
The Journal of Computing
Sciences in Colleges

Papers of the 35th Annual CCSC
South Central Conference

April 5th, 2024
Stephen F. Austin State University

Nacogdoches, TX

Bin Peng, Associate Editor Bingyang Wei, Regional Editor
Park University Texas Christian University

Mustafa Al-Lail, Regional Editor
Texas A&M International University

Volume 39, Number 7 April 2024

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2024 CCSC South Central Conference 8

Regional Committees — 2024 CCSC South Central Region 9

Reviewers — 2024 CCSC South Central Conference 10

The Evolution of IT in Higher Education and Preparing for the
Future
— Opening Keynote 11

Michael Coffee, Stephen F. Austin State University

A Case Study on Adopting Best Practices in Introductory Com-
puter Science 12

Jeremy Becnel, Stephen F. Austin State University

Fostering Code Quality Practices Among Undergraduate Novice
Programmers 21

Essa Imhmed, Edgar Ceh-Varela, Scott Kilgore, Eastern New Mexico
University; Hashim Abu-Gellban, Grand Canyon University

A Mobile App Leveraging NLP Techniques for Sci-Fi Book Rec-
ommendations 33

Edgar Ceh-Varela, Essa Imhmed, Drey Smith, Eastern New Mexico Uni-
versity

Teaching Cross-Platform Mobile Development and Cultivating
Self-Directed Learners – A Six-Week Summer Online Course Ex-
perience 41

Liqiang Zhang, Indiana University South Bend

Hack the Border: Empowering Experiential Learning Competen-
cies in Computing through Hackathons 52

Christian Servin, Nadia Karichev, El Paso Community College; J.J.
Childress, Microsoft

3

Designing a Design-Oriented Course for CS Majors 58
Fahmida Hamid, New College of Florida

FpTracker—A Labware for Teaching Browser Fingerprinting and
Privacy Preservation 64

Lin Li, Na Li, Prairie View A&M University

Camp CryptoBot: A Model for Taking Risks and Promoting Self-
Efficacy in Pursuit of Cybersecurity Career Pathways 72

Pauline Mosley, Li-Chiou Chen, Lisa Ellrodt, and Doris Ulysse, Pace
University

The Utility of Radix Representations and Surrogate Logarithms
in the Analysis of Algorithms and Data Structures 82

Michael Kart, Saint Edward’s University

Learning Parallelism Through an Unplugged Class Activity —
Conference Workshop 91

Matthew Toups, Tulane University; Anurag Dasgupta, Valdosta State
University; Venkat Margapuri, Villanova University; Simon Shamoun,
Hofstra University; Shubbhi Taneja, Worcester Polytechnic Institute

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Scott Sigman, President (2024),
ssigman@drury.edu, Mathematics and
Computer Science Department, Drury
University, Springfield, MO 65802.
Bryan Dixon, Vice
President/President-Elect (2024),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.
Baochuan Lu, Publications Chair
(2024), blu@sbuniv.edu, Division of
Computing & Mathematics, Southwest
Baptist University, Bolivar, MO 65613.
Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).
Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David R. Naugler, Midsouth

Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative(2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024),
tina.johnson@mwsu.edu, Department of
Computer Science, Midwestern State
University, Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024),
kevin.treu@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

5

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Department of
Computing and Mathematical Sciences,
Park University, Parkville, MO 64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of

Computer Science, Hood College,
Frederick, MD 21701.
Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

ACM CCECC

7

Welcome to the 2024 CCSC South Central Conference

The 2024 South Central Steering Committee is very pleased to welcome
everyone to our 35th annual conference hosted by Stephen F. Austin State
University in Nacogdoches, Texas. Our conference chair and host, Anne Marie
Eubanks, has provided infrastructure and support for the in-person delivery of
our conference this year.

For our 2024 conference, we have nine papers, one tutorial, and several
student and faculty posters scheduled for the program. This year, the Steering
Committee chose 9 of 14 papers through a double-blind review process for a pa-
per acceptance rate of 64%. Thirteen colleagues across the region and country
served as professional reviewers, and we recognize the expertise and guidance
they all so thoughtfully contributed to the selection of our 2024 conference
program.

The Steering Committee continues to seek colleagues to host the conference
in the future and to join our community of computer science educators to en-
rich our curricula and provide innovative pedagogy for our students. We invite
and encourage our fellow members of the South Central region to attend our
steering committee business meeting on Friday, April 5, 2024, after the confer-
ence reception and banquet. Fellow educators and colleagues are encouraged
to join in our efforts to involve more of our community in the planning and
execution of the conference in the future.

We extend a warm and delightful welcome to our presenters and attendees
who continue to promote computer science education and camaraderie in our
region. To all members of our 2024 Steering Committee, thank you again for
your help organizing the conference and your gracious efforts in delivering our
conference during such challenging times.

Anne Marie Eubanks
Stephen F. Austin State University

Conference Chair and Host

Bingyang Wei
Texas Christian University
Regional Editor Co-Chair

Mustafa Al Lail
Texas A&M International University

Regional Editor Co-Chair

8

2024 CCSC South Central Conference Steering
Committee

Conference Chair
Anne Marie Eubanks Stephen F. Austin State University, TX
Past Conference Chair
Anne Marie Eubanks Stephen F. Austin State University, TX
Papers Chair
Bingyang Wei . Texas Christian University, TX
Mustafa Al-Lail Texas A&M International University, TX
Reviewer Chair
Lasanthi Gamage .Webster University, MO
Panels and Tutorials Chair
Jeffrey Zheng . Stephen F. Austin State University, TX
Posters Chair
Shyam Karrah . The University of Texas at Dallas, TX
Moderator Chair
Vipin Menon . McNeese State University, LA
Publicity Chair
Eduardo Colmenares-Diaz Midwestern State University, TX
Nifty Assignments Chair
Michael Kart .St. Edward’s University, TX
At-Large Member
Vacant .

Regional Board — 2024 CCSC South Central Region

National Board Representative
Tina Johnson .Midwestern State University, TX
Registrar
Anne Marie Eubanks Stephen F. Austin State University, TX
Treasurer
Vacant .
Regional Editor
Bingyang Wei . Texas Christian University, TX
Mustafa Al-Lail Texas A&M International University, TX
Webmaster
Christian Servin . El Paso Community College, TX

9

Reviewers — 2024 CCSC South Central Conference

Steve ColeWashington University in St. Louis, St. Louis, MO
Eduardo Colmenares-Diaz . . .Midwestern State University, Wichita Falls, TX
Jason Dill . Webster University, Webster Groves, MO
David Gurney Southeastern Louisiana University, Hammond, LA
Essa Imhmed Eastern New Mexico University, Portales, NM
Tina Johnson Midwestern State University, Wichita Falls, TX
Shyam KarrahThe University of Texas at Dallas, Dallas, TX
Michael Kart .St. Edward’s University, Austin, TX
Tim McGuireTexas A&M University, College Station, TX
José Metrôlho .
. Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal
Christian Servin El Paso Community College, El Paso, TX
Bilal Shebaro . St. Edward’s University, Austin, TX
Bill SieverWashington University in St. Louis, St. Louis, MO

10

The Evolution of IT in Higher Education
and Preparing for the Future∗

Opening Keynote

Michael Coffee
CIO, Stephen F. Austin State University

Bio

Michael Coffee has served in numerous capacities
across IT in his thirty-year career spanning both
private industry and higher education. During
this time, he has witnessed significant changes
in the IT industry and eagerly anticipates its
future direction. Currently, Mike serves as the
Chief Information Officer at Stephen F. Austin
State University, leading the Information Tech-
nology Services division. Their mission is to act
as trusted advisors and deliver robust IT ser-
vices to all members of the university commu-
nity. Mike holds a Bachelor of Science in Computer Science and a Master of
Business Administration from Stephen F. Austin State University.

∗Copyright is held by the author/owner.

11

A Case Study on Adopting Best Practices
in Introductory Computer Science ∗

Jeremy Becnel
Department of Computer Science

Stephen F. Austin State University
Nacogdoches, TX 75962

becneljj@sfasu.edu

Abstract

This article discusses observations from a reimagining of the intro-
ductory computer science principles course at Stephen F. Austin State
University. The course applies the best principles from a National Sci-
ence Foundation study in conjunction with the College Board. Student
attitudes are observed along with the student performance in the course
and following courses.

1 Introduction

In 2011, the National Science Foundation (NSF) embarked on an initiative 1 to
broaden participation in computer science, targeting high schools. This effort
culminated in the design of a new introductory computing course, Computer
Science Principles (CSP). The primary aim of this course was to reach a broad
audience of students. It was crafted to include rich computer science content
and engaging pedagogy while maintaining the rigor and high standards of the
Advanced Placement (AP) program 2.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1https://www.nsf.gov/news/news_summ.jsp?cntn_id=129882#
2https://www.nsf.gov/awardsearch/showAward?AWD_ID=1246919#

12

The Computer Science Principles 3 course was developed through a unique
collaboration between the National Science Foundation, the College Board, and
computer science educators at a number of universities. It was initially piloted
nationwide and later became the newest College Board Advanced Placement
offering during the academic year 2016-17 [3].

The project investigated the implementation and outcomes of Concurrent
Enrollment (CE) programs 4. In addition to the AP course, an accompanying
introductory course at the college level was developed employing best practices
in computer science education [4]. This initiative represents a significant ef-
fort to integrate computer science education into the mainstream curriculum,
thereby making it more accessible and appealing to a wider range of students
and reaching underserved populations.

In this work, we take the strategies and lessons learned by this study and put
them into practice for students served at Stephen F. Austin State University
(SFASU) to ascertain if these practices can have a positive impact on student
outcomes, attitudes, and perceptions.

1.1 Pilot Courses

As part of the NSF student, pilot courses at several universities were designed
around these organizing principles: (1) Computing is a creative human ac-
tivity that engenders innovation and promotes exploration. (2) Abstraction
reduces information and detail to focus on concepts relevant to understand-
ing and solving problems. (3) Data and information facilitate the creation of
knowledge. (4) Algorithms are tools for developing and expressing solutions
to computational problems. (5) Programming is a creative process that pro-
duces computational artifacts. (6) Digital devices, systems, and the networks
that interconnect them enable and foster computational approaches to solving
problems. (7) Computing enables innovation in other fields including science,
social science, humanities, arts, medicine, engineering business.

Additionally, the courses incorporated the following six computational think-
ing practices: (1) Analyzing the Effects of Computation (2) Creating Compu-
tational Artifacts (3) Using Abstractions and Models (4) Analyzing Problems
and Artifacts (5) Communicating Processes and Results (6) Working Effec-
tively In Teams.

Translating the broad concepts of the Seven Big Ideas and Six Computa-
tional Thinking Practices into a practical curriculum required an intermediate
step of developing learning objectives. This groundwork paved the way for
the creation of specific classroom materials and activities, tailored into curric-

3https://new.nsf.gov/events/ap-computer-science-principles#
4https://www.nsf.gov/awardsearch/showAward?AWD_ID=1837112#

13

ula by instructors at five diverse universities. The five pilot schools and their
respective instructors included:

• University of North Carolina at Charlotte - Tiffany Barnes, teaching “The
Beauty and Joy of Computing” using BYOB Scratch.

• University of California, Berkeley - Dan Garcia and co-instructor Brian
Harvey, offering the same course as UNC Charlotte.

• Metropolitan State College, Denver - Jody Paul, teaching “Living In A
Computing World” with Scratch.

• University of San Diego - Beth Simon, instructing “Fluency with Infor-
mation Technology” using Alice.

• University of Washington, Seattle - Larry Snyder, teaching “Computer
Science Principles” with Processing, in collaboration with high school
teacher Susan Evans.

1.2 Extensions

Since the culmination of the program, several universities have modeled their
introductory computer science course based on the lessons learned from the
pilot studies. Some notable successes include Stony Brook University. The
university previously offered a course, Introduction to Computational Arts 5,
that introduces the fundamentals of programming, specifically focusing on com-
bining arts and computing.

Another notable adaptation occurred at Bryn Mawr College. A National
Science Foundation-sponsored survey found that students in an introductory
computing course taught at Bryn Mawr College were twice as likely to take
another computer science class compared to students in a class with a more
traditional curriculum [10].

Possibly the greatest success occurred at Harvey Mudd College [1]. Harvey
Mudd University saw an increase in the percentage of female majors from 10%
to 40% after adapting their introductory course [6].

1.3 Study Summary

The introductory course in computer science at SFASU has traditionally fol-
lowed the standard approach. That is, students are introduced to basic con-
cepts such as branching and repetition in a lecture format and practice these
concepts outside of class by constructing simple programs that read input and
produce output either to a file or console.

5https://www.my-mooc.com/en/mooc/compartsprocessing/

14

In conjunction with an NSF S-STEM proposal, the author piloted a course
that made use of current best practices in computer education and incorporated
aspects of the pilot course and the accompanying NSF/College Board study
referenced previously. Concepts and practices were selected to best fit the
students who typically attend the institution. Survey data and student tracking
are examined to ascertain the success of the newly designed course.

2 Case Study

The pilot course was first facilitated in the Fall of 2021. The course was piloted
to a group of eleven honors students. The following year, in the Fall of 2022,
the course was run again in two regular sections consisting of 59 total students.
The students were a mix of several different majors including computer science,
nursing, mathematics, general studies, biology, engineering, chemistry, and
others. The vast majority of students had no prior programming experience.

2.1 Reimagined Course Structure

Several key decisions were made regarding the course structure to ensure the
course simultaneously included best practices, adhered to department require-
ments for content, and adequately prepared SFASU students for success in the
following courses. 6

The first key decision was to select the tools to use for the course. The
courses that follow involve object-oriented programming and event-driven pro-
gramming and use Java and C#, respectively. Thus the Processing (Java)
programming environment/language was selected so students would learn the
syntax and structures common to these statically typed programming lan-
guages. Processing is also easy to use, install, and has the added benefit of
making creative/artistic tasks accessible to beginning programmers.

The content was the same as the traditional offerings of the course. How-
ever, the delivery has key differences. In place of a standard lecture approach,
concepts were actively learned [7] using a “sandwich approach”. That is, stu-
dents were briefly introduced to a concept by the instructor, worked on the
concept with classmates, and then the last part of the class was devoted to
discussion on the concept.

Assignments were frequent, typically two or three per week, and varied from
worksheets, coding, and reading/writing. A notable alteration was the use of
creative coding assignments, such as creating a logo or a simple game [5]. Main
concepts typically had two related coding assignments (in place of standard
assignments that read/write from the file/console). For each main concept

6Course materials are available from the author upon request.

15

(e.g. arrays, loops), the first assignment was a paired programming assignment
where students could get comfortable with the assigned topic and the second
was an individual assignment for the student to demonstrate mastery [11].

To provide assistance to students and serve as a role model/mentor, diverse
upper-level and graduate students were selected to act as mentors. The addi-
tion of mentors assured students could receive help promptly whether in-person
or through a course Discord server. The use of these mentors also helped to
reduce gaps in prior experience [8].

The class also introduced students to “Big Ideas” in computing. This in-
cluded security, how computers store information, computing for social good,
algorithms, etc. Students were typically asked to read articles and participate
in a short lecture by the instructor. Afterward, students were put in small
groups and asked to make a 3-5 minute presentation on something that inter-
ested them about the topic. These activities helped to improve student anxiety
about public speaking, fostered a collaborative environment, and improved stu-
dent communication skills.

The course culminated in a pair programming project of the student’s choos-
ing. The students presented their work during final exam week. The only
other deviation from the traditional course offering was the use of short fre-
quent quizzes in place of large monthly exams. In the following, we refer to the
course outlined in this section as reimagined and the traditional lecture-based
course as traditional.

2.2 Data Collection and Evaluation

In addition to examining course grades and feedback on course evaluations, we
make use of two other means of evaluation: 1) Pre and Post Course Surveys
were administered to students. In addition to demographic information, the
survey asked students their opinions on the course, and their attitude toward
computer science, and asked general questions about computer science in soci-
ety. 2) Students who decided to continue their studies in the following course
were tracked to determine their level of success.

3 Results

The grade distribution of the 59 students in the reimagined course can be
found in Figure 1. Compared to 65 students who enrolled in a traditional
section of the course, there were no statistically significant differences, other
than in the number of F’s and W’s (drops). The traditional offering saw a
larger percentage of F’s while the re-imagined course saw a larger number of
drops (W). The instructor reached out to the 11 students that dropped and the

16

most common response was the course was more work than their other courses
or more work than they expected.

Figure 1: Course grade distribution (W is for students that dropped)

The courses that follow the introductory computer science principles course
are Event Driven Programming and Object-Oriented Programming. To enroll
in these courses students must earn a grade of C or better in the introductory
course. There was no statistically significant difference in the percentage of
students who earned a grade of C or better between the reimagined and tra-
ditional courses. While these initial results were somewhat disappointing, it
is not uncommon for active learning techniques, such as flipped classrooms to
show minimal impact on course grades [9]. However, active learning has been
shown to lead to future success, improved attitudes, reduced anxiety, etc. [2].
We explore these in the next section.

3.1 Success in Future Courses

Of the 59 students who took the re-imagined introductory computer science
course, 10 went on to take Object Oriented Programming and 15 went on
to take Event Driven Programming. (Note: the students are not mutually
exclusive.) The grade distribution of the students in these courses can be
found in Table 1.

Even given the small sample size the number of students earning an A, the
number of students passing (earning a D or better), and the number of students
earning a C or better show a statistically significant improvement (p = 0.05)
over historical departmental percentages.

17

Table 1: Grades in Following Course

Course/Grade A B C D F W (drop)
Event Driven 10 2 1 2 0 0

Object Oriented 7 2 0 1 0 0

3.2 Student Attitudes

Students in the reimagined course participated in pre and post-course surveys.
7 Students were asked on both surveys “In your opinion, what things someone
who is skilled in computing can do. Please list 3 or more.” In the pre-course
survey student responses primarily consisted of building websites, animation,
visual design, and fixing computers. The post-course survey answers primarily
consisted of course topics, such as working with arrays and images, working
in groups, writing and understanding code, and making use of abstraction and
generalization.

