum includes one required purely experiential 
course, the Information Technology curriculum includes two, and the Robotics 
curriculum has one such course each year.

We have introduced a new experiential course sequence called the Tech 
Startup. The course sequence includes three courses; one at the 200 level, 
one at the 300 level, and one at the 400 level. Each semester, all three are 
o�ered, and they meet as one larger course. Both the credits assigned and the 
responsibilities and expectations di�er for each section. The 200 level course 
is referred to as a "Junior Developer", and is a one credit course. The 300 
level course is the "Developer" course, and is a two credit course. The 400 
level course is called "Team Lead", and is a three credit course. Students may 
retake each of the courses.

Students are admitted by permission of instructor, and typically will need 
to apply for admission (using a Google Form to collect a resume). The team 
leads in particular meet with the faculty member in order to determine their 
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In this poster, we present our experiences designing and o�ering this new
experiential course model. Our poster will deal with how the course was man-
aged and students assessed, the particular skills required of the instructor, the
student outcomes (both in terms of projects, and as assessed by Course Opin-
ion Surveys), and our experience in o�ering the courses. The course sequence
was �rst o�ered in the Spring of 2020, and this poster describes experiences
and outcomes through the Fall of 2022 (�ve semesters).

We want to particularly acknowledge Dr. Delbert Hart, who initially con-
ceived of the idea of this course sequence and who was very supportive in the
initial o�erings.
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suitability for the role, and their thoughts and plans for a project.
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Interdisciplinary collaboration between computer science and astronomy is
critical for new discoveries as it brings together the expertise of two distinct yet
complementary fields. The vast and complex datasets generated by astronomi-
cal observations require sophisticated computational methods for analysis and
interpretation. Computer scientists contribute their skills in algorithm develop-
ment, data processing, and artificial intelligence whereas astronomers provide
unique challenges and insights that push the boundaries of computer science
applications. This collaboration offers a multifaceted learning experience for
students beyond disciplinary boundaries. This approach encourages a diverse
skill set development, promotes creativity, critical thinking, and adaptability.
It provides students with real-world applications for their theoretical knowl-
edge, preparing them for careers that demand cross-disciplinary collaboration.
It also instills a collaborative mindset that is increasingly essential in today’s
interconnected scientific landscape. Our intent is to develop a baseline model
and then involve students during the summer research experience program. We
also foresee developing a Computer Science-Physics cross listed undergraduate
course for enriching student experience who are interested in these two disci-
plines. In this study, we will present our work in progress towards developing
open-source software for astronomy image study and analysis. The flexibility
of open-source development combined with a culture of innovation, leads to
rapid improvements and the introduction of cutting-edge features. This soft-
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ware would provide a transparent mode for non-programmer users to not only
view, stack, and overlay the raw image capture(s) but also do basic photometry
and image statistics. The work in progress also involves the study of unsuper-
vised learning to perform clustering analysis of the raw image capture(s). This
analysis would group pixels or regions with similar characteristics, uncovering
structures such as globular clusters, galaxies, or binary star systems. This
process helps discern spatial relationships, identify outliers, and distinguish
different celestial objects based on their inherent properties, such as brightness
and shape. We are testing our open-source software with image data from a
college telescope from Southern Connecticut State University. The telescope is
a Spica Eyes Dobsonian reflecting telescope with an aperture size of 0.6m and
focal ratio f/3.3. Transfer optics were added to increased our spatial resolution
from 1.4 arcsec per pixel to 0.8 arcsec per pixel measurement. The transfer op-
tics used a filter λ0 = 537nm that optimized quantum efficiency in the V-band.
These images were taken July 2018 at Southern Connecticut State University
(SCSU) in New Haven, CT where there is high artificial brightness and Bortle
scale of 8. These images were taken in poor seeing conditions since the humid-
ity was high due to the typical nature of costal Connecticut in the summer.
Furthermore, tracking was not stable leading to target drift across the image
plane. Figure 1(a) shows images from this observation session which include
8 frames of 0.05s exposure time with a readout speed of 2MHz of Jupiter.
This shows how tracking and poor alignment can lead to images that are not
resolved to show the details of Jupiter as seen in Figure 1(b). Stacking is nec-
essary to improve the signal to noise ratio of the images as well as smooth out
details. Without sufficient stacking, it will be difficult to distinguish details of
the images.

Figure 1: (a) 0.05s exposure frames of Jupiter. (b) Images of Jupiter stacked.

One way to overcome poor tracking is a method called Shift and Add which
was first introduced by Bates and Cody in 1980 [1]. This process uses the cen-
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troid pixel of the object of interest on one image. Then finds the same object
of interest and its centroid pixel location. The two images are then stacked
upon on another based on their centroid locations, thus the images are shifted
and then stack on top of one another. This can be done by hand if you have a
few images, but generally for best image resolution, you need to take at least
30 stacks to overcome signal to noise. Using a computer automated shift and
add stacking ability will significantly increase image quality and reduce image
processing time for poor tracking conditions. Mizar was another target cap-
tured at SCSU that evening we used to test our image rendering and modeling
using computer algorithms. Mizar A is an A2V star with V magnitude of 2.20
located in the constellation Ursa Major was chosen for its high V magnitude
and ability to be seen by the naked eye. It is a visual double with Alcor, an
A5V star with V magnitude of 4.01 which is a gravitational bound binary 706
arcsec apart. However, Mizar has a closer companion 14.42 arsec away called
Mizar B, a kA1h(eA)Ma7IV-V star that is a spectroscopic binary with V mag-
nitude 3.88 that can only be seen using a telescope [3]. Figure 2(a) shows an
image of Mizar and its faint companion to the bottom right. Figure 2(b) shows
its intensity plot across the central axis of Mizar. Stars should model a dot on
the image plane and a smooth intensity profile due to circular aperture of the
telescope also known as a point spread function. However, Figure 2(a) demon-
strates the poor collimation of the telescope with v-like shape coma. This
makes it difficult to resolve the star into its theoretical point source profile.
Figure 2(b) displays the intensity profile with jagged lines unlike the smooth
peak a tradition point spread function would demonstrate.