Students were also asked to respond to several Likert scale questions con-
cerning the perception of their abilities regarding computer science. In the
survey, we witness an increase from pre to post in the students’ perception
of their abilities to productively work in a team, effectively perform research,
solve logic problems, and work with interactive media.

The most significant improvement in student perception was found in the
answers to the following questions 1) I can write successful computer programs.
2) I can effectively analyze the ethical, legal, and social implications of com-
puting. The pre and post-survey results can be found in Table 2.

Table 2: Survey Results

Question pre/post Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

1) pre 3% 20% 32% 30% 15%
1) post 17% 53% 26% 2% 2%
2) pre 17% 31% 41% 7% 4%
2) post 30% 57% 11% 2% 0%

3.3 Concluding Remarks

While the pass rate and grade distribution did not demonstrate a significant
difference between the reimagined course and the traditional course offering,

7Survey and results available from the author upon request.

18

there does seem to be some evidence that students who successfully complete
the reimagined course perform better in subsequent courses. Hence this case
study warrants a larger study on long-term success and retention.

Survey results demonstrate participation in the reimagined course results in
positive changes in student attitudes and perceptions. Anecdotal evidence from
course evaluations provides further evidence that students enjoy the course
environment, the active learning methodology, and the creative assignments.
Thus, the course adaptions in the reimagined course have the potential to lead
to higher retention of computer science (and related) majors and recruitment
of students from other disciplines, particularly from underserved groups. To
verify the efficacy of the preliminary results in this case study a multi-year
study should be undertaken to compare results to both historical data and a
control group of students taking a traditional introduction computer science
course.

References

[1] Dodds Z. Alvarado C. and Libeskind-Hadas R. “Increasing Women’s Par-
ticipation in Computing at Harvey Mudd College”. In: ACM Inroads 3
(2012), pp. 55–64.

[2] Naneh Apkarian et al. “What really impacts the use of active learn-
ing in undergraduate STEM education? Results from a national survey
of chemistry, mathematics, and physics instructors”. In: PLOS ONE 16
(Feb. 2021), e0247544. doi: 10.1371/journal.pone.0247544.

[3] Owen Astrachan and Rebecca Osborne. “Computer Science principles:
portfolio-based assessment”. In: ACM SIGCSE Bulletin 44 (Oct. 2012),
pp. 4–14. doi: 10.1145/2398328.2398330.

[4] Owen Astrachan and Rebecca Osborne. “Sorting in High School: The
Good, The Bad, The Terrible”. In: Presented at the CSTA Conference in
Omaha, NB, 2018.

[5] Nathalia da Cruz Alves, Christiane Gresse von Wangenheim, and Lúcia
Pacheco. “Assessing Product Creativity in Computing Education: A Sys-
tematic Mapping Study”. In: Informatics in Education 20 (Mar. 2021),
pp. 19–45. doi: 10.15388/infedu.2021.02.

[6] Maria Klawe. How Can We Encourage More Women to Study Computer
Science? 2015. url: https : / / www . newsweek . com / how - can - we -
encourage-more-women-study-computer-science-341652 (visited
on 01/06/2024).

19

[7] Yin-Chan Liao and Marjorie Ringler. “Backward design: Integrating ac-
tive learning into undergraduate computer science courses”. In: Cogent
Education 10 (Apr. 2023). doi: 10.1080/2331186X.2023.2204055.

[8] Diba Mirza et al. “Undergraduate TA and Mentor Programs in Com-
puter Science”. In: SIGCSE ’19: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Feb. 2019), pp. 1250–1250.
doi: 10.1145/3287324.3293744.

[9] Elizabeth Setren et al. “Effects of Flipped Classroom Instruction: Evi-
dence from a Randomized Trial”. In: Education Finance and Policy 16.3
(July 2021), pp. 363–387. issn: 1557-3060. doi: 10.1162/edfp_a_00314.
eprint: https://direct.mit.edu/edfp/article- pdf/16/3/363/
1928207/edfp_a_00314.pdf. url: https://doi.org/10.1162/
edfp%5C_a%5C_00314.

[10] Chris Stephenson et al. Retention in Computer Science Undergraduate
Programs in the U.S.: Data Challenges and Promising Interventions.
New York, NY, USA: Association for Computing Machinery, 2018. isbn:
9781450388320.

[11] Jinbo Tan, Lei Wu, and Shanshan Ma. “Collaborative dialogue patterns
of pair programming and their impact on programming self-efficacy and
coding performance”. In: British Journal of Educational Technology (Dec.
2023). doi: 10.1111/bjet.13412.

20

Fostering Code Quality Practices Among
Undergraduate Novice Programmers∗

Essa Imhmed1, Edgar Ceh-Varela1,
Hashim Abu-Gellban2, and Scott Kilgore1

1Mathematical Sciences Department
Eastern New Mexico University

Portales, NM 88130
{essa.imhmed,eduardo.ceh,scott.kilgore}@enmu.edu

2Computer Science Department
Grand Canyon University

Phoenix, AZ 85017
hashim.abugellban@my.gcu.edu

Abstract

This paper reports on a study conducted to incorporate code quality
into an introductory Java programming course. The discussion focuses
on the strategies we used to teach coding standards necessary for writing
high-quality code. We also present data and an analysis, investigating
code quality issues identified through CheckStyle and PMD in students’
code submissions. Our analysis revealed that 42% of code quality issues
are related to code formatting and documentation, with an average of
363.19 issues per Thousand Lines of Code (KLOC) and 49.96 issues per
KLOC, respectively. The analysis also revealed the presence of error-
prone and other best practices issues. This analysis provides insight into
the effectiveness of these teaching strategies.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

21

1 Introduction

Coding standards are industry guidelines and best practices that become cru-
cial to software development. These standards cover various aspects, including
naming conventions, formatting, indentation, and comments/documentation.
These aspects define how to write high-quality code improved for readability.
Thus, adhering to coding standards can enhance team communication and re-
duce the implementation and maintenance costs and the risk of software bugs.

Similarly, code quality is of significant importance in academia. It helps
course instructors understand their students’ codes and, hence, efficiently re-
view them for grading and timely feedback. Code quality also promotes effec-
tive collaboration among class project teams, as each student can comprehend
the code written by their peers.

Despite that, code quality is often neglected in many university-level pro-
gramming courses [3], exacerbated by several factors discussed in the literature.
For instance, the findings from [12] indicate that most students do not consider
coding standards a top priority and often fail to comply with them. Students
justify this negligence with tight schedules and minimal grading emphasis on
code quality. This issue is exacerbated by instructors who should enforce code
quality in their courses. Instead, they tend to focus only on designing program-
ming assignments that only assess students’ problem-solving abilities rather
than including assessments of their code quality [10, 11].

To address this issue, we integrated teaching strategies focused on coding
standards into an introductory Java programming course. This aims to convey
the importance of code quality early on among students learning to code. These
strategies involve designing practical assignments to assess students’ learning
of coding standards and a grading rubric that enforces code quality in their
code submissions. This paper reports on implementing these teaching strate-
gies and presents data and an analysis, investigating code quality issues in
students’ programming assignment solutions. The results obtained from the
study provide valuable insights into the effectiveness of these strategies.

The reminder of this paper is structured as follows. Section 2 presents
research background. Section 3 summarizes the research methodology. Next,
in Section 4, we discusses the result of this study. Section 5 concludes the
paper.

2 Background

Recent studies have investigated code quality in an academic environment. Hof-
bauer et al. [7] report an analysis of source code submitted by novice students
of a software engineering course. Their analysis revealed that students exhib-

22

ited an understanding of most of the software engineering concepts, but their
code suffered readability and adherence to coding standards, specifically nam-
ing conventions. Findings from Li et al. [12] indicate that students recognize
the importance of coding standards; however, there is a noticeable tendency
among students to overlook compliance with these standards. Students often
prioritize writing functional code over code that emphasizes readability [11].
Therefore, there is a need for teaching strategies addressing such discrepancies.

To address this issue, Li et al. explored several teaching strategies to en-
hance students’ perception of code quality, including focusing on a small set
of common coding standards suitable for novice programmers, providing stu-
dents with a document that briefly outlined expectations on these standards,
and assigning practical exercises on coding standards. Stegeman, Barendsen,
and Smetsers [16] propose grading rubrics to enforce code quality in student
code submissions. Such a rubric provides a systematic approach for grading
and feedback, allowing students to greatly benefit from it [15]. Li et al. [12]
also suggests adopting peer assessment approach among students to get peer
feedback.

Furthermore, Chen et al. [4] propose using static analysis tools to help
novice and expert programmers improve code quality. Oskouei et al. [13]
compared three open-source static analysis tools for Java programs, namely:
PMD [14], FindBugs [6], and CheckStyle [2]. Oskouei et al. found that each
tool uncovers different kinds of bugs. PMD uncovers common programming
flaws such as empty catch blocks and unused variables. FindBugs discovers
bugs and potential runtime. CheckStyle detects code style violations.

Albluwi et al. [1] investigated the code quality of students in an introduc-
tory programming course at Princeton University. Utilizing CheckStyle and
PMD, their results show common frequent errors among students related to
formatting and documentation regardless of performance or degree major, with
female students and in general students who work with peers producing fewer
documentation and style errors. Edwards et al. [5] also utilized CheckStyle and
PMD to investigate the code quality of over 500 thousand programs submitted
across four computer science courses at Virginia Tech. Their analysis revealed
the presence of 10 million coding standards violations in students’ codes, of
which formatting and JavaDoc documentation errors are the most frequent
and are consistent between computer science majors and non-majors across
different experience levels.

3 Methodology

Figure 1 depicts an overview of the study process. Due to space limits, we
provide a very abbreviated discussion of the study process below.

23

Course Integration
➔ Coding Standards

Lecture Series.
➔ Coding Standards

Document.
➔ Practical

Assignments.
➔ Rubric

Development.

Review and Feedback
➔ Problem-Solving

Ability.
➔ Code Quality. Analysis

Data Handling
➔ Data Collection.

◆ Code
Submission

◆ CheckStyle &
PMD

➔ Data Cleaning.

Figure 1: Overview over the study process.

3.1 Course Integration

To help students develop the habit of writing high-quality code, we incorpo-
rated coding standards into an introductory programming course at Eastern
New Mexico University. The course aims to introduce students to problem-
solving, algorithmic-thinking, and software development using the Java pro-
gramming language, covering basic programming concepts such as data types,
conditions, loops, methods, arrays, and File I/O. Therefore, we delivered a se-
ries of lectures featuring coding standards with practical code examples. Sim-
ilar to [12], we introduced students to a small set of coding standards suitable
for novice programmers yet typical for completing programs with medium com-
plexity. We also provided students an access to a coding standards document
and instructed them to comply with it when writing code.

Listing 1: An example of coding standards practical assignment
1 import java . u t i l . Scanner ;
2 //This program reads , s ca l e s , and r e v e r s e s a sequence o f numbers .
3 public c lass Main
4 {public stat ic void main (St r ing [] args)
5 {
6 double [] a=read_inputs (5) ; mult ip ly (a , 10) ; p r i n t r ev e r s ed (a) ;
7 }
8 // Reads a sequence o f f l o a t i n g−point numbers .
9 // n i s the number o f inputs to read
10 public stat ic double [] read_inputs (int n)
11 {
12 System . out . p r i n t l n ("Enter ␣"+n+"␣numbers : ␣") ;
13 Scanner in=new Scanner (System . in) ; double [] inputs=new

double [n] ; for (int
i =0; i<inputs . l ength ; i++){ inputs [i]= in . nextDouble () ; } return
inputs ;

14 }
15 // Mu l t i p l i e s a l l e lements o f an array by a f a c t o r .
16 public stat ic void mult ip ly (double [] values , double f a c t o r)
17 {
18 for (int i =0; i<va lues . l ength ; i++){ va lues [i]= va lues [i]∗ f a c t o r ; }
19 }
20 // Pr int s an array in r ev e r s e order .
21 public stat ic void pr i n t r ev e r s ed (double [] v)
22 {// Traverse the array in r ev e r s e order , s t a r t i n g with the l a s t

element
23 for (int i=v . length −1; i >=0; i−−)
24 {System . out . p r in t (v [i]+"␣") ; }
25 System . out . p r i n t l n () ;
26 }}

24

Furthermore, we assigned the students a couple of practical assignments
focused on coding standards. Listing 1 presents one of these assignments. As
listed, the program functions correctly but contains several violations of coding
standards, such as line length issues, white space problems, and lack of JavaDoc
comments. The student’s task is to identify these violations and resubmit the
program after addressing them. Once submitted, we review students’ solutions
with particular attention to their compliance with coding standards.

Table 1: Coding standards criterion from the grading rubric

Criteria Ratings

Coding Standards

10 pts Excellent (100%)
Clearly and effectively documented, including the
JavaDoc tags for the author name, date, and assignment
title; includes descriptive names of all program variables
and functions; specific purpose noted for each function,
control structure, input requirements, and output results;
excellent use of white space; creatively organized work.
6 pts Satisfactory (60%) , but needs Improvement
It includes JavaDoc tags for the author name, date, and
assignment title; basic documentation has been com-
pleted, including descriptive names of all program vari-
ables and functions; purpose is noted for each function;
white space makes the program fairly easy to read; orga-
nized work.
4 pts Unsatisfactory (≤40%)
No author name, date, or assignment title is included;
very limited or no documentation is included; documen-
tation and naming do not help the reader understand the
code; poor use of white space (indentation, blank lines);
disorganized and messy.

Similar to [16], we also developed a grading rubric that assesses students’
problem-solving ability and code quality. Table 1 shows the coding standards
criterion from the rubric. As listed in the table, we focused on a small set
of coding standards related to documentation/comments, size violations (e.g.,
Line length), naming conventions, white space, and code block violations. We
used the rubric to enforce code quality in all students’ solutions to programming
assignments.

3.2 Static Analysis Tool Selection

Static analysis is a process in which a program’s source code is examined for
potential bugs or violations without executing it. For this study, we selected

25

CheckStyle and PMD to identify coding standards violations in students’ so-
lutions of programming assignments. CheckStyle and PMD are highly con-
figurable static analysis tools, allowing programmers to extend or choose the
types of violations these tools should detect. Following the approach in [1],
we used CheckStyle to check source code for coding conventions and style and
PMD to identify non-simplified expressions and code issues that may lead to
potential software bugs.

3.3 Data Collection

We collected 507 Java programming assignment solutions submitted by stu-
dents over a 3-semester period from Fall 2022 through Fall 2023, totaling
27,963 lines of code. We performed static analysis on the code submissions
using CheckStyle and PMD. We configured CheckStyle and PMD to check for
violations of the coding standards set in the grading rubric. Subsequently,
we obtained reports detailing 29,136 instances of coding standards violations.
Each instance includes a file name and a code line number indicating where
the violation has occurred. It also describes the violation and its category. Fi-
nally, we conducted data cleaning on the reports to generate a refined dataset
containing only the description and category for each violation. Following this,
we analyzed the new dataset.

4 Results and Analysis

This section presents a quantitative analysis of code quality issues identified in
students’ code submissions, focusing particularly on code style, best practices,
and error-prone violations.

Table 2: Error category

Category Error
Formatting White space around; line has trailing spaces; line length;

whites pace after; padding of parentheses; method
ParamPad ; no white space after; no white space before;
new line at end of file; file tab character.

Documentation Missing Javaoc method; invalid JavaDoc position;
JavaDoc style; JavaDoc method; JavaDoc variable;
JavaDoc type.

Naming Conventions Local variable name; member name; local final variable
name; method name; parameter name; static variable
name.

Readability Need braces; avoid nested blocks; empty catch block.

26

0

50

100

150

200

250

300

350

400

Formatting Readability Documentation Naming
Conventions

Final 363.30 2.80 52.14 7.46
Average 363.19 5.47 49.96 9.80
Initial 298.92 7.58 48.67 12.13

Final Average Initial

Figure 2: Error rates (in KLOC) on initial, average and then final submissions.

4.1 Code Style

Table 2 shows the error categorisation. Figure 2 presents a comparison of the
average error category rate per Thousand Lines of Code (KLOC) across stu-
dents’ code submissions, compared to error frequencies in the initial and final
semester submissions. The figure shows that Formatting errors are most com-
mon errors, with an average of 363.19 per KLOC, followed by Documentation
errors at 49.96 per KLOC. Together, Formatting and Documentation errors
account for up to 42% of the total errors in the student’s codes. For a detailed
description of the those category errors, see [2].

Looking at the final submissions of these two categories, it is clear that
there is an overall increase in the error rate per KLOC compared to the initial
submissions, with up to a 19.44% percentage increase in Formatting errors and
a 6.88% percentage increase in documentation errors. This could result from
having large programming assignments with more complex structures while
progressing toward the end of the semester. However, it also suggests that, on
average, students do not show improvement in these areas compared to other
aspects, such as naming conventions.

Since both Formatting and Documentation categories combine several code
style errors, further investigation is needed to identify which errors occur
most frequently. Figure 3 compares the average frequency of Formatting er-
rors across all code submissions. It is clear that the error WhiteSpaceAround
presents as the most frequent Formatting errors at 158.28 per KLOC, followed
by LineHasTrailingSpace at 72.56 per KLOC, and LineLength at 64.12 per
KLOC, compared to the other Formatting errors across all code submissions.
While these top three errors are considered harmless to code functionality,
they impact code readability and collaboration among team members, making

27

0
50

100
150
200
250
300
350
400
450

Whites
paceAr
ound

Line has
trailing
spaces

LineLen
gth

Whites
paceAft

er

ParenP
ad

Method
ParamP

ad

NoWhit
espace
After

NoWhit
espace
Before

Newline
AtEndO

fFile

FileTab
Charact

er
Final 163.66 67.45 62.01 48.65 7.62 2.72 2.72 0.70 5.83 1.55
Average 158.28 72.56 64.12 43.95 5.97 3.68 1.79 0.93 8.94 2.79
Initial 112.66 71.74 67.03 30.82 2.69 6.90 0.84 0.84 16.00 5.39

Initial Average Final

Figure 3: Formatting error rates (in KLOC) on initial, average and then final
submissions.

it challenging for reviewers to comprehend modifications during code reviews
and maintenance.

Figure 4 compares the average frequency of documentation errors across
all code submissions. Despite students, on average, showing improvement in
MissingJavaDocMethod and InvalidJavaDocPosition errors, compared to the
initial submissions of the same category, they are still the most frequently oc-
curring error at 19.60 per KLOC and at 9.66 per KLOC, respectively. Missing-
JavaDocMethod error indicates the absence of JavaDoc comments for a method.
InvalidJavaDocPosition error indicates that a JavaDoc comment is placed at
an incorrect position. JavaDocStyle error, representing a violation in the for-
mat of JavaDoc comments, is the third most frequent at 9.58 per KLOC.
Our analysis revealed that some students do not adhere to JavaDoc syntax
when documenting methods and classes. For instance, these students docu-
ment the method using comment blocks instead of the corresponding JavaDoc
tags. Also, some of them place JavaDoc’s comments describing the class inside
the class structure instead of before the class declaration.

4.2 Error-Prone and Best Practice

Error-prone and best practice violations [14] are considered code issues that
increase the risk of potential software bugs. Although not enforced in our
rubric, our analysis reveals the presence of these errors in students’ code sub-
missions, highlighting the necessity to include these code quality aspects in our
course. The topmost best practice violation identified is SystemPrintln error
with 22.11 per KLOC, followed by UnusedAssignment at 1.88 per KLOC. It is
recommended to use a logger instead of System.out/err.println, as the latter is

28

0

10

20

30

40

50

60

70

MissingJavad
ocMethod

InvalidJavad
ocPosition

JavadocStyle JavadocMet
hod

JavadocVaria
ble

JavadocType

Final 18.26 7.30 12.43 12.59 1.17 0.39
Average 19.60 9.66 9.58 8.65 2.29 0.18
Initial 26.10 10.44 6.57 3.37 2.19 0.00

Initial Average Final

Figure 4: Documentation error rates (in KLOC) on initial, average and then
final submissions.

usually intended for debugging purposes and can remain in the codebase even
in production code [14].

Our analysis also revealed that CloseResource is the most frequent error-
prone violation presented in students’ code submissions at 4.33 per KLOC. We
noticed that several code submissions utilizing the method Scanner for reading
from the console or files do not include statements that properly release them
once the I/O operation is complete. This type of violation can lead to resource
leaks, such as file locks or unexpected behavior causing the exhaustion of system
resources [14].

4.3 Instructor Reflection

Given the average error rate in the code quality categories—namely, naming
conventions, readability, and documentation—the integrated teaching strate-
gies on coding standards have fostered code quality practices among students.
However, our analysis also revealed that, on average, students did not show im-
provement over the semester in code formatting— mainly white space errors—
and show slight improvement in code documentation, which could be a result
from using integrated development environments (IDEs) with auto-completion
features.

Our students used Visual Studio Code (VSC) to write their programs. We
observed that the majority of them relied on the auto-completion features
for indentation and code completion, including the construction of JavaDoc
comments. Notably, JavaDoc comments for methods, in particular, can be
correctly constructed only when the methods are entirely coded. This could
be the reason why WhiteSpaceAround and JavaDocStyle errors are most fre-

29

quently presented in all submissions. Furthermore, the default settings in VSC
do not enforce specific line length. This lack of enforcement may explain why
LineLength error is among the most frequent errors observed in all submissions.

Another noteworthy observation is that some students often neglect to ad-
here to coding standards when these standards are not enforced by the grading
rubric, such as during quizzes, exams, and lab sessions. Even when coding
standards are enforced, a few students tend to refrain from complying with
them, as the portion of the assignment grade assigned is relatively small, sug-
gesting that the effort may not be worthwhile. Therefore, further research is
needed to

1. Explore other teaching strategies, such as having students perform peer
reviews on their code, to enhance students’ proficiency in the formatting
error category,

2. Integrate error-prone and best practices into our course,

3. Investigate in what context such IDEs impact the learning of novice pro-
grammers in this area.

5 Conclusion and Future Work

In this study, we integrated several teaching strategies on coding standards into
an introductory programming course, aiming to enhance students’ awareness
and perceptions of code quality. We also presented data and analysis, inves-
tigating code quality issues among novice students and providing insight into
the effectiveness of those strategies. Although the analysis revealed that these
strategies helped students to improve in most of the quality categories, such
as naming conventions and readability, we found that students still perform
poorly in code formatting and documentation, particularly white space and
JavaDoc comments for methods. In addition, students often neglect to comply
with coding standards when they are optional and not enforced by the grading
rubric. These findings align with those in [5, 1, 12]

The next step of this research involves automating the process of code
quality assessment. We also intend to investigate students’ code quality issues
with the C/C++ programming languages. Thus, we plan to implement a
scheme within the LLVM framework [8, 9] to detect code clones and best
practice issues such as redundant operations and unused assignments in student
codes during the compilation stage.

30

6 Acknowledgement

This research is funded by Eastern New Mexico University (ENMU) through
the Faculty Research and Instructional Development Grant program. We
would also like to thank Brian Pasko, of ENMU, for his contribution to re-
view & edit the manuscript.

References

[1] Ibrahim Albluwi and Joseph Salter. “Using static analysis tools for an-
alyzing student behavior in an introductory programming course”. In:
Jordanian Journal of Computers and Information Technology (JJCIT)
6.3 (2020), pp. 215–233.

[2] Checkstyle. https://checkstyle.sourceforge.io. Accessed: 2024-1-7.

[3] Hsi-Min Chen, Wei-Han Chen, and Chi-Chen Lee. “An Automated As-
sessment System for Analysis of Coding Convention Violations in Java
Programming Assignments”. In: J. Inf. Sci. Eng. 34 (2018), pp. 1203–
1221. url: https://api.semanticscholar.org/CorpusID:52165154.

[4] Hsi-Min Chen, Wei-Han Chen, and Chi-Chen Lee. “An Automated As-
sessment System for Analysis of Coding Convention Violations in Java
Programming Assignments.” In: J. Inf. Sci. Eng. 34.5 (2018), pp. 1203–
1221.

[5] Stephen H. Edwards, Nischel Kandru, and Mukund B.M. Rajagopal. “In-
vestigating Static Analysis Errors in Student Java Programs”. In: Pro-
ceedings of the 2017 ACM Conference on International Computing Edu-
cation Research. ICER ’17. Tacoma, Washington, USA: Association for
Computing Machinery, 2017, pp. 65–73. isbn: 9781450349680. doi: 10.
1145/3105726.3106182. url: https://doi.org/10.1145/3105726.
3106182.

[6] FindBugs - Find Bugs in Java Programs. https://findbugs.sourceforge.
net. Accessed: 2024-1-7.

[7] Markus Hofbauer et al. “Teaching software engineering as programming
over time”. In: Proceedings of the 4th International Workshop on Software
Engineering Education for the Next Generation. 2022, pp. 51–58.

[8] Essa Imhmed, Jonathan Cook, and Abdel-Hameed Badawy. “Evaluation
of a Novel Scratchpad Memory through Compiler Supported Simula-
tion”. In: 2022 IEEE High Performance Extreme Computing Conference
(HPEC). 2022, pp. 1–7. doi: 10.1109/HPEC55821.2022.9926335.

31

[9] Essa Abubaker Imhmed. “Understanding Performance of a Novel Local
Memory Store Design through Compiler-Driven Simulation”. PhD thesis.
New Mexico State University, 2022.

[10] Oscar Karnalim et al. “Promoting code quality via automated feedback
on student submissions”. In: 2021 IEEE Frontiers in Education Confer-
ence (FIE). IEEE. 2021, pp. 1–5.

[11] Oscar Karnalim, William Chivers, et al. “Work-In-Progress: Code Quality
Issues of Computing Undergraduates”. In: 2022 IEEE Global Engineering
Education Conference (EDUCON). IEEE. 2022, pp. 1734–1736.

[12] Xiaosong Li and Christine Prasad. “Effectively teaching coding standards
in programming”. In: Proceedings of the 6th conference on Information
technology education. 2005, pp. 239–244.

[13] Elmira Hassani Oskouei and Oya Kalıpsız. “Comparing Bug Finding
Tools for Java Open Source Software”. In: (2018).

[14] PMD. https://pmd.github.io. Accessed: 2024-1-7.

[15] D Royce Sadler. “Formative assessment and the design of instructional
systems”. In: Instructional science 18 (1989), pp. 119–144.

[16] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. “Designing a
rubric for feedback on code quality in programming courses”. In: Pro-
ceedings of the 16th Koli Calling International Conference on Computing
Education Research. 2016, pp. 160–164.

32

A Mobile App Leveraging NLP
Techniques for Sci-Fi Book

Recommendations∗

Edgar Ceh-Varela, Essa Imhmed and Drey Smith
Department of Mathematical Sciences

Eastern New Mexico University
Portales, NM, USA

{eduardo.ceh, essa.imhmed, drey.smith}@enmu.edu

Abstract
This paper introduces the development of a mobile application em-

ploying Natural Language Processing (NLP) techniques to provide content-
based recommendations for Sci-Fi books. The mobile application inte-
grates two distinct NLP techniques: Doc2Vec for rapid keyword searches
and RoBERTa to enhance the understanding of book themes and ideas.
This combination enables the recommender system to offer personalized
book recommendations tailored to individual user interests, enhancing
the reading experience.

1 Introduction

In today’s world of mobile apps, finding personalized book recommendations
is a common need. Recommender systems help by suggesting books or movies
based on users’ interests [4]. However, there remains a considerable gap in the
availability of mobile applications tailored to recommend science fiction (Sci-Fi)
books utilizing advanced natural language processing (NLP) techniques.

This research addresses this gap by introducing a new mobile app to recom-
mend Sci-Fi books and novels. Leveraging NLP techniques, including Doc2Vec [7]

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

33

and RoBERTa [9], our app seeks to understand the unique content of Sci-Fi
books more effectively. Our recommendations are based on the book’s content,
presenting a novel contribution in personalized literary suggestions.

By examining the app’s construction, we aim to contribute valuable insights
to the broader discourse on content-based recommender systems [12], present-
ing a different perspective on personalized book recommendations for Sci-Fi
enthusiasts.

This paper is organized as follows: Section 2 presents the literature re-
lated to our research. Section 3 details the proposed method. The results are
presented in Section 4 and our conclusions and future work in Section 5.

2 Background

Recommender systems (RS) represent a crucial area of research dedicated to
suggesting relevant items by modeling user preferences and interests. In the
context of modern mobile applications, RS has become ubiquitous, providing
recommendations for multimedia content and products [8]. Different recom-
mendation techniques, such as collaborative filtering, content-based filtering,
and hybrid approaches, have been explored [12].

Mobile recommender systems face distinctive challenges compared to tradi-
tional platforms, given their constrained resources and the demand for person-
alized recommendations. Recent research has delved into mobile recommender
systems across diverse domains, including tourism, news, and books [5]. Partic-
ularly in the realm of books, content-based recommendation has shown promise
by leveraging natural language processing (NLP) to analyze textual descrip-
tions and user reviews [1].

Document embedding techniques, such as Doc2Vec, have been applied to
capture semantics and map documents to vectors for similarity analysis [7].
Concurrently, deep contextualized language models like BERT [3] have gained
popularity in NLP, demonstrating high performance across various semantic
tasks. RoBERTa, an improvement upon BERT, was trained on significantly
more data for an extended period, leading to enhanced masked language mod-
eling objectives and improved downstream task performance [9].

Despite the success of these NLP methods independently, limited efforts
have explored their combined application in a mobile app for content-based
Sci-Fi book recommendations. This paper proposes integrating Doc2Vec and
RoBERTa to enable content-based filtering for science fiction novels. By cap-
turing different semantics, these techniques aim to enhance recommendation
accuracy. The development of this specialized mobile recommender system
seeks to improve accessibility to new books through personalized, fine-tuned
suggestions based on writing content.

34

3 Methodology

Figure 1 presents the components comprising the recommender system frame-
work for our mobile application. Subsequent sections will provide detailed
descriptions of each of these components.

RoBERTa

Doc2Vec

PreprocessingSci-Fi novels

Deploy

Query

Recommendation

Figure 1: Framework for the integration of the mobile app and the recom-
mender system

3.1 Dataset

For this project, the dataset comprises information and text from books and
novels scraped from Project Gutenberg1. We restricted the dataset to docu-
ments falling under the genre of Science Fiction and written in English. We
collected the text of 1591 books and their accompanying information, includ-
ing title and author. Since Project Gutenberg does not provide the year of
publication, we manually added this information for each book in our dataset.

3.2 Preprocessing

Effective text preprocessing is a foundational task within any NLP system [2].
We removed text that Project Gutenberg inserted by default, transformed text
to lowercase, stemmed and lemmatized words, and removed special characters
and stop words. Finally, we concatenated each document’s title, author, and
text as an additional feature of our dataset.

3.3 Text Embeddings

Text embeddings capture and represent semantic relationships and contextual
information within textual data [6]. The embeddings are numerical encodings

1https://www.gutenberg.org/ebooks/bookshelf/68

35

of the meanings of words, phrases, sentences, or even entire documents in
a way that reflects the relationships between different words and concepts.
These embeddings can then be applied to various natural language processing
tasks, such as text classification, sentiment analysis, machine translation, and
information retrieval [11].

For our application, we strategically integrated two powerful NLP approaches,
Doc2Vec and RoBERTa, to enhance document similarity retrieval based on dis-
tinct user requirements.

Doc2Vec processes text, creating embeddings that encapsulate the seman-
tic essence of a document or sentence. It is well-suited for short texts due
to its context aggregation and fixed-length embeddings [10]. Using Doc2Vec,
a neural network-based approach, we efficiently identify documents similar to
user-provided input. When a user submits a query, the system can retrieve
documents that closely match the user’s input by measuring the similarity be-
tween these embeddings. We implemented Doc2Vec using the Gensim2 library
in Python, configured with an embedding size of 100 and a window size of 4.
The model was trained for 30 epochs to prevent overfitting.

RoBERTa’s transformer architecture and attention mechanisms are par-
ticularly effective for capturing intricate relationships in longer texts [9]. We
utilize RoBERTa to find documents in our corpus that are similar to a given
document selected by the user. The transformer architecture excels in captur-
ing intricate contextual relationships within the text. RoBERTa enables us to
grasp subtle semantic similarities between documents by leveraging pre-trained
embeddings and fine-tuning them with our specific dataset. This approach
proves invaluable when the goal is to identify documents closely related to a
particular reference document. We employed the pre-trained RoBERTa model
from Hugging Face3, generating embeddings of 768 dimensions.

3.4 Finding Similar Documents

We created two vector databases using the embeddings generated through
Doc2Vec and RoBERTa. This strategic approach allows us to leverage the
unique strengths of each model for two distinct input scenarios.

In the first scenario, for user-provided search strings, the system seamlessly
transforms the input into its embedding representation using the Doc2Vec
model. By harnessing the capabilities of Doc2Vec, the semantic essence of
the search string is captured, enabling effective matching against the embed-
dings in the Doc2Vec vector database. This process facilitates identifying and
retrieving documents closely aligned with the user’s textual query.

2https://radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec_lee.html
3https://huggingface.co/roberta-base

36

In the second scenario, when users input a previous recommendation to
find similar documents, the system employs the RoBERTa vector database to
identify the most similar documents to the input document ID. RoBERTa ex-
cels in handling longer and more complex texts, allowing it to comprehensively
capture subtle semantic relationships within the recommendation.

We use cosine similarity [13] to find the most similar embeddings. This
measure is computed by evaluating the cosine of the angle between two vectors
(i.e., document embeddings generated by Doc2Vec and RoBERTa), represent-
ing the degree of alignment. The cosine similarity is computed as,

cos(θ) =
A ·B

‖A‖2 ‖B‖2
(1)

where A and B are the embedding vectors.
The computed cosine similarity scores are the basis for our similarity-based

recommendation algorithm. Higher cosine similarity scores indicate greater
similarity between documents, influencing the recommendation model to pri-
oritize content closely aligned with the input document or user query.

3.5 API and Mobile App Development

Figure 2: Example of JSON file returned by the API.

We developed a robust API that connects our recommendation system with
the mobile application. Utilizing the Python Flask framework4, we hosted the
API on the PythonAnywhere5 web platform. This framework enables us to
make the recommender system accessible from anywhere on the internet, pro-
viding a user-friendly mobile application experience. We work with JSON files,

4https://flask.palletsprojects.com/en/3.0.x/
5https://www.pythonanywhere.com

37

a structured and efficient method for handling information, ensuring smooth
communication between the API and the mobile application. This choice aligns
with current data-sharing standards, guaranteeing compatibility and seamless
integration with various applications and platforms.

Figure 2 shows the JSON file received as a response from the API when
searching for similar novels to “Marty the Martian” by Arnold Marmor6. The
information returned includes fields such as the author, book ID, title, publi-
cation date, and URLs for downloading the text from the Project Gutenberg
website. Our API returns the top 10 most similar documents for our two user
input scenarios (see Section 3.4).

To interact with the API, we developed an Android mobile application.
This application allows users to receive book recommendations, view book
information, add books to their personal library, and read them online and
offline. The app is compatible with a minimum Android version of 7 (API 24)
or higher.