Figure 2: (a) 0.01 exp of Mizar A and Mizar B (b) Seeing Profile of Mizar A.

This collaboration explores the challenges astronomers face with image pro-
cessing with solutions from computing. We explore the initial steps to tackling
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some of these astronomy initiatives by developing new algorithms in python.
Previous research from Granucci, et al. [2] used IDL to render images and per-
form image analysis. However, python is more widely available to students,
therefore we aim to use that platform for image analysis. We aim to offer sum-
mer research experience and a cross listed course in computing and astronomy
to develop new algorithms to be used on images taken at SCSU for calibration.
Once we have tested our system, we will take new images with our ZWOASI294
Pro Color Camera and Explorer Scientific refractor telescope, f/7, at Quin-
nipiac University to study our different seeing conditions as well as optics for
image research.
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While teaching Introduction to Programming in the Computer Science pro-
grams for many semesters, it was noticed that the students were not necessarily
able to see the big picture of what they were learning and where it could be ap-
plied. It was also noticed from meetings with individual students during office
hours and beyond that students, after completing the course, continued to feel
hesitant to tackle big projects because they had not worked on them before.
That was the main motivation to modify the way coursework was designed.
The term project gives students a chance to implement real-world problems
and apply the course’s material to larger tasks. The project includes multiple
parts. Each part is assigned after completing a new topic(s) and its labs. Each
subsequent part builds on and expands the preceding work. The project re-
quires students to understand the concepts and problem specifications, design
and implement the solution, test, and debug it.

The importance of adopting this approach (one big project divided into
parts) as opposed to traditional individual, unrelated assignments is evident in
students’ interest in working on real-world projects that they can relate to and
have seen to some extent in their daily lives. Also, completing this project gives
students the experience of working on large-scale projects that require multiple
and continuous modifications, updates, and refactoring of the current version
of the project. Each student is individually assigned one of three themes for a
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project. Each theme is composed of seven main parts. Each part covers a set
of subtopics covered in lectures and labs.

The three themes used in this semester are: Health Record System, Day
Care Management System and Restaurant Management System.

To investigate the effectiveness of this approach to course work redesign,
the study consists of online, anonymous surveys. Students who choose to par-
ticipate take the surveys anonymously distributed after completing each part
towards building the final project.
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Many colleges have advanced writing requirements for all students, includ-
ing computer science majors. At our college one of the requirements that we
must meet is to have a robust peer review process. This poster describes a set
of custom software tools used to support double-blind peer reviews of hand-
written student papers.

The primary motivation to requiring handwritten essays is as a counter-
measure against generative AI usage. While estimates vary widely, from 10%[1]
to 56%[6], it is a factor that needs to be addressed in any writing course.
Although requiring handwriting does not prevent generative AI usage, it has
been effective at reducing its impact. The downside of using paper though is
that it makes double-blind peer review more cumbersome.

The tools used to support the review process are all open-source tools and
libraries tied together with a set of Perl scripts. The first pair of tools used
are Libqrencode[5] and ZBar[3] to create and read, respectively, QR codes for
tracking a paper’s author. The instructor hands out papers marked with the
student’s name and a unique QR code. Assignments can either be full page
open-ended writing, or can be a set of short answer and/or multiple choice
questions. Review sheets are likewise marked, and may either be full page, or
there may be multiple reviews on the same page. The data embedded in the
QR codes is the assignment number and a random assignment-specific token.

An SQLite[4] database file is used to track documents, any subregions of
documents, review assignments, and any associated meta-data.

Opencv[2] is used to remove the name and QR codes before redistributing
information to either reviewers or reviewees. An earlier version of these tools
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used pdfjam to simply crop the documents based on the expected position of
different pieces of information. This mostly worked but could fail based on
irregularities that might occur from either printing or scanning. The current
version of the software uses Opencv to look at the contours present in the
document and then base editing decisions on that information. It can also be
used to recognize responses to multiple choice questions. Opencv is used to
split documents into subregions and then those subregions can be selectively
reintegrated into documents for the other students or the instructor. For in-
stance, a review sheet can have an area for a reviewer to include comments to
the instructor that are not shared with the reviewee.

The recombination feature is also useful for collecting feedback on in-class
presentations and redistributing the feedback to the presenters.

Documents are created using a script that generates LaTex files. The LaTex
files include the images that the Opencv scripts cropped. The LaTex files are
compiled into pdfs worksheets that are printed and distributed to the class.
The documents that students review are uploaded to a google drive folder, and
then an Apps Script program distributes the review assignments into folders
shared with each individual student.

The total size of the software is about 500 SLOC of Perl and Python scripts.
The software handles identification, anonymization, randomized review assign-
ments, and feedback collation tasks. The instructor is responsible for distribut-
ing the paper worksheets and scanning them when they are turned in. Camera
based submissions do also work, but scanning provides better uniformity ( and
usually better quality due to lighting ). These tools have made double-blind
peer reviews relatively simple to implement for class assignments.
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