4 Results

Figure 3: Mobile application for Sci-Fi novels recommendations

Figure 3 illustrates two interactions of a user with our mobile application.
On the left, the user entered the string “Prometheus Victor Frankenstein,” into
the mobile app. The input is then transformed into an embedding represen-
tation using Doc2Vec. The recommender system uses this embedding to find
the top similar embeddings representing the documents in our dataset, which

6https://www.gutenberg.org/ebooks/66389

38

we have stored in a vector database. Then, the app presented a list of books
and novels related to the user input. The figure shows that the first result was
actually “Frankenstein; Or, The Modern Prometheus.”7 This outcome demon-
strates that by using the Doc2Vec model, our recommender system effectively
processes user inputs and identifies books with similar content.

On the right, when the user selects a recommended book or novel, the
system provides a list of the most similar documents. The system has a vec-
tor database containing the RoBERTa embeddings for each document. The
recommender system gets the precomputed embedding for the selected docu-
ment and finds the top similar documents within the vector database. The
figure indicates that the most similar document in our corpus to “Franken-
stein; Or, The Modern Prometheus,” is “New Bodies for Old.”8 This result is
a good recommendation, as both novels primarily focus on the intersection of
science, technology, and human mortality. Therefore, we observe that using
the RoBERTa model is valuable when the task is to find similar documents
considering their entire text.

5 Conclusions and Future Work

By combining the strengths of Doc2Vec and RoBERTa, our recommender sys-
tem offers diverse document similarity solutions for our mobile app. Whether
users are searching for documents related to their input or seeking documents
similar to a given reference, our dual-model approach ensures a robust and
comprehensive document retrieval experience. This innovative combination
enables us to accommodate to diverse user requirements, providing a flexible
and efficient solution for document similarity retrieval across various scenarios.

In our future research, we plan to assess the effectiveness of our system’s
recommendations by seeking feedback from Sci-Fi book enthusiasts. This eval-
uation will focus on understanding whether the suggested recommendations
prove helpful for readers in discovering new and engaging books within the
Sci-Fi genre.

References

[1] Melania Berbatova. “Overview on NLP techniques for content-based rec-
ommender systems for books”. In: Proceedings of the Student Research
Workshop Associated with RANLP 2019. 2019, pp. 55–61.

7https://www.gutenberg.org/ebooks/84
8https://www.gutenberg.org/ebooks/59647

39

[2] Christine P Chai. “Comparison of text preprocessing methods”. In: Nat-
ural Language Engineering 29.3 (2023), pp. 509–553.

[3] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers
for language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[4] Folasade Olubusola Isinkaye, Yetunde O Folajimi, and Bolande Ade-
fowoke Ojokoh. “Recommendation systems: Principles, methods and eval-
uation”. In: Egyptian informatics journal 16.3 (2015), pp. 261–273.

[5] Dietmar Jannach et al. “A survey on conversational recommender sys-
tems”. In: ACM Computing Surveys (CSUR) 54.5 (2021), pp. 1–36.

[6] Tom Kenter and Maarten De Rijke. “Short text similarity with word em-
beddings”. In: Proceedings of the 24th ACM international on conference
on information and knowledge management. 2015, pp. 1411–1420.

[7] Quoc Le and Tomas Mikolov. “Distributed representations of sentences
and documents”. In: International conference on machine learning. PMLR.
2014, pp. 1188–1196.

[8] Jiafeng Li et al. “Personalized mobile video recommendation based on
user preference modeling by deep features and social tags”. In: Applied
Sciences 9.18 (2019), p. 3858.

[9] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining ap-
proach”. In: arXiv preprint arXiv:1907.11692 (2019).

[10] Natalia Maslova and Vsevolod Potapov. “Neural network doc2vec in au-
tomated sentiment analysis for short informal texts”. In: Speech and
Computer: 19th International Conference, SPECOM 2017, Hatfield, UK,
September 12-16, 2017, Proceedings 19. Springer. 2017, pp. 546–554.

[11] John X Morris et al. “Text embeddings reveal (almost) as much as text”.
In: arXiv preprint arXiv:2310.06816 (2023).

[12] Michael J Pazzani and Daniel Billsus. “Content-based recommendation
systems”. In: The adaptive web: methods and strategies of web personal-
ization. Springer, 2007, pp. 325–341.

[13] Ramni Harbir Singh et al. “Movie recommendation system using cosine
similarity and KNN”. In: International Journal of Engineering and Ad-
vanced Technology 9.5 (2020), pp. 556–559.

40

Teaching Cross-Platform Mobile
Development and Cultivating

Self-Directed Learners – A Six-Week
Summer Online Course Experience∗

Liqiang Zhang
Computer and Information Sciences

Indiana University South Bend
South Bend, IN 46615

liqzhang@iu.edu

Abstract

The rising popularity of cross-platform mobile programming in both
industry and classroom necessitates effective teaching methods. This pa-
per outlines our experience in instructing mobile programming through
Google’s Flutter framework in a six-week, fully online summer course.
A significant challenge faced was striking a balance between the breadth
and depth of topics within the constraints of the short summer duration,
while ensuring students receive ample hands-on training for an optimal
learning experience. We address this challenge by adopting a dual ap-
proach: thoughtful content arrangement and strategic pedagogical meth-
ods. Specifically, we successfully deliver content by blending app-driven
and topic-driven lectures within weekly modules, supplemented by a mix
of required and optional reading assignments. We foster students’ self-
directed learning (SDL) abilities through carefully crafted hands-on as-
signments and an open-ended final project.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

41

1 Introduction

Recent years we have witnessed increased interest in learning mobile app devel-
opment from students. However, teaching mobile app development is never an
easy task [8]. Compared to general-purpose programming taught in a typical
CS1 or CS2 course, mobile app development technologies, frameworks, and best
practices are often evolving at a much faster pace. While staying current with
the latest updates and trends is crucial for mobile app developers, this poses a
special challenge to the course designer and instructor. Moreover, Mobile app
development often involves targeting specific platforms such as iOS and An-
droid. Each platform has its own set of development tools, languages (Swift for
iOS, Kotlin/Java for Android), and design guidelines. A single course covering
both Android and iOS programming might not always be a viable option due
to the extensive list of topics to cover on each side.

In response to the launch of our Online Informatics program, we have
recently undergone a comprehensive redesign of our Mobile App Develop-
ment course. This initiative not only transitioned the course to a fully on-
line format but also involved a shift in content—from Android programming
to cross-platform mobile programming, utilizing Google’s Flutter framework
[5]. Aligned with our commitment to nurturing self-directed learning (SDL)
[2] abilities, which we consider essential in computing education to prepare
students for the dynamic and rapidly evolving nature of the field, we have in-
tegrated elements into the course design that promote SDL. This paper aims
to share our experience of the course design and lessons learned during the
development and deployment processes over the past three summers.

2 Background

Cross-platform mobile development offers several advantages over native platform-
specific development for Android or iOS, such as development efficiency, cost
savings, and broader reach. This has made it an appealing choice for many
developers and businesses. It also starts to gain popularity in the classroom as
evidenced in some recent work [7, 8].

Self-directed learning (SDL), according to the definition given by Knowles
in [6], is a process in which individuals take the initiative, with or without the
help of others, in diagnosing their learning needs, formulating learning goals,
identifying human and material resources for learning, choosing and imple-
menting appropriate learning strategies, and evaluating learning outcomes. It
is worthwhile noting that, to Knowles, SDL can be solely an individual effort,
or it can incorporate the guidance of a mentor or the help of partners. Collier
made the claim in [2] that SDL is a transformative learning pathway open to

42

all and that the skills of SDL are learnable and can be developed over time.
We are not the first to apply SDL in computing education. Examples of

effort on fostering SDL in CS courses include [1, 9, 10]. The rapid evolution of
mobile app development and wide range of topics, coupled with the diverse in-
terests of our students and the constraints of time, reinforces our belief that the
course presents an exceptional opportunity to cultivate students’ SDL abilities.

3 Course Design and Development

Since the emergence of the first cross-platform framework around 2009, we
have observed a significant proliferation and maturation of such frameworks.
According to Statista [3], Flutter, React Native, Apache Cordova, Ionic, Xa-
marin, and Unity are among the most popular frameworks based on the data
from 2019 to 2022. While each framework has its pros and cons, Flutter stands
out in our consideration due to several compelling reasons including popularity,
performance, hot reload feature, and strong community support.

In the rest of this section, we present our course design and development
from several aspects, including topic selection, content delivery methods, the
deliberate choice to forgo a textbook in favor of alternative resources, the
structure of the course schedule and weekly modules, and the assessment of
student learning. Throughout this exploration, we demonstrate the intentional
integration of SDL principles into the fabric of the course design.

3.1 Topic Selection and Coverage

We compiled a list of topics pertinent to mobile programming with Flutter,
which was subsequently prioritized based on the overarching learning objec-
tives. The coverage plan is outlined in Figure 1. Notably, different levels of
coverage are assigned to each topic: L1 signifies introductory coverage, L2 in-
dicates detailed exploration with examples, L3 involves tutorials or small lab
components, L4 integrates homework assignments for reinforcing understand-
ing, and LX entails topics to be explored through Self-Directed Learning (SDL).
The first four levels of coverage are facilitated through a combination of lec-
tures (notes and videos), required reading assignments, quizzes, assigned tuto-
rials/labs, and/or homework assignments. In contrast, LX coverage encourages
students to explore topics via optional reading assignments, online resources
available on the course site, self-identified resources, and self-directed exercises
and experimentations. While certain homework assignments also necessitate
SDL (e.g., exploring plugin packages not discussed in lectures to implement
specific features), we anticipate that the final project provides the most signif-
icant opportunity for students to hone their SDL skills.

43

Figure 1: Course topics and coverage.

44

3.2 Course Material and Resources

With careful consideration, we opted not to adopt a textbook. Instead, align-
ing with the learning objectives, we developed course material centered around
a few example apps we created. This decision was influenced by several obser-
vations and considerations:

• The rapid evolution of Flutter and Dart poses challenges for traditional
textbooks. Updates in newer editions may lag, rendering content quickly
outdated and potentially causing confusion among readers.

• Embracing an example-based learning approach [4] aligns well with the
course objectives.

• Google provides robust support for developers through various channels,
including a dedicated YouTube channel featuring continually expanding
content. This ensures more accurate and up-to-date information com-
pared to static books.

• The burgeoning community of Flutter developers contributes to a wealth
of online tutorials and technical articles.

As a result, our course material consists of instructor-created lecture notes and
videos, required and optional reading assignments (comprising documentations,
articles, tutorials, and videos), Google’s Codelabs, quizzes, and assignments.
These materials are delivered to students in the form of weekly modules. Given
the extensive range of topics covered, the course heavily depends on online
resources. To streamline accessibility, we have established a dedicated webpage
to host URLs for a variety of online resources.

3.3 Content Arrangement and Weekly Modules

The course content is presented through weekly modules. Figure 2 (a) displays
the content schedule for the entire six weeks, while Figure 2 (b) provides an
abridged snapshot exemplifying a week module. In this context, we would like
to draw attention to two issues concerning the organization of lectures:

1. Overall, our course adopts an app-driven approach to organize content.
The coverage of topics follows a mainline structured around six exam-
ple apps, progressing from simple to complex. This approach involves
a fusion of app-driven lecture videos, where specific apps (e.g., To-Do-
List app) are explained, and topic-driven lecture videos, which delve into
specific technical aspects (e.g., Flutter navigation).

2. For the app-driven videos, some are crafted in a tutorial style, providing
a step-by-step guide to creating an app from scratch, allowing viewers
to follow along. Explanations are seamlessly woven into the steps when
necessary. This tutorial style is employed for the first three example

45

F
ig
ur
e
2:

(a
)
C
on

te
nt

sc
he
du

le
in

w
ee
kl
y
m
od

ul
es
;(
b)

sn
ap

sh
ot

of
m
od

ul
e
fo
r
w
ee
k
#
3

46

apps. However, for the subsequent three apps, characterized by their
larger scale, the traditional step-by-step approach would be excessively
lengthy and potentially tedious. Consequently, a different strategy was
adopted. A concise preview video was created, highlighting the app’s
functionalities, and enumerating the technical topics embedded within
it. This is followed by a series of lecture-style videos, each dedicated to
a specific technical topic. Finally, a closer-look lecture video delves into
the intricate details of implementing these topics within the app.

The course encompasses 11 homework assignments and one final project.
The distribution of the assignments is structured as follows: one on setting up
the Flutter development environment and toolchain on the student’s personal
computer, two on Dart programming, and eight focusing on the creation of
apps using Flutter. The final project is intentionally open-ended, affording
students the freedom to propose and develop their own mobile app ideas. It
provides ample opportunity for students to practice SDL.

3.4 Assessment

Student learning is evaluated through three components: homework assign-
ments, quizzes, and a final project. Given the course’s emphasis on practical
application over theory, the final project serves as a comprehensive assessment,
effectively replacing the final exam. It is introduced as early as the first week,
encouraging students to contemplate their project ideas from the course’s out-
set. Project proposals are due midway through the fifth week, and due to
the condensed summer schedule, students have only one and a half weeks to
complete their projects post proposal submission. A brief check-point report
is required by Monday of the sixth week, with the final project submission
due on the last day of the sixth week. Additionally, students are expected to
share a project presentation/demo video in the course discussion forum. Final
project grades are determined based on criteria including novelty, difficulty
level, completion status, workload, acquisition of new skills through SDL, and
the quality of the accompanying report and presentation/demo.

4 Observations and Feedback

The course garnered positive feedback in all three summer offerings. Except
few early withdraws, most students remained actively engaged throughout the
entire semester despite the course’s noticeable intensity. Students often char-
acterize the course as providing a unique blend of experiences, encompassing
excitement, challenges, enjoyment, frustration, and, ultimately, a profound

47

sense of achievement. Below we summarize the student feedback from their
final project reports and course evaluations 1.

4.1 Evidence of SDL and its Effectiveness

As evidenced by their homework submissions throughout the semester, stu-
dents have consistently practiced SDL. This commitment to SDL peaks as
they embark on completing their final project. Although quite a few students
observed their final app deviating somewhat from their original proposal or
lacking the full implementation of proposed features, over 90% of students
demonstrated, in their final report and demo, the acquisition and application
of new skills and techniques in their apps. The following are comments from
students, expressing their appreciation for the role of SDL.

• “This project was both challenging and fun. It challenged me to learn the
new skill sets required to build my application, and was fun so I main-
tained motivation to learn the skills needed to build this project.”

• “I really like the idea of trying to figure out code like one would in the
real world with research and trial and error. There was a lot that was
jam packed into this course and it was really fun learning how to finally
make something tangible with code.”

• “The course was taught in a way where I had to explore new skills in
order to figure out a problem. These skills are used in the real world and
it is helpful to practice these skills.”

• “Overall, I am fairly pleased with the app that I have created for my final
project. I had actually attempted (unsuccessfully) to make this app in
Android Studio about 4 years ago based solely on videos and code that
I had found on the internet. I feel like this course was well done and
prepared me with many of the tools that I needed to make this app.”

The last comment above is particularly intriguing, prompting reflection on
individual SDL versus SDL under guidance. For students who are still
honing their SDL skills, it seems a certain level of guidance, provided through
either a well-structured course or mentorship, can be beneficial.

4.2 Feedback Regarding Course Content and Delivery

Overall, students have expressed favorable opinions about the course structure.
While a minority raised concerns about the intensity and workload, the ma-
jority of students were well-prepared for the challenges. Here are a few sample
comments:

1The study was reviewed and approved by the Indiana University Institutional Review
Board (#19777).

48

• “a very logical, well-structured online course that made it easy for me to
find resources and manage my time.”

• “Excited about the content of the class so everything was more interesting
from the students side.”

• “The material was challenging but engaging and overall very enjoyable
work.”

The approach we took to compile course materials without using a textbook
was well-received. Some students specifically appreciated the tutorial-style
videos and the encouragement to explore Google’s official documentation:

• “The materials for this course were very helpful. Lots of resources were
provided, both optional and required, throughout the weeks.”

• “I really liked the videos where you walked through how the code was cre-
ated. I worked right along with you and could pause the video when I had
something that I needed to find in the software.”

• “Allowing us to look stuff up on our own and go through Flutter’s docu-
mentation help me familiarize myself with Flutter relatively quickly.”

• “The instructor encouraged us to use the official documentation for Dart
and Flutter above other resources and it was really helpful in building my
confidence with them.”

During the 2023 Summer course, a survey was conducted at the end of
the semester to gather feedback for further improvements. Due to space con-
straints, a detailed discussion of all collected data is not feasible. However, we
want to emphasize the feedback received on two of the questions: (1)“Among
the topics covered in the course, which one do you consider the most challeng-
ing?” and (2) “What was the most enjoyable aspect of this course?” Figure 3
visually represents students’ responses to these questions in the form of word
clouds.

4.3 Possible Improvements

While there are several areas for potential improvement in the course, two
stand out as primary priorities:

1. Enhance the coverage on Declarative UI and State Management
with Provider: Declarative UI and state management are closely re-
lated topics. Given the prevalence of declarative UI in cross-platform
frameworks, and its adoption in native mobile development (e.g., Jet-
pack Compose for Android and SwiftUI for iOS), it has become crucial
for mobile developers to navigate the shift from the traditional imperative
approach to UI updates. This transition can be challenging to beginners,

49

Figure 3: Students’ feedback on (a)“the most challenging topic”, and (b) “most
enjoyable aspect”.

however, as reflected in students’ feedback. We acknowledge the need to
refine our coverage on these topics.

2. Integrate the topic on Mobile App Architecture: We are currently
exploring ways to incorporate the topic of mobile app architecture (e.g.,
MVC, MVP, MVVM, and VIPER) into the course. Recognizing the al-
ready packed schedule, finding an effective integration approach remains
a challenge.

5 Conclusions

Our redesigned Mobile App Development course, centered around Google’s
Flutter framework and emphasizing self-directed learning (SDL), has proven
to be a dynamic and engaging educational experience over the past three sum-
mers. The positive feedback affirms the effectiveness of our SDL approach in
cultivating new skills and overcoming challenges. We acknowledge the need for
ongoing improvements and expect the course to continue to evolve to meet the
ever-changing landscape of mobile app development.

References

[1] G. Altuger-Genc and I. Aydin. “Design and Development of Self-Directed
Learning (SDL) Modules for Foundations of Computer Programming
Course”. In: Proceedings of the 122nd ASEE Annual Conference & Ex-
position. 2015.

50

[2] C. Collier. “Becoming an Autonomous Learner: Building the Skills of Self-
Directed Learning”. In: Journal of Transformative Learning 9.1 (2022).

[3] Cross-platform mobile frameworks used by software developers world-
wide from 2019 to 2022. url: http://www.statista.c (visited on
01/12/2024).

[4] P. Deitel, H. Deitel, and A. Wald. Android 6 for Programmers: An App-
Driven Approach. 3rd. USA: Prentice Hall Press, 2015.

[5] Flutter. url: http://www.flutter.dev (visited on 01/12/2024).

[6] M. Knowles. Self-directed learning. Cambridge University Press, 1975.

[7] A. Neeman. “Developing a Cross-Platform Mobile Course using a Multi-
Paradigm Framework”. In: Journal of Computing Sciences in Colleges
37.8 (2022), pp. 11–21.

[8] M. Rogers and J. Gratch. “A Snapshot of Current and Trending Practices
in Mobile Application Development”. In: Journal of Computing Sciences
in Colleges 37.6 (2022), pp. 54–66.

[9] S. Sadhukhan. “Fostering Self-Directed Learning Through Student-Question
Posing in CS2”. In: Proceedings of the ACM Conference on Global Com-
puting Education. Vol. 2. 2023, pp. 181–182.

[10] L. Zhang, J. Wolfer, and D. Surma. “Reinventing a digital design course:
migrating electronics instruction from physics to CS and using problem-
based learning”. In: Journal of Computing Sciences in Colleges 33.2 (2017),
pp. 29–37.

51

Hack the Border: Empowering
Experiential Learning Competencies in

Computing through Hackathons ∗

Christian Servin1 and Nadia Karichev1 and J.J. Childress2
1Computer Science and ITS Program

El Paso Community College
El Paso, TX 79915

cservin1@epcc.edu/nmerzlya@epcc.edu
2Microsoft

Techspark Texas Community
El Paso, TX

Jonathan.Childress@microsoft.com

Abstract

Experiential learning plays a crucial role in education and profes-
sional development by allowing individuals to acquire knowledge and
skills through direct experience, thereby making learning more engag-
ing and memorable. This hands-on approach fosters critical thinking
and problem-solving skills, as learners are encouraged to reflect on their
experiences, understand their implications, and apply what they have
learned in real-world situations. Competencies gained through experien-
tial learning are highly valued in the workforce because they demonstrate
an individual’s ability to apply theoretical knowledge effectively in prac-
tical scenarios. By emphasizing competencies, educators and employers
can ensure that learners and employees are not only knowledgeable but
also capable of performing tasks and solving problems efficiently, making

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

52

them more adaptable and proficient in their respective fields. Recogniz-
ing this need, computing competitions, specifically those focused on cy-
bersecurity concepts, commonly referred to as hackathons, have become
pivotal. These competitions serve as a platform for experiential learning,
enabling students to participate in friendly gamification events. This pa-
per functions as an experiential report, demonstrating the effectiveness of
hackathons in enhancing competencies within two-year computing pro-
grams at a community college. By fostering experiential learning, these
competitions not only enhance the educational experience but also sig-
nificantly contribute to increased student retention and completion rates
in computing programs.

1 Introduction

Hackathons represent time-constrained gatherings where individuals or teams
join forces to engage in intensive projects, often centered around software devel-
opment and creative problem-solving. These events serve as dynamic platforms
that cultivate innovation and imagination, enabling participants to delve into
novel ideas and emerging technologies. Crucial for honing skills, hackathons
provide practical, hands-on experience that enhances both technical expertise
and collaborative abilities. By fostering networking and collaboration among
a diverse array of participants, these events facilitate the application of ac-
quired knowledge to real-world challenges (refer to [3, 4] for further insight).
Moreover, hackathons present valuable recruitment opportunities for compa-
nies in search of skilled individuals, contributing to community development
by fostering a culture of shared learning and mutual support (refer to [1, 2]
for additional perspectives).

While these competitions garner recognition across various academic and
industry settings, two-year programs, specifically community and technical col-
leges, share commonalities with the hackathon vision. Experiential Learn-
ing: Degrees offered by two-year institutions, including community colleges,
are renowned for their emphasis on practical skills, troubleshooting, and hands-
on expertise. These programs prioritize skill acquisition, providing students
with a robust experiential learning environment. Industry and Workforce
Impact: Community colleges play a pivotal role in addressing local and re-
gional workforce needs, positioning them as ideal environments for assessing
industry requirements and fostering innovations that cater to those needs.
Marketable Skills: Beyond comprehending technical aspects and solving
specific problems, the significance of incorporating “essential soft skills” cannot
be overstated. These skills encompass communication, teamwork, problem-
solving, time management, empathy, and emotional intelligence, among oth-
ers. Engaging in activities like hackathons aids in enhancing these marketable

53

skills, aligning with the evolving demands of industries and organizations that
increasingly seek individuals equipped with a blend of technical and interper-
sonal competencies for roles in high demand, often characterized as “hybrid
jobs.”

1.1 Community College Environments

Community and technical colleges, commonly referred to as two-year programs
institutions, play a dual role. They not only offer programs designed to facil-
itate the smooth transfer of students between two-year and four-year insti-
tutions but also provide specialized programs to address workforce skills and
requirements (e.g., refer to [5, 6, 7]).

2 Hack the Border: An Experience Report

El Paso Community College, in 2021 received the Microsoft grant for the Skills
for Jobs and Livelihoods, whose intention was to create capacity on cybersecu-
rity awareness and recognize talent and innovation for the region’s needs and
demands. The computer science and Information Technology Systems pro-
grams developed a series of professional development workshops and an annual
hackathon called Hack the Border: Adversarial Thinking for the Border Good.
The community college is located on the border between El Paso TX and Cd.
Juarez Mexico. The competition was intended to recognize issues located in
the border region and which solutions can be attracted to industry, public, and
private sectors for implementation. There have been two implementations of
the series up to now.

2.1 Professional Development Workshops

During the fall semesters, with a special emphasis on October in observance of
Cybersecurity Awareness Month, a series of eight workshops is conducted every
Thursday. These workshops cover various cybersecurity awareness topics and
are open to both the communities of Cd. Juarez and El Paso, TX. For the Fall
2022 semester, the workshop titles included: “Cybersecurity 101” (in Spanish),
“Kali Linux: Intro,” “Web Vulnerabilities,” “Package Capturing,” “Penetration
Testing,” “DevSecOps Part I and Part II,” and “Intelligence Vulnerabilities.”
In the subsequent Fall 2023 semester, the workshop titles were: “Linux Intro,”
“Cryptography,” “Web Vulnerabilities,” “Forensics,” “Exploitation (Metasploit)
Part I,” and “Part II.” These workshops are facilitated by professionals, fac-
ulty members, or trained coaches from the community. Furthermore, these
workshops delve into subjects typically not addressed in conventional courses,
providing supplementary education that underscores specific topics.

54

2.2 Binational Hackathon

The hackathon adopts a gamified structure, enabling participants to amass
points through diverse avenues known as “villages,” tailored to their individual
interests and strengths. Aligned with selected topics from professional develop-
ment workshops, these villages present a substantial opportunity for workshop
attendees to accrue points throughout the competition. The primary objec-
tive entails crafting an artifact—such as an infographic, social media video, or
a website—that champions cybersecurity awareness in the region (50 points).
In addition, the villages feature specific challenges: Adversarial Thinking (20
points): A strategic scenario prompts participants to devise optimal solutions
for critical situations in the region. Capture the Flag (10 points): Involves
Linux-based challenges. Secure Code Challenges (10 points): Presents Java
code snippets with potential bugs, inviting participants to identify and enhance
the code. Forensics Village (10 points): Simulates a recovery scenario, requir-
ing participants to utilize appropriate software and methodologies to solve the
presented problem.

2.3 The Ultimate and Inclusive Three-day Configuration

The hackathon unfolds over a three-day competition. A detailed structure of
the hackathon is shown in Figure 1.

Day 0: Professional Development Day. The initial day, known as day-0, is
dedicated to orientation, professional development, and team matching. Par-
ticipants typically arrive with pre-formed teams, but for those seeking involve-
ment without a team, day-0 serves as an opportunity for team matching and
socializing. The official commencement of the hackathon takes place at 1:00
p.m., featuring an hour of social time with puzzles, table games, and other
engaging activities. This time also provides a platform for vendors to show-
case their products, collect resumes, and promote local job opportunities. The
subsequent hour is devoted to a professional panel, where local cybersecurity
experts share motivational testimonies emphasizing the importance of engaging
in extracurricular activities within the industry. The final two hours of day-0
are divided into three distinct technical workshops. Participants can choose
presentations based on their interests, allowing for a tailored and informative
experience.
Day 1: Embarking on the Official Hackathon Journey. The inaugural day
kicks off with inspiring talks, featuring prominent figures such as the associate
president of the college and a distinguished industry or research guest. Teams
engage in a day-long immersion into the hackathon theme. Simultaneously,
participants can explore various thematic “villages” to accrue points. The in-

55

corporation of multiple villages running concurrently provides participants the
flexibility to attend, fostering leadership and delegation skills. The diverse vil-
lages include adversarial thinking, capture the flag, secure code challenges, and
forensics challenges.
Day 2: Showcase and Commendation. On the concluding day, participants
finalize their projects by submitting them to a repository by 7:00 a.m. Sharp
at 9:00 a.m., they embark on a concise five-minute presentation before a panel
of judges. These presentations are open not only to the community at large
but also to students from the local community college. Post presentations,
the judges convene to deliberate on the outcomes, amalgamating them with
the cumulative points from the diverse villages on Day 1. Subsequently, a
ceremonious event unfolds, bestowing awards upon the first, second, and third-
place winners. An additional accolade, the Career and Technical Education
(CTE) Award, is presented to the team that demonstrates the most significant
impact on addressing technical needs in the region.

Figure 1: A Three-day Hackathon Agenda

3 Discussion

Community colleges in the United States offer a wide array of technical degrees,
encompassing associates, certificates, and valuable credentials such as occupa-
tional skills awards. To supplement these educational offerings, hackathons
serve as a valuable tool for skill enhancement beyond the scope of traditional
coursework. Furthermore, these hackathons play a pivotal role in augmenting
marketable skills within the community, providing participants with opportu-
nities to showcase their talents in real-world scenarios.

56

References

[1] Tina Chan et al. “Post-Hackathon Learning Circles: Supporting Lean
Startup Development”. In: Extended Abstracts of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. CHI EA ’20. Honolulu,
HI, USA: Association for Computing Machinery, 2020, pp. 1–8. isbn:
9781450368193. doi: 10.1145/3334480.3375216. url: https://doi.
org/10.1145/3334480.3375216.

[2] Frank J. Frey and Michael Luks. “The Innovation-Driven Hackathon: One
Means for Accelerating Innovation”. In: Proceedings of the 21st European
Conference on Pattern Languages of Programs. EuroPlop ’16. Kaufbeuren,
Germany: Association for Computing Machinery, 2016. isbn: 9781450340748.
doi: 10.1145/3011784.3011794. url: https://doi.org/10.1145/
3011784.3011794.

[3] Alexander Nolte. “Touched by the Hackathon: A Study on the Connection
between Hackathon Participants and Start-up Founders”. In: Proceedings
of the 2nd ACM SIGSOFT International Workshop on Software-Intensive
Business: Start-Ups, Platforms, and Ecosystems. IWSiB 2019. Tallinn,
Estonia: Association for Computing Machinery, 2019, pp. 31–36. isbn:
9781450368544. doi: 10.1145/3340481.3342735. url: https://doi.
org/10.1145/3340481.3342735.

[4] Alexander Nolte, Irene-Angelica Chounta, and James D. Herbsleb. “What
Happens to All These Hackathon Projects? Identifying Factors to Promote
Hackathon Project Continuation”. In: Proc. ACM Hum.-Comput. Interact.
4.CSCW2 (Oct. 2020). doi: 10.1145/3415216. url: https://doi.org/
10.1145/3415216.

[5] Christian Servin et al. “Curricular and Pedagogical Considerations in
Computer Science Education: The Role of Community Colleges for the
Next Decade”. In: Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2024), March 20–23, 2024,
Portland, OR, USA. 2024. isbn: 9798400704239. doi: 10.1145/3626252.
3630819.

[6] Christian Servın. “Fuzzy Information Processing Computing Curricula:
A Perspective from the First Two-Years in Computing Education”. In:
Explainable AI and Other Applications of Fuzzy Techniques: Proceedings
of the 2021 Annual Conference of the North American Fuzzy Information
Processing Society, NAFIPS 2021. Springer. 2022, pp. 453–460.

[7] Cara Tang. “Community College Corner Community colleges in the United
States and around the world”. In: ACM Inroads 8.1 (2017), pp. 21–23.

57

Designing a Design-Oriented Course for
CS Majors∗

Fahmida Hamid
New College of Florida

Sarasota, FL
fhamid@ncf.edu

Abstract

Considering the need for CS students to be exposed to industry-level
software design skills and earn the maturity to program to abstraction,
an intermediate-level, design-oriented course before Software Engineering
may benefit the (novice) programmers in grasping the essence of Soft-
ware Engineering smoothly. In this article, we present the topics and
teaching methodology of such a course, Object-Oriented Design (OOD).
The core objective of the course is to prepare students to write modu-
lar, maintainable, and robust software solutions using an object-oriented
approach. Along with introducing basic design principles and explor-
ing well-known design patterns, we help students polish soft skills highly
valued in the industry: creative and critical thinking, teamwork, account-
ability, integrative learning, inquiry, and analysis. Since recent resources
to teach such a course are not widely available, this experience report
will benefit instructors interested in preparing such materials.

1 Introduction

As is standard at many institutions, the core of our undergraduate CS curricu-
lum includes Object-Oriented Programming (OOP) and Software Engineering
(SE); the OOP course introduces object-oriented principles to students with

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

58

less than a year of programming experience, and the SE course includes a 10-
week team project that asks students to interface with an external stakeholder
to solve a real-world problem in our school. The challenge of building an effec-
tive bridge between these two courses arises from the vastly different goals of
OOP and SE, some of which are addressed below:

In OOP and mostly all other intro programming classes, the emphasis is on
teaching the language syntax and writing a correct and efficient solution to a
specific problem, which are essential, but we don’t always get the scope to guide
them to write generalized solutions for handling a group of similar problems.
Students rarely reuse existing solutions (or don’t write reusable solutions) to
similar problems from different contexts unless we assign them such tasks.

As per the ACM 2013 curriculum guideline [5], below are some critical
points [page 180] difficult to cover within the SE course only:

• System design principles: Different levels of abstraction, separation of
concerns, coupling, and cohesion, and reuse of standard structures

• Structural and behavioral models of software designs
• Refactoring designs using design patterns
• The use of components in design: component selection, design, adapta-

tion, and assembly of components, components and patterns, components
and objects

• Maintaining design qualities: redundancy, usability, maintainability, porta-
bility

A dedicated course on object-oriented design (OOD) can provide a platform
to experience the path to resolving these above issues to some extent. In
the following sections, we introduce the topics we include in this course and
the techniques we use to challenge students to apply these topics to software
problems that arise in practice.

2 Course Organization

This class covers topics at many levels of abstraction: high-level software design
principles, including SOLID [6], KISS (Keep It Simple, Stupid), Separation of
Concerns, and Principle of Least Knowledge, to name a few, and around four-
teen to sixteen well-known design patterns (Figure:1). We discuss case studies
illustrating abstract design principles, concrete examples of design pattern us-
age, and Unified Modeling Language (UML) applications. In preparing this
course, we have drawn upon two essential textbooks [3, 4].

We hold two eighty-minute classes and one workshop per week. Students
work with peers during the workshop on experiments that interweave pro-
gramming and design elements. Students also complete three individual as-

59

Figure 1: The set of design patterns we usually teach

signments: two heavily focused on design-related issues and one on implemen-
tation. At the end, they complete a three-week open-ended final project.

3 Teaching Mechanics: “Explore −→ Discover−→ Apply”

During this workshop, students play the roles in three teams (designer, de-
veloper, and testing), by rotation, working on the same problem with specific
objectives (Figure:2a). The problem description walks them through five scenes
to show what may go wrong if proper communication, well-thought designs,
and the appropriate patterns were not placed before developing the project
(Figure 2b).

4 Rehearsing Soft-skills

We use bi-weekly assignments (individual) and the final project (group work)
to rehearse targeted soft skills. Each assignment narrates a short story like a
fairy tale, requiring the students to extract relevant information and develop
a tentative design to implement into a computer program. The assignment
asks students to design a solution rather than code (solving the problem from
an abstract level). Due to page limits, we won’t include any sample of such
assignments.

The project requires defining a problem of interest, finding and justifying
three patterns that fit the problem context, designing a solution, and apply-
ing the chosen patterns in the solutions to assess students’ comprehension of
design patterns. The project requires both design and coding/implementa-
tion. The overall performance depends on the class presentation (25%), coding
with proper documentation (25%), a technical report (25%), and completing a

60

(a) Collaboration and Communi-
cation

(b) Feeling the pains of bad decisions

Figure 2: “You only appreciate a pattern once you have felt this design pain” [2]

61

questionnaire(25%) at the end. Through the questionnaire, we intend for them
to reflect on their behavior and teamwork aptitude.

4.1 Project Setup and The Self-Assessment Questionnaire

Each team elects a team leader. The team leader distributes the tasks among
the teammates and schedules the activities and meetings. Team members
follow the instructions and communicate with each other as required. After
the final submission and presentation, each student answers to the following
questions:

A. Team member [except the leader]

• What were the determining factors of choosing your leader?

• Did the leader distribute the tasks in a balanced way? Did he/she con-
sider your strengths and weaknesses before assigning you the tasks?

• Did the leader use any strategy for task distribution and achieving the
final goals? State your thoughts.

• Were you comfortable working under the chosen leadership? Why or why
not?

B. Team leader

• What measures did you take to ensure the team members follow your
lead?

• Did you communicate with the team members before making any deci-
sion? Justify your stand.

• Did they provide suggestions or offer alternative solutions to the team on
different matters? Briefly explain one such incidence.

• Were your mates respectful towards your leadership?

C. Every Student

• Did you complete your part of the work (design, code, report writing) on
time? Explain briefly.

• How did you handle the challenges and criticisms of the overall work?
Explain briefly.

• State one strength and one weakness of your team.

• Briefly tell us the best lesson you learned from this teamwork.

62

The questionnaire is handed to them at the beginning of the project team
assignment day, and students are assured that their overall performance will not
be impacted by their responses as long as they answer each question reasonably
(at least two to three complete sentences).

5 Final Notes

The challenge of offering a design-focused course is that the examples we
present to demonstrate the power of design patterns lack the “street cred”;
on the other hand, real-world examples, though valuable, are generally too
complex to present directly to students [1]. Nonetheless, in the workshop
drills, by mimicking the industry-like environment by dividing our students
into three teams (design, develop, and test), we attempt to demonstrate the
need for collaboration, communication, and the importance of application of
design principles and patterns. If offering a full-credit OOD course is not pos-
sible in a CS program, we may include some topics and teaching mechanics
discussed here in the OOP and SE courses to help students understand the
necessity of adapting standard design patterns.

References

[1] Carl Alphonce, Michael Caspersen, and Adrienne Decker. “Killer" killer
examples" for design patterns”. In: ACM SIGCSE Bulletin 39.1 (2007),
pp. 228–232.

[2] Artima - How to Use Design Patterns — artima.com. https://www.
artima.com/articles/how-to-use-design-patterns. [Accessed 10-01-
2024].

[3] Eric Freeman et al. Head First Design Patterns. Ed. by Mike Loukides.
1st ed. O’Reilly Media, 2004. isbn: 0596007124.

[4] Erich Gamma et al.Design Patterns: Elements of Reusable Object-Oriented
Software. 1st ed. Addison-Wesley Professional, 1994. isbn: 0201633612.

[5] Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. New York, NY, USA: Association for Computing
Machinery, 2013. isbn: 9781450323093.

[6] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Robert C. Martin Series. Boston, MA: Prentice Hall,
2017. isbn: 978-0-13-449416-6.

63

FpTracker—A Labware for Teaching
Browser Fingerprinting and Privacy

Preservation∗

Lin Li and Na Li
Department of Computer Science
Prairie View A&M University

Prairie View, Texas 77446
{lilin, nali}@pvamu.edu

Abstract
As a stateless web tracking technology, browser fingerprint has been

widely used in recent years by many websites for collecting users’ be-
haviour data. While benefiting the websites for commercial purpose, the
data collection may also cause privacy concerns. To increase students’
awareness of web tracking while using the web based services, especially
browser fingerprinting, this paper discusses the design and implementa-
tion of a labware–FpTracker which was developed for teaching browser
fingerprint and privacy protection. Through the labware, students can
gain a thorough understanding of the essential concepts of web tracking
and browser fingerprinting. This labware can be used for both cybersecu-
rity and trustworthy machine learning. It was tested through a student
training workshop conducted in summer 2019 and a security class in
spring 2022. Surveys results confirmed the effectiveness of the labware
and the attainment of the learning objectives.

1 Introduction

Today, with more and more people using web services such as social networks,
personal account management, and online shopping, privacy preservation has

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

64

gained great attention as many of the services can track users’ activities and
generate a massive amount of data containing personal information. Web track-
ing happens when visitors browse the Internet. The websites or the third par-
ties collect, store, and share information about visitors’ activities. By analyzing
users’ behaviours, the websites may infer their preferences and provide content
that attract the visitors in order to maximize the commercial benefits. The
analysis results can also be of interest to other parties like advertisers. On
the other hand, if the information is exposed to malicious users, it can lead to
privacy disclosure and other fraudulent conduct which may cause financial loss
and panic among people. Thus, understanding the fundamental web tracking
techniques is critical for better use of the Internet services and protect privacy.

In general, web tracking technologies can be categorized into two groups:
stated tracking and stateless tracking. Usually, the former is done through
cookies, and the latter is conducted through browser fingerprinting. Compared
with cookies, browser fingerprinting does not require files to be stored at the end
user’s device. Instead, it will scan the end user’s device in real time and collect
a set of browser and system attributes by executing a script in the browser and
then apply a hash function to the attributes to create a unique identification of
the user device [6]. Like biological fingerprint, the identification can be used to
recognize visitors with high accuracy when the time span is short. Therefore,
browser fingerprinting is more invasive and opaque in tracking the visitors.
Although different teaching materials have been developed for students to learn
cookie technologies over the past decade, to the best knowledge of the authors,
there are still lack of the effective learning materials that enable students to
understand browser fingerprinting and gain hands-on skills. Therefore, this
lab was developed for teaching the concepts. The goal is to increase students’
awareness of web tracking, especially the browser fingerprinting technology.

2 Related Work

Browser fingerprinting was originally used by web analytics services to measure
web traffic and discount fraud clicks. As the client-side scripting has gradu-
ally been able to collect more diverse information from the end users’ devices,
security experts started raising privacy concerns. Dated back to 2012, Mow-
ery and Shacham showed that the HTML5 elements could be used for digital
fingerprinting web browsers [7]. In recent years, leveraging machine learning
technologies, more researchers found that browser fingerprinting can be used
as a reliable source to differentiate end users. For example, Vastel et al. found
that on average they could track browsers for 54.48 days and 26% of browsers
could be tracked for more than 100 days [9]. Gulyas et al. showed that the
user’s online behavior could be known by checking the installed browser exten-

65

sions and the visited websites where they logged into [4]. Meanwhile, actively
detecting browser fingerprinting has also become a hot research field. For in-
stance, Iqbal et al. used a machine learning based syntactic-semantic approach
to detect browser fingerprinting and they found that more than 10% of the
top-10K websites presented browser fingerprinting [5].

Privacy education has been acknowledged in the ACM’s Computer Science
Curriculum since 2013 [1]. It was further emphasized in 2020 [2]. A team of
cross-disciplinary members, including computer scientists, educators, and so-
cial scientists, from the International Computer Science Institute (ICSI) and
the University of California at Berkeley, developed an online privacy curricu-
lum [8] including ten principles with the purpose of spreading the awareness of
protecting online privacy.

Despite the national demand, the development of hands-on materials for
teaching privacy is still insufficient. To engage students and help them gain
thorough understanding of web tracking, the work described in this paper
presents the design and evaluation of a novel labware for making students
aware of the privacy issue while browsing the websites.

3 Labware Design

3.1 Scheme and Implementation

The scheme of our web tracking lab is depicted in Figure 1 which reflects
a frequently encountered scenario in people’s daily life: when we browse a
website, we often see products promoted in the advertisement banner area and
the products are similar to what we recently browsed from other websites. So,
we cannot stop questioning “How could the website know what I like?”

It should be noted that our labware was developed on top of Dr. Wenliang
Du’s SEED lab “Web Tracking” [3] which, however, only introduces web cook-
ies. Thus, our labware covers both the stated and the stateless web tracking
technologies: cookies and browser fingerprinting. Since the cookie part at-
tributes to Dr. Du, we focus on the introduction of our browser fingerprinting
lab in this paper and skip the cookie part. Interested educators are encouraged
to contact the authors for the whole labware, lab manual, and teaching slides.

The browser fingerprinting lab consists of three components, representing
the three web parties depicted in Figure 1: (1) several E-commerce websites
with a number of goods listed, (2) an online social network (OSN) website, and
(3) the advertisement server. The E-commerce websites host different goods
information (e.g., appliances, shoes, phones, etc.) and each web page is em-
bedded with a script from the advertisement server. When a visitor browses
the products from page to page, the script will track the browsing record and
send the information, including the visitor computer’s ID (i.e., fingerprint or

66

Figure 1: Illustration of Web Tracking

cookie) and the product ID, to the advertisement server. Figure 2 shows an
example of the goods listed on the website and the fingerprinting script embed-
ded behind1. Figure 3 shows the records of fingerprints and associate goods
stored in the ad server’ database and the script use to connect the database
and deposit the records. The OSN website plays a third-party role in which
the visitor browses for other purpose (e.g., social networking). Similarly, a
script from the advertisement server is embedded into the website. After a vis-
itor browses some goods of the E-commerce websites and then comes to visit
the OSN website, the script can retrieve the cookie or fingerprint information
and compare it with the historic records stored at the advertisement server.
The user’s behaviors will be analyzed. A result will be displayed at the OSN
website for advertising purpose. The advertisement server is the hub for user
information collection, storage, and analysis. Since its scripts are embedded
in a hidden mode in the E-commerce and OSN websites, it is invisible to the
visitors unless they know how to examine the website source code and how to
analyze the network traffic.

3.2 Hands-on Activities and Learning Outcomes

During the hands-on activities, students are required to take the following steps
to understand the concepts, observe the results, and study the scripts: (1)
visit E-commerce websites and browse the products; (2) log into the MySQL
database of the advertisement server, select the database (named “revive_-
adserver”), and open the record table (named “bt_FingerprintLog”). After

1A JavaScript package fingerprint2.js was used to generate the browser fingerprints.

67

(a) Goods listed on website (b) Script of fingerprinting and goods association

Figure 2: E-Commerce websites and embedded scripts

(a) Fingerprint and goods records (b) Script of fingerprint storage

Figure 3: E-Commerce websites and embedded scripts

selecting each product, they will observe the record change in the table; (3) visit
the E-commerce site (“www.wtlabelgg.com”) and observe the product displayed
in the banner area; (4) revisit an E-commerce website and open the source
code of it to examine the JavaScript code on how the browser fingerprint is
generated and how the product information is embedded; (5) open each product
page and examine the source code, study how the web uses PHP script to
pass the browser fingerprint and product ID to a tracking script at the the
advertisement server side; (6) open the source code of the tracking script to
examine how the browser fingerprint and product information are inserted into
the database; (7) revisit the social network and open its source code to study
how the script retrieve the historic records from the advertisement server and
display the result based on an analysis of the visitor behaviors. Then, students
will be asked to manipulate the scripts to display different private information
of the users; and (8) Finally, students will be given a post-lab assignment to
investigate the state-of-the-art browser fingerprinting prevention technologies

68

such as Canvas Poisoner, Agent Spoofer, Tor or BRAVE, etc. A lab report will
be due one week after the lab activities.

Through the hands-on activities, students are expected to: (1) be aware
of web tracking and its commercial importance and potential threats to user
privacy, (2) be able to explain the browser fingerprint mechanism and how to
prevent web tracking through browser fingerprint, and (3) be able to analyze
web scripts and effectively prevent web tracking.

It is noteworthy that this lab can be used not only for teaching privacy
but also for teaching trustworthy machine learning. Once students understand
the browser fingerprinting concepts through the lab activities, the instructor
can have students analyze a browser fingerprint dataset (e.g., the authors of
[9] shared a subset of the browser fingerprint data that they collected through
their GitHub account) and apply supervised machine learning algorithms to see
on how long the visitors’ browser fingerprints do not change and how accurate
the browser fingerprints can be used to recognize the visitors.

4 Evaluation

The labware was pilot-tested among student through a summer training work-
shop in fall 2019. Fourteen undergraduate students majoring in Computer
Science participated in the lab evaluation. After the workshop, the authors
further refined the labware. In spring 20222, the authors formally evaluated
labware within a security course of 23 students. Among the total 37 students,
there were 15 girls and 22 boys, including 25 seniors, 4 juniors, 4 sophomores,
3 freshmen, and one graduate student The learning and evaluation activities
fell into two categories: (1) classroom presentation to introduce web tracking
basics, and (2) hands-on labs to examine the web tracking using cookies and
browser fingerprinting. Pre and post surveys were conducted at the beginning
and the end of the workshop to evaluate and analyze the outcomes.

The student survey questions are listed in Table 1. All questions use a rating
scale of 1 to 5 with 5 being the greatest deal or the most positive. Questions
1 to 6 were surveyed in both pre and post questionnaires. Figure 4a plots the
average rating with regard to the discrepancy of pre and post survey results. A
significant increase was observed on students’ awareness of and interest in web
tracking, browser fingerprinting, and privacy disclosure and preservation after
the lab. Questions 7-10 measured how much students gained in understanding
the related concepts. The survey results were positive and encouraging with
the average rating being greater than 3.6 from all four questions, as shown in
Figure 4b. One lesson we learned from the training is to give students more

2there was a two-year gap due to the COVID-19 which deferred our evaluation plan

69

Table 1: Pre and post survey questions

Survey Questions Type
1 Awareness of privacy disclosure and preservation Pre & Post
2 Awareness about web tracking Pre & Post
3 Awareness about browser fingerprinting Pre & Post
4 Interest in privacy disclosure and preservation Pre & Post
5 Interest in web tracking Pre & Post
6 Interest in browser fingerprinting Pre & Post
7 Learning about web tracking and privacy disclosure Post
8 Learning about browser fingerprinting Post
9 Understanding different mechanisms of web tracking Post
10 This lab should be taught in security and privacy courses Post

1.73

3.08

1.81

2.49
2.95

2.65

3.38

4.25
4.00

3.00

3.58 3.58

0.00

1.00

2.00

3.00

4.00

5.00

q1 q2 q3 q4 q5 q6

A
ve

rg
ag

e
R

at
in

g

Awareness of and Interest in Web
Tracking

Pre Post

(a) Awareness and interest change

3.72
3.67

4.25
4.19

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

q7 q8 q9 q10

A
ve

ra
ge

 R
at

in
g

Understanding in Web Tracking
Technologies

(b) Understanding of photo privacy

Figure 4: Experimental results

time3 to study the source codes and figure out the tricks behind the scripts so
that they can fully understand the technique details trough the activities and
provide feedback more positively for Questions 7 and 8.

5 Conclusion

This paper presents the design and implementation of a in-house labware in-
tended for teaching browser fingerprinting in web tracking. The goal is to
enable students understand the topic through hands-on activities, which not
only make students aware of the possible privacy disclosure via web tracking,
but also equips them with necessary defense technologies. After evaluating
the labware through different groups of students, the authors received very
positive feedback. Students confirmed that they understood the web tracking
mechanisms through the lab activities, and the labware helped them learn the
concepts effectively.

3We gave students one and a half hours for the lab. Three hours are recommended.

70

References

[1] Computer Science Curricula 2013. https://www.acm.org/binaries/
content/assets/education/cs2013_web_final.pdf.

[2] Computing Curricula 2020. https://www.acm.org/binaries/content/
assets/education/curricula-recommendations/cc2020.pdf.

[3] Wenliang Du. SEED. https://seedsecuritylabs.org/. last accessed on
August 8, 2022.

[4] Gabor Gyorgy Gulyas et al. “To Extend or not to Extend: on the Unique-
ness of Browser Extensions andWeb Logins”. In: Proceedings of the 2018
Workshop on Privacy in the Electronic Society. Oct. 2018, pp. 14–27.

[5] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. “Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors”. In:
Proceedings of IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society. May 2021, pp. 1143–1161.

[6] Pierre Laperdrix et al. “Browser Fingerprinting: A Survey”. In: ACM
Transactions on the Web 14.2 (2020), pp. 1–33.

[7] Keaton Mowery and Hovav Shacham. “Pixel Perfect: Fingerprinting Can-
vas in HTML5”. In: Proceedings of W2SP 2012. Ed. by Matt Fredrikson.
IEEE Computer Society. May 2012.

[8] Teaching Privacy. http://teachingprivacy.org.

[9] Antoine Vastel et al. “FP-STALKER: Tracking Browser Fingerprint Evo-
lutions”. In: 2018 IEEE Symposium on Security and Privacy (SP). 2018,
pp. 728–741.

71

Camp CryptoBot: A Model for Taking
Risks and Promoting Self-Efficacy in
Pursuit of Cybersecurity Career

Pathways ∗

Pauline Mosley, Li-Chiou Chen, Lisa Ellrodt, and Doris Ulysse
Seidenberg School of Computer Science and Information Systems

Pace University
Pleasantville, NY 10570

pmosley@pace.edu

Abstract

According to the latest Cybersecurity Workforce Study from the In-
ternational Information System Security Certification Consortium (ISC2)
the cybersecurity workforce shortage has risen to a record high of just
under 4 million despite the cybersecurity workforce growing by almost
10% in the last year [10]. Only 24% of the U.S. workforce in cyberse-
curity is female [19]. Furthermore, less than 20% of the students who
study cybersecurity in this country are women. Why aren’t female stu-
dents majoring in cybersecurity when this is the fastest growing field?
The problem is certainly not ability. Women are certainly as capable
as men in succeeding in this field. The gender imbalance has potential
consequences for this nation’s security, so it is imperative that we un-
derstand why women are not being attracted to this field. The problem
is that the gap is widening, and we must design and develop innovative
ways to engage young women so that we have a diversified and qualified
cybersecurity workforce [5]. Our research discusses the Camp CryptoBot
model which encourages young women to take risks while combating the

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

72

fear of failure thereby promoting their self-efficacy. Camp CryptoBot
seeks to equip, educate, and empower young women such that they can
sustain the rigors of being a woman in a male-dominated discipline and
thrive.

1 Introduction

Despite concerted efforts to close the gender gap in computing education and
careers, women remain underrepresented in cybersecurity. The US Depart-
ment of Labor projects that by 2022, 1.2 million computing-related jobs will
be created in the US. According to the National Center for Women and Infor-
mation Technology [2], only about 3% of the available pool of minority high
school graduates will earn computing degrees from American colleges and uni-
versities, thus lacking the qualifications to fill these jobs. The problem of a
low percentage of women applying for the computer science or cybersecurity
programs is really a symptom of a much larger problem. The engineering and
computing disciplines have been suffering from low female enrollment for a long
time. It is interesting to note, that the majority of students in colleges and
universities are women, yet the caveat is the percentage of women in computer
science is less than 20% of the total student population. In the book enti-
tled Unlocking the Clubhouse: Women in Computing, Allen Fisher and Jane
Margolis analyze the reasons why women shy away from the computing cur-
riculum’s and discovered that one reason is because it is not female-friendly [8].
In another book, Stuck in the Shallow End: Education, Race and Computing
by Margolis [14], Margolis learned why disadvantaged students in Los Angeles,
even when resources are made available to them, do not take advantage of the
opportunities as often as other students, because they felt that the computing
environment was exclusive and that they did not want to fail. In the famous
study conducted by Hill, Corbett, Rose, Why So Few? lack of interest and
stereotype threat which led to women believing that they would fail at STEM
contributed to these women having low self-esteem at STEM courses. Further
research shows that student interest in STEM careers is indeed declining [12]
[21]. According to the President’s Council of Advisors on Science and Tech-
nology [16], “. . . the problem is not just a lack of proficiency among American
students; there is also a lack of interest in STEM fields among many students”
[1]. This decline appears to be due in part to a lack of awareness of the wide
range of STEM (AOS) careers that students can enter with a science back-
ground. The need to encourage women and underrepresented minorities to
pursue STEM careers is particularly pressing, as their numbers in STEM fields
are significantly lower than in the general United States population [4] [3] [20].
This disparity is due, at least in part, to significantly lower completion rates

73

among underrepresented minorities who pursue STEM degrees [13].
Another factor why there exists of shortage of women in these fields is that

women believe that they will not succeed at STEM courses – it is a perceived
risk of failing. Perceived Risk of Failing refers high school students’ percep-
tion that they are incapable of understanding STEM subjects and will fail if
they pursue STEM courses. NSF data revealed that in 2010 only 7.5% of en-
gineering or computer science technicians were African American or Hispanic.
This percentage is considerably lower than the 12.2% national population of
African Americans and Hispanics [7]. Experts in the field attribute this lack
of STEM+C interest to students’ perceptions that computing is “too hard”,
“expensive”, and inadequate preparation and encouragement along educational
transition points. Student attitudes about their learning play a significant role
in their successful acquisition of math skills. There are qualitative studies
of students’ perceptions of learning in other disciplines, for example: nursing
education, online learning, nutrition, foreign language education, and science
education [6] [11] [17] [18] [15].

2 GenCyber Camp CryptoBot

Pace University GenCyber co-ed Camp CryptoBot is an interactive and mission-
driven camp that launched in 2016 and has operated 6 times. Camp Cryp-
toBot has introduced a total of 198 high-school students (103 males and 95
females) to the basics of cybersecurity utilizing SeaPerch (underwater robot)
and Sphero as the platform for teaching cryptography and cybersecurity con-
cepts using various pedagogical approaches, including storytelling, hands-on
labs, and problem-solving missions. The program time-line which entails pre/-
post and summer camp activities totaling 54 hours is defined in Table 1. It is a
seven-day non-residential workshop held from 9am – 4pm with 1 instructional
hour and 5 hands-on/group activity hours. Recognizing, the urgent need to
expand the workforce pool of cybersecurity professionals of underrepresented
groups in the next twenty years, the goal of the CryptoBot summer camp’s
mission is both an education and cybersecurity pipeline restoration initiative.
It has successfully increased student’s interest, in particular young women, to
consider cybersecurity as a career option. In addition, it has provided these
students a space where they can take risks and learn how to “fail” thereby in-
creasing their self-efficacy. A major goal of this summer camp is not only to
increase awareness of cryptography and cybersecurity concepts using robotics
is but to remove all fear of failing and misconceptions about programming and
cryptography before one tries, with an emphasis on targeting young women.

The Camp CryptoBot curriculum is a model that utilizes a problem-based
cooperative learning approach to subject immersion, idea generation, and group

74

construction. It facilitates a learner-center classroom because the instructor
can tailor pedagogical methodologies for various student learning patterns,
and multiple strategies can be implemented to engage all students, regardless
of gender or race. We will utilize classroom discussion strategies, kinesthetic
activities, and cooperative learning methodologies to address perceived risks
of failing and promote self-efficacy. These approaches encourage students to
explore and question how and what they are learning as well as take risks -
thereby they begin to define their personal expertise, interests, and identity
as a learner. These avenues of exploration overlap and merge in organic ways
within each child’s unique learning experience. Multiple dynamic fun-filled
team activities will take place in all the modules which will reinforce cyber-
security first principles and basic network concepts thereby promoting team
dynamics and critical thinking skills. Each day students are given an oppor-
tunity to think, to take risks and most importantly to believe in themselves
(self-efficacy). This is implemented by a series of missions which that are given
each day. Students learn how to decode messages using various ciphers (Morse
Code, Caesar cipher, vigenere cipher, Binary code, and pig pen cipher) as well
as how to send messages using Spheros. The plot of the camp is that Pace
University has been hacked, and the students working in teams must commu-

75

nicate secretly and find clues around the university to determine who hacked
the university. Each day the learn a cybersecurity concept and using problem
solving techniques coupled with the concept they must complete a mission.
The missions are designed to provoke them to take risks, experiment and at
times fail. Student, in particularly young women, must learn how to recover
from the failure and transition to a place of success. These skill sets are criti-
cal for succeeding and sustaining success in cybersecurity. Table 2 depicts the
missions and the learning objectives for each day.

3 Data Analyses

A total of 95 girls from 18 high schools participated in Camp CryptoBot from
2016-2023 (camp was not funded in 2017). Our target effort in recruiting
Hispanic and African Americans was challenging, and this could be attributed
to transportation issues. Figure 1 reveals the ethnicity distribution among
female participants. The 22.22% participation for White is the highest of all
ethnic groups and 5.56% participation for Black or African American is the
lowest. At the end of each camp event, a rubric was shared with the students
to help them understand how their learning would be evaluated.

The evaluations were conducted by GenCyber and Dark Enterprises. The
Four-Phase Model of Interest Development, by Hidi S. and Reninger K [9] is the
framework being used to analyze GenCyber campers’ responses to the end of
camp survey in an effort to 1) identify and classify the incoming and outgoing
interest levels of attendees at the camp, as well as interest development, and 2)

76

provide feedback on the interest development efficacy of the camp using seven
construct and open-ended items of enablers and barriers. [Dark Enterprises]
Though most of the participants had no prior knowledge of cybersecurity or
limited coding experience, by the end of the camp, they were able to code
Sphero and implement cybersecurity concepts. Participants were asked about
their experience at the camp in respect to their interest of cybersecurity. The
girls from all six years assessed their level of satisfaction in the five categories.

Figure 2 is a bar chart showing the average incoming and outgoing interest
levels by group, and interest change for each of the three groups. As can be
seen, the group with low incoming interest had a substantial increase. The
moderate group had a modest increase and high incoming interest had an in-
cremental increase. Girls also mentioned how this camp helped them to get
excited and puruse their career in cybersecurity. Others mentioned that they
had never heard of cybersecurity until this camp. When asked to describe
things that happened at camp which enabled interest in cybersecurity, stu-
dents reported the following:

• Working with Sphero and learning ciphers like morse code

77

• The coding on my Sphero, the morse code learning, and the decrypting,
and encrypting codes. I got to feel like a mini hacker or feel like I was in
the matrix.

• Meeting new people from different areas in the world. learning about
Caesar cipher. learning how to program the Sphero in many ways. the
short games we did with each other. lastly, the challenges we competed
in.

• Learning about all the dangers of cyber attacks and how this issue is
growing really opened my eyes to how cybersecurity is needed for the
future.

• Investigations based on the scenario, how to decode encode, all Cipher
drills, lots of enrichment which nourished knowledge at the same time
without compromising fun and ethics, new career options

• The team challenges helped solidify what we were taught in lectures

• The various challenges, the guest speakers, the different ciphers, the peo-
ple I worked with

• Ciphers and the lectures from corporation employees with firsthand ex-
perience of cybersecurity

• Sphero Learning the different functions Activities Cyber security cards

78

• Microsoft speakers, group discussions, and Sphero coding/encrypting

• My team leader was extremely encouraging and helped me open up to
my team. Having such a great team therefore led me to participate more
and become more interested , the great variety of guest speakers, they
covered many different topics and areas so it expanded my knowledge
and gave me new interests in parts of cybersecurity that I never knew
about

• I got to hear a bunch of people talk about interesting things for about 8
days

• The challenges and how we were rewarded for learning about the cyber-
security concepts taught and the knowledge we brought to the camp.

4 Concluding Discussions

In this paper, we have presented a Camp Cryptobot model for high school
students, in particularly girls that was designed to attract a diverse group
of girls and engage them in activities that cultivate them to take risks and
enhance their self-efficacy leading them toward a cybersecurity career. There
are many summer camp experiences for young woman, however, what sets
this camp apart is the consideration factors to enhance female self-efficacy and
negate female fear of failing. The design of the lessons is created by women
for women to promote inclusion and diversity, as well as to introduce and
sustain best practices that encourage women to stay in the field. If you can
see it you can become it – another key factor of this model is the diversity
of female faculty. In 2020, Camp CryptoBot was held virtually and even in
the modality, we were able to create an online environment in which the girls
felt supported and were inspired to consider cybersecurity. As a result of this
model operating for six years, our findings reveal that the girls participating in
this camp showed evidence of growth in self-efficacy through their developing
abilities in robotics and programming skills. Our model contributes to the
evidence that it is possible to recruit and attract a diverse group of young
women to cybersecurity.

5 Acknowledgments

Special thanks to the participants, Mr. John Sarlo, the High School Peda-
gogical Consultant, The United States Navy Personnel, industry experts from
IBM, Goggle, MasterCard, and other cybersecurity firms. Thanks to Dark
Enterprises for conducting the surveys and assessment for all six camps. This

79

material is based upon work supported by the National Science Foundation,
National Security Agency and GenCyber H98230-22-1-0176.

References

[1] Ian C Binns et al. “Student perceptions of a summer ventures in science
and mathematics camp experience”. In: School Science and Mathematics
116.8 (2016), pp. 420–429.

[2] Tracy Camp, Christine Liebe, and Michelle Slattery. “Applying NCWIT
Protocol to Broaden Participation in Computing: A Case Study of CS@
Mines”. In: Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. 2020, pp. 528–534.

[3] Christianne Corbett, Catherine Hill, and Andresse St Rose. Where the
Girls Are: The Facts about Gender Equity in Education. ERIC, 2008.

[4] National Research Council et al. Gender differences at critical transitions
in the careers of science, engineering, and mathematics faculty. National
Academies Press, 2010.

[5] David Dampier. “Building an education program for engineers in digital
forensics”. In: 2008 Annual Conference & Exposition. 2008, pp. 13–264.

[6] Dorothy H Evensen, Jill D Salisbury-Glennon, and Jerry Glenn. “A qual-
itative study of six medical students in a problem-based curriculum: To-
ward a situated model of self-regulation.” In: Journal of Educational Psy-
chology 93.4 (2001), p. 659.

[7] Richard Fry, Brian Kennedy, and Cary Funk. “STEM jobs see uneven
progress in increasing gender, racial and ethnic diversity”. In: Pew Re-
search Center 1 (2021).

[8] Eric Gorki. “College Gender Gap Favoring Women Stops Growing”. In:
The Washington Post 26 (2010).

[9] Suzanne Hidi and K Ann Renninger. “The four-phase model of interest
development”. In: Educational psychologist 41.2 (2006), pp. 111–127.

[10] Key Findings from the ISC2 Cybersecurity Workforce Study. 2024. url:
https : / / niccs . cisa . gov / cybersecurity - career - resources /
featured-stories/key-findings-isc2-cybersecurity-workforce-
study.

[11] Teresa Lao and Carmen Gonzales. “Understanding online learning through
a qualitative description of profesors and students’ experiences”. In: Jour-
nal of Technology and Teacher Education 13.3 (2005), pp. 459–474.

80

[12] B Lindsay Lowell, Hal Salzman, and Hamutal Bernstein. “Steady as she
goes? Three generations of students through the science and engineering
pipeline”. In: (2009).

[13] Jane Margolis. Stuck in the shallow end, updated edition: Education, race,
and computing. MIT press, 2017.

[14] Jane Margolis and Allan Fisher. Unlocking the clubhouse: Women in com-
puting. MIT press, 2002.

[15] Michael Prelip et al. “Role of classroom teachers in nutrition and phys-
ical education”. In: Californian Journal of Health Promotion 4.3 (2006),
pp. 116–127.

[16] Prepare and inspire: K-12 education in science, technology, engineering
and math (STEM) for America’s future. 2010. url: https://www.nsf.
gov / attachments / 117803 / public / 2a -- Prepare _ and _ Inspire --
PCAST.pdf.

[17] Kimberly Starr and Virginia M Conley. “Becoming a registered nurse:
The nurse extern experience”. In: The Journal of Continuing Education
in Nursing 37.2 (2006), pp. 86–92.

[18] Brad Sullivan and Edwin M Everham. “Life at the Boundaries: Exploring
Interdisciplinarity in an Environmental Literature Course”. In: Interdis-
ciplinary literary studies 5.2 (2004), pp. 1–15.

[19] Women Represent 24 Percent of Cybersecurity Workforce, (ISC)² Re-
ports. 2019. url: https://www.securitymagazine.com/articles/
90071-women-represent-24-percent-of-cybersecurity-workforce-
isc-reports.

[20] Women, minorities, and persons with disabilities in science and engi-
neering: 2013. Special Report NSF 13-304. Arlington, VA. 2013. url:
http://www.nsf.gov/statistics/wmpd/.

[21] Vanessa LWyss, Diane Heulskamp, and Cathy J Siebert. “Increasing mid-
dle school student interest in STEM careers with videos of scientists.” In:
International journal of environmental and science education 7.4 (2012),
pp. 501–522.

81

The Utility of Radix Representations and
Surrogate Logarithms in the Analysis of

Algorithms and Data Structures ∗

Michael Kart
Department of Computer Sciences

Saint Edward’s University
Austin, TX 78704

michaelkart@stedwards.edu

Abstract

Students often encounter the concepts of algorithmic complexity be-
fore they have fully developed calculus-level mathematical sophistication
and their ability to handle abstraction. Undergraduate computer science
students tend to struggle with fundamental complexity classes especially
when logarithms are involved. This paper proposes the use of radix rep-
resentations and a simple surrogate for logarithms in order to improve
student understanding of the complexity analysis of selected algorithms.

1 Introduction

Students taking an algorithms and data structures course are guaranteed to
encounter the concepts of asymptotic analysis, complexity classes, and algo-
rithms. Unfortunately, many students have gaps in their mathematical prepa-
ration and it is incumbent on the instructor to mitigate this problem. Since
a full gap coverage is not possible, instructors should leverage strong student
understanding of related topics. We propose using radix representations along
with a simple surrogate for logarithms to help fill some of these gaps since

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

82

activating prior knowledge in students that is both relevant and congruent
has a positive effect on learning gains[1]. Note that these tools are intended
to scaffold student understanding and perhaps act as a gateway to a deeper
understanding of the more rigorous techniques of differential calculus.

This paper proceeds by providing content that is relevant to these ideas. A
background is provided on radix representations and the preferred definition
of asymptotic notation for the course. It is important to note that students
have already been introduction to radix representations in a previous course. A
unique introduction can be found in [3]. It should also be noted that selected
course content follows, but this content is not contiguous since algorithmic
(time) complexity discussions occur throughout the course. Instead, content is
presented as particular data structures are introduced and studied.

2 Background

2.1 Radix Representations

Let n be a nonnegative integer and b be an integer that is greater than 1. Then,
for some integer k ≥ 0, n can be uniquely decomposed over the nonnegative
powers of b as follows:

n = rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0, (1)

where 0 ≤ ri < b for all i ∈ [0, k] and 0 < rk. The numeral r′kr
′
k−1r

′
k−2 · · · r′0

is defined to be the representation of n in radix (i.e., base) b, where r′i is the
digit that represents the integer ri, for each i ∈ [0, k].

For example, with n = 98 and b = 2:

98 = 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20. (2)

Therefore, the radix 2 representation of 98 is 1100010.

2.2 Asymptotic Notation

Definition 1. Let f(n) and g(n) be functions over the positive integers. We
write f(n) = O(g(n)) if there exists a real number c and positive integer n0 such
that 0 ≤ f(n) ≤ c · g(n) for all n ≥ n0. Additionally, we write f(n) = Θ(g(n))
when both f(n) = O(g(n)) and g(n) = O(f(n)) hold.

Further details can be found in [2].

83

3 Introduction to Algorithm Analysis

Find the minimum integer in the following list of size seven:
304788
660215
271370
833580
56277

410706
709822

As expected, all students are able to find the answer. More importantly, when
asked what their algorithm was, students immediately start to discuss the
number of digits in each integer and point out that 56277 is the only integer
in the list that has 5 digits, while the other integers all have 6 digits. Their
algorithm then correctly concludes that 56277 is the minimum. The class is
then asked to consider whether this algorithm “inspects” each and every integer
in the list and how many steps each inspection takes.

Find the minimum integer in the following list of size seven:
56277

271370
304788
410706
660215
709822
833580

The question is then changed to “What if the list was sorted in non-
decreasing order?” Discussion then focuses on whether this is known as a
precondition or not. Finally, it is shown that when the list is guaranteed to
be sorted in non-decreasing order and contains at least one element, then the
algorithm that produces the minimum by simply returning the integer at index
0 is O(1).

3.1 Alternative to Logarithms

We now introduce the function lenb(n), which almost every student grasps
immediately, as a surrogate for the normal logarithm.

Definition 2. Let b > 1 and n ≥ 1 both be integers. The lenb(n) is defined to be
the length of the shortest representation of n in radix b (i.e., the representation
that does not include leading zeros). So, lenb(n) = k + 1 when:

n = rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0, (3)

where 0 ≤ ri < b for all i ∈ [0, k] and 0 < rk.

84

The normal logarithm from math is defined as follows:

Definition 3. Let b > 1 and n ≥ 1 both be integers. Then logb(n) = x, where
bx = n.

The following lemma shows that the functions lenb and logb never differ by
more than 1.

Lemma 1. Let b > 1 and n ≥ 1 both be integers. Then

lenb(n)− 1 ≤ logb(n) < lenb(n). (4)

Proof. Suppose k + 1 = lenb(n). Then we want to show

k ≤ logb(n) ≤ k + 1 (5)

since lenb(n)− 1 = k and lenb(n) = k + 1. By definition of lenb(n), we have:

n = rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0 < bk+1 (6)

Notice that rk · bk ≤ n since b ≥ 1 and ri ≥ 0 for all i ∈ [0, k] implies that
rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0 ≥ 0. Next, observe that bk ≤ rk · bk since
1 ≤ rk. Therefore, bk ≤ n < bk+1 and, consequently, k = logb(b

k) ≤ logb(n) ≤
logb(b

k+1) = k+1 since logb is an increasing function and logb(b
m) = m for any

m, which follows directly from the definition of logb. So, we have established
Equation 5, as desired.

Next, we show that lenb and logb are in the same complexity class.

Theorem 1. Let b > 1 be fixed. Then logb(n) = Θ(lenb(n)).

Proof. By Lemma 1, we have:

lenb(n)− 1 ≤ logb(n) < lenb(n). (7)

This implies that logb(n)
lenb(n)

< 1 for all n, so logb(n) = O(lenb(n)). It also implies

that lenb(n)−1
logb(n)

≤ 1. So, we have lenb(n)−1
logb(n)

= lenb(n)
logb(n)

− 1
logb(n)

≤ 1 and lenb(n)
logb(n)

≤
1 + 1

logb(n)
. Observe that, by definition, logb(b

1) = 1 and 1 ≤ logb(n) for

n ≥ b1 = b. For n ≥ b, 1
logb(n)

≤ 1, and lenb(n)
logb(n)

≤ 1 + (1
logb(n)

) ≤ 1 + (1) = 2 for
n ≥ b. So, lenb(n) = O(logb(n)). Since logb(n) = O(lenb(n)) and lenb(n) =
O(logb(n)), we have shown that logb(n) = Θ(lenb(n)), as desired.

In the following lemma, we show that the function lenb doesn’t increase
rapidly.

85

Lemma 2. Let the integer b > 1 be fixed. Then, for n > 0,

lenb(n) ≤ lenb(n + 1) ≤ lenb(n) + 1. (8)

Proof. Suppose k = lenb(n). Then

n = rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0, (9)

where 0 ≤ ri < b for all i ∈ [0, k] and 0 < rk. It follows that bk ≤ n, which
implies that bk ≤ n + 1 and, consequently, lenb(n) = k ≤ lenb(n + 1).

Furthermore, since each ri < b,

n ≤ (b− 1)(bk + bk−1 + bk−2 + · · ·+ b0)

= b(bk + bk−1 + bk−2 + · · ·+ b0)− 1(bk + bk−1 + bk−2 + · · ·+ b0)

= bk+1 + bk + bk−1 + · · ·+ b1 − bk − bk−1 − bk−2 − · · · − b0

= bk+1 + (bk − bk) + (bk−1 − bk−1) + · · ·+ (b1 − b1)− b0

= bk+1 − b0

= bk+1 − 1.

It follows that n+1 ≤ bk+1, which implies that lenb(n+1) ≤ k+1 = lenb(n)+1
since each coefficient of bm is 0 for any m > k + 1.

So, we have shown both lenb(n) ≤ lenb(n+1) and lenb(n+1) ≤ lenb(n)+1,
as desired.

Finally, we show how lenb relates to n.

Theorem 2. Let the integer b > 1 be fixed. Then 1 ≤ lenb(n) ≤ n for n ≥ 1.

Proof. By induction. Let P (k) be the predicate that 1 ≤ lenb(k) ≤ k for k ≥ 1.

Base Case (k = 1):
P (1) is the predicate 1 ≤ lenb(1) ≤ 1, which holds because lenb(1) = 1.

Induction Step: Let k ≥ 1 be fixed and assume that P (k) holds, that is,
1 ≤ lenb(k) ≤ k. Now, show that P (k + 1) holds. From Lemma 2, we have
that lenb(k) ≤ lenb(k + 1) ≤ lenb(k) + 1. Combining this with the induction
hypothesis, we have that 1 ≤ lenb(k) ≤ lenb(k + 1) ≤ lenb(k) + 1 ≤ k + 1,
which implies 1 ≤ lenb(k + 1) ≤ k + 1, as desired.

86

3.2 Applications

3.2.1 Complexity Class Ordering

Students often guess at whether logb(n) or n is smaller. However, students
don’t have the same problem when comparing lenb(n) and n.

Let the integer b > 1 be fixed. From Theorem 2 it follows directly that

O(1) ⊆ O(lenb(n)) ⊆ O(n). (10)

Notice that by multiplying each part of the inequality of Theorem 2 by n
results in the inequality n ≤ n · lenb(n) ≤ n2, which yields:

O(n) ⊆ O(n · lenb(n)) ⊆ O(n2). (11)

3.2.2 Analysis of Binary Search

The following is a typical Java implementation of the binary search algorithm
(see [4]), with the exception that the length of the search interval has been
made explicit via the variable named lengthInterval :

1 public static final int NOT_FOUND = -1;
2 //part of post: rv != NOT_FOUND <==> intArray[rv] == target
3 //part of post: rv == NOT_FOUND <==> intArray[i] != target ,

∀i ∈ [0, intArray.length]
4 public static int binarySearch(int[] intArray , int target)
5 {
6 assert intArray != null : "intArray is null!";
7 assert isSortedNonDecreasing(intArray) : "Not sorted!";
8
9 int lowIndex = 0;

10 int highIndex = intArray.length - 1;
11
12 boolean foundTarget = false;
13 int lengthInterval = (highIndex - lowIndex + 1);
14 while(! foundTarget && lengthInterval > 0)
15 {
16 int middleIndex = lowIndex + (highIndex - lowIndex)

/2;
17 int middleValue = intArray[middleIndex];
18 if(middleValue == target)
19 foundTarget = true;
20 else
21 {
22 if(middleValue < target)
23 lowIndex = middleIndex + 1;

87

24 else // middleValue > target
25 highIndex = middleIndex - 1;
26 lengthInterval = (highIndex - lowIndex + 1);
27 }
28 }
29 assert !(foundTarget && intArray[middleIndex] != target)

;
30 return (foundTarget ? middleIndex : NOT_FOUND);
31 }

The worst case running time occurs when target is not found. For those
cases, the terminating condition for the algorithm becomes (lengthInterval
> 0). Since lengthInterval changes once per iteration of the while loop

(assuming foundTarget remains false), we only need to analyze the se-
quence lengthIntervali, which is defined to be the value of lengthInterval
at the time of its ith update. Note that, by definition, lengthInterval0

equals intArray.length. Define the sequence middleIndexi in the anal-
ogous manner. Lastly, define lowIndexi and highIndexi to be the values
of lowIndex , and highIndex , respectively, at the time of the ith update to
either of lowIndex on Line 23 or highIndex on Line 25.

Example 1. Suppose that the following call is made:

binarySearch([1, 2, 4, 8, 16, 32, 64, 128, 256, 512], 999).

Then we have:
i lengthi lowIndexi middleIndexi highIndexi
0 10 0 4 9
1 5 5 7 9
2 2 8 8 9
3 1 9 9 9
4 0 10 - 9

The sequence lengthi is 10, 5, 2, 1, 0. Rewriting this sequence using the
radix 2 representation for each element yields the sequence 1010, 101, 10, 1, 0
and observe that lengthk = (lengthk-1 >> 1) for each k > 1, where >> is
the Java signed binary number right shift operator. It follows that the for loop
is fully executed len2(10) = 4 times.

While not presented here, it can be shown that when binary search is
called with a target value is greater than anything in the array, the sequence
lengthIntervalk satisfies lengthIntervalk = (lengthIntervalk-1 >>
1) for each k > 1 such that lengthIntervalk is defined. Therefore, the
worst-case running time is O(len2(n)), where n = intArray.length.

88

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

1

+ 10

+ 100

+ 1000

1111

Figure 1: Perfect Binary Tree

3.2.3 Height of a Perfect Binary Tree

A perfect binary tree is defined to be a binary tree in which each non-leaf
node has exactly two children. See Figure 1 and notice that the topmost level
contains a single (i.e., 20) node, while the second level from the top contains
two (i.e., 21) nodes, etc. Define level k to be the level at distance k from the
topmost level, when such a level exists. Then, in a perfect binary tree, level k
contains 2k nodes since the all of the nodes at that level can be indexed by all
of the bitstrings of length k + 1 that begin with a 1 and there are 2k bitstrings
of this kind. So, notice that when the tree has h+ 1 levels then the node count
equals 1+2+4+ · · · 2h. Using a radix 2 perspective, this sum can be rewritten
as 1+10+100+ · · ·+1000 · · · 0 with the last radix 2 number containing h zeros.
Notice that, as in Figure 1 the sum is easily seen to be the radix 2 number
1111 · · · 1 containing h + 1 ones since each level contributes exactly a single
digit 1. So, the number of nodes is 1111 · · · 1 = 10000 · · · 0− 1 = 2h+1 − 1 and
h + 1 = len2(n) so the height of the tree, h, is O(len2(n)).

4 Conclusion

The results from the last section gives students intuition about why many al-
gorithms have worst case running time O(len2(n)) when n is the number of
nodes and the binary tree involved is perfect or “near” perfect (i.e., balanced).
In particular, once students understand the connections developed in this pa-
per, students often have an newfound appreciation for the O(len2(n)) com-
plexity for the binary search tree algorithms insert, delete, and search, as well
as for the heap algorithms siftDown and deleteMax. In addition, students
seem to be more willing to play around with binary expressions of the form
len2(1)+len2(2)+len2(3)+ · · ·+len2(n) to potentially realize its O(n ·len2(n))

89

nature than they are to do the same kind of work with the analogous expres-
sion involving the binary logarithm, lg. Lastly, almost every student who has
learned about the relationship between logb(n) and lenb(n) immediately appre-
ciates how much smaller these functions are compared to n when n is large. In
particular, students instantly know that log10(1, 000, 000) ≈ 7 and, therefore,
that log10(1, 000, 000) < 1, 000, 000.

References

[1] Garvin Brod. “Toward an understanding of when prior knowledge helps
or hinders learning”. In: npj Science of Learning 6.1 (2021), p. 24. doi:
10.1038/s41539- 021- 00103- w. url: https://doi.org/10.1038/
s41539-021-00103-w.

[2] Thomas H. Cormen et al. Introduction to Algorithms, Third Edition. 3rd.
The MIT Press, 2009. isbn: 0262033844.

[3] Michael Kart. “Making change: rigorous software construction as experi-
ential learning”. In: J. Comput. Sci. Coll. 36.7 (Apr. 2021), pp. 76–85.
issn: 1937-4771.

[4] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.)
sorting and searching. USA: Addison Wesley Longman Publishing Co.,
Inc., 1998. isbn: 0201896850.

90

Learning Parallelism Through an
Unplugged Class Activity

Conference Workshop

Matthew Toups1, Anurag Dasgupta2, Venkat Margapuri3,
Simon Shamoun4, Shubbhi Taneja5

1Computer Science Department
Tulane University, New Orleans, LA 70118

mtoups3@tulane.edu
2Computer Science and Engineering Technology
Valdosta State University, Valdosta, GA 31698

adasgupta@valdosta.edu
3Department of Computing Sciences

Villanova University, Villanova, PA 19085
vmargapu@villanova.edu

4Computer Science Department
Hofstra University, Hempstead, NY 11549

Simon.Shamoun@hofstra.edu
5Computer Science Department

Worcester Polytechnic Institute, Worcester MA, 01609
staneja@wpi.edu

1 Background: PDC in CS education and unplugged class-
room activities

Computer Science courses are increasing their coverage of “parallel and dis-
tributed computing” (PDC). [4] Adoption of PDC content is growing in many
parts of computing education, encouraged by programs such as Center for
Parallel and Distributed Computing’s CDER (Curriculum Development and
Educational Resources).[3] [5] The rapid development of cloud computing and
big data breakthroughs have changed the programming paradigms and con-

91

tributed to the phenomenal growth of parallel and distributed computing. In
traditional sequential programs, the assumption is that execution occurs on
only one processor, such that program is sequential in nature. Today, modern
computers typically employ multiple processor cores, and are interconnected
with high speed networks, leading to the advancement of parallel and dis-
tributed computing.

Computer Science instructors generally teach these ideas through computer-
based examples and programming-based assignments. The authors intend to
enhance those existing assignments and examples by adding a non-computer-
based classroom “unplugged activity”[1], to demonstrate the concept of par-
allelism in computing. The proposed activity the authors conducted specifi-
cally involves the topic of parallel computing, in which multiple processors (or
threads) divide a problem into sub-problems and then compute solutions si-
multaneously. This computing problem can be studied in a real-world analog:
sorting playing cards by suits and ranks. Tasks are divided among teams of
students of varying sizes to explore the benefits and costs of parallel algorithms
in this real-world problem. The authors aim to determine the effectiveness of
the class activity in helping students learn parallel computing.

2 Workshop Agenda

The authors are faculty at five disparate US-based universities who have col-
laborated on the topic of PDC unplugged activities. We have conducted IRB-
approved research within our classrooms at three campuses so far, with the
other two in progress. Our goal is to measure the effectiveness of unplugged
activities in our classrooms.

2.1 Introductions

We will begin by an introduction of the presenters and the experiences we bring
to this workshop. We would also like the chance to learn about our audience
of educators and others: what disciplines do you represent and what student
populations do you serve?

2.2 PDC topic introduction

As described in Section 1, PDC is a growing part of CS education. Each of the
authors have participated in one or more workshops affiliated with the CDER
Center’s NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed
Computing. We will address the role this topic plays in our own classrooms.

92

2.3 “CS Unplugged” activities

“CS Unplugged” is a name for class activities which involve “Computer Science
without a computer”.[2] There is a rich collection of such teaching materials
available for educators, although more often these deal with topics like algo-
rithms, data formats, or theory of computation. Since unplugged activities
offer many well-studied advantages[6], we believe PDC topics will also benefit
from further adoption of unplugged classroom activities.

2.4 Case study: sorting playing cards

Our example unplugged activity takes place during one class period, wherein
the instructor starts by defining the card-sorting activity and demonstrating
how cards should be sorted according to suit and rank. Students take a pre-
activity survey to determine their pre-existing ideas about what method they
would choose to solve this sorting problem. The instructors want to see how
large of a team students think is efficient for solving the problem. Then, the
instructor divides the class into teams of different sizes and distributes a shuf-
fled deck of playing cards to each team, who then devises a strategy for sorting
the cards. The groups time themselves sorting the deck of 52 playing cards.
Afterwards, the class discusses the results and considers this in the context
of a parallel computing problem. Finally, the instructors give the students a
post-activity survey to measure how their perception about parallel computing
has changed based on their hands-on experience with the class activity. In the
post survey students describe some advantages and disadvantages of having a
larger team vs. a smaller one. Depending on the level of the students, they
may be asked to reflect on how their method translates to memory sharing,
communication, and control in parallel architectures in higher level courses.

2.5 Research studies on effectiveness

Our group is conducting research on the effectiveness of this classroom inter-
vention. We are doing this in different courses, at different universities with
disparate student populations. We will share some preliminary results, and also
provide some suggestions for how to conduct research studies in a classroom
setting.

2.6 Feedback from attendees

We’d appreciate feedback from the attendees, both about the case study ac-
tivity, but also about ideas for creating new activities with similar goals.

93

References

[1] Tim Bell and Jan Vahrenhold. CS unplugged—how is it used, and does
it work? Adventures between lower bounds and higher altitudes: essays
dedicated to Juraj Hromkovič on the occasion of his 60th birthday, pages
497–521, 2018.

[2] Suzanne J Matthews. PDCunplugged: A free repository of unplugged par-
allel distributed computing activities. In 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 284–
291. IEEE, 2020.

[3] Sushil K Prasad, Almadena Chtchelkanova, Sajal Das, Frank Dehne, Mo-
hamed Gouda, Anshul Gupta, Joseph Jaja, Krishna Kant, Anita La Salle,
Richard LeBlanc, et al. NSF/IEEE-TCPP curriculum initiative on parallel
and distributed computing: core topics for undergraduates. In Proceed-
ings of the 42nd ACM technical symposium on Computer science education,
pages 617–618, 2011.

[4] Rajendra K. Raj, Carol J. Romanowski, John Impagliazzo, Sherif G. Aly,
Brett A. Becker, Juan Chen, Sheikh Ghafoor, Nasser Giacaman, Steven I.
Gordon, Cruz Izu, Shahram Rahimi, Michael P. Robson, and Neena Thota.
High performance computing education: Current challenges and future di-
rections. In Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education, ITiCSE-WGR ’20, page 51–74,
New York, NY, USA, 2020. Association for Computing Machinery.

[5] Erik Saule, Kalpathi Subramanian, and Jamie Payton. We need community
effort to achieve pdc adoption! In 2021 IEEE 28th International Conference
on High Performance Computing, Data and Analytics Workshop (HiPCW),
pages 43–49, 2021.

[6] Michael Weigend, Jiří Vaníček, Zsuzsa Pluhár, and Igor Pesek. Computa-
tional thinking education through creative unplugged activities. Olympiads
in Informatics, 13:171–192, 2019.

94

